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MICROROBOTS

A gyroscope-free visual-inertial flight control and wind
sensing system for 10-mg robots

Sawyer Fuller'-2#¥, Zhitao Yu', Yash P. Talwekar’

Tiny "gnat robots,” weighing just a few milligrams, were first conjectured in the 1980s. How to stabilize one if it
were to hover like a small insect has not been answered. Challenges include the requirement that sensors be
both low mass and high bandwidth and that silicon-micromachined rate gyroscopes are too heavy. The smallest
robot to perform controlled hovering uses a sensor suite weighing hundreds of milligrams. Here, we demon-
strate that an accelerometer represents perhaps the most direct way to stabilize flight while satisfying the
extreme size, speed, weight, and power constraints of a flying robot even as it scales down to just a few milli-
grams. As aircraft scale reduces, scaling physics dictates that the ratio of aerodynamic drag to mass increases.
This results in reduced noise in an accelerometer’s airspeed measurement. We show through simulation and
experiment on a 30-gram robot that a 2-milligram off-the-shelf accelerometer is able in principle to stabilize
a 10-milligram robot despite high noise in the sensor itself. Inspired by wind-vision sensory fusion in the
flight controller of the fruit fly Drosophila melanogaster, we then added a tiny camera and efficient, fly-inspired
autocorrelation-based visual processing to allow the robot to estimate and reject wind as well as control its
attitude and flight velocity using a Kalman filter. Our biology-inspired approach, validated on a small flying
helicopter, has a wind gust response comparable to the fruit fly and is small and efficient enough for a 10-mil-
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ligram flying vehicle (weighing less than a grain of rice).

INTRODUCTION
The idea of extremely small autonomous robots, termed “gnat
robots” (1, 2), first gained widespread attention in the 1980s. To
provide a precise definition and terminology, we will define a
Nature-inspired Aerial Ten-milligram robot, or “NAT robot,” to
refer to a robot that flies and weighs between 1 and 10 mg. A
grain of rice weighs about 10 mg, making NAT robots smaller
than the 100- to 600-mg flapping-wing flyers (weighing about the
same as one to six toothpicks) that have been created to date, such as
the Robofly (3-5), Robobee (6, 7), Bee+ (8), and Softfly (9) (Fig. 1).
By virtue of their small size, NAT robots will have capabilities that
distinguish them from larger robots. Operating in teams of thou-
sands or millions, they could perform “fast, cheap, and out of
control” space missions at markedly reduced launch cost, serve as
autonomous mobile “smart dust” (10) to find hazardous fume
sources or map air flow patterns, or collectively perform manipula-
tion tasks on objects larger than themselves (11). Reduction in size
to below 10 mg amplifies many of the scale-dependent benefits of
small robots. These include greater deployment numbers at the
same cost for improved coverage and the ability to harvest all
needed energy from a greater array of ambient energy sources in
the environment. The increasing surface area—to—volume ratio as
scale diminishes favors solar power in small robots, for example
(12). The ability to fly affords important benefits for small scale.
These include easily surmounting obstacles (1) and the concomitant
ability to come into closer proximity to sensing targets and power
sources, lowering sensitivity and conversion efficiency
requirements.

When sensing and control of such small flying vehicles is con-
sidered, the physics of small scale takes on a heightened importance
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(13-16). For a robot of size scale £ (for example, its length from
wing tip to wing tip), mass varies as ¢° to first order. This implies
that sensor mass must diminish as scale reduces, which rules out
many sensor types for NAT robots and implies lower precision or
update rates for others. It also places a severe limit on sensor and
controller power, because battery mass also scales as £°. As sensor
quality degrades with scale, the speed of the dynamics they must
control concomitantly increases. Angular acceleration and transla-
tional acceleration vary as #~! (if translational velocity is measured
in units of body lengths per second or #/s) (17). The attitude of
small hovering vehicles, such as flapping-wing aircraft (18, 19), elec-
trohydrodynamic (EHD) vehicles (20, 21), and flies (22), is unstable.
This implies a size-dependent upper limit on sensor time delay or
sampling rate (23). Together, these constitute extreme constraints
on the speed, size, weight, and power (SSWaP) of a NAT robot's
avionics system.

We addressed here the lowest level in the drone autonomy hier-
archy introduced in (24), known as “sensor autonomy.” Sensor au-
tonomy entails the ability to hover in the air stably and is a requisite
for higher-level tasks such as navigating through confined environ-
ments (25-31) and plume source seeking (32—34). Previous work in
such avionics or “autopilot” systems geared toward small aerial ve-
hicles has recognized the need for computation- and power-effi-
cient onboard vision. A key constraint is power usage: We
assumed that sensing and computation for a NAT robot must
consume no more than 1 mW. This 10% of the power to fly, like
previous visual flight demonstrations at 1.5 kg (31) and 30 g (35),
assumes that a 10-mg NAT robot consumes a tenth of the 100 mW
power needed for a 100-mg Robofly to fly (4). This rules out off-
board sensor processing because wireless radio transmission con-
sumes tens of milliwatts even for low-rate, low-resolution video
(36). It also rules out emissive sensors such as laser rangefinders
(I, 29) and sensors that require significant computation. The
latter include signal processing for the Global Positioning System
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Fig. 1. The sensor suite and size of the conceptual nature-inspired aerial 10-mg "NAT" robot compared with other small aircraft. (A) Close-up view of the con-
ceptual 10-mg robot and package sizes of its sensor suite made with off-the-shelf parts. Shown approximately to scale on the page are the (B) the NAT robot and its
sensors along with the 1-mg fruit fly, (C) the 143-mg U. Washington Robofly (5, 104) with a pencil for scale, and (D) a palm-sized 30-g quad-rotor, the lightest vehicle yet to
perform sensor-autonomous hover. Here, it is shown equipped with the moth-based odor sensor from (34) (copyright University of Washington). (E) Our proposed
hovering sensors are much smaller and more power efficient than those used for autonomous hover in the palm drone (sensor package sizes also shown approximately

to scale on the page).

and localizating relative to a stored map (e.g., simultaneous locali-
zation and mapping). Flight control using optic flow, a measure of
the velocity of motion of visual scenery as the robot or animal moves
through it, has been proposed as a low-power alternative (29, 31,
37-39).

