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Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least four. A hole is called
even if it has an even number of vertices. An even-hole-free graph is a graph with no even holes. A
vertex of a graph is bisimplicial if the set of its neighbours is the union of two cliques.

In an earlier paper [1], Addario-Berry, Havet and Reed, with the authors, claimed to prove a
conjecture of Reed, that every even-hole-free graph has a bisimplicial vertex, but we have recently
been shown that the “proof” has a serious error. Here we give a proof using a different approach.



1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A clique in G is a set of pairwise
adjacent vertices. A vertex is bisimplicial (in G) if its neighbourhood is the union of two cliques. A
hole in a graph is an induced subgraph that is a cycle of length at least four. A hole is even if it has
even length and odd otherwise. A graph is even-hole-free if it contains no even hole. The following
was conjectured in [4]:

1.1 Ewvery non-null even-hole-free graph has a bisimplicial vertez.

Louigi Addario-Berry, Frédéric Havet and Bruce Reed, with the authors, published a “proof” in [1].
However, there is a major error in this proof, pointed out to us recently by Rong Wu. The flawed
proof is for a result (theorem 3.1 of that paper) that is fundamental to much of the remainder of the
paper, and we have not been able to fix the error (although we still believe 3.1 of that paper to be
true). The error in [1] is in the very last line of the proof of theorem 3.1 of that paper: we say “it
follows that Ng(v) = Ngr(v), and so v is bisimplicial in G”; and this is not correct, since cliques of
G’ may not be cliques of G.

In this paper we give a different proof of 1.1. For inductive purposes we prove something a little
stronger, namely:

1.2 Let G be even-hole-free, and let K be a clique of G with |K| < 2. Let M be the set of vertices
in V(G)\ V(K) with no neighbour in V(K). If M # 0, then some vertex in M is bisimplicial in G.

The proof is via two decomposition theorems for even-hole-free graphs. Most of the paper is
concerned with proving these decomposition theorems, and at the end we give the application to
finding a bisimplicial vertex.

2 Preliminaries, and a sketch of the proof

Before we can outline the proof we need more definitions. Let S be a subset of V(G). We denote by
G|S] the subgraph of G induced on S, and by G\ S the subgraph of G induced on V(G)\ S. We say
S C V(Q) is connected if G[S] is connected. The neighbourhood of S, denoted by N¢(S) (or N(5)
when there is no risk of confusion), is the set of all vertices of V(G) \ S with a neighbour in S, and
N[S] means N(S)US. If S = {v}, we write Ng(v) instead of Ng({v}); for an induced subgraph H
of G, we define N(H) to be N(V(H)), and so on. A subgraph S is dominating in G if N[S] =V (G),
and non-dominating otherwise.

Two disjoint subsets A, B of V(G) are complete to each other if every vertex of A is adjacent to
every vertex of B, and anticomplete to each other if no vertex of A is adjacent to any vertex of B.
If A= {a}, we write “a is complete (anticomplete) to B” instead of “{a} is complete (anticomplete)
to B”.

The length of a path is the number of edges in it. A path is called even if its length is even,
and odd otherwise. Let the vertices of P be p1,...,p; in order. Then pi,p; are called the ends of
P (sometimes we say P is from p1 to py or between p1 and pg), and the set V(P) \ {p1,px} is the
interior of P and is denoted by P*. For 1 < < j < k we will write p;-P-p; or pj-P-p; to mean the
subpath of P between p; and p;. More generally, if S is an induced subgraph of a graph G, and u,v
both have neighbours in V(S), we denote by u-S-v some induced path between wu,v with interior



in V(S5). (Here u,v might or might not belong to V(S).) If H is a cycle, and a,b and ¢ are three
vertices of H such that a is adjacent to b, then a-b-H-c is a path, consisting of a, and the subpath
of H \ {a} between b and c. A triangle is a set of three vertices, pairwise adjacent, and we use the
same word for the subgraph induced on a triangle.

Here are some types of graph that we will need:

e A theta with ends s,t is a graph that is the union of three paths R;, Rs, R3, each with the same
pair of ends s,t, each of length more than one, and pairwise vertex-disjoint except for their
ends.

Figure 1: A theta and a pyramid (dashed lines mean paths of arbitrary positive length)

e A pyramid with apex a and base {b1,ba,bs} is a graph P in which

— a,by,ba, by are distinct vertices, and {b1, b2, b3} is a triangle,

— P is the union of this triangle and three paths Ri, Rs, R3, where R; has ends a,b; for
1=1,2,3, and

— Ri1, Ro, R3 are pairwise vertex-disjoint except for their common end, and at least two of
R;1, Ro, R3 have length at least two.
o A near-prism with bases {ai1,as,as}, {b1,b2,b3} is a graph P in which
— {a1,a2,a3} and {by,be, b3} are triangles, and {a1, a2, a3} N {b1,b2, b3} = {as} N {bs} (that
is, the triangles are disjoint except that possibly as = bs).

— P is the union of these two triangles and three paths Ry, Rs, R3, where R; has ends a;, b;
for i =1,2,3 (and so R3 has length zero if az = b3).

— Ry, Ry, R3 are pairwise vertex-disjoint.

If ag # b3, P is also called a prism.

Figure 2: Near-prisms

e A wheel is a graph consisting of a hole H and a vertex v ¢ V(H) with at least three neighbours
in V(H), and if it has exactly three neighbours in V' (H) then no two of them are adjacent. We
call v its centre and H its hole. If v has k neighbours in H we also call it a k-wheel. If k is
even we call it an even wheel.

For a theta, pyramid or near-prism, we call Ry, Ro, R3 its constituent paths. It is easy to see that:



2.1 No even-hole-free graph contains a theta, a near-prism or an even wheel as an induced subgraph.

Even-hole-free graphs can contain pyramids, however. A pyramid is short if one of the three con-
stituent paths has length one.

An extended near-prism is a graph obtained from a near-prism by adding one extra edge, as
follows. Let R, R2, R3 be as in the definition of a near-prism, and let a € R} and b € Rj; and add
an edge ab. (It is important that a,b do not belong to the triangles.) We call ab the cross-edge of
the extended near-prism.

Figure 3: Extended near-prisms

A vertex a € V(G) is splendid if

e V(G)\ Nla] is connected,;

e cvery vertex in N(a) has a neighbour in V(G) \ N|a]; and
e there is no short pyramid with apex a in G.

Now we can sketch the idea of the proof. In order to prove 1.2, we use induction on |V(G)|.
From a result of [1] (that did not depend on theorem 3.1 of that paper, and so is still valid), we may
assume that G admits no “full star cutset” (defined later). It follows that, with K as in 1.2, there
is a splendid vertex a € V(G) \ N[K]. We can assume that a is not bisimplicial. Now there are two
possibilities:

e there is an extended near-prism in which a belongs to the cross-edge;

e there is a pyramid with apex a, but there is no extended near-prism in which a belongs to the
cross-edge.

In both cases we use a decomposition theorem to find a smaller subgraph to which we can apply
the inductive hypthesis and win. There are two different decompositions theorems. The first gives
a decomposition of G relative to an extended near-prism, and is fully general (that is, it does not
require any vertex to be splendid), and so may be useful in other applications. The second is more
tailored to our application, in that it needs a to be splendid.

To apply these to find bisimplicial vertices, we use that both theorems provide a choice of sub-
graphs (two in the first case, three in the second) that are separated from the remainder of the graph
in a convenient way, and we can prove inductively that all these subgraphs contain bisimplicial ver-
tices of G; and in both cases these subgraphs are sufficiently widely separated that at least one of
these bisimplicial vertices has no neighbours in K.

The main part of the paper concerns proving the two decomposition theorems, and we use them
to prove 1.2 in the final section.



3 Some results from [1].

We will need to use some results of [1] that did not depend on the flawed theorem 3.1 of that paper. A
cutset in G is a subset C of V(G) such that V(G)\ C is the union of two non-empty sets, anticomplete
to each other. A star cutset is a cutset consisting of a vertex and some of its neighbours. If v together
with a subset of N(v) is a cutset, we say that v is a centre of this star cutset. A star cutset C is
called full if it consists of a vertex and all its neighbours. We need the following, theorem 4.2 of [1]:

3.1 Let G be an even-hole-free graph such that, for every even-hole-free graph H with fewer vertices

than G, and every non-dominating clique J of H with |J| < 2, there is a bisimplicial vertex of H
in V(H)\ Ng(J). Assume that there exists a non-dominating clique K with |K| < 2 such that no
vertex of V(G) \ Ng(K) is bisimplicial in G. Then G does not admit a full star cutset.

(Actually, theorem 4.2 in [1] takes a stronger hypothesis than we give here, requiring that the dubious
theorem 3.1 of that paper holds for all graphs with fewer vertices than G; but fortunately its proof
in that paper does not use the extra hypothesis, so we can legitimately omit it.) We will also need
the following consequence of theorem 4.5 of [1]:

3.2 Let G be even-hole-free, let H be a hole in G, and let a ¢ V(H). If G admits no full star cutset
with centre a, then either

e a is complete or anticomplete to V(H); or
e H[V(H)N N(a)] is a path; or

e a has exactly three neighbours in H, and two of them are adjacent.

4 'Tree strip systems

In this section and the next, we state and prove the decomposition theorem for even-hole-free graphs
that contain an extended near-prism.

Here is an example of an even-hole-free graph, due to Conforti, Cornuéjols and Vuskovié [2], and
see also [3]. Start with a tree 7" with |V(T")| > 3. (A leaf of T' means a vertex of degree exactly one,
and a leaf-edge is an edge incident with a leaf.) Let (A’, B’) be a bipartition of T'. Since |V (T')| > 3,
each leaf-edge is incident with only one leaf; let A be the set of leaf-edges incident with a leaf in A’,
and define B similarly. Let L(7T') be the line-graph of 7. Thus the vertex set of L(T') is the edge set
of T, and A, B are disjoint subsets of V(L(T")). Add to L(T") two more vertices a,b and the edge ab,
and make a complete to A and b complete to B, forming a graph H(7T') say. Thus H(T') has vertex
set E(T) U {a,b}. This graph H(T) is even-hole-free, but it is helpful for our purposes to impose
additional conditions on T'. We will assume that T has at least three leaves, and for every v € V(T),
there is at most one component C' of V(T') \ v such that A’NV(C) = 0, and at most one such that
B'nV(C) = 0. (Note that every component C' of V(T') \ v contains a leaf of T and therefore meets
at least one of A’ B".) If this additional condition is satisfied, we say that H(T) is an extended tree
line-graph, and ab is its cross-edge.



Figure 4: A tree T', L(T), and H(T). (The dotted lines are just edges.)

Every extended near-prism is an extended tree line-graph, where the corresponding tree has four
leaves and exactly two vertices of degree three. In the next few sections we will be working with
even-hole-free graphs G that contain extended near-prisms, and therefore the graph also contains an
extended tree line-graph that is maximal (subject to keeping the cross-edge fixed); and examining
how the remainder of the graph attaches to this subgraph will lead us to the decomposition.

Sometimes we have different graphs with the same vertex set or edge set, and we say G-incident
to mean incident in G, and G-adjacent to mean adjacent in GG, and so on. A branch-vertex of a tree
means a vertex of degree different from two (thus, leaves are branch-vertices). A branch of a tree T
means a path P of T with distinct ends wu, v, both branch-vertices, such that every vertex of P* has
degree two in T. Every edge of T belongs to a unique branch. A leaf-branch is a branch such that
one of its ends is a leaf of T'. In general, a leaf-path of T means a path of T' with one end a leaf of T’
and the other end a vertex of T that is not a leaf.

Let T be a tree, and let U be the set of branch-vertices of T'; and make a new tree J with vertex
set U by making u,v € U J-adjacent if there is a branch of T with ends u,v. We call J the shape of
T. Thus J has no vertices of degree two; and T is obtained from J by replacing each edge by a path
of positive length.

Let A, B,C be subsets of V(G), with A, B # () and disjoint from C, and let S = (A4, B,C). A
rung of S, or an S-rung, is an induced path pi-- - - pr of GJAU BUC] such that p; € A, p € B and
P2, ..., pk—1 € C,and if k > 0 then p; ¢ B and p ¢ A. (If AN B # () then perhaps k = 0.) If every
vertex in AU B U C belongs to an S-rung we call S a strip. We denote AU BUC by V(S). In the
later part of the paper, concerned with “pyramid strip systems”, we will only need strips (A, B, C)
with AN B = (), but earlier when we look at “tree strip systems” we need to allow A, B to intersect.
A strip (A, B, C) is properif AN B = 0.

Let J be a tree with at least three vertices. A J-strip system M in a graph G means:

e for each edge e = uv of J, a subset My, = M, = M, of V(G)
e for each v € V(J), a subset M,, of V(G)

satisfying the following conditions:



the sets M, (e € E(J)) are pairwise disjoint;

for each u € V(J), M, CJ(Myy : v € V(J) adjacent to u);

for each uv € E(J), (MyyN My, My, N My, My, \ (M, U M,)) is a strip (not necessarily proper);

if uv, wx € E(J) with u,v,w, z all distinct, then there are no edges between My, and M;

if uv,uw € E(J) with v # w, then M, N M,,, is complete to M, N My, and there are no other
edges between M, and M.

A rung of the strip (Myy, N My, My, N My, My, \ (M, U M,)) will be called an e-rung or uv-rung.
(We leave the dependence on M and J to be understood, for the sake of brevity.) Let V(M) denote
the union of the sets M, (e € E(J)).

Let J be a tree, let M be a J-strip system in G, and let («, 3) be a partition of the set of leaves
of J. We say an edge ab of G is a cross-edge for M with partition (a, B) if:

e J has no vertex of degree two, and at least three vertices;

e for every vertex s € V(J), s has at most one neighbour in «, and at most one in £;

for all e € E(J), a,b ¢ M,;

e a is complete to J,c, My, and a has no other neighbours in V' (M); b is complete to Uues Mu,
and b has no other neighbours in V(M).

Figure 5: The smallest possible J, and a J-strip system with cross-edge

If we are given J, M and ab then we can reconstruct «, 3, so we call («, 3) the corresponding
partition. If G is an extended tree line-graph H(T') with cross-edge ab, where T is a tree, and J is
the shape of T', then there is a J-strip system in G with the same cross-edge ab, defined as follows. Let
(A’, B') be a bipartition of T, as in the definition of H(T), and let « = V(J)NA', and g =V (J)NB'.
For each edge e of J, define M, to be the edge-set of the corresponding branch of T’; and for each
u € V(J), let M, be the set of edges of T" incident with w. This defines a J-strip system. (Note that
some strips might not be proper; if some branch of T has length one then the J-strip system is not
proper.)

Let M be a J-strip system in G with cross-edge ab. If D is a subtree of J, and we choose an
e-rung R, for each e € E(J), then the subgraph of G induced on U.cp(p) V(Re), denoted by Rp, is
the line graph of some tree that has the same shape as D. Thus, Rp depends on the choices of the
individual e-rungs R., but we leave this dependence implicit.



Let M be a J-strip system in G with cross-edge ab and partition («, 5). Wesay X C V(M)U{a, b}
is local if either:

e X C M, for some e € E(J); or
e X C M, for some u € V(J); or

e X contains a and not b, and X \ {a} C M, for some leaf u € a; or X contains b and not a,
and X \ {a} C M, for some leaf u € .

We need a lemma:

4.1 If X C V(M) U{a,b} is not local, and {a,b} € X, then there exist x,y € X such that {x,y} is
not local.

Proof. Suppose first that a,b ¢ X. Choose z € X, and choose uwv € E(J) such that = € M,,,. There
exists y € X \ My, and we may assume that {z,y} is local; so we may assume that =,y € M,. There
exists z € X \ M,; and we may assume that {x, z} is local, and so either z € M, or xz,z € M,. In
either case {y, z} is not local, since J is a tree.

