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Abstract

We provide evidence for a previously undocumented cognitive bias that we call “representative

signal distortion” (RSD) which is particularly relevant to settings of statistical discrimination.

Experimental subjects distort their evaluation of new evidence on individual group members

and interpret such information to be more representative of the group the individual belongs to

(relative to a reference group) than it really is. This produces an irrational discriminatory gap in

the evaluation of members of the two groups. Because it is driven by representativeness, the bias

(and the discriminatory gap) disappears when subjects are prevented from contrasting di↵erent

groups; because it is a bias in the interpretation of information, it disappears when subjects

receive information before learning of the individual’s group. We show that this bias can be easily

estimated from appropriately constructed datasets and can be distinguished from previously

documented inferential biases in the literature. Importantly, we document how removing the

bias produces a kind of free lunch in reducing discrimination, making it possible to significantly

reduce discrimination without lowering accuracy of inferences.
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1 Introduction

In this paper we document a bias in inference that we call “representative signal distortion” (RSD).

The bias is closely tied to the representativeness heuristic (Kahneman & Tversky (1972b)) and

distorts how people evaluate new evidence. In particular, when evaluating signals (e.g. evidence on

behavior, credentials or performance) about a member of a group (e.g., a gender, nationality, race)

people tend to misinterpret evidence to be more representative of that group (relative to another

reference group) than it actually is. In other words, when evaluating a group member people (i)

tend to see what they are “looking for” and (ii) “look for” evidence that is representative of the

group (perhaps because this conforms with what they expect to find). The result is that people

distort their evaluation of individual level signals so that they seem more representative of the

individual’s group than they really are.

Because representativeness can only arise when a decision maker can contrast the characteris-

tics of one group (e.g. ethnicity or gender) to those of another, this bias is particularly relevant

to settings of statistical discrimination, which, by their nature, involve inferences about individu-

als from two or more contrasting groups. RSD distorts inference in such settings in a distinctive

way, biasing perception of evidence in systematically opposite directions for contrasting groups,

thereby generating an irrational discriminatory gap in inference which amplifies underlying group

di↵erences. We show that this bias can be removed simply by changing the context under which

people evaluate evidence on individual group members, resulting in a kind of free lunch in reduc-

ing discrimination by making it possible to reduce discrimination without any cost to inferential

accuracy.

To better understand the bias, consider an example of a hiring manager evaluating resumes of

applicants from an elite college and applicants from a lower-ranked college. The applicants from

the elite school have relatively stronger skills for the job on average than applicants from the lower-

ranked school. Because of this, when contrasting applicants from the two schools, high skills are

representative of (i.e. relatively more common in) elite applicants while weak skills are representa-

tive of lower-ranked applicants. If the manager su↵ers from RSD, she looks for (or simply tends to

better-notice) evidence in each applicant’s resume that is representative of the college the applicant

attended relative to the college the applicant did not attend. By doing this, the manager distorts

the signal provided by the resumes, evaluating each lower-ranked applicant’s resume as providing a

weaker signal of skills and each elite applicant’s resume as providing a stronger signal of skills than

the resumes actually warrant. Relative to a manager who rationally statistically discriminates by
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e�ciently combining undistorted signals (i.e. unbiased resume evaluations) with prior beliefs on

the skill distributions at each college, the manager su↵ering from RSD discriminates between elite

and low-ranked applicants ine�ciently and far too much. We show that simple interventions (e.g.,

withholding information on group identity at the stage where individual evidence is evaluated) can

remove this bias altogether, sharply decreasing the discriminatory gap in assessments without cost

to (and sometimes improvement in) the accuracy of assessments.

In the first part of the paper (Section 2) we build a model of RSD, showing how it can arise as

a consequence of representativeness (Kahneman & Tversky (1972b)), a well-documented mistake

in which decision makers evaluate the likelihood of a characteristic or type by considering not only

its prevalence within the relevant group (as a Bayesian would do), but also its relative prevalence

in this group when contrasted to a reference group. Formally, we extend Bordalo et al. (2016)

who model how this bias can distort the way people remember or represent the composition of

groups, producing irrational stereotypes. In our model, the same mistake distorts not beliefs

about group characteristics, but instead the way people interpret new evidence (i.e. individual

level signals), causing people to “look for” (or simply better-notice) group-representative evidence

when evaluating a member of either group.In standard statistical discrimination models with normal

priors and signals, this mistake produces simple additive (though opposing) biases in the evaluation

of members of each group, producing irrationally discriminatory beliefs. We show in Section 3

that the resulting bias can easily be estimated from suitable data using simple regressions and

distinguished from other previously documented errors in inference such as base-rate neglect.