The primary contribution here is an alternative avionics system
with markedly reduced mass and power consumption that is never-
theless able to control such a vehicle. Our sensor suite is notable in
that it eschews a heavy and power-hungry gyroscope, relying instead
on a much lighter and more efficient accelerometer. The accelerom-
eter is used to sense airspeed by sensing resultant drag-induced ac-
celerations. Using this airspeed measurement and a model of the
aircraft, it is possible to estimate attitude using a Kalman filter.
We combined this with a power-efficient optic flow estimator, al-
lowing the wind vector to be estimated as well. All elements of
our system can be made using slightly modified versions of off-
the-shelf components, implying that no untested technology is re-
quired. The sensors, computations, and controller together weigh
about 6 mg in total and consume less than 200 yW on an off-the-
shelf microcontroller. This is achieved in part by computing exclu-
sively using fast and power-efficient multiply and add operations.
We show through analysis, simulation, and validation on a 30-g
flying aircraft that the attitude estimate enables fast lateral maneu-
vers, and the wind estimate facilitates wind rejection. Our sensor
suite also enables tasks, such as plume source finding, that rely on
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knowledge of the wind vector, and it compensates for the attitude
instability of small hovering aircraft.

RESULTS

The smallest drone yet to perform sensor-autonomous stable hover
uses a sensor suite we will term gyroscope-rangefinder-optic flow
(GRO). It combines a gyroscope (which measures angular velocity),
a downward-facing rangefinder (which measures distance to the
ground), and a downward-facing optic flow camera (which mea-
sures angular velocity of visual motion below the aircraft)
(Fig. 1D) (40-42). Reference (41) describes the state estimator
used on this palm-sized drone (Crazyflie, Bitcraze, Sweden) but
with a different sensor suite that uses external position information.
That system was subsequently updated to use GRO. The rangefinder
in GRO can use sonar (40), RADAR, or LIDAR (distance-finding
using the time to reflect for light) (41). It can be shown using the
observability criterion (43) that GRO can observe a state given by q
= [0, w, vy, 2, v] " (see Fig. 2) (44). The key downsides of GRO are
excessive weight and power consumption. The gyroscope must con-
tinually vibrate, making it weigh more and consume more power
than an accelerometer, which uses a passive mechanical element.
After decades of refinement, the lightest commercially available is
the TDK Invensense ICM-20600, which weighs 15 mg and con-
sumes at least 3 mW. Similarly, rangefinders consume energy
because they must emit energy: The lightest (ST Microelectronics
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Fig. 2. Dynamics and flight control architecture overview. (A) Diagram of parameters that describe the dynamics of our model for a small hovering robot. (B) The
proposed feedback control architecture is LQG (linear quadratic Gaussian), consisting of a linear quadratic regulator for a controller and a Kalman filter estimator. The
sensor suite includes an accelerometer-based drag sensor that measures airspeed v,,, and a camera that provides a measurement Q,,, of the rate of optic flow. To estimate
the states x, y, and z, the estimates of v,, v,, and v,, respectively, are numerically integrated.

VL53L0) weighs about 20 mg and consumes 6 mW (45). Together,
the components of a GRO system, like the palm drone helicopter
(Fig. 1D) (41), would weigh 134 mg and consume about 21 mW
(Table 2). This far exceeds the capability of a NAT robot.

Sensor suite description

Here, we propose a markedly lighter and lower-power alternative to
the GRO suite. Our system, which we call accelerometer-optic flow
(AO), consists only of a three-axis accelerometer and an optic flow
camera. These two devices are already available commercially in
packages compatible with NAT scale (Fig. 1). The accelerometer,
mCube MC3672 (mCube Inc., San Jose, CA, USA), measures
about 1.1-mm square, weighs 2.0 mg, and consumes only about
20 uW operating at 210 Hz. As for a camera, the commercially avail-
able OVM6948 (Omnivision Inc., Santa Clara, CA, USA) is light
enough, measuring only 0.65 mm by 0.65 mm by 1.2 mm and
weighing about 1 mg including its multielement lens. This
camera consumes about 25 mW, exceeding the 1-mW NAT robot
power budget. Imaging chips with suitable power usage and size

Table 1. Our conceptual AO sensor suite is markedly lighter and more
efficient than the state-of-the-art small avionics system.

Component Mass (mg) Power (uW)
NAT robot sensor suite (AO)
Accelerometer 2.0 20
Optic flow camera 1.0 100 (47)

Gyroscope 14 3000

o pt| c ﬂow camera ................................. 97 .............................. 1 2 000 (44) .
Ra ngeﬁnder ........................................... 20 .............................. 6000 (105)
M. crocomro”er ...................................... 32 ................................ 371 (44) L
TOtaI ................................................... 1 34 2 ............................... 21'371 .....
Improvemem factor ............................ 22>< ................................. 128>< ......
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have been demonstrated in the laboratory, however. A 128 pixel-
by—128 pixel camera chip, operating at 10 frames/s, which con-
sumes only 1 uW, has been created (46). Subsequent refinements
made a more practical sensor with improved dynamic range and
frame rate, at the expense of greater power usage, resulting in a 64
pixel-by—40 pixel sensor with an 80-dB dynamic range and 30-pW
power consumption at 80 frames/s (47). These square sensors
measure about 1 mm on a side and, through wafer thinning, can
be made extremely lightweight. Commercial imagers now have
the necessary efficiency: The Himax HM series (Tainan City,
Taiwan) consumes 40 nW per pixel at 60 frames/s (fig. S1), suggest-
ing a power usage of about 49 yW for a variant with a 35 pixel —by—
35 pixel imaging surface. A pinhole (48) or small spherical (36, 49)
lens could also satisfy mass constraints. Compared with GRO, AO
cannot observe altitude using a linear observer, but we discuss in the
conclusion nonlinear methods that could be used to overcome this.

An airspeed sensor using an accelerometer

The fruit fly uses a sense of airspeed derived from the Johnson's
Organs of its antennae, which detect deflections induced by wind
(50). Wind sensors that are small enough or could conceptually
be reduced in size to suit a NAT robot have been previously dem-
onstrated but are not available off the shelf (51-55).

We build on previous work that used accelerometers to sense air
drag to improve drone state estimation (56) and a later nonlinear
observability analysis that showed that an accelerometer alone can
estimate attitude and velocity (57). Here, we show that accelerome-
ter performance for this task improves with diminishing scale, a
promising route to attaining a state estimator compatible with the
SSWaP constraints of a NAT robot.

Our approach uses an accelerometer to sense airspeed on a hov-
ering robot. Note first that an accelerometer does not measure ac-
celeration directly. Instead, it senses the “specific acceleration,”
which is the difference between its acceleration and acceleration
due to gravity. Formally, the specific acceleration is

1
a; = —(f — f,), where m is the mass of the rigid body to which
m

the accelerometer is attached, fis the sum of all forces acting on
it, and f; is the force of gravity. We assumed that the accelerometer
is positioned near the aircraft’s center of mass so that Coriolis accel-
erations are negligible. Now consider the accelerometer’s reading in
free fall. In the absence of air drag, it reads as zero because the only
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1
force is gravitation, giving a; = —(f, — f,) = 0, regardless of ori-
m

entation (57). Now incorporate air drag while still in free fall. The
accelerometer reads a nonzero value due to the aerodynamic drag
force vector f;, but gravitation cancels out as above, leaving

1
a; = Efd' To model aerodynamic drag, define the airspeed as

the difference between flight velocity v and wind velocity v,, (Fig. 2)

(1)
We can use this information to estimate the airspeed if we have a
model for how air drag maps to airspeed; that is, we know fy(v,), for
example, from wind tunnel tests (58). For a small flapping-wing
robot, a number of lines of evidence point to a linear model

fd(vu) =bv, (2)

being a very good approximation for aerodynamic drag on flapping-
wing hovering aircraft and flies (59-64). The quantity b has been
measured in a wind tunnel for both forward and lateral wind on
the Robobee to be 2 x 10™* Ns/m (59). It is 1.1 x 10~* Ns/m for
the 1-mg fruit fly in forward free flight, estimated by measuring
flight velocity changes in response to wind gusts on flies whose
wind-sensing apparatus was ablated (60).