Thus we may assume that « € X, and b ¢ X. Also there exists z € X \ {a,b}; and we may
assume that {a,z} is local, and so € M, for some u € a. There exists y € X \ (M, U {a}). Since
we may assume that {a,y} is local, y € M, for some v € a, and so v # u. From the definition of
cross-edge, u, v have no common neighbour in J, and so {x,y} is not local. This proves 4.1. |

We will need two maximizations:

e We start with an even-hole-free graph G, and an edge ab of G, such that there is an extended
tree line-graph H(T') that is an induced subgraph of G, with cross-edge ab. Subject to this
we choose T with as many branches as possible, that is, such that its shape J has |E(J)|
maximum.

e Then we choose a J-strip system M in G with the same cross-edge ab, with V(M) maximal.
In these circumstances we say that (J, M) is optimal for ab. Our first goal is to prove:

4.2 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Let Z be the set
of vertices of G adjacent to both a,b. Then for every connected induced subgraph F of G\ (ZUV (M)):

e if not both a,b have neighbours in V(F'), then the set of vertices in V(M) with a neighbour in
V(F) is local;

e if both a,b have neighbours in V(F), then there exists a leaf t of J such that every vertex of
V(M) with a neighbour in V (F) belongs to M.

We break the proof into three steps, 4.3, 4.4, and 4.5 below, depending on the number of a,b € N(F).

Under the hypotheses of 4.2, let («, ) be the corresponding partition. Let us say that a subgraph
F'is smallif F is connected and F is an induced subgraph of G\ (ZUV (M)); and a small component
is a component of G\ (V(M)\ Z). A small subgraph F' is a-peripheral if X (F) C M, for some ¢t € .
We define S-peripheral similarly; and F' is peripheral if it is either a- or S-peripheral. If F' is small,
the set of vertices in V(M) with a neighbour in V(F) is denoted by X (F'). We begin with:



4.3 Under the hypotheses of 4.2, if F' is small, and a,b ¢ N(F), then X(F) is local.

Proof. Suppose the theorem is false, and choose a small subgraph F' not satisfying the theorem,
with F' minimal. By 4.1, there exist z,y € X (F') such that {x,y} is not local, and so F' is a path
joining these two vertices. Let F' have ends fi, fa.

For x1,29 € V(M), let us say s € V(J) separates x1,xo if x1, 29 ¢ My, and s lies on the path of
J between ey, ea, where z; € M., (i =1,2).

(1) If z1,22 € X(F), there is no s € V(J) that separates x1, 3.

Let x; € M., (i = 1,2), and suppose that s € V(J) separates x1,x2. Then {x;,z2} is not lo-
cal, and so we may assume that fixy and foxo are edges. Choose three leaf-paths Si, S, S35 of J,
each with one end s and otherwise pairwise vertex-disjoint, with e; € F(S;) fori =1,2. Fori =1,2,3
let s; be the edge of S; incident with s. For ¢ = 1,2, 3 and each e € E(S;), choose an e-rung R., such
that z; € V(R,,) for i = 1,2. For i = 1,2,3, let u; be the end of R, in M. Then Rg, is an induced
path of G from wu; to some p; € N({a,b}). We may assume that x;,z2 have been chosen such that
for ¢ = 1,2 the subpath of Rg, between z;, p; is minimal.

Suppose that there exists x3 € X(F'), in V(Rg, U Rgs, U Rg,) and different from and nonadjacent
to z1,x2. Choose x3 such that the subpath of Rg, between x3 and p3 is minimal. We claim that
|V(F)| = 1. For if not, we may assume that z3 has a neighbour in V(F'\ f2), and since X (F'\ f2)
is local (from the minimality of F') and contains x1,x3, and x1, 3 are nonadjacent, it follows that
X(F\ f2) € M,,, and in particular x5 belongs to R.,. But then there is an induced path between
the ends of R, and contained in G[V (R, U (F'\ f2))], that contains at least one vertex of F'\ fa,
and the vertices of this path can be added to M,,, contrary to the maximality of V/(M). This proves
that |V (F)| = 1.

If p1,p2,p3 € N(a), there is a theta with ends fi,a and constituent paths fi-z;-Rg,-p;-a for
i = 1,2, 3; and similarly not all p1, p2, p3s € N(b). By exchanging a, b if necessary, we may assume that
two of p1,p2,p3 € N(a); then there is a theta with ends f1, e with constituent paths fi-z;-Rg,-pi-a
for the two values of ¢ with p; € N(a), and fi-z;-Rg,-pi-b-a for the value of i with p; € N(b).

This proves that X (F)NV(Rg,) = 0, and every vertex of X (F)NV(Rg,URg,) is equal or adjacent
to one of xz1,x2. For i = 1,2, let y; be the neighbour of z; in Rg, between z; and u; (this exists,
since x; ¢ Ms.) The path Rg, s, can be completed to a hole H by adding a or b or both. From the
minimality of F', X (F \ {f1, f2}) = 0. We claim that the only edges between V(Rgs, U Rg, U Rg;)
and V(F') are the edges fix1, foxs and exactly one of fiyi, foyo. If [V(F)| = 1 this is true since fi
cannot have two nonadjacent neighbours in H, or four neighbours in H. If f; # f2 then from the
minimality of F', fi is nonadjacent to y2, x2, and fo is nonadjacent to x1,y1; at least one of the pairs
f1y1, foy2 is an edge since otherwise the subgraph induced on V(H) UV (F) is a theta, and not both
since otherwise the same subgraph is a prism. (Note that y; # y2 since z1,x2 ¢ M;.) Thus we may
assume that fiz1, fiy1, fazo are edges, and there are no other edges between V(Rg, U Rg, U Rg,)
and V(F). If zo ¢ N({a,b}), we may assume that at least two of p1, p2, ps are adjacent to a, and
then there is a theta between xo and a with constituent paths

x9-Rs,-u2-u3-Rs,-p3-a,

xo- fo-F- f1-x1-Rs,-p1-a,



$2_RSQ -p2-a,

inserting b before a in one of these paths if necessary. Thus eq is a leaf-edge of J, and xo = po €
N({a,b}), and we may assume that zo € N(b). We can choose S3 such that it has an end in « (from
the definition of a crossedge for a tree strip system), and hence we may assume that ps € N(a).
If py € N(a) then the same argument gives a theta, which is impossible; so we may assume that
every choice of S; has an end in 3, and so e; is also a leaf-edge of J. Let r be the end of e; that
is not a leaf of J, and let ¢ be the end of es that is not a leaf. From the definition of a crossedge,
r # t. Exactly two vertices of Rg, g, belong to M,, and they are adjacent, say r1,72; and define
t1,to similarly, where 71, r9,1,t2 are in order in Rg,yg, (possibly 72 = t1). By choosing a leaf-path
of J with one end r that is edge-disjoint from S, .52, and has an end in 3, and choosing a rung for
each of its edges, we find a path R say of G[V (M)] with ends 3, ro say, where r3 is adjacent to 71,2,
and rg € N(b) and there are no other edges between V(R) and V(R; U Ry), Define a path T' with
ends t3,to similarly, where ¢3 is adjacent to ti,to and ty € N(b), and there are no edges between
V(R) and V(T'). There is a near-prism with bases {ri,re,r3}, {t1,t2,t3} and constituent paths

r1-Rg,-y1- f1-F- fa-7o-Rg,-t2,
T3—R—T0—b—t0—T—t3,

TQ_RS1 USQ_t]. )

contrary to 2.1 (note that possibly ro = ¢;). This proves (1).
(2) There is an edge uv of J such that X (F) C M, U M, U My,.

Suppose first that for some uv € E(J), there exists x € X(F) € My, \ (M, U M,). Then for
each y € X(F), (1) implies that no vertex of S separates x,y, and so y € M, UM, U M,, as required.
Thus we may assume that X (F') C Uvev(s) My. Suppose next that some z € X belongs to M, for
only one value of v € V(J). Let y € X(F) \ M,, and choose v € V(J) with y € M,,. Let w be the
neighbour of v in J on the path of J between v, u(y). Since w does not separate x,y, and = ¢ M,
from the choice of z, it follows that y € M,,; define w(y) = w. If there exist y1,y2 € X(F)\ M, with
w(y1) # w(y1), then v separates y, y2, contrary to (1). So there exists a neighbour w of v in J, such
that y € M,, for all y € X(F) \ M,; and so the claim holds.

We may therefore assume that every vertex in X (F) belongs to M, for two vertices v € V' (J). For
each x € X (F), let e(x) be the edge uv of J such that x € M, N M,. If all the edges e(z) (x € X(F))
have a common end, then the claim holds; so we may assume that there exist x1,x2 € X (F') such
that e(x1), e(x2) have no common end. Let e(z;) = u;v; for i = 1,2; thus uy,vi,ug,ve are distinct
vertices of J. Since no vertex of J separates x1,z2 by (1), it follows that one of uy,v; is J-adjacent
to one of wue,vo; say vy, v are J-adjacent, and so ui-v1-ve-ug is a path of J. Suppose there exists
x3 € X(F) such that z3 ¢ M,, U M,,. Let e(x3) = usvs say. Thus ugz,vs # vi,ve; and we may
assume that v lies on the path of J between vs and us, by exchanging x1, xs if necessary. But then
vy separate g, x3, contrary to (1). This proves (2).

(3) There is an edge uv of J such that X (F) C M, U M,,.

Suppose not. Choose uv as in (2); then there exist z1,29 € X(F) with z; € M, \ My, and



x9 € M, \ My,. We may assume that fiz1 and foze are edges. From the minimality of F', there are
no edges between V' (F\ f1) and (M, UM,,)\ M,, and no edges between V (F'\ f2) and (M,UM,,)\ M,,.

Let c1,...,ck be the edges of J incident with u, and different from wv; and let dy, ..., d; be those
incident with v and different from uv. Thus k, ¢ > 2. If f; is complete to M, \ My, and f; is complete
to My \ My,, we can add f; to M, add f, to M, and add V(F’) to M,,, contrary to the maximality
of V(M). Thus we may assume that f; has a non-neighbour in M, \ M,,; and since z1 € M, \ My,
and k > 2, we may assume that 1 € M., N M, and y; € M., N M,, and fi,y1 are nonadjacent.
Also we may assume g € My, \ My,. For 1 < i <k choose a leaf-path C; of J from u and using ¢;;
and for 1 < ¢ < ¢ define D; similarly; and choose an e-rung R, for each of their edges e, containing
x1,22,y1. If 11 ¢ N({a,b}), we may assume that at least two of Cy,Cs, D; have an end in «; and
then there is a theta in G with ends x1,a and constituent paths

2U1-R01‘a7

l’l-yl-RCQ‘%
x1- f1-F- fo-x9-Rp, -a,

inserting b into one of these if necessary. Thus we may assume that x; € N(b) say. Consequently c;
has an end in ; and so C can be chosen with an end in «. If also D; can be chosen with an end
in « then the same construction still gives a theta; so the leaf of D; is in 8. Hence the leaf of Do
is not in 3, so f; has no neighbour in Mjy,. This restores the symmetry between u,v. Let Ry, be a
wv-rung, with ends r1 € M,, N M,,, and ry € M, N My,. Since b is adjacent to both x1, xs, it follows
that f; # fs, and for the same reason, r1 # ry. From the minimality of F', the only edges between
V(F) and V(R,,) are either firq or forg; since x1-r1-Ry,-ro-x1 and x1-fi1-F- fo-x4 are both odd,
exactly one of these two edges is present, say fir; (without loss of generality, since the symmetry
between u, v was restored). But then there is a theta with ends r1, x2 and constituent paths

r1-Royp-12-72,

r1-f1-F- fo-x2,
Tl_yl_RCQ _a_b_xZ )

contrary to 2.1. This proves (3).

Choose uv as in (3). Let ¢y, ..., ¢k be the edges of J incident with u, and different from wv. Since
X (F) is not local, there exists x; € M, \ My, and x9 € M,, \ M,. We may assume that fiz; and
foxa are edges. From the minimality of F, there are no edges between V(F \ fa) and My, \ M,,
and none between V(F'\ f1) and M, \ My,. If fi is complete to M, \ My,, we can add f; to M,
and V(F) to My, contrary to the maximality of V(M); so we may assume that x; € M., N M, and
y1 € Mc,NM,, and f1,y; are nonadjacent. For 1 < ¢ < k choose a leaf-path C; of J from u and using
¢i. Choose a leaf-path D of J from u and using uv. (Possibly D has length one.) For each edge e of
C1,...,Ck, D choose an e-rung R., where R., contains x1, R., contains y;, and Ry, contains xs.

Suppose that z1 ¢ N({a,b}); then we may assume that at least two of C,Cy, D have an end in
«; and then there is a theta in G with ends x1, a and constituent paths

xl_Rcl_a)
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z1-y1-Rey-a,
x1-f1-F- fo-x2-Rp-a,

inserting b into one of these if necessary. Thus we may assume that z; € N(b) say. Hence Cy
and D can be chosen to have an end in «, and the same construction still serves to find a theta, a
contradiction. This proves 4.3. |

4.4 Under the hypotheses of 4.2, if F is small, and a € N(F') and b ¢ N(F), then F is a-peripheral.

Proof. Suppose the theorem is false, and choose a small subgraph F' not satisfying the theorem,
with F' minimal. By 4.1, there exist z,y € X(F)U{a} such that {x, y} is not local, and so F’ contains
a path joining these two vertices; and a has a neighbour in this path, by 4.3, and so F' is this path,
from the minimality of F'. Let F' have ends f1, fo.

(1) Let D be a path of J with distinct ends both in 3, and for each e € E(D) choose an e-rung
Re. Then either X(F) contains no vertices of Rp, or it contains exactly two and they are adjacent.

Let the ends of D be ti,to € 3. Since Ry has both ends in N(b), it follows that a has no G-
neighbours in V(Ry); and by adding b to Rp we obtain a hole H, and so a has a unique G-neighbour
bin V(H). We may assume there exists y € V(H) N X (F); and since {a, y} is not local, the mini-
mality of I’ implies that F' is a path between a,y; say a is adjacent to f; and to no other vertex of
F, and y is adjacent to fo and to no other vertex of F'. For the same reason, F'\ fo is anticomplete
to V(H).

If fo has two nonadjacent vertices in V(H ), there are two paths Py, P, between fo, b with interior
in V(H), and with union a hole; but then there is a theta with ends f2,b and constituent paths

fa-F- f1-a-b,
fQ'Pl'bv

f2_P2_b7

a contradiction.

If f has a unique neighbour in V(H), say z, and « is nonadjacent to b, then G[V(H U F)] is a
theta with ends z, b, again a contradiction.

Suppose next that f2 has a unique neighbour in V(H), say x, and z is adjacent to b. Let = € My, ,
say, and let s; be the neighbour of ¢; in J. Since a-b-z- fo-a is not a 4-hole, it follows that a, fo are not
adjacent, and therefore fi # fo, and so a € N(F'\ f2). From the minimality of F, X (F'\ fo) U{a} is
local. Choose t3 € v such that X (F'\ fo) "M, = 0 (this is possible, since |a| > 2 and X (F'\ f2) U{a}
is local). Let D3 be a path of J, edge-disjoint from D and with ends d, t3 where d € V(D). For each
e € E(Ds3) choose an e-rung R.. Let Dy, Do be the subpaths of D with ends d and ¢, t3 respectively.

If F'is anticomplete to Rp,, there is a theta with ends z, a, and constituent paths

x-b-a,

x- fo-F- f1-a,

11



:L"RDl uD3~Q,

contrary to 2.1. Thus F' is not anticomplete to Rp,. Now F, Rp, are vertex-disjoint, since V(F')
is disjoint from V(M) and V(Rp,) C V(M). Let y € V(Rp,) with a neighbour in V(F). If y has
a neighbour in V(F'\ f2), then {a,y} is local, from the minimality of F'; but then y € N(a) and so
y € My,, contrary to the choice of e3. Thus y is adjacent to fo and to no other vertex of F. From
the minimality of F', {x,y} is local; and so either y € My, or x,y € M,,. The first is impossible
since s1t; is not an edge of D3; and so x,y € M, . In particular, d = s;, and y is the end of Rp, in
M,. But then
y-Rp,-b-a- f1-F- fa-y

is a hole, in which = has exactly four neighbours, making a 4-wheel, a contradiction. This proves (1).

Let X be the set of x € X(F) N V(M) such that x € M, for some e € E(J) not incident with
any vertex in «, and let X9 = X(F) \ X;. From the minimality of F', there are no edges between
V(F'\ f2) and X;.

(2) X1 #0.