Our main contribution is a novel experiment (described in Section 4), designed to empirically

identify this bias and study its properties. In our main Baseline treatment, we ask subjects to

estimate the “type” (a number between 1 and 100) of an unspecified attribute of a fictitious member

of one of two groups (“green” or “orange”) that di↵er only in their mean type (40 or 60). Prior

to making this assessment, the subject is (i) told which group the fictitious person is a member of

(green or orange), and (ii) shown a number of dots on their screen equal to the fictitious person’s

true type for a split second. The short exposure to the dots means that subjects cannot perfectly

observe the true type and therefore receive only a noisy, subjective signal. While subjects are paid

based on only the accuracy of their assessments, in our analysis we compare outcomes in terms of

both accuracy and discrimination (di↵erence in assessments between individuals of the same type

from contrasting groups).

This experiment includes a number of design elements that allow us to cleanly measure the bias

for the first time. First, unlike most inference experiments, we provide subjects with a subjective
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signal (rather than a numerically described statistical signal) that can be mis-perceived or otherwise

mis-interpreted, creating scope for perceptual biases that are shut down by design in most previous

work .1 Second, unlike previous experiments on representativeness (e.g. Bordalo et al. (2016)),

we study a setting designed deliberately to minimize misrepresentation or mis-remembering of the

prior (i.e. of the groups themselves): we show subjects the prior distributions of types on their

screens, give them significant training on how to interpret them and verify that they understand

their properties. This allows us to focus on biases occurring due to misinterpretation of the signal

rather than misrepresentation of the prior. Finally, we deliberately designed the experiment to

be completely abstract, cleanly removing other, non-inferential sources of discrimination (such as

animus or taste-based discrimination) that might otherwise confound our measurement of repre-

sentative signal distortion.

This experimental environment not only serves as a crisp testing ground for RSD, but also as a

natural setting for assessing the descriptive accuracy of models of statistical discrimination. This is

no accident. RSD can occur precisely in the inference setting described by statistical discrimination

models, in which a decision maker makes inferences about a member of one of several possible groups

by combining individual and group level information. We therefore are able to use our dataset first

to examine the hypothesis that RSD exists and next to study the types of ine�ciencies the resulting

bias generates in statistical discrimination.

First (in Section 5), we document strong evidence of RSD in our data. Subjects positively bias

their estimates of members of the high-mean orange group and negatively bias their estimates of

members of the low-mean green group. This bias is large relative to base-rate neglect (a classical

error which we also find in our data) and is surprisingly stable, persisting even after dozens of

repetitions of the task. Importantly, however, the bias disappears entirely in a diagnostic treatment

(OneGroup) in which we ask subjects to make assessments about members of only one group

(green or orange) throughout the experiment, indicating that the bias is a consequence of group

contrasts and therefore representativeness. It also disappears with experience in a second treatment

(SignalFirst) in which subjects observe the individual-level information, i.e. the signal (the set of

dots), before learning of the individual’s group, indicating that the bias operates by distorting

subjects’ perception of the signal (rather than, e.g., by distorting their understanding of the prior).

Thus the novel bias we observe in our Baseline treatment matches the empirical fingerprint of RSD:

it is a distortion of perception that arises out of representativeness, is distinct from classical over-

and under-inference and is highly robust to experience.

1 By “subjective” signal we mean a signal that is complex enough to be open to interpretation.
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Next (in Section 6), we show that RSD causes fundamental ine�ciencies in statistical dis-

crimination, producing opportunities to costlessly reduce discrimination. Subjects in our Baseline

treatment follow the basic comparative statics of the statistical discrimination model, improving

their accuracy (although only marginally) relative to a control treatment (NoGroup) in which

subjects are not informed of the group, by “discriminating” between members of the two groups.