Last, consider now that the aircraft to which the accelerometer is
attached is subject to one additional force, a thrust force f; caused by,
for example, flapping wings. Then, total specific acceleration is

1
m (bva + f1)-
Now, rearrange this equation and express it body-attached coor-

dinates, which are denoted by a () to distinguish from world coor-
dinates. The airspeed is given by

V=V, —V

given by a; =

Ve = %a's - %f't (3)

This shows that the airspeed can be measured if the quantities m
and b are known, the controller output f, is known, and a' is mea-
sured by the accelerometer. This formulation permits airspeed mea-
surements even for aircraft that can actuate forward and lateral
forces, which flapping wings are likely capable of (65), as well as ad-
vanced rotorcraft. This indicates that the accelerometer is nearly in-
terchangeable with a flow-based sensor such as a whisker/antenna
(52, 53) or Pitot tube, provided controller outputs are well known.

Here, without loss of generality, we assume that thrust only acts
directly in line with the aircraft's z axis, that is, f , = [0,0, f;] T, where
f'+ is usually nearly equal to the gravitational force mg. In compo-
nent form, the airspeed measurement is then

T
, m m m 1

Vo= EaSMEaSy’EaSZ_Eft (4)

Efficient optic flow estimation using autocorrelation
The other sensor modality we included is optic flow from an
onboard camera, which measures the speed of visual motion. In
the section on state estimation below, we show that a downward-
facing optic flow camera can provide additional information
about the rate of lateral motion that is necessary to estimate wind.
Here, we begin by considering the computations needed to esti-
mate optic flow from pixel luminance readings taken by a camera
attached to the robot. Suppose the camera collects luminance
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readings I(y, t) (lux) at angles y across a visual field. [This may be
expanded to a two-dimensional (2D) surface by incorporating a
second Euler angle B or by specifying a vector direction s on the
unit sphere]. The simplest methods to estimate optic flow entail op-

dl

erations on the spatial luminance derivative [, = T (lux/rad, or the
Y

spatial gradient V/ in 2D) and the temporal luminance derivative

dl
I, = 7 (lux/s) (66). In practice, the spatial derivative [, must be cal-

culated by subtracting luminance readings at two nearby angles y;
and y, separated by 8y, such as at adjacent camera pixels, according
% (I(y2) = I(y1))- The time derivative is calculated by sub-
tracting successive luminance readings (camera frames) at times ¢
é(l(t) — I(t — 8t)), where 8¢ is the
time interval between frames. Assuming that the shape of the lumi-

nance image remains fixed between frames but moves by a small
amount, the measured optic flow along one dimension for a
single pixel pair can be computed according to Q,, = — /1, This
is a special case of the Lucas-Kanade method (67), which is a
simple and accurate method to estimate the average 2D optic flow
in an array of pixel readings (66).

In the 2D case, arrays of derivatives are constructed in which
each entry corresponds to a pixel in the camera: I; consists of
pairs of spatial derivatives along two linearly independent direc-
tions (e.g. [y, [g]), and I, consists of temporal derivatives for each
pixel. The Lucas-Kanade method for both 1D and 2D estimates
optic flow in a least-squares sense according to

tol, =

and t — &t, according to I, =

Q,=—(11) 11, (5)

In pursuit of minimizing the computation required to estimate
optic flow, we consider a simplification inspired by biology, which
has been previously proposed (68), that requires fewer operations. It
is given by

Q, =dl (6)

where c is a scalar constant. Because it entails only multiplication, it

is often called "autocorrelation,” or “a correlator” for short. In
Lucas-Kanade, ¢ is computed each frame according to

c=—(1 ls)_l. This more than doubles the multiply-add operations
and requires a division operation to invert the 2 x 2 matrix. Equa-
tion 6 is a slight variation on the Hassenstein-Reichardt model for
insect optic flow processing (69) (see the Supplementary Materials).

Observing attitude, velocity, and wind speed

We show that the accelerometer-only sensor suite is able to estimate
the aircraft attitude and velocities. Then, we incorporate the optic
flow sensor, creating the AO sensor suite that can additionally esti-
mate wind speed v,,.

Dynamic model

We describe a dynamic model for the aircraft that is an integral part
of our Kalman-based state estimator and closed-loop simulation.
Figure 2 depicts forces acting on a flapping-wing robot such as a
NAT robot or the Robofly, but the proposed model can apply to
almost any small hovering aircraft, including multirotor drones
and EHD-based thrusters (21). For a flapping-wing or rotor-
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actuated aircraft, air drag is about linear with airspeed (Eq. 2) (59,
60, 70). For non—flapping-wing devices near hover conditions such
as EHD-actuated aircraft (20, 21), drag is dominated by inertial
flow, which varies as the square of airspeed instead of linearly
with it. For these, a reasonable linear model has b = 0.

For control and estimation, linearity of airspeed drag results in a
good linear approximation of the vehicle's dynamics (59, 61, 62).
For a state given by

— 9 T
qg - [ 7(")ax7 VX7Z7 VZ7VW]

(7)
and inputs being the body—z-axis translational acceleration and
body-y-axis angular acceleration (Eq. 20), the linearization of the
dynamics in (17) has the form g, = Aq, + Bu;y = Cq,, where the
Jacobian linearization is taken at 0 = w = v, = v, = 0, f; = mg. The
position p = [x, z] " has no effect on the Jacobian. The resulting ma-
trices are given by

o 1 0 0 0 0 0
b b
0 —S 0 —=d, 0 0 -d,
J J J
o 0 0 1 0 0 0
b b b
A=|g —2d, 0 -~ 0 0o |
m m m
o 0 0 0 0 1 0
b
0o 0 0 0 0 —— o0
m
o 0o 0o 0 0 0 0| (8)
o
10
00
B=0 0
00
0 1
_00_

where ] is the moment of inertia of the vehicle and c is its damping
due to angular velocity (see Materials and Methods). This linear dy-
namical system exhibits the growing oscillatory instability that is
characteristic of small flapping-wing vehicles (18, 61).