Suppose that X7 = (). Consequently the only edges e € F(J) with X (F)N M, # () are those with an
end in a. Suppose that there are distinct ey, e2, both with an end in «, such that X (F)N M., # 0 for
i =1,2. Let e; = s;t; where t; € afor i = 1,2. Let D be a path of J with both ends in 3, containing
s1 and s2. Let D have end-edges t}, t), where t], s1, s2, t} are in order on D. For i = 1,2 let D; be the
subpath of D between ¢}, s;; and let D3 be the subpath between s1, so. For each e € E(D) U {e1,e2}
choose an e-rung R., with V(R.,) N X(F) nonempty for i = 1,2. Let the ends of R.,, Rp,, Rp,
in M, be pi1,p2,p3 respectively, and let the ends of R.,, Rp,, Rp, in M, be qi,q2, g3 respectively.
Now F is anticomplete to Rp, since X1 = ). Since X (F') meets both R.,, R.,, there is an induced
path @ between pi,q; with interior in V(Re, U R, U F'). There is a near-prism in G with bases

{p1,p2,p3},{q1,q2, g3} and constituent paths
p2-Rp,-b-Rp,-q2,
p1-Q-q1,
p3-Rp;-q3,
a contradiction.
Consequently there is a unique e € F(J) such that X(F)N M, # 0, say e = st where t € «. Since
X (F) does not satisfy the theorem, it follows that X (F) € My; let x € X(F) \ M,. Since {a,z} is

not local, we may assume that fja and fox are edges. But then we can add V(F') to M, and f; to
M, contrary to the maximality of V' (M). This proves (2).

For each edge e € E(J), choose an e-rung R.. The subgraph induced on J.¢ E(J) V(R,) is the
line-graph L(T') of a tree T, where T' has shape J, and E(T) = Ueep(s) V(Re). In particular,
E(T) =V(Ry), and V(J) is the set of branch-vertices of T. Let us call such a tree T a realization
of M. If P is a subgraph of T, then E(P) is a set of vertices of G, and we denote G[E(P)] by L(P)
(it is indeed the line-graph of P).
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(3) For every realization T with E(T) N Xy # 0, there exists d € V(T) such that X1 N E(T) consists
of all edges of T incident with d that belong to branches of T that do not have an end-edge in N(a).

Let P be a path of T" with distinct ends, and both end-edges in N(b), with E(P) N X; # 0. By
(1) there exists d € V(P) such that X(F) N E(P) is the set of edges of P that are T-incident with
d. We will show that d satisfies the claim. Let P, P> be the two subpaths of P between d and an
end of P, and let x1, z2 respectively be the edges of Pi, P that are T-incident with d. Suppose that
x3 € E(T)N X(F); we will show that x3 is incident with d in T. We may assume that zs # E(P).
Let e3 € E(J) with x3 € M,,. Since x3 ¢ X, there is a path of J with both ends in § containing es;
and hence there is a path of T' containing x3 with both end-edges in N(b). Choose a path Ps of T
containing x3 with one end-edge in N (b) and the other in V(P), edge-disjoint from P. Let p be the
end of P3 in V(P); and let PJ, P; be the two subpaths of P between p and the ends of P. If p # d,
then d is an internal vertex of one of Pj, P}, say P{; and X (F') contains two nonconsecutive edges of
the path P{ U Ps, contrary to (1). So p = d. From (1) applied to the path P; U Ps, it follows that
there is a unique edge of P3 in X (F'), and it is T-incident with d. This proves that all edges of T in
X (F) are T-incident with d.

Next we show that every edge of T that is T-incident with d, and not in a branch of T with
end-edge in N(a), belongs to X;. Let y be an edge of T' that is T-incident with d, and let y € M,
say, with no end in a. We must show that y € X (F'). To see this, choose a path P; of T' containing
y with one end-edge in N (b) and one end d, edge-disjoint from P. From (1) applied to P, U Ps it
follows that y € X (F'). This proves (3).

(4) Let T,d be as in (3). Then there is a branch S of T with one end d and with an end-edge
in N(a), such that Xo N E(T) C E(S). In particular d € V(J), and so X1 N E(T) C M.

If XoN E(T) = ), we can assume there is no branch S of 7" with one end d and with an end-
edge in N(a) (for otherwise the claim holds); and then by (3), X(F) N E(T") consists of all edges
of T incident with d, and the subgraph of G induced on E(T) UV (F') U {a,b} is an extended tree
line-graph H(T") with cross-edge ab, for some tree 77 whose shape has more edges than J, contrary
to the choice of J. Thus we may assume that Xo N E(T) # (). Let t € a with J-neighbour s, such
that the branch, S say, of T' with ends s,t contains an edge in X (F'). If s = d for every such choice
of ¢, then the claim holds (because there is at most one leaf of J in « J-adjacent to d). Thus we
may assume that s # d. Let P be a path of T, including the subpath of T" between s, d, and with
both end-edges in N(b). Now P is divided into three subpaths by s, d, namely from an end of P to
s, from s to d, and from d to the other end of P. We call these Py, P», P3 respectively. Let di, do, ds
be the edges of T" incident with s that belong to E(Py), E(FP2), E(S) respectively. Thus exactly one
of x1,x9 belongs to E(P;), say 1. Since there are edges between V(F') and V(L(S)), there is an
induced path @ between ds, fo with interior in V(L(S) U F'). Then there is a near-prism in G with
bases {di,ds,ds}, { f2,z1,2z2} and constituent paths

dl—L(Pl)—b—L(Pg)—l'Q,

d3-Q- f2,
dQ—L(PQ)-xl,
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contrary to 2.1. This proves (4).
(5) Let T,d, S be as in (4), and let S have ends s,d say; then Xo C Mgy.

For each e € E(J), let R, be the e-rung used to define T. If some vertex x € X, belongs to
M, say where e € E(J), then e has an end in « from the definition of Xy, and if e # sd, we could
replace R. with an e-rung that contains z, to obtain a realization that violates (4). This proves (5).

(6) Let T,d, S be as in (4), and let S have ends s,d say; then X1 = Mg\ Msq.

There are at least two edges eq, e of J, J-incident with d and with no end in «; let x1, x5 be the edges
of the corresponding branches of T' that are T-incident with d. We show first that X1 C My \ M.
Let z € Xi, and let ©x € M, where e € E(J). Let R, be an e-rung containing z. Let 7" be the
realization of M obtained by replacing R. by R., and otherwise using all the same rungs. Since
e1 # ex we may assume that e # e9; and so xo, 2 € V(T”). Hence by (4) applied to T’, e, e have a
common end d' € V(J), and z9,z € My. Also either e = e or 1 € E(T"); and so in either case e;
is incident with d’. Consequently d’ is the common end of e, e in J, and so d = d. This proves
that x € My, and so X; C My \ Mgy.

Next we show that My \ Msq C X1. To see this, let y € My \ Myq. Let e € E(J) with y € M;
since y ¢ Mgy it follows that e has no end in a. Let R, be an e-rung containing y. Since y € My
it follows that e is J-incident with d. Let T” be the realization obtained by replacing R. by R..
Since e; # es we may assume that e # es. Since e has no end in «, there is a path P’ of T” with
22,y € E(P') and with both end-edges in N(b); and so X7 contains either zero or two consecutive
edges in this path, by (1). Not zero, since x5 € E(P’); so a unique vertex of R, belongs to X7, and
that vertex is in My. Since y is the only vertex of R, in My, it follows that y € X;. This proves (6).

From (5) and (6) we can add fa to My and add f; to M, and add V(F') to Mg, contrary to the
maximality of V(M). This proves 4.4. |

4.5 Under the hypotheses of 4.2, if F' is small, and a,b € N(F'), then F is peripheral.
Proof. We claim first:
(1) X(F) € N[{a,b}].

Suppose = € V(M) has a neighbour in V(F), and x ¢ N({a,b}). Choose a minimal path P of
F such that = and at least one of a,b has a neighbour in V(P). Thus P has one end adjacent to x
and the other to a, say. But a,b have no common neighbour in V(F), since V(F) N Z = ; and so
from the minimality of P, b has no neighbour in V(P). But then P violates 4.4. This proves (1).

(2) Either X(F) C Nla] or X(F) C NJb].
Suppose not; then there is a vertex ¢ € V(M) N Nla] and d € V(M) N NJb], joined by a path

P with interior in V' (F'). Choose ¢,d and P such that P has minimum length. Choose u € o and
v € B with c € M, and d € M,, and let D be a path of J with ends u,v. Let p, q be the neighbours in
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P of ¢, d respectively. Let cq,...,c be the vertices of N(a) N V(P) in order on P, with ¢; = ¢. Note
that ¢1,...,c are not adjacent to b since V(P)NZ = (). For 1 <i < k, let P; be the subpath of P
between ¢; and ¢;41. Since a-¢;-FPi-¢;41-a is a hole, and b is adjacent to a and not to ¢;, ¢;+1, it follows
that b has an even number of neighbours in P;. Choose v’ € o\ {u} and ¢ € M,,. By 4.3 and 4.4, p
has no neighbour in M, since p has a neighbour in M,, and X (p) is local; and by the minimality of
P, no vertex of P different from p has a neighbour in M,. In particular ¢, ¢’ are nonadjacent. Let
S’ be an induced path of G between ¢, d with interior in V(M) \ N[{a,b}]. Then a-’-S’-d-P-cj-a is
a hole (note that ¢ is not adjacent to ¢’), and b has at least two nonadjacent neighbours in it (a and
d), and so it has an odd number; and therefore b has an even number of neighbours in the subpath of
P between ¢, d. Hence b has an even number of neighbours in V(P) altogether. Also, d-P-c-Rp-d
is a hole, and b has an even number of neighbours in it, at least one; and it has exactly two and
they are adjacent. Consequently b is adjacent to ¢ and has no other neighbours in V(P) except d.
Similarly a is adjacent to ¢, p and has no other neighbours in V(P). But then the subgraph induced
on V(Rp)UV(P)U{a,b} is a prism, a contradiction. This proves (2).

From (2) we may assume that X (F) C Nla]. Suppose that there exist distinct u,u’ € a such
that X (F) N M,, X(F) N M, # (. Choose ¢ € X(F)N M, and ¢’ € X(F) N M,, such that there
is an induced path P between ¢, ¢ with interior in V(F'). Both ends of P are adjacent to a; let the
neighbours of a in P be cy,..., ¢, in order on P, where ¢; = cand ¢, = ¢. For 1 <i < k, let P; be
the subpath of P between ¢;,c;+1. For 1 <4 < k, a-¢;-Pi-c;4-1-a is a hole, and since b is adjacent to
a and not to ¢;, ¢;+1, b has an odd number of neighbours in this hole. Hence it has an even number
in P; for each 7, and so an even number in P altogether. Let D be the path of J with ends u,v’,
and choose an internal vertex d € V(D). Let D; be the subpath of D with ends d, u, and let Dy be
the subpath with ends d,u’. Let D3 be a path of J between d,v where v € 3. For each edge g of
D1 U Dy U D3, choose a g-rung Ry, with ¢ € V(R.) and ¢ € V(R,). For i = 1,2, 3 let d; be the end
of RDi in Md. Then

C-RDl-dl-dQ-RD2-C/-P-C

is a hole, and b has an even number of neighbours in it; so it has zero, or exactly two adjacent
neighbours. Zero is impossible since then 4.3 and 4.4 would imply that X (P) is local. Thus b has
exactly two neighbours z,y in V(P), and they are adjacent. Since z ¢ Z it follows that ¢, x,y, ¢ are
all distinct. Let ¢,z,y,d be in order in P. Then the subgraph induced on V(Rp, U Rp, U Rp, U P)
is a prism, with bases {b, z,y}, {d1,ds,ds}, and constituent paths

dl‘RDl —C—P—:L’,

dy-Rp,-c-P-y,
d3'RD3'b7
a contradiction. This proves 4.5. |

From 4.3, 4.4 and 4.5, this proves 4.2.

5 'Triangles through the cross-edge

Next we prove some results about the set called Z in 4.2. We need the following lemma.
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5.1 Let G be even-hole-free, and let H be a hole of G, with vertices hy-ho-----hy-h1 in order. Let
a,b € V(G)\V(H) each have at least three neighbours in V(H), and let {a,b} be complete to {hy, hy}.
If a,b are nonadjacent, then one of a,b is adjacent to hyp—1,hn, h1 and to no other vertices in V(H),
and the other is adjacent to hy, hi, ha and to no other vertices in V(H).

Proof. Let P be the path ho-hg----- hn—1, and let A, B be the sets of neighbours of a, b respectively
in V(P). Since G has no 4-hole, it follows that ANB = (. An (A, B)-gap means a subpath of P with
one end in A and the other in B, and with no internal vertices in AU B. If there is an (A, B)-gap
containing both h,_1, he then the theorem holds, and so we may assume not; and hence every (A, B)-
gap is anticomplete to one of hy,, h1, and therefore has odd length (because it can be completed to a
hole by adding a,b and one of h,,, h1). It follows that no two (A, B)-gaps are anticomplete; because
their union with {a, b} would induce an even hole.

There is an (A, B)-gap, since a, b each have at least three neighbours in V/(H). Choose an (A, B)-
gap h;-----h; with 4 < j and ¢ minimum, and we may assume that h; € A. Hence b is nonadjacent
to hg,...,hj_1, and so b-hi-----h;-b is a hole, and therefore j is even. Moreover, j — i is odd,
since h;-----h; is an (A, B)-gap; and since n is odd, it follows that n —i =n+ (j — i) — j is even.
Consequently a-h;-----hy-a is not a hole, and so there exists k € {j + 1,...,n — 1} minimum such
that hy, € A. If BN {hi,...,hi} = {h;}, there is a theta with ends b, h; induced on {a, b, h;, ..., hy},
a contradiction. Thus one of hji1,...,ht_1 is in B, and since no two (A, B)-gaps are anticomplete,
it follows that hji1 € B and hjio,...,h; ¢ B. Since no two (A, B)-gaps are anticomplete, b has no
more neighbours in V(P); but then it is the centre of a 4-wheel with hole H, a contradiction. This
proves 5.1. |

Let G be even-hole-free, let ab € E(G), and let (J, M) be optimal for ab. Let Z be the set of
common neighbours of a,b in G. It would be helpful if Z were a clique, but unfortunately this is not
true, even assuming that a is splendid. It is true if both a,b are splendid, but that assumption is
too strong for our application (to find a bisimplicial vertex, later). But here is something on those
lines, good enough for the application and true without any additional hypothesis. Let us say that
a vertex y € Z is a-external if there is a path from y to V(M) \ NJa] containing no neighbours of a
except y, and we define b-external similarly. Let us say a vertex y is major if y € Z, and y is both
a-external and b-external. For convenience we write Nfa,b] for N[{a,b}].

5.2 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Then the set
of all major vertices is a clique.

Proof. Let Z be the set of common neighbours of a,b in G, and Y the set of major vertices (thus
Y CZ).

(1) Ify €Y, then either y is complete to one of N(a)NV (M), N(b)NV (M), or there is a path from
y to V(M) \ Nla,b] containing no neighbours of a or b except y.

We may assume that X (y) C NJa,b], for otherwise a path of length one satisfies the claim. Since
y is b-external, there is a minimal path P with one end ¥, containing no neighbour of b except ,
such that its other end (p say) has a neighbour in V(M) \ N[b]. It follows that V(P) NV (M) = 0.
Similarly, there is a minimal path ) between y and ¢ say, containing no neighbour of a except ¥,
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where X (q) € Nla]. Thus a might have neighbours in V(P \ y), and b might have neighbours in
V(Q\y).

If X(p) € Nla,b], then by 4.2, a has no neighbour in V(P \ y) and the claim holds. Thus
we may assume that X (p) € Nla,b], and X (p) € NJ[b] from the definition of P. We claim that
X (p) € NJa]. Suppose not; then p has a neighbour in V(M) N N[a] and one in V(M)NN[b]. By 4.2,
p is adjacent to both a,b, and so p = y. Choose t; € « such that X (p) N My, # 0, and to € 8 such
that X (p) N My, # 0, and let D be a path of J with ends ¢1,%2. For i = 1,2 let ¢; € E(J) be incident
with t;. For each e € F(D), choose an e-rung R, such that R., contains a vertex in X (p) N N[a] and
R., contains a vertex in X (p) N N[b]. Then p has exactly four neighbours in the hole a-Rp-b-a, since
X(y) € Nla] U N[b], and so G contains a 4-wheel, a contradiction. This proves that X (p) C N]a].
Similarly X (q) C N[b].

Let t; € @ and ty € 3, such that X (p) N My, # 0, and X (q) " My, # 0. For i = 1,2 let ¢; € E(J)
be J-incident with ¢;. Choose v; € X(p) N My, and vy € X(q) N My,. Let D be a path of J with
ends 1, ta, and for each e € E(D) let R, be an e-rung, with v; € V(R,,) for ¢ = 1,2. Then Rp is an
induced path with ends vy, ve, and with interior anticomplete to a,b and to V(P U Q).