However this discrimination is ine�cient in the sense that outcomes are far from the “accuracy-

discrimination frontier”. We show that the two biases documented in our data—RSD and base-rate

neglect—have conflicting implications for discrimination. While base-rate neglect pushes in the di-

rection of less discrimination, on net people discriminate significantly and ine�ciently because of

RSD. We show that, given the information subjects are able to extract from perceptual signals,

they could improve their accuracy while simultaneously discriminating less between groups simply

by avoiding RSD. Indeed, we show that simple cognitively-inspired interventions which remove the

scope for RSD – like specializing subjects to make assessment about members of only one group,

or forcing subjects to evaluate evidence on individuals before learning of their group – produce

striking reductions in discrimination and in some cases significant improvements in accuracy. To

the degree that RSD arises also in field applications, our experiment suggests that such cognitive

interventions might be e↵ective at costlessly reducing discrimination.

Finally (in Section 7) we show that RSD is a novel bias that is empirically distinguishable from

related biases in inference and discrimination discussed in the prior literature. RSD is distinct from

classical inferential biases like base-rate neglect and conservatism because it is a distortion in the

way people evaluate signals rather than a mistake in the way people combine the prior and the

signal. We find evidence of base-rate neglect in our data, but can empirically distinguish it from

RSD. Likewise, RSD is di↵erent from classical confirmation bias, because it biases beliefs towards

representative beliefs rather than the true prior. We find no evidence of classical confirmation

bias (e.g., reluctance to form beliefs far from the prior mean) in our data but strong evidence

for RSD. RSD is also distinct from representativeness-driven stereotypes as described by Bordalo

et al. (2016) because it is a distortion in the signal (i.e. new information about individual group

members) rather than a distortion in beliefs about the characteristics of the group itself. As

such it can be empirically distinguished from stereotypes in our data. Finally, unlike models of

bounded rationality like rational inattention or e�cient coding, RSD is non-Bayesian and therefore

is characterized by violations of the martingale property of Bayes’ rule that these models don’t

allow.

The remainder of the paper is organized as follows. Section 2 presents our theoretical frame-
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work and Section 3 our empirical framework. Section 4 describes the experimental design. Section

5 presents results on RSD and Section 6 documents its e↵ects on statistical discrimination. Section

7 discusses how the bias we measure relates to and is distinguishable from other biases and discrim-

inatory behaviors documented in the literature. Section 8 concludes by discussing the implications

of our results.

2 A Model of Representative Signal Distortion

In this section we present a model of representative signal distortion (RSD). We first describe the

kind of inference task in which this new bias can arise. We then show how representativeness—

defined via the contrast of di↵erent groups with distinct prior distributions—can distort the agent’s

perception of the signal and give rise to representative signal distortion.

A decision maker (e.g. a hiring manager or admissions o�cer) must estimate the type, t, (e.g,

a characteristic, score or measure of ability or fit) of an individual. The individual belongs to a

group, g, (e.g. a gender, nationality or ethnic group), which is observed by the decision maker.

The individual’s type is drawn from a distribution f(t|g) that depends on the group she belongs

to. The decision maker observes a noisy signal, s, (e.g. a resume or an application package or the

candidate’s interview performance) of the individual’s type, distributed according to h(s|t, g). The

decision maker’s task is to form an estimate t̂ of t that is accurate in the sense that it minimizes

the expectation of (t̂� t)2.

By Bayes’ rule, posterior beliefs on t given s and g are characterized by fp(t|s, g) = h(s|t,g)f(t|g)R
h(s|t,g)f(t|g)dt .

An implication of this is that the optimal estimate, which corresponds to the posterior expected

type, can be written as
R
f
p(t|s, g)tdt.