Accelerometer-only observability

As above, for simplicity of exposition, we consider a simplified
system consisting only of planar, 2D motion as depicted in Fig. 2.
The accelerometer system output is defined as the body x and z axis
components of the accelerometer’s airspeed measurement (Eq. 4),

given by
_ V'ax + 1,
Ya = [V'az 4 ”a}

©)

where each 7 is sensor noise added to the reading, which we assume
is zero-mean Gaussian white noise. The state vector to be estimated
is given by

qA = [O,w,vx,VZ]T

(10)
The accelerometer-only sensor suite is not able to estimate with

wind speed v,,, so we assume that it is zero and leave it out of the
state. The Jacobian linearization of the measurement model (Eq. 9),
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taken at hover, is given by

00 -1 0
CA_{O 0 0 —1} (1)

The dynamics matrix associated with this estimator, A4, is the A
matrix in Eq. 8 with rows and columns associated with x, z, and v,,
removed. The observation matrix (43) obsv(A4, Cy) is full rank, in-
dicating that the entirety of the state vector g4 can be observed in a
neighborhood of upright hover. Given that the system can be ob-
served, a Kalman filter-based linear estimator with dynamics of
the form

q=Aq+Bu+L(y—Cq) (12)

can be constructed to estimate the state of the system. In the accel-
erometer-only sensor suite, the state to be estimated is g4 (Eq. 10).

Using optic flow to additionally observe wind velocity
We added a downward-facing camera (pointed in the negative of
the body z direction, that is, along —z') to provide a second
measure of lateral velocity that is not affected by wind, unlike the
accelerometer. The optic flow camera uses either autocorrelation
or Lucas-Kanade to provide a measurement (), of the true optic
flow Q. Formally, optic flow is the time rate of change of a unit
vector s pointed in the direction of a given visual feature as it
moves across the visual field (37).

It can be shown that the x component (defined in the body
frame) of the optic flow sensed by a downward-facing camera is
given in (37)

cosO
Q=w—-——,
z

(13)

This shows that the sensor provides information about the body
frame lateral velocity v',, but its output is also affected by other state
variables w, 0, and z. Under conditions when w = 6 = 0 (as would
occur during stable, level flight), the optic flow is simply Q = v,/z,
which can be used to estimate velocity if the altitude z is known (29).
However, this is a restrictive assumption, and current barometric
altimeters are too heavy and consume too much power for a NAT
robot (ST, Bosch, Omron, Murata, and TDK only market >2 x 2
mm packages, e.g., the 2 x 2 Bosch BMP390 weighs 6.3 mg and con-
sumes 1.1 mW at 50 Hz). The observability criterion given below
shows that even under more general conditions, when combined
with the accelerometer, the additional information provided by
optic flow can be used to estimate and reject the effect of a wind
disturbance.

The output “measurement model” for the combined AO sensor
suite is given by

V'a)c +n,
Vi, + 1,
QO +n,

Yao = (14)

where each # is zero-mean Gaussian white sensor noise.

We assume that the wind velocity v,, only acts in the world x di-
rection, which is why it is only a single state. To estimate this quan-
tity, we introduce an augmented state that includes the wind velocity

(15)

qAO = [97 W, Vy, Vz, VW}T
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The optic flow measurement depends on altitude, so we take the
Jacobian linearization at a specific desired altitude z,, giving

0 0 -1 0 1
0 0 0 -1 0
CAO = 1 (16)
01 — 0 0
Zq

The observability criterion indicates that g,o is observable, in-
cluding the wind velocity. As above, we use the Kalman filter (12)
to provide the estimate g, .

For some tasks, it is desirable to stabilize to a desired position. To
provide a coarse position estimate for use in control, we numerically
integrated the estimates ¥, and ¥, according to the last line in Eq. 21
(Supplementary Materials) to obtain an augmented state g, that in-
cludes X and z estimates. These two states are not technically “ob-
servable,” meaning that their estimates will slowly drift over time as
sensor noise numerically accumulates. However, their presence
allows, for example, performing lateral maneuvers of a desired
distance.

State estimator and flight controller

Anticipated sensor noise plays an important role, so we formulate
the feedback system as an LQG (linear quadratic Gaussian) control
problem. The system is underactuated, but the controllability matrix
ctrb(A, B) (43) is full rank, showing that the system is controllable.
We constructed a trajectory-following LQR controller to follow a
(slowly varying) desired reference trajectory p,(t) = [x4(t), z4(t)]
using the controller

u=Kq;—q) (17)

The combination Kalman filter and LQR controller is known as
an LQG regulator and is diagrammed in Fig. 2.

The LQR controller includes an additional component to com-
pensate for wind. To move laterally, the LQR controller effectively
makes the robot perform “helicopter-like” control, tilting so that the
thrust from the wings f; takes on a lateral component (Fig. 2). As-
suming lift balances gravity, the lateral thrust is mgsin® ~ mg6,
which can be produced through suitable choice of set point 6. In
the presence of a nonzero wind estimate ¥, (only possible with

A
. fruit fl
10? 5 y
NAT robot
n *x\JiSboﬂy
ke
Sl 10 '
palm drone \
107> 1073 1071
mass (kg)

the AO sensor suite), the torque and attitude commands are
altered to compensate for the added translational drag force accord-

added

6, =0, — 2w
mg
d, b,
=

Noise scaling in accelerometer-based wind sensing

A key concern in the design of the NAT robot's sensor suite is that
high sensor noise magnitude could result in sluggish performance
in the estimator, or worse, instability if the control loop is operated
at a low rate. Typically, smaller and lower-power sensors have lower
performance. For example, the 2-mg mCube MC3672 accelerome-
ter on the NAT robot has a 2.5x higher root mean square (RMS)
noise than the 30-mg Bosch BMI088 in the drone (Table 1). Our
results show that despite this, our conceptual NAT robot senses air-
speed with a much lower noise magnitude than larger aircraft
because of favorable scaling physics. As scale reduces, the accelera-
tion per unit airspeed, which is parameterized by the ratio b : m,
increases as a result of decreasing wing loading with scale (71). It

ing to and torque according

to*ry:‘ry—

1.9

b
follows a roughly inverse quadratic trend — = 0.15m~'~ over

m
nearly five orders of magnitude (Fig. 3A). When used as an airspeed

sensor, the accelerometer’s sensor noise SD is given by o, = —o,

b

where o is the SD of the acceleration measurement. The noise mag-
nitude diminishes as scale reduces (Fig. 3B). Table 1 shows that
despite its noisier accelerometer, a NAT robot with a scale-appro-
priate b : m ratio using the fit exponential given above has nearly 5x
lower airspeed sensing noise. Details are provided in the Supple-
mentary Materials.

Closed-loop visual flight control in simulation
Figure 4A shows a trajectory of the system in closed loop using only
accelerometer feedback (no vision), indicating the feasibility of tra-
jectory control. The figure shows the effect of realistic conditions in
which the initial condition of the estimator does not match the
true state.