By 4.2, there is no path between vy, v2, with interior disjoint from V(M )UZ, and so V (P\y)U{v;}
is disjoint from and anticomplete to V(Q \ y) U {va}. Consequently vi-P-y-Q-vs is an induced path.
Now as we saw above, p # ¢ and so at least one of P, has length at least one, say (). Thus b has
two nonadjacent neighbours in the hole

v2-¢-Q-y-P-p-vi-Rp-v2,

and so has an odd number, at least three. They all belong to the path ve-¢g-Q-y. We may assume
that y is not complete to V(M) N Nlal, so there exists es = ssts where t3 € @ and an es-rung R,
such that y has no neighbour in V(R.,) (because X (y) C Nla,b]). Let D be a path of J with ends
to, ts, and for each e € E(D) let R, be an e-rung, with v; € V(R,,) for i = 2,3. Then the hole

V2-¢-Q-y-a-v3-Rp-v2

contains exactly one neighbour of b in addition to those in vo-g-Q-y, and so contains an even number,
a contradiction. This proves (1).

For each y € Y, let P, be some minimal path of G between y and its other end (say p,) such that
a,b have no neighbours in V(P \ y) and X(py) € Nla,b], if there is such a path. If not, let P, be
the one-vertex path with vertex y, and let p, = y. From the minimality of P,, X(P, \ p,) C Nla,b].
(Note that there are two cases when p, = y, the two extremes: when we don’t need the path P,
because y itself has a neighbour in V(M) \ N{a, b]; and when we can’t find the path P,, and therefore
y is complete to one of N[a] NV (M), N[b] NV (M) by (1).)

(2) Let t1 € a and to € 8, and let D be a path of J with ends ti,to. Let y € Y. If

X(P)\Nlabl ¢ |J M.,
e€E(D)

there is a vertex d of D and a path @ of G with the following properties:

e d is an internal vertex of D, incident with edges g1,go of D say;
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e Q has ends y,ds, where d3 € Mg\ (Mg, U My,);
e V(Q) CV(P)UV(M); and
o Q" is anticomplete to Uecp(py Me, and V(Q \ y) is anticomplete to {a,b}.

Since X (Py) \ Nla,b] € Uecp(p) Me, there exists e3 € E(J) \ E(D) such that X(P,) \ Nla,b| meets
M.,. Let C be a path of J, contalmng eg and edge-disjoint from D and with one end in V(D); and
choose e, C' with C' minimal. Let d be the end of C'in V(D). Choose an e-rung R, for each e € E(C),
choosing R., to contain a vertex of X (P,)\ N[a,b]. Then R¢ is an induced path containing a vertex
in X(py) \ Nla,b], with ends ¢, ds say, and d3 € My \ (Mg, U M,,), where g1, go are the two edges of
D incident with d. Thus R¢ \ d3 is anticomplete to U.cp(p B(p) Ma. Moreover no vertex of Rc belongs
to Na,b] except possibly ¢, and in that case p, has a nelghbour in Ro different from c¢. Choose a
minimal subpath S of R¢ that has one end d3 and the other adjacent to p,. Then no vertex of §
is adjacent to a or b, and so setting @) to be the path y-P,-p,-S-ds3 satisfies the claim. This proves (2).

(3) Let t1 € a and to € B, and let D be a path of J with ends t1,te. For each e € E(D) let
R, be an e-rung. For each y €Y, either X(P,) NV (Rp) # 0, or

0 #X(P,)\Nla,b)C |J Ma

deE(D)

In either case, X (Py) N Ugepp) Ma is nonempty.

If X(P,) N V(Rp) # 0 then the claim holds, so we may assume that X (P,) N V(Rp) = (). Conse-
quently y is not complete to either of N{a] NV (M), N[b] NV (M), and so by (1), X(Py) Z Nla,b].
Suppose that

X(P)\Na,b] ¢ | M.

e€E(D)

Choose d, @ as in (2), and for i = 1,2 let D; be the subpath of D between d and ¢;. Let @ have ends
y,ds. Thus d3 has two adjacent neighbours dy,ds in Rp, where d; € Rp, for i = 1,2. But then there
is a near-prism with bases {dy,ds,d3} and {a,b,y}, with constituent paths

a—RDl—dl,
b-Rp,-da,
y_Q_d37
a contradiction. This proves (3).
Choose distinct a1, a2 € a and by, bs € § such that the paths Dy, Dy are vertex-disjoint, where for

i = 1,2, D; is the path of J with ends a;,b;. (This is possible since J has at least two vertices that
are not leaves, by hypothesis.) For ¢ = 1,2, let W; = U.cp(p E(D;) Me. We observe that W is connected,
because D; has an internal vertex d, and MyNW; is connected and every other vertex of W; can be
joined to My N W; by a union of rungs.

Suppose that y1,y2 € Y are nonadjacent. For ¢ = 1,2, let us say an induced path T of G between
Y1, Y2 is i-normal if for every v € V(T) \ Wj, there exists j € {1,2} such that v € V(P,; \ y;) and
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X(Py, \ yj) N W; is nonempty.
(4) For i = 1,2, there is an i-normal path.

Let ¢ € {1,2}. For each j € {1,2}, (3) implies that X(P,,) N W; # 0; and so either y; has a
neighbour in W;, or X(P,, \ y;) N W; # (). Hence there is a path S; between y; and a vertex of W,
such that for every v € V(S}), either

e ve{y}UW; or
o v € X(Py, \y;), and X(Py, \ y;) N W; # 0.

Since W; is connected, it follows that there is an induced path joining y;,y2 with interior in
V(S1 U S2) U W;; and this is therefore i-normal. This proves (4).

(5) Fori=1,2, let T; be an i-normal path. Then Ty is anticomplete to T .

Suppose not. Since Wj is anticomplete to Wa, we may assume (exchanging Di, D or yi,yo if
necessary) that there exist v1 € V/(Py, \ y1) N1}, and vy € T3, such that vy, vy are equal or adjacent.
Hence X (P, \ y1) N W1 # 0. By 4.2, X(P,, \ y1) is local, and consequently X (P, \ y1) is disjoint
from Ws; and in particular vo ¢ Wa, and so vg € V(Py, \ y2) NT5. By the same argument with 77,75
exchanged, X (P, \ y2) meets Ws. But Q = (P, \ y1) U(Py, \ y2) is connected and X (Q) meets both
W1 and Ws, and so is not local, contrary to 4.2. This proves (5).

From (4), for i = 1,2 there is an i-normal path T;. By (5), 71 UT5 is a hole, and so one of T7,T5
is odd and one is even; say Tj is odd and T is even. For every 1-normal path T, T] U T is a hole,
and so T7 is odd, and similarly every 2-normal path is even.

(6) Every 2-normal path meets both Mg, , My,. In particular, if X (Py, \ y2) meets Wy then y; has no
neighbour in V(Py,), and if X (Py, \ y1) meets Wo then yo has no neighbour in V(Py,).

Let T5 be 2-normal. Since T is even, y1-To-ys-a-y1 is not a hole; and so a has a neighbour in
T3, and similarly so does b. But a has no neighbours in P, , P, different from y1, 32, and the set of
neighbours of a in Wy is M,,. Hence T35 meets M,,, and similarly it meets Mp,. This proves the first
claim. For the second, observe that if X (P, \ y2) meets W5 and y; has a neighbour in V(P,,) then
there is a 2-normal path with interior in V(P,,) and therefore not meeting both (or indeed, either
of) My,, My,, a contradiction. This proves (6).

For each e € E(D;) choose an e-rung R..
(7) One of y1,y2 has no neighbour in Rp, .
Suppose that y;,y2 both have a neighbour in V(Rp,). By 5.1, since y1,y2 are nonadjacent, it
follows that one of y1,y2 is adjacent to a1, and the other to by, and neither has any more neigh-

bours in V(Rp,). Since Rp, is even, adding y1,y2 to Rp, gives a 1-normal path of even length, a
contradiction. This proves (7).
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Henceforth we assume that y; has no neighbour in Rp,.
(8) X(Py, \y1) N Wa =0; X(y1) N W2 C Nla,b]; and X(Py,) \ Nla,b] Z Ws.

Since y; has no neighbour in Rp,, it follows that y; is not complete to either of N[a]NV (M), N[b] N
V(M), and so by (1), X(P,,) € Nla,b]. Suppose that X (P,, \ y1) N Wa # (. Consequently P,, has
length at least one, and so X (y1) € Na, b]. Moreover, X (P, \y1)NW; = 0, since X (P, \y1) is local.
Since y1 has no neighbour in Rp, , it follows that X (P,, )NV (Rp,) = 0. By (3), X(P,,)\N|a,b] C W;.
But X (Py,) \ N[a,b] € X(Py, \ y1), since X(y1) C NJa,b]; and so

X(Pyy) \ Nla,b] € X (Fy, \y1) N W1 =0,

a contradiction. This proves the first claim. For the second, suppose that y; has a neighbour in
W3 \ Nla,b]. From the minimality of P, p,, = y1. Consequently X (P,,) NV (Rp,) = 0, and so by
(3), X(Py,) \ Nla,b] C Wy, contradicting that y; has a neighbour in W3 \ NJa,b]. This proves the
second claim. The third claim follows, since we have shown that X (P, )\ Nla,b] # 0 and is disjoint
from Ws. This proves (8).

For each e € E(D3), choose an e-rung R., such that X (P,,) meets Rp, (this is possible by
(3)). Since X(Py,) \ Nla,b] € Wy by (8), it follows from (3) that X (P, ) meets Rp,; and since
X(Py, \y1) N Wo = 0 by (8), it follows that y; has a neighbour in Rp,. Thus there is a 2-normal
path T» meeting W5 in a subpath of Rp,. By (6), both ends of Rp, belong to T». Consequently a
unique vertex of Rp,, one of its ends, is adjacent to y;, and a unique vertex of Rp,, its other end,
belongs to X (P,,). Let Rp, have ends s,t where s € M,, and t € M;,. Exchanging a, b if necessary,
we may assume that y; is adjacent to s and to no other vertex of Rp,, and X(P,,) NV (Rp,) = {t}.
Choose a minimal subpath P» of Py, with ends ¥, p2 say, such that ps is adjacent to t. (Possibly
P2 = Y2.)

By (8), X(Py,) \ Nla,b] € Wa. By (2) there is a vertex d of Dy and a path @ of G with the
following properties:

e d is an internal vertex of Dy, incident with edges g1, g2 of D5 say;
e (Q has ends y1,ds, where d3 € My \ (Mg, U My, );

o V(Q)CV(P,)UV(M); and

e ()" is anticomplete to Wa, and V(Q \ y1) is anticomplete to {a, b}.

In particular, ds has exactly two neighbours in V(Rp,), say d1,d2 where s,dy,ds,t are in order in
Rp,, and d;, ds are adjacent.

(9) y2 is nonadjacent to t, and V (P, \ y2) is not anticomplete to V(Q), and y1 has no neighbour in
V(Py,).

Suppose first that V' (P,) is anticomplete to V(Q). Then there is a near-prism with bases {d1, da, d3}, {a, s,y1 }
and constituent paths

yl'Q'd37
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a-yo-Po-pa-t-Rp,-do,
s-Rp,-di,

contrary to 2.1.

Thus V (P2) is not anticomplete to V(Q). Suppose next that V(P \ y2) is anticomplete to V' (Q),
and therefore yo has a neighbour in V(Q). Let Q" be a path with ends yo,ds, where Q" \ 32 is a
subpath of Q. It follows that y; has no neighbour in V(Q'); for y; only has one neighbour in V(Q),
and that vertex is not adjacent to ys since otherwise there would be a 4-hole. If 3, is adjacent to ¢,
then there is a near-prism with bases {y2,b,t},{d1,d2,d3} and constituent paths

y2'Q/'d37
b—yl—s—RD2—d1,
t-Rp,-da.

If yo is not adjacent to ¢, there is a theta in G with ends y2,t and constituent paths
Yo-Po-po-t,

y2_b_t7
yo-Q'-ds-do-Rp,-t,

contrary to 2.1. This proves that P5 \ y2 is not anticomplete to V(Q). In particular, P> has length
at least one, and so ys,t are nonadjacent. Hence ¢t € X (Ps \ y2), and so by (6), y1 has no neighbour
in V(P,,). This proves (9).

By (9), we may choose v; € V(Q) and vy € V(P» \ y2), such that v;,ve are equal or adjacent.
Since y1 has no neighbour in V(P») by (9), it follows that either vy € V(P,, \ y1) or v1 € V(M).
Suppose that v1 € V(Py, \ y1). Then F' = G[V(Py, \ v1) U V(Py, \ y2)] is connected, and disjoint
from V(M) U Z, and X (F) includes both X (P, \ y1) and X (P,, \ y2). But since P,, has length at
least one, it follows that X (P, \ y1)\ N|a, b] is nonempty, and is a subset of W; by (3). Hence X (F')
meets Wi, and contains ¢, and so X (F) is not local, contrary to 4.2.

Thus v; € V(M). Since V(Q) is anticomplete to {a, b}, it follows that v; € V(M) \ N]a, b]. From
the minimality of P,,, no vertex of P,, except y2 has a neighbour in V(M) \ N{a,b], and so vy = py,,
and in particular P, = P,,. But X (P, \ y2) is local, and contains ¢ and v;. Since t € My,, and Q*
is anticomplete to Wy, it follows that v;,t € Mj,, and hence v; = d3 and t = da. Morover, V(Q)
is disjoint from V(P \ y2), and the edge py,-ds is the only edge joining them. (But y, might have
neighbours in V(Q).) Now w2 is nonadjacent to ds, since otherwise ya-ds-da-b-y2 is a 4-hole. Then

b-y1-5-Rp,-d1-d3-py,-Py,-yo-b

is a hole, and do = t has exactly four neighbours in it, namley dy, ds, py, and b, a contradiction. This
proves 5.2. |
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Finally, we have:

5.3 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Let Z be
the set of all common neighbours of a,b, and let Y C Z be the set of all major vertices. If F' is a
component of G\ (V(M)U Z), and some vertex in Z \'Y has a neighbour in F, then there is a leaf
t of V(J), such that every vertex in V(M) with a neighbour in V(F') belongs to M.

Proof. Let z € Z\Y have a neighbour in V(F). Let X(F') be the set of vertices in V(M) with a
neighbour in V(F). If one of a, b has a neighbour in V(F), the claim follows from 4.2, so suppose not.
If X(F) € Nla,b] has a neighbour in V(F), this contradicts that z is not major. So X(F') C NJa,b],
and then the claim follows since X (F') is local by 4.2. This proves 5.3. |

Let us summarize the previous results. The vertices of G are partitioned into the following sets:
e The special vertices a, b.
e V(M) (this is further partitioned into strips corresponding to the edges of J).

e The small components. Each small component F' satisfies X(F') C M, for some e € E(J) or
X(F) C M(t) for some t € V(J). Moreover if N(F') contains a or b, or a vertex in Z \ Y,
then F' must be peripheral, and if N(F') contains only one of a,b, then X(F) C Nla] or N[b]
correspondingly.

e The set Y of the major vertices. These form a clique, but we know nothing about their
neighbours outside of Z.

e The vertices in Z \ Y. All their neighbours in V(M) are in Nla,b], and all their neighbours in
small components belong to peripheral small components.

If we assume that a is splendid (which will be true in our application), we can simplify the
theorem a little; let us see that next. We need:

5.4 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. If a is splendid,
there is no small F' such that a has a neighbour in V(F).

Proof. Let Z be the set of vertices of G adjacent to both a,b. Suppose that there is such an
subgraph F', and we may assume that F' is small component. If b has no neighbour in V' (F'), then
since by 4.2 every vertex in V(M) with a neighbour in V(F') belongs to NJa], it follows that F is a
component of G \ Nla], contradicting that a is splendid. Thus b has a neighbour in V(F'). For the
same reason, some vertex of V(M) nonadjacent to a has a neighbour in V' (F'); but by 4.2, every such
vertex belongs to B.