Anticipating the setting of our experiment, we focus on a case in which (i) the type and signal

distributions are Gaussian, (ii) the type distributions have the same variance, and (iii) the signal

is an unbiased estimate of the type: t ⇠ N (µg,�
2), s ⇠ N (t, ⇠2g). In this standard setting, the

optimal estimate is a linear combination of the group’s prior mean and the realized signal s,

t̂ = !gµg + (1� !g)s, (1)

where !g is the weight on the prior mean. For an agent who correctly perceives the prior and signal

distributions, the optimal Bayesian weight on the prior mean is

!
Bay

g = ⇠
2

g/(⇠
2

g + �
2), (2)
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which is increasing in the relative precision of the prior vs. the signal distribution. As discussed

in Section 7, the literature has documented several inferential biases that are characterized by a

failure to attach Bayesian weights to priors and signals, including, notably, base-rate neglect, in

which the weight on the prior in equation (1) is too low, !g < !
Bay
g .2,3 By contrast, our interest is

on biases that distort not the way people combine existing information, but the way people perceive

that information in the first place.

To model contrast-driven misperceptions, we draw from Gennaioli & Shleifer (2010)’s and Bor-

dalo et al. (2016)’s work on stereotypes, which is in turn based on Kahneman and Tversky’s

representativeness heuristic.4 Bordalo et al. (2016) show how a decision maker can form distorted

beliefs about a target group by overweighting its representative types. Representative types are

those that are observed more frequently in the target group relative to the reference group.

Formally, Bordalo et al. (2016)’s representativeness measure R(t, g,�g) := f(t | g)
f(t |�g)

captures how

representative type t is of group g given reference group �g. The model describes how, through

representativeness-based recall, the decision maker can distort beliefs about the distribution of

types in group g, misrepresenting f by f̃ in the following way:

f̃(t | g) = f(t | g)(R(t, g,�g))�
p
,

where  is a normalization factor and �
p � 0 is a parameter that captures how susceptible the

decision maker is to representativeness. When �
p = 0, the agent does not su↵er any distortions due

to representativeness and f̃ = f . But when �
p
> 0, the agent overweights the likelihood of types

that are representative of group g (relative to �g) and f̃ 6= f .

We are interested in a distinct but complementary possible e↵ect of representativeness: that it

distorts the evaluation of new evidence rather than beliefs about the distribution of types within a

2The standard approach to studying deviations from Bayesian updating (since Grether (1980)) focuses on dis-

tortions in likelihood ratios. Two parameters capture potential deviations in how the prior likelihood ratio and the

signal likelihood ratio is used to form a posterior likelihood ratio (↵ and � below, respectively):

p(t = t1 | s)
p(t = t2 | s)

=

✓
p(t1)
p(t2)

◆↵ ✓
p(s | t = t1)
p(s | t = t2)

◆�

,

Given signal s, the agent forms Bayesian beliefs about the relative likelihood of type t being equal to t1 vs. t2 when

↵ = � = 1. In Online Appendix B, we show that when s ⇠ N (t, ⇠2), for any value of (↵,�), assessments consistent

with the equation above are given by t̂ = !µg + (1 � !)s, where ! = ↵⇠2

��2+↵⇠2
. That is, while this framework can

account for deviations from optimal weight !, it doesn’t allow for average bias in assessments with E[t̂] 6= µg.
3Base-rate neglect could be driven by overconfidence in one’s ability to read the signal, leading to a perceived

signal variance ⇠̂2g < ⇠2g and thus a perceived optimal weight !g = ⇠̂2g/(⇠̂
2
g + �2) < !Bay

g . This phenomenon is also

known as overprecision in the literature (Moore & Healy 2008).
4See Kahneman & Tversky (1972a,b), and Tversky & Kahneman (1983).
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group – the perception of the noisy signal s instead of the prior f . Intuitively, the idea is that when

the decision maker is faced with new evidence– when she reads a resume, observes behavior, or

evaluates a job performance – she is more likely to interpret the evidence to be more representative

of the group the individual belongs to. What we have in mind is a decision maker who (i) is

prone to see what she is ‘looking for’ when evaluating an individual and (ii) ‘looks for’ evidence

that is representative of the group the individual belongs to. We formalize the consequence of this

by modeling a decision maker who misperceives the signal, s, as being more representative of the

individual’s group relative to the reference group than it actually is.