Figure 4C shows that the proposed autocorrelation method has
similar performance as Lucas-Kanade. Figure 4D and fig. S2 show

. 10° - palm drone
v ]
E
5
[}
L,
Q Robofl
€ 107! - Y
2 ]
g AT robot
fruit fly
1077 1073 1073 107!
mass (kg)

Fig. 3. Scaling laws in accelerometer-mediated wind sensing reduce the airspeed measurement noise as size reduces. (A) The ratio of damping to mass varies

approximately with the inverse square of mass, with a least log-error exponential fit giving — = 0.15m~ . (B) This results in reduced airspeed measurement noise o, as
m

size diminishes.
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Table 2. Small scale allows the NAT robot to sense airspeed with lower
noise than a palm drone despite more noise in the sensor itself.

NAT robot Palm drone Units
Mass (m) 10 30,000 mg
Air drag coefficient (b) 49.4x10°° 13.2x1073 Ns/m

(103)

Acceleration per unit 49 0.44 g
airspeed (b : m)
Noise (amplitude Not 175 pgee
spectral density) provided hizgge
RMS accel. noise, 100 Hz (o) 4.4 1.75 milli-gee
RMS accel. noise, 200 Hz, 0.38 0.15 m/s?
in flight
RMS airspeed noise (o) 0.077 0.34 m/s

that our proposed system under closed-loop LQG control using au-
tocorrelator-based optic flow estimation is able to reject a simulated
step change in wind speed in slightly more than a second.

Power and mass

Tables S1, S2, and S3 tally the necessary operations per second and
power required to perform flight control using the two optic flow
methods. Lucas-Kanade and autocorrelation perform comparably
(Fig. 4) and operate within the required 1-mW power budget
when executed on an off-the-shelf microcontroller, but the autocor-
relation method uses about a third as much power. Table 2 provides
the estimated mass and power consumption of the complete AO
sensor and control system. Masses of each component were taken
using a precision scale with a 0.1-mg resolution. We searched for
the lightest gyroscope (TDK Invense ICM20600) and accelerometer
(Mcube MC3672) commercially available and took estimated power
numbers from the corresponding datasheets. Power usage of the AO
camera, the optic flow camera, and rangefinder was measured in the
citations provided. We have neglected the mass of a flex circuit and
additional required discrete components, which tends to add an ad-
ditional 25% (44). Even when compared with a version of the
drone’s GRO suite with the most recent (lighter) version of each
sensor, AO is substantially lighter and more power efficient. More
details are provided in the Supplementary Materials.

Physical robot validation

To demonstrate that the accelerometer itself can directly measure
lateral velocity, we collected data from a 30-g palm-sized four-
rotor helicopter (Crazyflie 2.1, Bitcraze, Sweden) (see Materials
and Methods). No Kalman filter was used in this test. Figure 5A
shows that our accelerometer-based lateral velocity estimate corre-
sponds well to the true lateral velocity provided by the palm drone'’s
full, GRO-based state estimator when undergoing lateral motions
along both the x and y directions. The inclination of the helicopter
is small, just a few degrees, so we are able to compare the body frame
accelerometer—based velocity estimate with the world-frame state
estimator’s lateral velocity, although they are in different frames.
The accelerometer-based wind estimate does not appear to be dis-
torted by flight-induced vibrations.

Fuller et al., Sci. Robot. 7, eabq8184 (2022) 23 November 2022

We then constructed a Kalman filter—based estimator to validate
the ability of our AO-based avionics suite to estimate both wind and
aircraft attitude. Figure 5B shows a comparison of the measured
wind speed from a hot-bulb anemometer (Testo 405, West
Chester, PA USA) with our system'’s estimate. Important features
of the wind speed measurement from the anemometer can be ob-
served in our estimate, including onset time, peaks, and the slow
decay of the wind after the fan was powered down. Our system's at-
titude estimate also follows the prediction by a lateral force

balance 6 = arcsin(ﬂ)

mg

Comparison with the fruit fly's wind gust response

Last, we compared the performance of our system with behavioral
data collected from the fruit fly Drosophila melanogaster subjected
to rapid, impulsive gusts of wind provided by an air piston while
they flew along a wind tunnel with a 30-cm-square cross section
(60). A purely passive simulated mass with the same b : m ratio as
the fly and our conceptual NAT robot (10.0 s™!) initially moves with
the gust before returning to zero velocity. By contrast, both the fly’s
mean velocity response (n = 92) and our AO flight controller re-
sponded initially by moving more vigorously in the direction of
wind than the passive particle (Fig. 6 and fig. S3). This indicates
that both use a feedback regulator that senses wind and attempts to
regulate flight speed by minimizing airspeed error. Both also exhibit a
delayed compensatory response that overshoots, leading to a positive
value of v, for a short period of time after £ > 0.3 s. This is the result of
a compensatory visual feedback response that is slower because visual
feedback is noisier than wind feedback for our system and likely the
fly as well (72). The dynamics are also affected by coupling between
forward thrust and the rotational pitch dynamics.

DISCUSSION

The avionics for a 10-mg flying robot is subject to extreme SSWaP
constraints. Here, we introduce three innovations that drastically
lower the mass and power of sensors required to hover while retain-
ing sufficient bandwidth to stabilize. The first is to show that,
because acceleration due to air drag on small aircraft is high, an ac-
celerometer constitutes a light, precise, and power-efficient means
to sense airspeed on smaller aircraft. This was inspired by previous
work showing that an accelerometer can sense airspeed on drones
(41, 56, 57). The second is the use of a fly-inspired autocorrelation
algorithm to reduce the computation needed for optic flow process-
ing. Because our Kalman filter observer also estimates angular ve-
locity, it effectively derotates the optic flow measurement. Our
entire flight controller operates exclusively using power-efficient
multiply and add operations. The third is to combine these elements
to solve the key problems of attitude and wind estimation. By esti-
mating these quantities, the robot is able to make rapid maneuvers
and reject the effect of wind. Knowledge of the wind vector also fa-
cilitates higher-level capabilities such as plume source finding (34).
The stable hovering platform and autocorrelator-based optic flow
system described here serve as a foundation upon which higher-
level “reactive autonomy” tasks can be performed.