Hence there is an induced path P of F' such that a has a neighbour in V(P), and some vertex in
B has a neighbour in V(P). Let P be minimal with this property. Let P have ends p;, p2, where a
is adjacent to p; and to no other vertex of V(P), and some vertex in B (vq say) is adjacent to pa,
and no vertex in B has a neighbour in V(P \ p2). Since p; is nonadjacent to b (because p; ¢ Z) and
there is no 4-hole, it follows that p; is anticomplete to B, and in particular p; # p2. Let va € M,
where e € 3. From 4.2, there is at most one e € a such that M, is not anticomplete to V(P \ p2),
and so there exists d; € a such that My, is anticomplete to V(P \ p2). Since My, is anticomplete to
p2 by 4.2, it follows that My, is anticomplete to V' (P).
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There is a path D of J with end-edges dj,es. Let R, be an e-rung for each e € E(J), with
vy € V(Re,); then Rp is an induced path of G between a, vy, with interior in V(M) and anticomplete
to V(P). Hence P U Rp is a hole, and b has two nonadjacent neighbour in P U Rp, namely vy, a;
and since G has no full star cutset, 3.2 applied to b and P U Rp implies that b is adjacent to ps and
has no other neighbour in V(P). But then there is a short pyramid with apex a and base {b, v2,p2},

and constituent paths
a-b,

a-f1-F- fa,
a-Rp-va,
contradicting that a is splendid. This proves 5.4. |

We deduce an upgraded version of 4.2:

5.5 Let G be even-hole-free, and ab be an edge of G, where a is splendid. Let (J, M) be optimal for
ab. Let Z be the set of vertices of G adjacent to both a,b, and let Y be the set of major vertices.
Then

o cvery vertex in V(M) with a neighbour in Z \'Y belongs to My for some t € (3; and
e for each e = st € o, My My = ).

Moreover, for every small subgraph F, let X be the set of vertices in V(M) with a neighbour in
V(F); then

e a has no neighbours in V(F);

o if V(F) is anticomplete to {b} U (Z\Y), then either X C M, for some e € E(J) or X C M,
for somet € V(J)\ «a;

o if either b or some vertex in Z \'Y has a neighbour in V (F'), then X C M; for some t € 5.

Proof. Since a is splendid, every vertex in Z is a-external, and therefore the vertices in Z \ Y are
not b-external. In particular, none of them has a neighbour in V(M) \ N[b]. That proves the first
claim.

Suppose that there exists e = st € a where t is a leaf of J, and My N M; # (). Let v € Mg N M.
Let D be a path of J containing s, with one end in « \ {¢} and the other in 5. Choose an e-rung R,
for every e € E(D). Then the subgraph of G induced on V(Rp) U{a,b,v} is a short pyramid with
apex a, contradicting that a is splendid. This proves the second claim. The third claim, about small
sets, follows from 4.2 and 5.4. This proves 5.5. |

6 Graphs with no extended near-prism

It would be nice if we had a decomposition theorem complementary to the results of the previous
sections, describing a decomposition for even-hole-free graphs that do not contain a extended near-
prism. We do not have that; we only have a decomposition theorem for such graphs that have a
splendid vertex. (This is good enough for our purposes, since it is straightforward to show that every
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minimum counterexample to 1.2 has a splendid vertex.) Our next goal is to state and prove this
decomposition theorem.

A pyramid strip system S = (a,Si,...,Sk) in G consists of a set of proper strips S, ..., Sk with
k > 3, pairwise vertex-disjoint (that is, the sets V' (S1),..., V(Sk) are pairwise disjoint), and a vertex
a of G called the aper, such that, setting S; = (A;, B;, C;) for 1 <i < k:

o for 1 <i < j <k, B;is complete to Bj, and there are no other edges between V' (.S;) and V' (.5;);
e a belongs to none of V(S1),...,V(Sk);
e for 1 <i <k, ais complete to A;, and anticomplete to B; U C;.

Let V(S) denote V(S1)U- - -UV(Sk)U{a}. For an induced subgraph F of G with V(F) C V(G)\V(S),
we say v € V(S) is an attachment of F' if v has a neighbour in F', and we define S(F') to be the set
of all attachments of F'. A proper strip S = (A, B, () is indecomposable if AU C' is connected, and
a pyramid strip system is indecomposable if all its strips are indecomposable.

If a € V(G) is the apex of a pyramid, then it is also the apex of an indecomposable pyramid strip
system with & = 3 and with only one rung in each strip. That motivates the following;:

6.1 Let G be even-hole-free, and let a € V(QG) be splendid. Suppose there is no extended near-prism
contained in G such that a is an end of its cross-edge. Let S = (a, St,...,Sk) be an indecomposable
strip system with apex a, with strips S; = (A;, B;, C;) for 1 < i < k, chosen with V(S) mazimal.
Then for each component F of G\ (V(S)U N|al, either S(F) is a nonempty subset of By U---U By,
or for some i € {1,...,k}, S(F) is a subset of one of V(S;) and has nonempty intersection with
B; U ;.

Proof. First we observe:

(1) For each component F of G\ (V(S) U Nla]), S(F) has nonempty intersection with B; U C;
for some i € {1,... k}.

If not, then F' is a component of G \ NJa], which is impossible since G \ NJa] is connected (be-
cause a is splendid). This proves (1).

(2) For each vertex f of G\ (V(S)U Nlal), S(f) is either a subset of By U ---U By or a subset
of V(S;) for some i€ {1,...,k}.

Suppose not. We may assume f has a neighbour in A1 UCY, since S(F') is not a subset of ByU- - -UBj.
Choose an Si-rung R; in which f has a neighbour in Ay U Cy, with ends a1 € Ay and by € By. Sup-
pose also that f has a neighbour in As U C, and choose Ro, as, b similarly. If f has a neighbour in
V' (S3), then there is a theta with ends f,a and constitutent paths

f'Rl_al_aa

f-Rz-as-a,
fo-G[V (S3)]-a,
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contrary to 2.1. Thus f is anticomplete to V(S3),...,V(Sk). If f has two nonadjacent neighbours
in Ry, there is a theta with ends a, f and constitutent paths

f'Rl_al_aa

f_RQ_G’Q_aa
f-Ri-b1-G[V (S3)]-a,

contrary to 2.1. So f has either one or two adjacent neighbours in R;, and similarly it has one or
two adjacent in Ro. Since f is not adjacent to both a1, as, we may assume by exchanging S, 59 if
necessary that f is not adjacent to aj. If f has a unique neighbour w in R;, there is a theta with
ends u, a and constitutent paths

u-Ri-a1-a,

u-f-Ro-a9-a,
u—Rl—bl-G[V(Sg)]—a,

contrary to 2.1. Thus f has exactly two adjacent neighbours in R, say p, ¢, where a1, p, ¢, b1 are in
order in Ry. If f also has two adjacent neighbours in Ro, there is a 4-wheel with centre f and hole
induced on V(R; U R2) U {a}, a contradiction. Thus f has a unique neighbour w in Ro. If u # ag,
we obtain a contradiction as before; and if v = ag, the subgraph induced on V(R; U R2) U {a, f} is
an extended near-prism, and a is an end of its cross-edge, a contradiction.

This proves that f has no neighbour in Ay U Cs, and similarly none in A;UC; for 2 <i <k. If f
is complete to By U -+ - U By, we can add f to Bj, contrary to the maximality of V(S). Thus f has
a neighbour in By U - - - U By, and a non-neighbour in this set. Since k > 3, we may assume that f
has a neighbour b2 € By and a non-neighbour b3 € B3. But then there is a theta with ends by, a and
constituent paths

bQ—f—G[Al U Cl]—a,

bQ-G[AQ U CQ]-CL,
b2-b3—G[A3 U Cg]—CL,
contrary to 2.1. This proves (2).

Let us say a subset X of V(S) is local if X is a subset of Aj U---U A, or of By U---U By, or of
V(S;) for some i € {1,...,k}. (Note that in (2) we did not include A; U --- U A, but here we do.)

(3) Every subset of V(S) that is not local includes a 2-element subset that is not local.

Suppose X C V/(S8) is not local. If there exists ¢ € X N C4, choose d € X \ V(S1); then {c,d}
is not local. So we may assume that X NC; =) for 1 <i < k. There exists c € X \ (41 U---U Ag),
say ¢ € By. If there exists d € X N A; where ¢ > 2 then {¢,d} is not local, so we may assume that
XNA;=0for2<i<k. Since X € By U---U By, there exists ¢ € X N Ay; and since X € V(S1),
there exists d € X N B; for some 7 > 1, and then {c,d} is not local. (The claim also follows from
Ko6nig’s matching theorem.) This proves (3).

25



Suppose the theorem is false; then from (1) there is a minimal connected induced subgraph F' of
G\ (V(S)U Nla]) such that S(F) is not local. By (3) there is a 2-element subset {v1,v2} of S(F')
that is not local. From the minimality of F', F' is the interior of a path joining v, vs. Let F' have
ends f1, fo, where v;, f; are adjacent for i = 1, 2.

(4) No vertex in F* has a neighbour in Ay U---U Ayg.

Suppose that some f3 € V(F)\ {f1, fo} is adjacent to a; € A; say. Let F; be the subpath of
F between f;, f3 for i = 1,2. From the minimality of F', each of S(F1),S(F») is a subset of one
of V(S1),A1 U--- U Ag; and since S(F) is not local, we may assume that S(Fy) C V(S;) and
S(Fy) € Ay U---U Ag. Moreover, v1 ¢ A; U---U Ay and vg ¢ V(Sy). Thus v € By Uy, and
we may assume that vy € As. From the minimality of F, S(F'\ fi) is local and hence is a sub-
set of A U---U Ay, and S(F \ f2) is a subset of V(S1) (because they both contains aj). Thus
S(F\{f1, f2}) C A1, and S(f2) C Aa by (2). For i = 1,2 let R; be an S;-rung with ends a; € A; and
b; € B;, containing v;. Thus v = ag, and v; # a1, and ag is the unique neighbour of f; in V(Ry).

Let a; have ¢ neighbours in V(F'\ f1); thus ¢ > 0. Choose a neighbour ¢ of f; in V(R;), such
that the subpath of Ry between b1, ¢ is minimal. Thus ¢ # a;. If ¢, a; are nonadjacent we can add
the interior of the path c¢;-F-a; to C1, contrary to the maximality of V(S). So ¢, a; are adjacent,
and hence aj has at least t + 1 neighbours in the path by-Ri-c-F-age. (It would have ¢ + 2 if ay, fi
are adjacent, and t 4+ 1 otherwise.) This path can be completed to a hole via as-Ra-by-b; or via
as-a-G[V (S3)]-b1, and the number of neighbours of a; in the second hole is one more than in the
first. Since there is no even wheel, it follows that ¢ = 1, and f3 is the unique neighbour of a; in
V(F); but then there is a theta with ends f3, ¢ and constituent paths

fS_F_C7

[3-a1-c1,
f3-F-az-Ra-ba-b1-Ry-c,
contrary to 2.1. This proves (4).

(5) If f1 has a neighbour in A1 U Cy, then fa has a neighbour in A; U C; for some i € {2,...,k}.

Suppose not; then S(f3) is a subset of By U--- U By, and we may assume that fo has a neigh-
bour in By. By (4), no vertex in Ay has a neighbour in V(F'), and so from the minimality of
F, S(F\{fi,f2}) € By. If fy has a nonneighbour b3 € Bs, there is a theta with ends by, a and
constituent paths

bQ-G[AQ U 02]-(1,

be-F- f1-Ra-a,
bz—bg—G[Ag U Cg]-a,

contrary to 2.1. So f» is complete to B3 and similarly to B; for 3 <4 < k; and since k > 3, it follows
by exchanging S, S5 that fo is complete to Bs. But then we can add f2 to By and V(F'\ f2) to Cy,
contrary to the maximality of V(S). This proves (5).
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(6) For1 <i <k, fi has no neighbour in C;, and does not have both a neighbour in A; and one in B;.

Suppose that fi has either a neighbour in Ci, or a neighbour in A; and one in Bj. In the sec-
ond case, if the neighbour of f; in A; is nonadjacent to the one in By, we could add f; to C1,
contrary to the maximality of V(S). Thus in either case, there is an Si-rung Rj, such that f; has
either a neighbour in V(R;) N Cy, or one in V(R;) N A; and one in V(R;) N B;. Let R; have ends
a; € Ay and by € B;. If fi has two nonadjacent neighbours in Ry, we can add f; to Cy, again
contrary to the maximality of V(S). Thus f; has either a unique neighbour or exactly two adjacent
neighbours in R;. From the minimality of F, S(F'\ f2) C V(S7).

By (5), we may assume that fs has a neighbour in As U Cy, and so S(f2) is a subset of V' (S2) by
(2). Hence S(F'\ f1) C V(S2) by (4). Consequently S(F \ {f1, f2}) = 0. The only edges between
V(F) and V(S) are the edges between f; and V(S7), and the edges between fy and V' (S2). Choose
an So-rung Re in which f has a neighbour in As U Cs, with ends as € Ay and b € Bs. If fo has two
nonadjacent neighbours in V' (R3) we can add fo to Cy, a contradiction. Thus fo has one or exactly
two adjacent neighbours in Ry. Let f; have n; neighbours in V(R;) for i = 1,2; thus n; € {1,2}.

If ny = no = 2, there is a prism, so we may assume that either ny =1 orno = 1. If ny =1, let
¢ be the unique neighbour of f; in V(R;) (necessarily ¢ € C1), and let R3 be an Ss-rung with ends
as € Az and bg € Bs. Then there is a theta with ends ¢, ¢ and constituent paths

c-Ri-a1-a,

- f1-F- fo- Ro-as-a,
C—Rl—bl—bg—Rg,—ag—a,

a contradiction. Thus n; = 2, and consequently ny = 1.

Let ¢ be the unique neighbour of fy in V(Rg). By the same argument with S;,Ss exchanged,
it follows that ¢ ¢ Co, and so ¢ = ag. Let Rs be an Ss-rung; then the subgraph induced on
V(R1URyUR3U F)U{a} is an extended near-prism, a contradiction. This proves (6).

From (6), no vertex of F' has a neighbour in C, U---UC}, and since we may assume that f; has a
neighbour in Ay U (Y, it follows from (6) that S(f1) C A;. Since {v1,v2} is not local, it follows that
vy € BaU---U By, and we may assume that fo has a neighbour in By. By (6), S(f2) € ByU---U By,
contrary to (5). This proves 6.1. |

The reader will observe that much of the generality of strip systems was not used in this proof;
we never increased the number of strips, or changed the sets Ay, ..., Ax. That will come in the next
proof, where we try to enlarge V(S) by adding vertices from N[a] \ V(S). The parity of a path or
hole is the parity of its length.

For 1 <i <k, let D; be the union of the vertex sets of all components F of G\ (V(S) U N|al)
such that S(F) N (A; UC;) # 0. For v € N[a] \ V(S), let us say v has:

e type o if for each i € {1,...,k}, either v has a neighbour in B; U C; or v is complete to A;;

e type o if there exists i € {1,...,k} such that v has a neighbour in D; and none in B; U C},
and for all j € {1,...,k}\ {i}, v is complete to A; and anticomplete to B; UC; U D; (we also
call this type of; it is “almost” a case of type «);
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e type [ if there exists i € {1,...,k} such that v is anticomplete to 4; U B; U C;, and for all
Jj€{l,...,k}\ {3}, v has a neighbour in B; U C; (we also call this type £;).

We also need one other type. In the usual notation, for v € Na] \ V(S) and 1 <i < k, let us say v
has type v or type v;, and @ is the corresponding private path, if

e () is an induced path with one end v and the other ¢ say, and V(Q \ v) is disjoint from
V(S) U Nlal;

e ¢ has a neighbour in B, and q is either complete or anticomplete to B \ Bj;

e v is complete to A; for all j € {1,...,k}\ {i}, and v has no neighbours in B; U C; U D; for
1<j<k;and

e all edges between V(S) and V(Q \ v) are between ¢ and B.
We will show:

6.2 Let G be even-hole-free, and let a € V(Q) be splendid. Suppose there is no extended near-prism
contained in G such that a is an end of its cross-edge. Let S = (a, St,...,Sk) be an indecomposable
strip system with apex a, with strips S; = (A;, Bi, C;) for 1 <i <k, chosen with V(S) mazimal. For
each v € N[a] \ V(S), v has type o, o/, B or .

Proof. Let Dq,..., D be defined as before. We begin with:

(1) The sets Dq,...,Dy are pairwise disjoint, and every component of G[B; U C; U D;] contains
a vertex of B;.

This is immediate from 6.1.