Let y(s | g) :=
R
h(s | t, g)f(t | g)dt be the distribution of the signals conditional on only g. We

assume that the perception of the signal (conditional on true type) is distorted to be more repre-

sentative of the group the individual belongs to (relative to a reference group �g). In particular,

instead of drawing signals from the distribution h(s | t, g), the agent draws signals from the distorted

distribution

h̃(s | t, g) = h(s | t, g)(R(s, g,�g))�
s

where as before  is a normalizing factor, R(s, g,�g) = y(s | g)
y(s |�g)

describes how representative sig-

nal s is of group g, and �
s � 0 is a measure of the distortion in the signal distribution due to

representativeness. Again, when �
s = 0 the decision maker’s evaluation of evidence is una↵ected

by representativeness and h̃ = h. When �
s
> 0, the decision maker’s evaluation of evidence is

distorted such that she is more likely to observe signals that are representative of group g relative

to group �g and, as a result, h̃ 6= h. In Online Appendix A.2 we provide a micro-foundation for

this bias by modelling the subjective perception of an agent who receives psychological utility from

seeing signals that are representative of a group but incurs costs from perceiving objective stimuli

in a distorted way.

We call this bias “representative signal distortion” (RSD) because it (i) originates from repre-

sentativeness, and (ii) is a distortion in the evaluation of new evidence (the signal) rather than of

the representation of the prior distribution.

This error, as described, rests on two premises about the decision problem. First, in order for the

distortion to occur due to representativeness, there must be multiple groups, allowing the decision

maker to contrast an individual’s signal distribution with that of another reference group. Second,

in order for representativeness to impact “what the decision maker sees,” the decision maker must

already be aware of an individual’s group identity (and thus its representative characteristics) before
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observing new evidence on the individual. We therefore assume R(s, g,�g) = 1 when either of these

conditions are not met.5 Since this has the e↵ect of eliminating the bias, these two requirements

will be useful for distinguishing this bias from other inferential biases.

To isolate the impact of representative signal distortion, we assume that the decision maker

distorts only the signal, and not the prior distribution.6 We show in Online Appendix A that

representative signal distortion biases the mean of the signal distribution, such that the subjectively

observed signal is s ⇠ N (t+�g, ⇠
2
g) with

�g = �
s

⇠
2
g

⇠2g + �2
(µg � µ�g),

where �
s is a measure of how much the decision maker distorts her perception of the signal based

on representativeness, ⇠2g denotes the variance of the signal, �2 denotes the variance of the prior,

and µg and µ�g denote the mean value of group g and reference group �g, respectively.7

Importantly, the decision maker is unaware of the fact that her perception of the prior signal

is distorted, and therefore, when combining the subjective signal with prior information about

the group, the decision maker uses equation (1), where the only di↵erence is that s is now a signal

realized from the distorted distribution of signals. By rewriting the distorted signal as s = t+�s
g+✏g,

where ✏ ⇠ N (0, ⇠2g) is idiosyncratic signal noise, it follows from equation (1) that if the true type is

t, then the predicted type is a random variable given by

t̂ = (1� !g)�
s

g + !gµg + (1� !g)t+ (1� !g)✏g. (3)

Equation (3) will form the basis of our empirical strategy, outlined in the next section.

3 Empirical strategy and hypotheses

Consider a dataset (matching our experiment below) in which we observe a decision maker’s esti-

mate t̂, the true type t and the group identity g , but we do not observe the subjective signal of the

5 For the case in which the agent is aware of the existence of two groups but is uninformed about group identity

before observing the signal, setting R(s, g,�g) = 1 acknowledges the fact that evidence cannot be judged represen-

tative (or unrepresentative) of a group until the group is known. See Online Appendix A.2 for further discussion of

and a micro-foundation for this assumption.
6In Online Appendix A.1, we consider a more general model that also allows for distortions in the prior.
7The impact of representativess as a distortion in means when using the normal distribution has also been shown

in Bordalo, Gennaioli & Shleifer (2018).
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decision maker. We begin by postulating a simple empirical model that is agnostic to the under-

lying model of decision making. We then link this empirical model to the model of representative

signal distortion (RSD) described in Section 2.