Our results show that by using only an accelerometer and
camera, the avionics system mass is reduced by more than 20-fold
and power usage reduces by more than 100-fold compared with pre-
vious demonstrated hovering controllers. This work represents an
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Fig. 4. Simulation results. (A) Flight path of the accelerometer-only sensor suite along the x and z dimensions. The aircraft performs a lateral maneuver starting at the lower
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right to a set point location (red cross mark) on the top left. The true trajectory is shown in black; the state estimate (gray) is subject to an error in the initial estimated position

but is able to nonetheless maintain attitude stability. Lines show the path of the center of mass, and boxes depict the vehicle's approximate size and attitude at 200-ms

intervals. (B) Diagram of the camera model in the accelerometer-optic flow (AO) sensor suite: Luminance readings /(y) are collected at uniformly spaced angles y (red lines),
which intersect a texture projected on the ground below at a position x = x — ztan(y + 0). (C) The correlator method produces similar output to Lucas-Kanade—based optic
flow estimation when following the same (arbitrary) trajectory. (D) The simulated AO system, when using autocorrelation-based optic flow estimation, is able to sense and
react to a wind disturbance. A step change in wind speed causes the aircraft to initially move in the direction of the wind. After about a second, the wind estimate has
converged on its true value; the controller responds by commanding the robot to incline itself, resulting in a nearly perfect rejection of the disturbance.

important step toward realizing 10-mg aerial robots first conjec-
tured in (I), as well as significantly reducing sensor mass and
power for 100-mg robots like the Robofly (3, 4). We validated our
results on a 30-g palm-sized hovering rotorcraft. Our system was
inspired by how the 1-mg fruit fly D. melanogaster combines air-
speed and visual feedback to navigate wind and exhibits an impul-
sive wind gust response that closely resembles it.

Compared with (29) and (73), our wind-vision sensor fusion
does not require a power-hungry gyroscope to derotate the optic
flow and can operate at hover rather than stable forward flight.
This makes it far more suitable for very small aircraft, which, like
small insects and hummingbirds, must hover because of a low-
glide ratio (74, 75). Both the present work and (39) propose light-
weight sensor systems based on optic flow to estimate attitude and
velocity. Ours uses an accelerometer to additionally estimate wind
speed, whereas (39) shows that nonlinear estimation can in princi-
ple eliminate inertial sensors entirely though flight demonstrations
required a gyroscope.

The present work is motivated by a larger narrative of advance-
ments in ultratiny flying robots. Flapping systems of 1 to 5 mg have
been demonstrated (76-78). Actuators for small robots are largely
electrostatic, requiring high voltages. A controllable coil-based

Fuller et al., Sci. Robot. 7, eabq8184 (2022) 23 November 2022

voltage boost converter has been realized (79); a long series of pho-
tovoltaic cells is another option (80). Milligram batteries have been
fabricated by 3D printing (81), photolithography (82), and laser mi-
crofabrication (83). Recent results indicate that it may be possible to
dispense with the battery together using solar cells, which can be
extremely thin and have a favorable surface area—to—volume ratio
as scale reduces (12).

The physical sensor suite proposed here satisfies proposed
SSWaP constraints (=~ 6 mg, <1 mW, >200 Hz) using an off-the-
shelf accelerometer combined with efficient imaging sensor tech-
nology that has been demonstrated in the literature, such as sub—
100-puW sensors (46, 47) and commercially in the Himax HM
series. Such imagers could be combined with small optics such as
the multielement lens in the ~#1-mg Omnivision OVM6948 camera.
Cameras with integrated optic flow estimation hardware (84, 85)
and event cameras (86) have the potential to reduce both power
and latency even further below what is possible with the camera-
and-computer architecture considered here.

A linear observer is unable to estimate both the altitude and wind
velocity using the AO sensor suite introduced here. This is in con-
trast to GRO, which is able to by virtue of its emissive (power-
hungry) rangefinder (40). A number of methods have been
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Fig. 5. Flight tests on a 30-g palm drone show that our accelerometer-vision system can estimate vehicle state and wind speed. (A) We used the accelerometer
alone (no Kalman filter) to measure airspeed v, in still air (v,,= 0), providing an estimate of lateral velocity v = — v, in both the x and y directions during a rapid lateral
maneuver. Estimates are very close to the helicopter’s full GRO-based state estimate. (B) The full AO sensor suite and Kalman filter estimator are able to estimate the wind
velocity induced by a fan with reasonable performance, as well as the aircraft’s attitude.
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Fig. 6. Our simulated AO 10-mg aircraft when operated in closed loop (blue),
has a velocity response to an impulsive wind gust that closely resembles that

b
of fruit flies. For this simulation, we set - to equal the 10.0 s measured in 1-mg
fruit flies. Compared with a passive response of a particle suspended in air (gray),
both our system (blue) and the fly (red) have similar dynamics, exhibiting a larger
impulse response followed by a delayed compensatory overshoot beginning after

about 0.2 s. The red line is the mean velocity response of fruit flies flying along the
length of a wind tunnel [n = 92, from (60)].

proposed in the literature that would not require additional hard-
ware to control altitude (87). The first is to take advantage of the
ground effect, which is an increase in lift that occurs near the
ground, to obtain an altitude equilibrium (28). Another is to
include a feedback law that varies thrust f', rather than inclination
angle 0 in response to optic flow. This can regulate altitude through
a suitable optic flow set point (30, 88). A third is to detect delay-
induced feedback instability in an optic flow—mediated altitude con-
troller (89). A widely varying altitude requires modification of our
linear estimator to accommodate the associated optic flow nonlin-
earity in z in Eq. 13. Two alternatives are an extended Kalman filter

Fuller et al., Sci. Robot. 7, eabq8184 (2022) 23 November 2022

at the cost of an additional ~#200 W (44) or to use a “gain-sched-
uled” Kalman filter at negligible additional power.

We have neglected some nonidealities in physical accelerome-
ters, such as bias drift (90), which will manifest in a larger magni-
tude of lateral drift velocity. We anticipate that the reactive-
autonomy layer or nonlinear methods can be used to compensate
(91). For example, an omnidirectional camera could be used to sta-
bilize a single position using visual servoing (92), avoid walls (29, 30,
93), or navigate confined spaces (28, 30, 35, 94, 95). Chemical
sensors can be added to seek chemical plume sources (34) or map
them (33).

Our system responds similarly to the fruit fly to gusts of wind in
flight. This indicates desirable real-world performance. Our results
also provide insight into the mechanisms used by insects for their
superlative flight abilities (96, 97). An open question is how animals
like bees and moths stabilize their flight without the gyroscopic hal-
teres carried by dipteran flies (98). One possibility is sensing twist-
ing motions in the hind wings (99). Our results suggest that what we
believe represents an alternative testable hypothesis. We suggest that
it is possible that these animals could estimate and therefore stabi-
lize their attitude by sensing airspeed using their wind-sensitive an-
tennae (50, 60). An airspeed sense mediated by these organs could
in principle provide the exact same feedback as the accelerometer-
mediated airspeed sensing described here.