Let H C I be the set of ¢ € {1,...,k} such that v has a neighbour in B; U C;, and J =
{1,...,k}\ H. Let I C {1,...,k} be the set of i € {1,...,k} such that v has a neighbour in
B; UC; U D,. (Thus HC I.)

(2) If I #0, then either:
e v is complete to Ujc ;s Aj (and so v has type o), or
o [I| =1 and v is complete to U;g; Ai (and so v has type a or o' ),or
o |J| =1, J=1{j} say, and v is anticomplete to A; (and so v has type [3;).
We may assume that I # (). Choose h € {1,...,k} as follows:
e If H # () choose h € H;
e If H = () and either |I| =1 or v is complete to A; U---U A, choose h € I;
e If H =( and |I| > 1 and v is not complete to A; U---U Ay, choose h € I such that v is not

complete to A; for some j # h.
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For notational simplicity let us assume h = 1. Suppose first that v is complete to A; for all j € J\{1}.
If 1 € H then the claim holds, so we may assume that 1 ¢ H and therefore H = () from the choice
of h. Also, from the choice of h, either |I| =1 or v is complete to A} U---U A, and in both cases
the claim holds.

Hence we may assume that there exists j € J\ {1} such that v is not complete to A;, say j = 2.
Choose an induced path P between v and some by € By with interior in C7 U Dy (this is possible by
(1)). Choose ay € A2 nonadjacent to v, and let Ry be an Se-rung containing ag, and let be be its
end in By. Now let a € Ay, and define R}, b)y similarly. The Ro, R, have the same parity, and so if
v is adjacent to af then the holes

’U—P—bl—bQ-RQ—aQ—a—U,

v-P-b1-by- Rhy-ay-v

have different parity, a contradiction. Thus v is nonadjacent to a) for each ay € Ay, and therefore
anticomplete to Ay. If |J \ {1}| = 1, then |J| < 2, and hence H # (), and so 1 € H and |J| = 1. But
then the claim holds. Thus we may assume that |J \ {1}| > 2; let 3 € J say. Let R3 be an Ss-rung
with ends a3z € A3 and by € Bs. If v is adjacent to as, then similarly the holes

U—P—bl—bQ—RQ—CLQ—a—'U,

U—P—bl—bg—R3—a3—U

have different parity, a contradiction. So v is anticomplete to Uje 11y A;. For each i € I, let P; be
an induced path between v and B; with interior in C; U D;. Define

Ay = {U}U UA,,

iel
By = |JB;
el
Co = U C; U (V(F) N D;);
el

Then Sy is a strip, and (a,S; (i € JU{0})) is an indecomposable pyramid strip system contrary to
the maximality of V'(S). This proves (2).

To complete the proof of the theorem, we therefore may assume that I = ); so now let v € N(a)
with no neighbour in B;UC;UD,; for 1 < i < k. Since a is splendid, v has a neighbour v € V(G)\ N|al;
and so u ¢ V(S)U Nlal]. Let F be the component of G\ (V(S) U N|a]) that contains u. Since F' is
contained in none of the sets D;, it follows that S(F) C By U---U Bg. Choose a minimal path @ of
G[V(F) U {v}] with one end v such that the other end, ¢ say, has a neighbour in B; U---U By. For
1 <i<klet B, C B; be the set of vertices in B; adjacent to ¢, and let B = B; \ Bj. Let A} be the
set of vertices in A; adjacent to v, and A = A; \ AL. The only edges between V(S) and V(Q) are
the edges between v and {a} U A U---U A, and the edges between ¢ and By U---U By, since @ \ v
is a subgraph of F and S(F) C By U---U By.

By a rung we mean an S;-rung for some i € {1,...,k}. For 1 <i <k, let us say an S;-rung R; is
crooked if it has one end in A; and the other in B/, or one end in A} and the other in B;; and straight
otherwise. Choose z,y € {0,1} such that @ has length # modulo 2, and every rung has length y
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modulo 2.

(3) If © # y then no rung is crooked, and either v is complete to Ay U ---U Ay (and v has type
a), or for some i, v is complete to Uj»i Aj, and anticomplete to A;, and q is complete to U;4; Bj,
and anticomplete to B; (and so v has type 7;, and Q is a private path).

Suppose that R; is a crooked Sj-rung, with ends ay € Ay and by € By. If ay € A and b; € Bj
then bi-Ri-a1-a-v-Q-¢-by is an even hole; so a1 € A} and by € Bf. If there exists by € B), then
bi-Ri-a1-v-Q-g-be-by is an even hole, a contradiction; so Bj,...,B) = 0. Hence B} # ); and so
for 2 < ¢ < k there is no crooked S;-rung, by the same argument with S7,S; exchanged, and so
b ...,A; = (0. But then we can add v to A; and V(Q) \ {v} to C; (note that the edge va;
guarantees the indecomposability of the new strip), contrary to the maximality of V(S).

Thus every rung is straight. Suppose that A}, AY # (. Let C} be the union of all interior of
Si-rungs between A', By, and let C be the union of all interiors of Si-rungs between Af, BY. Since
every Si-rung is of one of these two types, C1 U Cy = C;. Since there is no Sij-rung with ends in
A and BY, it follows that C1 N CY{ = 0 and C1, C{ are anticomplete. For the same reason, the only
edges between A} U C] and A} U C{ are between A} and A}. Since S; is indecomposable, there is
an edge between some a} € A} and some af € AY. Let R be an Si-rung with ends af and some
b € Bf. If there exists ag € A), let R, be an So-rung with ends ag, be; then

// /el //
bl _Rl —al —al‘v—GQ—RQ—bQ—bl

is an even hole, a contradiction. So Aj, ..., A} = (), and since every rung is straight, it follows that
Bj,...,B; = 0. But then we can add v to A; and V(Q \ v) to C, contrary to the maximality of
V(S).

This proves that for each i € {1,...,k}, either A, = B/ =), or A = B! = 0. Let I be the set of
i€ {1,...,k} such that A, # (). Suppose that |I| < k—2,say I = {i+1,...,k} where i > 3. Define
S() = (A(), Bo, Co), where

Ao = {U}UUAz

el
By = |JB;
i€l
Co = V(Q\v)ulJCi
i€l
Then (a, S, Si,...,S;) is an indecomposable pyramid strip system, contrary to the maximality of

V(S). So |I| > k — 1. This proves (3).

(4) If x = y then there exists i such that v is complete to J;.; Aj, and q is anticomplete to \J;,; B;
(and so v has type v; and Q is a private path).

Suppose that Rj is a straight Sj-rung, with ends a; € Ay and by € By. If a; € A} and by € Bj

then G[V(R; U Q)] is an even hole, which is impossible. Since R; is straight, it follows that a; € A}
and by € B{. If there exists by € B), then bi-Ri-a1-a-v-Q-g-ba-b; is an even hole, a contradiction;
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so Bj,...,B;, = (. Hence B} # (); and so for 2 < ¢ < k there is no straight S;-rung, by the same
argument with Sq,S; exchanged. Hence A5, ..., A7 = 0, and the claim holds.
Thus we may assume that every rung is crooked. Suppose that A}, A} # 0. Let C] be the union
of all interior of Si-rungs between A}, BY, and let C{ be the union of all interiors of Si-rungs between
! B). Since every Sj-rung is of one of these two types, C1UCY = Cy. Since there is no Sj-rung with
ends in A} and B, it follows that C] N CY = 0 and C}, C{ are anticomplete. For the same reason,
the only edges between A} U C] and A} U C{ are between A} and A5. Since S; is indecomposable,
there is an edge between some a} € A} and some af € A]. Let Ry be an Si-rung with ends af and
some b] € B]. If there exists as € A), let Ry be an Sy-rung with ends ag, be; then

/ "o/ /
bl—Rl—al -al—U—GQ—RQ-bQ—bl

is an even hole, a contradiction. So Aj, ..., A} =0, and since every rung is crooked, it follows that
BY,...,B} = (. But then we can add v to Aj, ¢ to By, and Q* to C4, contrary to the maximality
of V(S).

This proves that for each i € {1,...,k}, either A; = B/ =0, or AY = B, = (). Let I be the set
of i € {1,...,k} such that A, # 0. If I =0, define Sy = ({v}, {q}, Q*), then (a, So,S1,...,Sk) is an
indecomposable pyramid strip system, contrary to the maximality of V(S). So I # (). Suppose that
[I| <k—2,say [ ={i+1,...,k} where 3 <i < k. Define Sy = (Ao, By, Cp), where

Ao = {U}ULJAAZ

i€l
By = {¢yulJBi
el
Co = QulJC
el
Then (a, So, Si,...,S;) is an indecomposable pyramid strip system, contrary to the maximality of

V(S). So |I| > k — 1 and again the claim holds. This proves (4).

From (3) and (4) it follows that v has type 7;, and @ is the corresponding private path. In view
of (2), this proves 6.2. 1

We say A meets B if AN B # 0.

6.3 Let G be even-hole-free, and let a € V(G) be splendid. Suppose there is no extended near-prism
contained in G such that a is an end of its cross-edge. Let S = (a, Sh,...,Sk) be an indecomposable
strip system with apex a, with strips S; = (A;, B;, C;) for 1 < i < k, chosen with V(S) mazximal.
Then Nla]\ V(S) is a clique.

Proof. For X, Y C V(G), an X — Y path means (in this proof) an induced path P of G with ends
x,y say, where XNV (P) = {z} and YNV (P) = {y} (possibly x = y and V(P) = {z}, if x € XNY).
If X C V(G), a path of G is said to be within X if V(P) C X. Let B= By U---U B.

(1) For each v € N[a]\ V(S) there exists x(v) € {0,1} such that for 1 <i <k, every N(v) — B path
within V (S;) has parity x(v).
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Since v € N(a) \ V(S), 6.2 implies that there are at least two values of ¢ € {1,...,k} such that
N(v)NV(S;) # 0; and for each such i there is an N(v) — B path within V(S;). Let N(v) NV (S;) # 0
for i = 1,2 say, and for i = 1,2 let P; be an N(v) — B path within V'(S;). Then G[V (P U P2) U{v}]
is a hole, and so Py, P» have the same parity, say x(v) € {0,1}. We claim that for 1 < j < k, every
N(v) — B path P in V(S;) has parity z(v). To see this, choose i € {1,2} different from j; then
G[V(P; U P)U{v}] is a hole, and the claim follows. This proves (1).

In particular, x(a) exists, and so for 1 < i < k, all S;-rungs have parity x(a). Suppose that
u,v € N(a)\ V(S) are nonadjacent.

(2) If X1, X2 are connected subsets of V(G), disjoint and anticomplete, and u,v both have neighbours
in X; fori=1,2, then all N(u) — N(v) paths within X1 have the same parity, and all N(u) — N(v)
paths within Xo have the opposite parity.

For i = 1,2, let P; be an N(u) — N(v) path P; within Xj; then G[V (P, U Py) U{u,v}] is a hole, and
so Py, P» have opposite parity. This proves (2).

(3) There do not exist three connected subsets X1, Xo, X3 of V(G), pairwise disjoint and pairwise
anticomplete, such that for i =1,2,3, u,v both have neighbours in X;.

This is immediate from (2).
(4) There is at most one i € {1,...,k} such that N(u) N (A; N C;) =0, and the same for N(v).

Suppose that N(u) is disjoint from A4; U C; for ¢ = 1,2. By 6.2, N(a) meets at least k — 1 of
V(S1),...,V(Sk), so we may assume there exists by € By N N(u). Choose by € By, and for i = 1,2
let R; be an S;-rung containing b;. If by, u are adjacent, there is a short pyramid with apex a, with
base {b1, b2, u} and constituent paths Ry, Ry and the edge u-a, which is impossible since a is splendid.
If by, u are nonadjacent, there is a theta with ends b1, a and constituent paths bi-Rji-a, bi-u-a, and
b1-ba- Ra-a, contrary to 2.1. This proves (4).

(5) k = 3, and there exists i € {1,2,3} such that u,v both have neighbours in A; U C;.

Since each S; is indecomposable, there are only at most two values of 7 such that N(u), N(v) both
meet A; U C;, by (3). Then both claims follow from (4). This proves (5).

As before, for i = 1,2, 3, let D; be the union of all components F' of G \ (V (S U Nla]) such that
S(F)N(A; UC;) # 0. From (3), there exists i € {1,2,3} such that not both u,v have neighbours in
A, UC;UD,;.

(6) If v is anticomplete to V (S3) U D3 then v has type Bs.
Suppose not. Certainly v does not have type a or o/, since it has no neighbour in V(Ss) U Ds.

It does not have type 31 or B2 since it has no neighbour in B3 U C3; and not type 1,2 since it is
not complete to As. So v has type 73; let @ be the corresponding private path, between v and ¢ say,
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and let p be the neighbour of v in this path. Also, since v is complete to A7 and anticomplete to
By U (4, it follows that x(v) = z(a).

Fori = 1,2, if N(u) meets A;UC;UD;, then there is an N(u)—{a} path R within {a}UA;UC;UD;;
and since its ends are adjacent to u, it has odd length. Hence R\ a is an N(u) — N(v) path (since v
is complete to A; and anticomplete to B; U C;), and has even length. By (2), N(u) is disjoint from
one of Ay UC1U Dy, Ay UCyU Dg, say A2 UCy U Dy; and by (4), N(u) meets A1 UCy. Let P; be an
even N(u) — N(v) path within A; U C.

Now u has no neighbour in Ay U Cy U Ds. Suppose that u has a neighbour in the connected set
C3UB3UByUV(Q\ v), and let T be an N(u) — {a} path within

CgUBgUV(Q\U)UBQUCQUAQU{CL}.

This path has odd length (because its ends are neighbours of u), and it contains no neighbour of v
except the one in Ay (because p is nonadjacent to u). Consequently the path T\ a is an N (u) — N (v)-
path of even length anticomplete to Pj, a contradiction. So u has no neighbour in C3UBsUV (Q)UBs.
Since u is anticomplete to V' (S2)U Do, 6.2 implies that u has type 72, and in particular, u is complete
to Az and has no neighbour in C3. Let T" be an N(v) — {a} path within V(Q)UV (S3) U{a}; again it
has odd length (since its ends are adjacent to v), and T'\ @ is an even N (u) — N (v)-path anticomplete
to P, a contradiction. This proves (6).

(7) There is only one i € {1,2,3} such that both N(u), N(v) meet A; UC; U D;.

Suppose that N(u), N(v) both meet A; U C; U D; for ¢ = 1,2. Then by (3), one of u,v has no
neighbours in V' (S3) U D3, say v. By (6), v has type (3, and so has a neighbour in B; U C and one
in BoUCy. For i =1,2, let P, be an N(u) — N(v) path within A4; U C;. By exchanging S;, Sy if
necessary, we may assume that P} has odd length, and so P; is even. Hence there is no N(u) — N(v)
path within the connected set By U B3 U Cy U C3 U Dy U D3, because we could combine it with one
of u-a-v and u-P;-v to make an even hole. Since v has a neighbour in this set, u does not. So u
does not have type 5. By (6), u has a neighbour ag € As. Let R3 be an S3-rung containing as, and
for i = 1,2, let R; be an N(v) — B; path within B; U C;. For i = 1,2, 3, let b; be the end of R; in
B;. Thus Ry, Ry both have parity x(v). For i = 1,2, let @; be the induced path R;-b;-b3-R3. Thus
Q2 is an N(u) — N(v) path, but 1 might not be. Now @1, Q2 have the same parity. Since Q3 is
anticomplete to P; it follows that (o is even, and hence ()7 is even; and since Q1 is anticomplete to
Py, it follows that @7 is not an N(u) — N(v) path. But it has one end in N(v) and no other vertex
in N(v); and its other end is in N(u). Consequently some internal vertex is in N(u), and so u has a
neighbour in V(R;).
If u has a unique neighbour ¢ € V(Ry), there is a theta with ends ¢,v and constituent paths

t—Rl—U,
t-u-a-v,
t—Rl—bl—bg—RQ—U,

contrary to 2.1. (Note that t,v are nonadjacent since u,v have no common neighbour nonadjacent
to a.) If u has two nonadjacent neighbours in V' (R1), there is a theta with ends w, v and constituent
paths

u-R1-v,
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u-a-v,
U—Rl—bl—bQ—RQ—’U,

contrary to 2.1. If u has exactly two adjacent neighbours p,q inV (R;), where v, p, q, by are in order
in Ry, there is a near-prism with bases {v, p, q} and {b1, b2, b3} and constituent paths

p-R1-v-Ra-ba,

u-R3-b3,
q'Rl'bla
contrary to 2.1. This proves (7).