MATERIALS AND METHODS

Dynamic model

We created a nonlinear flight dynamic model to simulate NAT
robot flight motion and to construct the linearized dynamic
model used in its state estimator. For many hovering aircraft, the
center of aerodynamic drag force is displaced by a vector d, relative
to the center of mass (Fig. 2), which results in a torque-force cou-
pling. If this is the case, a slight modification of our air drag model
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in Eq. 2 is needed, which is given by
fi=bv,—v—wxd,) (18)

where w is the angular velocity vector of the vehicle. The result-
ing drag torque is given by t,; = d, X f;. Whether d, is zero length
does not affect either the observability or controllability of our
system discussed below, but its effect was included to provide a
more faithful model of many real-world aircraft. An aerodynamic
rotational damping coefficient ¢ adds rotational drag according to
T4y = — cw,. It can be shown that ¢ = bdﬁ + bd? for the roll axis and
c= bdﬁ for the pitch axis (62), where d is the lateral distance from
the center of mass to the center of aerodynamic pressure of the wing
(denoted by a dot in Fig. 2).

To simplify exposition and analysis, we assume that yaw angle is
controlled to have a near-zero yaw rate, which has previously been
demonstrated on an insect-sized flapping-wing robot (5). With this
assumption and an assumption that the moment of inertia matrix J
is diagonal, cross product terms in the Euler-Lagrange equations
(see the Supplementary Materials) can be neglected. If the attitude
remains near upright (6 = 0), then the dynamics reduce to two
nearly independent planar systems with three degrees of freedom,
that is, motion and rotation in the x-z and y-z planes, each of which
can be controlled independently (61, 100). Hence, our nonlinear
2D-simulated dynamical system is a simplified version of Eq. 2
given by

0=

w
(b:l](bdzxfd—cw—l—”r},)
. 0 1 1 0 19
=S el ()
p=v
v, =0

where f; is given in Eq. 18, p = [x, y, 2] T is the position of the center
of mass of the robot in world coordinates, and R is the rotation
matrix that relates vectors given in body-attached coordinates to
world coordinates. For any vector v expressed in world coordinates,
v is the same vector expressed in body-attached coordinates. They
are related by v = Rv . The wind velocity state v,, (Fig. 2) is included
because the Kalman filter estimates it. For the 2D case, we use that R
= [cosb), sinB; — sinf, cosb]. The gravitational force is given by f, =
(0,0, mg]™.

If thrust is generated by a pair of thrusters, such as two wings or a
pair of EHD thrusters, thrust force f, and control torque T, are ac-
tuated independently by inverting the relations f, = f; + f, and T, =
d(f; — f2), where f; and f, are thrust forces applied by the left and
right thruster, respectively. We define the inputs to be

u=1[%, f,
where J}r is any change in thrust relative to the baseline needed to
compensate exactly for gravity, scaled to have units of acceleration
(ms™2), that is, ft = f,/m — g. Similarly, 7, = 7,/] is the normal-
ized input torque that has units of angular acceleration (rad s=2).

I (20)
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Python-based simulation environment

Many elements of our analysis were facilitated by simulation. We
created a simulated NAT robot using Python and the Python
Control Systems Library (101) using a fixed-step Euler integrator
at 200 Hz to solve the 2D version of the Euler-Lagrange dynamics
equations in Eq. 19, the linear feedback controller in Eq. 17, and the
Kalman filter dynamics in Eq. 12 in the x-z plane. All software used
to create the figures is released as open source on Github using a
persistent Digital Object Identifier at https://doi.org/10.5281/
zenodo.7324484.

For the AO sensor suite, which includes a camera, we addition-
ally constructed a simple visual environment, camera model, and
added wind input. We used a ray casing algorithm to read pixel lu-
minance values from a 1D visual image textured on the ground, as
depicted in Fig. 4. The texture is a single line of pixels extracted from
a photograph of an outdoor scene. The optic flow measurement Q,,,
of our camera was calculated using Eq. 6 over an array of 35 lumi-
nance readings arrayed evenly over a region y = ( — 15°,15°) directly
below the robot, captured at the update rate of 200 Hz. At the start of
the simulation, we computed the value of ¢ in Eq. 6, which is a
measure of the average gradients in the projected image,
using ¢ = — (1 L) .

The weighting matrices for the Kalman filter were derived as
follows. The variance of noise n, in the airspeed estimate is the
square of the RMS noise derived in Fig. 3. We manually tuned
the optic flow noise to be much higher than was observed in simu-
lation to provide for conservative performance. Disturbance magni-
tudes were hand-tuned. For the LQR controller, thrust and torque
effort were balanced approximately by power used; state cost was
manually tuned. We computed the gains K and L using the
Python Control System Library (101). Values for these matrices
were the same for all simulations. In practice, it may be desirable
to incorporate an integral action term on 9 to reject disturbances
from a wire tether or manufacturing irregularity (7, 102).

Robot platform

We performed tests on a small (palm-sized) quad-rotor helicopter
(Crazyflie 2.1, Bitcraze, Sweden) in an indoor environment, both in
wind-free conditions and in the presence of a fan. We collected
sensor information over Bluetooth from the helicopter as it flew.
The helicopter was equipped with a downward-facing rangefinder,
gyroscope, and optic flow camera (the GRO sensor suite) that it
used to estimate its velocity and position using an extended
Kalman filter (41). A careful analysis of its open-source software,
confirmed by its author, shows that it does not use the x and y
axis measurements of its accelerometer for state estimation in free
flight. Our airspeed measurement assumes that b = 13.2 x 107> Nm/
s, which was empirically tuned and is in a similar range to the 6.6 x
107* Nm/s estimated in a system identification effort (103). We
used m = 30 g from the datasheet of the device.

For the direct airspeed measurements, no Kalman filter was
used, and the fan was turned off (Fig. 5A). For full state estimation,
including wind speed estimation (Fig. 5B), we processed sensor data
offline in the Python Control Systems Library (101) using our
Kalman filter. We did not have information about the helicopter's
throttle or torque commands and so assumed that they are zero-
mean disturbance noise. Experiments consisted of flying the heli-
copter 1- to 2-m downwind of a 50-cm-diameter box fan at a spec-
ified height z; = 1 m. After the fan was powered on, the robot was
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observed moving downwind a short distance (10 to 20 cm) before
stabilizing to a new location. We ran the Kalman filter at the
maximum data rate that could be achieved over the Bluetooth com-
munication channel (20 Hz). We used the raw optic flow readings
from optic flow sensor (PMW3901, Pixart Imaging Inc., Hinschu,
Taiwan). The manufacturer does not disclose the optic flow algo-
rithm this sensor uses.

Supplementary Materials
This PDF file includes:

Materials and Methods

Figs. S1 to S3

Tables S1 to S3
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Supplementary materials

Remarks regarding autocorrelation-based optic flow estimation The correlator given in
Equation (6] is a slight variation on the Hassenstein-Reichardt (H-R) model for insect optic
flow processing (70). The classic H-R model predicts turning response of insects to panoramic
visual motion. It uses a first-order low-pass filter instead of a pure delay as part of the derivative
computation [; (above) (106, 107). 1If the panoramic image is a pure sinusoid of amplitude A
and spatial frequency w, moving at speed €2 in rad/s, it can be shown that the output of the
correlator in Equation (6)) approaches Q,, = A?w?Q) (108) as dyw, approaches 0. This shows
that the correlator’s output increases with increasing optic flow, but also depends on the spatial
frequency and amplitude of the image. It was observations of these characteristics in insect
behavior that led to introduction of the H-R model (106, 107).