In view of (4), (5) and (7), we may assume that u, v both have neighbours in A;UC1; v has a neigh-
bour in A5 UC5 and none in A3UC3U D3, and u has a neighbour in A3UC5 and none in Ao UC5U Ds.

(8) u has no neighbour in Bz, and v has no neighbour in Bs.

Suppose that v has a neighbour in Bs, say b3, and so x(v) = 0. Let R3 be an Ss-rung with
ends ag, bs. The path a-az-Rs3-bs is odd, since its ends are neighbours of v, and so z(a) = 0.

Suppose first that z(u) = 0. There is an N(u) — N(v) path with one end bs and otherwise
contained in As U C5. Its length has parity z(u), and it is anticomplete to P;, where P; is an
N(u) — N(v) path within A; UCy; so P; has odd length by (2). Hence there is no N(u) — N(v) path
within the connected set By U Co U Do U B3 U C3 U D3, and so u is anticomplete to this set. By (6)
u has type (2, a contradiction since v has no neighbour in Bs U C}.

This shows that z(u) = 1, and hence u has no neighbour in B. Let Ry be an Si-rung with ends
a; € Aj and b; € By, that contains a neighbour of u, and let 7" be an N(u) — By subpath of R;.
Thus T has parity z(u) and hence is odd, and so a1 ¢ V(T') since xz(a) = 0. Consequently u has a
neighbour in R}. Since the connected sets {a}, R} and V(S3) are pairwise anticomplete, (3) implies
that v has no neighbour in Rj. But the path T-b;-b3 is even, and anticomplete to {a}; and so this
path is not an N(u) — N(v) path, and so v has a neighbour in 7', and therefore v, b; are adjacent.
Since R; is even, and v has no neighbour in R7, it follows that v, a; are not adjacent. But then there
is a short pyramid with apex a, base {v, by, b3}, and constituent paths

a—al—Rl—bl,

a-v,
a-ag-R3-bs,
contradicting that a is splendid. This proves (8).
Thus w has no neighbour in V' (S2) U Da, and v has no neighbour in V(S3) U D3. By (6), u has
type B2 and v has type B3. Since v has a neighbour in By U Cs, there is an So-rung Ry with ends

as € As and by € Bs, such that v has a neighbour in Ry different from as. Choose an S3-rung Rg
with ends ag, b3 similarly for u. Now v has two nonadjacent neighbours in the hole

a—GQ—RQ—bQ—bg—Rg—ag—a,
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and hence it has at least three, and an odd number; and they all belong to Ry except a. Similarly
R3 contains a positive even number of neighbours of u. Also, the hole

’U—Rg-bz—bg—Rg-ag-a—U
is odd, and so x(v) # x(a), and similarly z(u) # z(a).

(9) Every Si-rung contains an even number of neighbours of v, and an even number of neighbours

of u.
Let Ry be an Si-rung with ends a1 € A; and by € By. Since
a-a1-R1-b1-ba-Rso-as-a

is a hole, and the path Rs-as-a contains an odd number at least three of neighbours of v, and the
total cannot be even and at least three, it follows that there is an even number of neighbours of v in
R;. Similarly Ry contains an even number of neighbours of u. This proves (9).

(10) For every N(u) — N(v) path Py within A1 UCq, Py has even length, and either V(Py) C Ay, or
one end of Py belongs to Ay and its other vertices belong to Cy. In particular, Ay NV (P) # 0.

There is an N(u) — N(v) path @ within By U Cy U B3 U C3, and it is anticomplete to {a} and
so odd; and it is also anticomplete to P;, and so P; is even. Now u-P;-v-Q-u is a hole H say, and
the neighbours of a in it are u, v, and all vertices of V/(P;) N A;. Since a is splendid and therefore
V(G) \ Na] is connected, 3.2 implies that either

e @ is complete to H; or
e the subgraph induced on the set of vertices of H adjacent to a is a path; or
e ¢ has exactly three neighbours in H, and two of them are adjacent.

The first is impossible since a is not complete to V(Q). The second implies that V(Pj) is complete
to a, that is, V/(P;) C Aj; and the third implies that one end of P; belongs to A; and the others
belong to C;. This proves (10).

(11) No Si-rung meets both N(v1) and N(v).

Let R; be an S;-rung with ends a; € A; and b; € B;. By (10), not both N(u), N(v) meet R], so we
may assume that N(v) NV (R;) = {a1,b1} (since it has even cardinality by (9)). Thus by ¢ N(u),
and so N (u) meets R} by (9). Since u has an even number of neighbours in V' (R;), and v-a1-R1-b1-v
is a hole, and there is no even wheel and no theta, it follows that u has exactly two neighbours in Ry
and they are adjacent. But then the subgraph induced on V(R;)U{u,v,a} is a near-prism, contrary
to 2.1. This proves (11).

(12) There is no N(u) — N(v) path within A1 U C1 with one end in Ay and all other vertices in
C.
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Suppose there is such a path, P say. Let P have ends p € A; N N(u) and ¢ € N(v) (possibly
p = q), with V(P)\ {p} C Cy. If p = q, an Si-rung with one end p contradicts (11); so p # ¢. Let
Ry be an Si-rung with ends a1 € A; and by € Bj, containing ¢q. The path p-P-¢-Ri-b; includes an
Si-rung with one end in N(u), and therefore contains another neighbour of w by (9). This does not
belong to V' (P), so it belongs to V(R1); and so V(R;) meets both N(u) and N(v), contrary to (11).
This proves (12).

From (10) and (12), every N(u) — N(v) path within A; U C} is within A;. Choose P; as in (10)
to have as few vertices in A; as possible. It follows that V(P;) C A;. Let P; have ends p, ¢, where
p is adjacent to w and ¢ to v. From (11) p # q. Let Ry be an Si-rung with one end p, and let
by be the end of R; in By. By (11), v has no neighbour in V(R;). Now V(P; \ p) is disjoint from
V(R1 \ p); suppose these two sets are anticomplete. Then ¢-P;-p-R1-b; is an N(v) — By path, and
so it has parity z(v). But its parity is the same as that of R;, since P; is even; and so z(v) = z(a),
a contradiction. Hence V(P \ p) is not anticomplete to V(R \ p).

Suppose that V(P; \ p) is not anticomplete to R}. Since every N(u)— N(v) path within A; UC}
is within A, it follows that no vertex of R} is adjacent to u. But from (11), at least two vertices of
R; are adjacent to u, and so by is adjacent to u. Since V(P; \ p) is not anticomplete to V(R; \ p),
there is an Si-rung with one end b; and the other in V(P; \ p), and this Sj-rung therefore contains
a unique neighbour of u, contrary to (9).

Thus V(P \ p) is anticomplete to R}, and so by has a neighbour » € V(P; \ p). By (9), u has a
neighbour in V(R; \ p), and so there is an induced path @ between wu, b; with interior in Rj. Hence
@ has parity x(u) + 1, and since the path r-b; is an Sj-rung and so has parity z(a) # x(u), it follows
that a-u-Q-b1-r-a is an even hole, a contradiction. This proves 6.3. |

7 Using the decomposition theorems

Let S = (A, B,C) be a strip in a graph G, and let a € V/(G)\V (S) be complete to A and anticomplete
to BUC. Let D be the union of all the vertex sets of all components F' of G \ (V(S) U N|a]) such
that F is not anticomplete to AU C, and let Z be the set of all vertices in V(G) \ V(S) that are
adjacent or equal to a and have a neighbour in AUC U D. For v € Z, a backdoor for v is an induced
path R of G with ends v, b say, such that R* is anticomplete to V' (S) U D, and b is complete to B
and has no neighbours in AU C U D. We say (S,a, D, Z) is a completed strip if

e S is proper;
e 7 is a clique; and
e every vertex in Z has a backdoor.

We will see that both our decomposition theorems yield completed strips; and completed strips are
good for finding bisimplicial vertices by induction, because of the following.

7.1 Let G be even-hole-free, such that 1.2 holds for all graphs with fewer vertices than G. Let
(S,a,D, Z) be a completed strip in G, where S = (A, B,C). Let there be at least three vertices in G
that are not in AU C' U D and have no neighbour in this set. Then some vertex in AUC UV (F) is
bisimplicial in G.
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Proof. For each z € Z, let R, be a backdoor for z. Let Z; be the set of all z € Z such that R, has
odd length, and Zs the set for which R, has even length.

(1) Ifve AUC U D, then every neighbour of v in G belongs to V(S)U D U {a} U Z.

Suppose u € V(G) is adjacent to v, and u ¢ V(S)U D U {a} U Z. Thus u is not adjacent to a,
since u ¢ Z and v € AUCUD. If v € AUC then u € D from the definition of D; and if
v e D, let ve V(F) where F is a component of G\ V(S) such that F' is anticomplete to a and not
anticomplete to AUC; then u also belongs to V(F') and hence to D, a contradiction. This proves (1),

(2) If z € Zy, every induced path between z, B with interior in AU C U D is even.

Let P be an induced path between z and some b’ € B with interior in AU C U D; then V(P U R,)
induces an odd hole, and since R, is even it follows that P is even. This proves (2).

(3) If z € Z1, every induced path between z and B with interior in Zo U AUC U D is odd.

Let P be an induced path between z and some b/ € B with interior in Zo,UAUCUD. If ZoNV(P) = 0,
then V(PUR),) induces an odd hole, and since R, is odd it follows that P is odd. So we may assume
that there exists zo € V(P) N Zy. Since Z1 U Z3 is a clique, 2z is unique, and is the neighbour of z;
in P. Thus P\ z is an induced path between z, and b with interior in AU C U D, and so is even by
(2); and so P is odd. This proves (3).

Let G’ be the graph obtained from G[V(S) U D U Z] by adding two new vertices b, ¢, where b is
complete to B U Z; and ¢ is complete to Z U {b}. We claim that G’ is even-hole-free. To see this,
suppose that H is an even hole in G’. Since G is even-hole-free, H contains at least one of b, ¢; and if
H contains ¢ then it also contains b since the other G’-neighbours of ¢ are a clique. Thus b € V(H).
If both H-neighbours of b belong to B, then there is an induced subgraph of the even-hole-free
graph G[V(S)U D U Z U V(R,)] isomorphic to H, which is impossible. Thus b is H-adjacent to
some vertex z1 € Z; U{c}. Since b is G’-complete to Z; U {c}, only one vertex of H belongs to this
set. Consequently the other H-neighbour of b belongs to B, and |V (H) N B| = 1. If z; € Z; then
c¢ V(H) and H\bis an even induced path of G between z; and By with interior in ZoUAUC U D,
contrary to (3). Thus z; = ¢, and hence V(H) N Z; = ), and the other H-neighbour of ¢ is some
2o € Zy. But then H \ {b,c} is an odd induced path of G between z2, B with interior in AU C U D,
contrary to (2). This proves that G’ is even-hole-free.

Now A # (), and so be is a non-dominating clique of G’, since S is proper. But |[V(G")| < |V(G)],
since every vertex of G’ except b, ¢ belongs to V(G) and is not anticomplete to AUC U D. From the
inductive hypothesis, there is a vertex v € V(G') \ Ngr[b, ¢] that is bisimplicial in G. Consequently
v € AUCUD. Since v is nonadjacent to b, all edges of G’ with both ends in Ng/(v) are edges of
G. But all neighbours of v in G are neighbours of v in G’, by (1); and so v is bisimplicial in G. This
proves 7.1. |

In order to prove 1.2, we will show:

7.2 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than
G. Let K be a non-dominating clique in G with |K| < 2. Then some vertex in V(G) \ N[K] is

37



bisimplicial in G.
We divide the proof into four parts. First we need:

7.3 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G.
Let K be a non-dominating clique in G with |K| < 2, and let a € V(G) \ N[K] be splendid, and
such that there is an extended near-prism in G with cross-edge ab for some b. Then some vertez in

V(G) \ N|[K] is bisimplicial in G.

Proof. Choose a tree J and a J-strip system M in G with the same cross-edge ab, with (J, M)
optimal for ab. Let Z be the set of all vertices adjacent to both a, b, and Y the set of major vertices.
Let («, ) be the corresponding partition. For each e = st € E(J) with ¢t € «, let D, be the union
of the vertex sets of all components of G\ (V(M) U Z) that are not anticomplete to M, \ M. By
5.5, if F” is such a component then a,b have no neighbour in F’, and every vertex in V(M) with a
neighbour in F’ belongs to M.

(1) For each edge e = st of J with t € «, there is a bisimplicial vertex of G in (M, \ Ms)U D, where
D, is the union of the vertex sets of all components of G\ (V(M) U Z) that are anticomplete to a
and not anticomplete to M, \ Ms.

Let A= M N M., B=MsNM,, C = M,\ (MgUDM;)and D = D,; then S = (A,B,C) is a
strip, and it is proper, by 5.5. Let Z’ be the set of all vertices in V(G) \ V(S) that are adjacent or
equal to a and have a neighbour in AUCUD. We claim that all vertices in Z’ are major. Let z € Z’.
Then {z} is not small, since a has a neighbour in {z}, and so b, z are adjacent; and hence z € Z.
Since z has a neighbour in V'(S), and b has no neighbour in V'(S), it follows that z is b-external; and
since a is splendid, every vertex in N(a) is a-external. This proves that z € Y. Consequently Z' is
a clique, by 5.2.

Choose t' € 3, and let P be a path of J with ends s,t'. Choose an f-rung Ry for each f € E(P).
Let u,v be the ends of Rp, where u € My and v € M. For each z € Z', since z is adjacent to
b, there is a path from z to v with interior in V/(Rp) U {b}; and this is a backdoor for z since v is
complete to B and anticomplete to AU C.

Now D is the union of the vertex sets of all components F' of G \ (V(M) U Z) that are not
anticomplete to M, \ M. By 5.5, for each such F, a has no neighbour in V(F); and so D is the
union of the vertex sets of all components F' of G \ (V(S) U Nla]) such that F' is not anticomplete
to AUC. Hence (S,a,D,Z’) is a completed strip, and there are at least three vertices of G that
are anticomplete to A U C'U D, namely b and at two vertices of M, (the latter has at least two
vertices, since the corresponding strip is proper by 5.5). From 7.1, there is a bisimplicial vertex of G
in AUC U D. This proves (1).

Choose edges e = st and ¢ = s't' of J where t,t’ € « are distinct; then by (1), there are
bisimplicial vertices v € (M, \ Ms) U D, and v' € (Mo \ My) U D, defining D., Do as in (1).
Suppose they both belong to N[K]. Now for k € K, k is not adjacent to a since a € V(G)\ N[K] by
hypothesis; and so k ¢ Z. We may choose k € K adjacent or equal to v, and so k is not anticomplete
to (M.\ Ms)UD,.. Consequently k € M.UD,. Similarly there exists ¥’ € KN(MgUD,). But M.UD,
is anticomplete to M, U Dy by 4.2, a contradiction. This proves that one of v,v’ is anticomplete to
K, and so satisfies the theorem. This proves 7.3. |
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Second, we need:

7.4 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G.
Let K be a non-dominating clique in G with |K| <2, and let a € V(G) \ N[K] be splendid. Suppose
that there is no extended mear-prism in G such that a is an end of its cross-edge, and there is a
pyramid in G with apex a. Then some vertex in V(G) \ N[K] is bisimplicial in G.

Proof. From 6.2 since there is a pyramid with apex a, and all its constituent paths have length
at least two (because a is splendid), there is an indecomposable strip system with apex a. Let
S = (a, S1,...,Sk) be an indecomposable strip system with apex a, with strips S; = (A4;, B;, C;) for
1 <i <k, chosen with V(S) maximal. In the notation of 6.2, for 1 < i < k, let D; be the union of
the vertex sets of all components F of G\ (V(S U N|a]) such that S(F) N (A; UC;) # 0.

(1) For 1 <i <k, there is a bisimplicial vertez of G in A; U C; U D;.

Let 1 < i <k, ¢ =1 say; and let Z be the set of all z € N(a) \ V(S) such that z has a neigh-
bour in A1 UC1 U Dy. Thus Z is a clique by 6.3. We need to show that each z € Z has a backdoor.
By 6.2, z has type a, o/, 8 or 7, and hence for some 2 < j < k, z has a neighbour in V(S;). Choose
an Sj-rung R in which z has a neighbour, with an end b € B; say; then a path between z,b with
interior in V(R) provides a backdoor. Thus each z € Z has a backdoor; and there are at least
three vertices in G that are anticomplete to A; U C1 U D1, for instance all vertices of Ao, ..., A and
Bs, ..., Bg. By 7.1, this proves (1).

Since |K| < 2 and k > 3, we may assume that K is disjoint from S; U D;y. Let v € 41 UCy U Dy
be bisimplicial. Since K is anticomplete to a, it follows from 6.2 that K is anticomplete to v, and so
v satisfies the theorem. This proves 7.4. |

Third, we need:

7.5 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G.
Let K be a non-dominating clique in G with |K| < 2, and let a € V(G) \ N[K] be splendid. Suppose
that there is no pyramid in G with apex a. Then some vertex in V(G) \ N[K| is bisimplicial in G.

Proof. By 3.1, we may assume that G does not admit a full star cutset. We begin with:
(1) There do not exist distinct y1,y2,ys € N(a), pairwise nonadjacent.

Suppose such yi1,y2,ys exist. Now G\ Nla] is connected, and yi1,ys2,ys all have neighbours in it,
since a is splendid. Let S be a minimal connected induced subgraph of G\ N|[a] such that yi,y2,ys
all have neighbours in S. No two of y1,y2, y3 have a common neighbour in V'(S), since such a vertex
would make a 4-hole with a and two of y1,y2,y3. Consequently |V (S)| > 2, and so there are at
least two vertices x € V' (S) such that S\ x is connected. Choose two such vertices x1, xo say. From
the minimality of S, for ¢ = 1,2 one of yi,y2,y3 has no neighbour in V(5) \ {z;}, and so we may
assume that for i = 1,2, x; is the unique neighbour of y; in V(S). Let P = pj-----px be an induced
path of S with p; = z1 and pr = z2. Now y3 might or might not have neighbours in V(P). Let
Q=q-q-- qe be a minimal path in G[S U {ys}| where ¢p = y3 and ¢, has a neighbour in V(P).
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(Thus if y3 has a neighbour in V(P) then ¢ = 0.) If ¢, has a unique neighbour p; € V(P), there is a
theta in G with ends a, p; and constituent paths

a_yl_P'pia

a_yQ_P_piv
a-y3-Q-pi,
contrary to 2.1.

Suppose that ¢y has two nonadjacent neighbours in V(P). Then ¢ = 0 by the minimality of S
(because if £ > 0, we could delete from S a vertex of P between the first and last neighbour of gy
in P). Let H be the hole induced on V(P) U {a,y1,y2}. Then ys3 is adjacent to a and not to its
neighbours in H; and y3 has two other neighbours in V(H), nonadjacent to each other. Since G
admits no full star cutset, this is contrary to 3.2.

Thus g¢ has exactly two neighbours in V(P) and they are adjacent, say p;, p;+1. But then there
is a pyramid with apex a, base {q, p;, pi+1} and constituent paths

G_Q_qﬁa
a-y1-P-p;,

a-yo-P-y;y1,

a contradiction. This proves (1).

We suppose that a is not bisimplicial, and so the graph complement of G[N(a)] is not bipartite,
and hence has an induced odd cycle. It has no induced cycle of length at least six, since G[N(a)] has
no 4-hole; and none of length three by (1). Thus it has an induced cycle of length five, and hence
so does G[N(a)]. Let vy----- vs-v1 be a 5-hole of G where vy,...,vs are adjacent to a. Choose a
connected subgraph S with V(S) N N(a) = 0, minimal such that at least four of vy,...,vs have a
neighbour in V(.5).

(2) If u,v € {v1,...,v5} are nonadjacent then they have no common neighbour in V(S).
Because if s € V(.5) is adjacent to both u,v then s-u-a-v-s is a 4-hole. This proves (2).

(3) If P = p1--+--px is a path of S such that pivy and pyvy are edges, then one of vi,vs has a
neighbour in {p1,...,pk}-

Suppose not, and choose k£ minimum. Thus ve-pi-pr-v4 is an induced path. If vg is nonadjacent
to p1,...,pr then there is a theta with ends vo,v4 and constituent paths

V2-V3-V4,

V2-V1-V5-V4,

V2-P1- -+ " ~Pk-V4,
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contrary to 2.1. So ws is adjacent to at least one of pi,...,pg. Let vs be adjacent to n > 1 of
P1,.-.,Pg. If nis odd then there is an even wheel with centre vs and hole a-ve-p1-- - -- Di-v4-a; and
if n is even there is an even wheel with centre v3 and hole vi-vo-pi----- Pr-V4-vU5-v1, in both cases
contrary to 2.1. This proves (3).

From (2) it follows that |V(S)| > 2. Let X be the set of vertices z € V(S) such that S\ z
is connected. For each x € X, let T'(z) be the set of v € {vy,...,v5} such that x is the unique
neighbour of v in V(S). The minimality of S implies that T'(x) # () for each z € X, and (2) implies
that T'(x) is a clique.

(4) Exactly four of v1,...,vs have a neighbour in V(S).

Suppose vy, . .., vs all have a neighbour in V(.S). From the minimality of .S, it follows that |T'(x)| > 2
for each x € X, and since the sets T'(z) (x € X) are pairwise disjoint, it follows that |X| < 2. Since
|[V(S)| > 2 and S is connected, it follows that S is a path of length at least one, and X consists of
the ends of S. Let S have vertices s1-- - - s in order. Now T'(s1) is a clique, so we may assume that
T(s1) = {vi1,v2}. Since T'(s1),T(s) are disjoint, similarly we may assume that T'(s;) = {va,vs}.
Thus each of v1, v, v4,v5 has a unique neighbour in V(S), and v3 has at least one such neighbour.
But then there is a 4-hole with centre v3 and hole s;-S-v3-a-v;-s1, contrary to 2.1. This proves (4).

We may therefore assume that vz has no neighbour in V(5). If x € X, then T'(x) # {v2}, since
otherwise S\  would contain a path in which v, v4 have neighbours and vy, v3 do not, contrary to
(3). Similarly T'(x) # {v4}, and T'(x) # {v2,vsa} since T'(z) is a clique. Thus T'(x) contains one of
v1,v5. Hence | X| =2, and so S is a path si-----s; say, where v1 € T'(s1) and vs € T(Sg). If both
v9,v4 have a neighbour in §*, there is a theta with ends wv9,v4 and constituent paths

V2-V3-V4,
V1-V1-U5-V4,
’L)Q—G[S*]—U4,
contrary to 2.1. From the symmetry we may therefore assume that ve has no neighbour in S*. Also
by (2), v is nonadjacent to sg, so v € T'(s1). Let vy have n neighbours in V' (S). If n is even then
there is an even wheel with centre v4 and hole a-vg-s1----- Sk-vs-a, and if n is odd and n > 1 then
there is an even wheel with centre v4 and hole vi-s1-----sp-v5. Thus n = 1. Let s; be the unique
neighbour of vg in V(S). If ¢ = k, there is a prism with bases {v1,v2, s1}, {v4, v5, s} and constituent
paths
U1-Us,
V2-U3-V4,
S1- =Sk,

contrary to 2.1. If ¢ < k there is a theta with ends s;,vs and constituent paths

Si= 0 =SK=Us,
Sj= -+ =81-V1-Us,
8i-V4-U5,
contrary to 2.1. This proves 7.5. |
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Finally, the fourth part of the proof of 7.2; we will show:

7.6 Let G be even-hole-free, and let K be a non-dominating clique in G with |K| < 2. Suppose
that 1.2 holds for all graphs with fewer vertices than G, but there is no bisimplicial vertex of G in
V(G)\ N[K]. Then there is a splendid vertex in V(G) \ N[K].

Proof. If K # () let Z be the set of all vertices in V(G) \ K that are complete to K, and if K = ()
let Z = 0. Choose a € V(G) \ N[K] with as few neighbours in Z as possible; and subject to that,
with degree as small as possible. We claim that a is splendid. By 3.1 we may assume that G admits
no full star cutset, and so for every vertex v, the subgraph induced on V(G) \ Nv] is connected. In
particular, this holds when v = a, which is the first requirement to be splendid.

(1) Every vertex in N(a) has a neighbour in V(G) \ Nla].

Suppose that v € N(a) has no neighbour in V(G) \ N|a]. Then every neighbour of v belongs to
Nla], and in particular, v ¢ N[K], and every vertex in Z adjacent to v is also adjacent to a, and
the degree of v is at most that of a. From the choice of a, equality holds, and so a,v have the
same neighbours (except for a,v themselves). Let G’ = G \ v. Since K is non-dominating in G’,
the inductive hypothesis implies that there exists u € V(G’) \ Ng/[K] that is bisimplicial in G’. If
u = a, then since v is adjacent to every neighbour of a, it follows that a is bisimplicial in G; so we
may assume that u,v,a are all distinct. If u,v are nonadjacent, then wu is bisimplicial in G. If u,v
are adjacent, then u,a are adjacent, and since v, a have the same neighbours in N[u], it follows that
u is bisimplicial in G. In each case this is impossible. This proves (1).

Suppose there is a short pyramid in G with apex a; with base {b1, b2, b3} say, and constituent
paths Ri, Ro, R3 where R; has ends a,b; for ¢ = 1,2,3, and R3 has length one. Thus Ry, Ry have
length at least three. For ¢ = 1,2 let y; be the neighbour of a in R;. Let S be the set of vertices of
G nonadjacent to both a, bs.

(2) If P = p1---- -pg is a path with p1,...,px € S, of minimum length such that p1 has a neighbour
in Ry \{y1} and py has a neighbour in V(R2), then p1 has exactly two adjacent neighbours in V(Ry)
and yo is the unique neighbour of py in V(Rz), and these three edges are the only edges between
{p1,...,pk} and V(R1 U Ra U R3).

From the minimality of k, none of pa,...,pr has a neighbour in R} \ {y1}, but they might be
adjacent to b or y;. Also none of p1,...,px_1 has a neighbour in V(R3). (Note that possibly k = 1.)
Suppose that py has two nonadjacent neighbours in V(Rg). Then there is a theta with ends py,a
and constituent paths

pk"RZ'av

pr-R2-ba-b3-a
pr-(P U Ry \ by)-a,

contrary to 2.1. If py has exactly two neighbours z,y in Ry and they are adjacent (and a,x,y, be are
in this order in Ry, say), there is a near-prism with bases {b1, ba, b3} and {px, z,y}, with constituent
paths

x—Rg—a—bg,
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pre-(PU Ry \ a)-by,
y-Ra-by,
contrary to 2.1. Thus py has a unique neighbour u say in V(R3). If u # yo, there is a theta with
ends u, a and constituent paths
u-Ra-a,
U-Rz—bg—bg—a,
u—(P URy \ bl)—a,
contrary to 2.1. So u = yo. Hence pj is not adjacent to y1, because otherwise there would be a
4-hole pi-y2-a-y1-pg. If by is the unique neighbour of py in V(Ry), there is a theta with ends y1, b;

and constituent paths
y1-a-Ry-by,

y1-Ro-ba-b1,

Y1-Pr-b1,

contrary to 2.1. So if py has a neighbour in V(R;) then & = 1. Thus the only edges between
{p1,...,pr} and V(R; U Ro U R3) are the edges between p; and V(R;), and the edge pgy2. If p1 has
two nonadjacent neighbours in Rj, say =,y where a,z,y,b; are in order in R;, then there is a theta
with ends pi1,a and constituent paths

p1-z-R1-a,

p1-y-R1-b1-bs-a,
p1-P-pi-y-a,

contrary to 2.1. If p; has a unique neighbour say v in V(R;), then since v # y; (because by
hypothesis, p; has a neighbour in R} \ {y1}), there is a theta with ends v, a and constituent paths

v-Ri-a,

U—Rl—bl—bg—a,
v-P-y2-a,
contrary to 2.1. So p; has exactly two neighbours in V(R;) and they are adjacent. Ths proves (2).

(3) There is no path p1,...,pr with p1,...,px € S, such that p1 has a neighbour in R} \ {y1}
and py has a neighbour in R3 \ {y2}.

Suppose P = p1,...,pg is such a path, chosen with & minimum. Note that yi,ys, b1, by may have
neighbours in the interior of P, but from the minimality of k, p1,...,pr—1 have no neighbours in
R3\{y2}, and pa, . .., pr, have no neighbours in R} \{y1}. Choose i € {1,...,k} minimum such that p;
has a neighbour in V(R3). From (2) applied to the path py----- p;, it follows that p; has exactly two
neighbours in V/(Ry), say x1, y1, and they are adjacent, and ys is the unique neighbour of p; in V(R3),
and these three edges are the only edges between {p1,...,p;} and V(R; U Ry U R3). In particular
i < k. Choose j € {1,...,k} maximum such that p; has a neighbour in V' (R;); then similarly p; has
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exactly two neighbours in V(Rz), say 2,32, and they are adjacent, and y; is the unique neighbour
of p; in V(Ry), and these three edges are the only edges between {pj,...,pr} and V(R U Ry U R3).
Thus j > i, and since 1 < i < j < k it follows that k > 2. Let @ be the path p;-p;11----- pj. Thus
the only edges between {pi,...,pr} and V(R; U Ry U R3) are edges between p; and V(R;), edges
between pj, and V(Ry), the edges piy2, pjy1, and edges between Q* and {y1,y2,b1,b2}. If by has a
neighbour in Q*, there is a theta with ends b1,y and constituent paths

b1-Ri-y1,

bl_bS_a_y17
bl_Q_yl’
contrary to 2.1. So b; has no neighbour in {pg,...,pk}, and similarly by has no neighbour in
{p1,-..,pr—1}- If y1,y2 both have neighbours in P*, there is a theta with ends y1, y2 and constituent
paths
yl-G[P*]‘y%
?/l‘a‘y%
y1-R1-b1-ba-Ra-y2,
contrary to 2.1. Thus we may assume that ys has no neighbour in P*, and in particular ¢ = 1.

Consequently p1,y; are nonadjacent, since pi-y1-a-yo-p1 is not a 4-hole. Then there is a theta with
ends p1,y1 and constituent paths

p1-Ri-y1,
p1-R1-b1-bz-a-y1,
p1-P-y1,
contrary to 2.1. This proves (3).

For i = 1,2, let S; be the component of G[S] that contains R;\ {a, y;,b;}. So Si,Ss are nonempty
since Ry, Ry have length at least three; and Sy, Se are distinct by (3). For ¢ = 1,2, let B; be the set
of vertices adjacent to bs and not to a, with a neighbour in S;. So b; € B; for i = 1,2. If there exists
v € By N By, there is a theta with ends v, a and constituent paths

v-bs-a,

U'Sl'yl'av
U_SQ'y2'a'7

contrary to 2.1. So By N By = .

The only vertices of G not in V(S7) but with a neighbour in V(S1) belong to By U N[a]. From
the inductive hypothesis, applied to the graph G’ = G[S; U B1 U NJa] U {b3}], since the edge abs is
non-dominating in G’, it follows that some vertex in S is bisimplicial in G’ and hence in G. Since
there is no bisimplicial vertex of G in V(G) \ N[K], it follows that N[K] N S; # (), and similarly
N[K]N Sy # (. But K N Na] = () from the choice of a; and so K N (V(S;) U B;) # 0 for i = 1,2.
Since the sets V' (S1), By, B2, V(S2) are pairwise disjoint, and there are no edges between By UV (S2)
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and V(S7), it follows that K NS = ), and so K N By # (); and similarly K N By # (). In particular
|K| =2. Let KN B; =b, for i =1,2.

We recall that Z is the set of all vertices adjacent to both b},b),, and so by € Z. Now a,bs are
adjacent. But y; ¢ N[K] (because if y;, b, are adjacent then there is a 4-hole y;-b/-bs-a-y1), and y1, b3
are nonadjacent. From the choice of a, y; has at least as many neighbours in Z as does a; and since
bs is adjacent to a and not to y1, there exists z € Z adjacent to y; and not to bs. Since z-yi-a-b3-z
is not a 4-hole, z, b3 are nonadjacent. Since by € B and hence b, ¢ By, and b4 is adjacent to z, it
follows that z ¢ V(S7). But then there is a theta with ends b}, 41 and constituent paths

bi_z_yla
by-bs-a-y1,
bll'Sl_yh
contrary to 2.1. This proves 7.6. |
From 7.3, 7.4, 7.5 and 7.6, this completes the proof of 7.2, and hence of 1.2.
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