In realistic, broadband images, the correlator responds to the averaged combined effects of
the frequency and contrast of the image’s constituent Fourier spectra (/08). In Lucas-Kanade,
the scalar c effectively normalizes out these effects by computing the square of the average
spatial gradient of the image pixels. For many conditions of interest, however, ¢ does not change
quickly, hence we propose to either compute it only once at the outset, or on an intermittent basis

so that it adds negligible additional computation load. Like Lucas-Kanade, a correlator can only
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provide a reasonable estimate if the image has contrast, rather than a uniform brightness.

Supplementary methods

Airspeed sensing noise The RMS accelerometer noise at 100 Hz is provided in the datasheet
of mCube MC3672 (low-power mode). We calculated the equivalent quantity for the Bosch
BMIO088 used on the quad-rotor drone by assuming its noise amplitude spectral density (ASD)
is flat (white). The root mean squared (RMS) noise o for a flat bandwidth f is given by
o =ASD /f.

We observed a factor « = 6.2 increase in RMS acceleration noise in the helicopter when
in flight relative to the datasheet. This is likely the result of rotor and aerodynamics-induced
vibration. We assumed that the same amplification factor applies for the NAT robot. To calculate
the RMS airspeed noise o, [m/s] at the anticipated sampling frequency of f = 200 Hz, we used

the equation
S
‘ V100 b

where g = 9.81 is the gravitational acceleration of the Earth, and m and b are the mass and air

drag damping coefficient of the vehicle’s dynamics, respectively.

Dynamics model The dynamics given in Equation (19| describe the motion of a hovering air-
craft like a robot fly or multi-rotor drone constrained to motion in a 2D plane. They are a subset

of the full rigid body dynamics in space, which are given by the Euler-Lagrange equations:

Yf=mv

Y1 =Jw 4+ W x Jo
_ 21
R = Rw'™
p="v
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where f is any force acting on the vehicle, 7’ is any torque acting on the vehicle, v is the
velocity and p is the position of the center of mass of the robot in world coordinates, w'’ is the
angular velocity of the robot, J is the vehicle’s moment of inertia, and R is the rotation matrix
that relates vectors given in body-attached coordinates to world coordinates. For any vector v
expressed in world coordinates, v’ is the same vector expressed in body-attached coordinates.
They are related by v = Ra’. Using the special property of rotation matrices that R~! = R7,
we can also go in the other direction: v = RTwv. The quantity w'* is a 3x3 matrix that

performs the cross product operation w’x.

Computation and power Table |S1| gives an estimate of the computation load per pixel of
the two optic flow methods. For each method, we tallied the number of clock cycles it takes
to perform the primary mathematical operations given by Equations and (6). We neglected
edge effects and operations that only needed to be performed once (e.g. multiplication by a
constant or division).

This constitutes an approximate measure of the amount of power required. A multiply-
accumulate operation typically takes a single cycle for both fixed point and floating point units
on common microcontrollers such as the Arm M4 (Arm Technical Reference Manual, available
here. Additions also take a single clock cycle, but are much simpler and usually are accom-
panied by a multiply in a single multiply-accumulate instruction and so have been neglected.
Lucas-Kanade requires a single, slower division operation (consuming approximately 10 cycles
depending on processor) at the end as part of the 2 x 2 matrix inverse (Equation (5))), but this
occurs infrequently and has been neglected.

Table[S2| gives an estimate of the number of operations required per step for each of the two
LQG controllers. For positive or negative unity entries in the A, B, and C matrices given above,

we assume that a multiply operation is not required. The number of entries in the possibly-
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Lucas-Kanade autocorrelation

multiplies per pixel (1D) 2 1
multiplies per pixel (2D) 6 2
RMS error (1D) (rad/s)  0.044 0.074

Table S1: A comparison of computation requirements and performance in our simulation of the
Lucas-Kanade and correlator method

sparse LQG controller gains were estimated by assuming near-zero entries are zero.

Table [S3| gives estimates of the instruction count and power draw of the computations re-
quired for the complete control system. In this table, we assumed that two separate copies of
the LQG controller are operating simultaneously, one for each of the z-z and y-z planes, re-
spectively. Based on our simulation, we found that it was possible to operate the controller at a
200 Hz update rate; slower update rates led to instability, likely a result of the increasing speed
of rotational dynamics at small scale (/9), resulting in instability.

We assumed that optic flow computations operated on luminance readings from a camera
with a 35x35 square grid of pixels (1225 pixels), the same number used previously in a palm-
sized rotorcraft (42). These were used to estimate the optic flow along the body z’ and ¢/
directions independently by computing responses along rows and columns of the pixel grid,
respectively. We assumed a general-purpose microcontroller such as the 2.6 mg Arm M4-based
Max32660 (Maxim Integrated, San Jose, CA USA), which draws approximately 86 pA per
MHz at 1.1 V, or 95 yW/MHz. We assume it runs at 1 operation per clock cycle and goes
into low-power sleep mode in a few microseconds at each time step after computations have

completed.

Supplementary figures
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component item operations
controller nonzero entries in K (Eq. (17)) 6

integral action computation 1
total, controller 7
estimator nonzero, non-unity entries in A 8
nonzero, non-unity entries in B 0
nonzero, non-unity entries in C'4o 1
nonzero entries in L (Eq. (12)) 9
total, estimator 18
total (per LQG regulator) 25

Table S2: Estimated number of multiply-accumulate operations needed per update for the LQG
regulator.

component Lucas-Kanade correlator
2’ LQG controller 5000 5000
v’ LQG controller 5000 5000
x’-y" optic flow estimation 1,470,000 490,000
total operations/s 1,480,000 500,000
computation power consumed (/W) 141 48

Table S3: Estimated computation load (in operations/s and power) for combined optic flow and
controller computations.
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Figure S1: Power scaling per pixel for a commercial imaging sensor family (Himax HM series,
Tainan City, Taiwan).
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Figure S2: States, measurements, and controller outputs (where a, is z-axis acceleration ft and
o is the y-axis angular acceleration 7,) during response to step input gust. (Figure @D)
. Units for the state are rad, rad/s, m, m/s, m, m/s, and m/s, respectively.
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Figure S3: States, measurements, and controller outputs (where a, is z-axis acceleration ft and
o is the y-axis angular acceleration 7,) during simulated response to impulsive gust (Figure [6])
. Units for the state are rad, rad/s, m, m/s, m, m/s, and m/s, respectively.
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