For the empirical model, our only assumption is that the expected predicted type conditional

on true type is linear in the true type, i.e., for each group g, E[t̂ | t] is linear in t.8 This is a testable

assumption (which we verify in our data) and it implies9

t̂ = Bg + !gµg + (1� !g)t+ "g, (4)

where:

• Bg is a group bias term; more precisely, Bg = E[Bias(t)], where Bias(t) ⌘ E[t̂ | t]� t;

• !g is the weight on the group’s prior mean µg vs. the true type t;

• "g is an error term satisfying E["g | t] = 0.

This theoretically-agnostic empirical model is useful because, as long as the linearity assumption

is satisfied, it allows us to characterize agent behavior using two reduced-form parameters: (i) a

group bias term and (ii) the weight on the prior group mean vs. the true type. These terms can

be estimated using simple OLS regressions (details provided in Table 1).

The model of RSD in the previous section provides a structural economic interpretation of these

parameters, and, as we discuss in Section 6, it will also be convenient for conducting counterfactual

analysis. Comparing equations (3) and (4), it follows that the group bias term captures the e↵ects

of RSD, i.e.,

Bg = (1� !g)�g

= (1� !g)�
s

⇠
2
g

⇠2g + �2
(µg � µ�g). (5)

8This is true if and only if (t, t̂) are jointly normally distributed for each group g. This is why we chose the variable

under our control, t, to be (approximately) normally distributed in our experimental design, described below.
9To see how equation (4) is derived from the linearity assumption E[t̂ | t] = ↵g + �gt, note that this assumption

implies that

t̂ = E[t̂ | t] + "g

= ↵g + �gt+ "g,

where E["g | t] = 0 by construction. Next, note that the bias term defined in the text, Bg = E[↵g + (�g � 1)t] =

↵g +(�g �1)µg, so that replacing ↵g = Bg � (�g �1)µg in the first equation we obtain t̂ = Bg +(1��g)µg +�gt+ "g.

To get to equation (4), we define !g := 1� �g.
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In addition, the weight !g on prior mean vs. true type is also the weight placed by the agent on the

prior mean vs. her observed signal. Finally, comparison of the equations (3) and (4) reveal that

the error term in the empirical model is a direct function of the signal error: "g = (1� !g)✏g. This

allows us to estimate the variance of the agent’s observed signal, giving a measure of the precision of

her information. Thus, from these empirical parameters we can directly derive structural estimates

of �g, !g and ⇠
2
g , the key parameters of our theoretical model.

The model of representative signal distortion makes a distinctive set of predictions about the

group bias term that we use to derive the main hypotheses we seek to test in the experiment. First,

as discussed previously, RSD is di↵erentiated from the classical inferential biases of over-inference

(base-rate neglect) and under-inference (conservatism) in that it leads to the signal being perceived

with a bias. By contrast, base-rate neglect and conservatism occur as distortions on the weight

!g placed on the prior mean vs. the signal. Perhaps most importantly, RSD makes distinctive

predictions about the sign of the group bias term Bg: If the agent faces members of a relatively

high mean group h and low mean group l (i.e., µh > µl), Bh will be a positive bias and Bl will be

a negative bias.

H1 When the decision maker evaluates members of two groups with di↵erent means, the group bias

term is positive for the high-mean group and negative for the low-mean group, i.e., Bh > 0

and Bl < 0.

Thus, estimates that reveal zero group bias terms, or that reveal bias terms that do not have

opposite signs in the right direction for the two groups would each serve as evidence against RSD

in the data. The latter pattern would be evidence of some other distortion, including for example

distortions inherent in the signal technology, such as positively or negatively biased signals.

Second, RSD, because it is an outgrowth of representativeness, only occurs when groups with

di↵erent underlying distributions are contrasted (implicitly) to each other. Thus, such a bias cannot

arise in the absence of a second group. This allows us to state a second hypothesis.

H2 When the decision maker evaluates only one group g without access to information about a

second group �g, Bg = 0.

Thus, if the signal bias terms Bg were similar in settings (i) in which subjects are aware of only one

group and (ii) are aware of two groups, we would have evidence against RSD. We would instead

have evidence of some alternative bias in perception or inference.
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Third, RSD is not the only way that representativeness might distort beliefs in inference settings

like ours. For instance, as in Bordalo et al. (2016), representativeness can cause decision makers

to mis-characterize or mis-remember (i.e., stereotype) the characteristics of the groups themselves,

producing a distortion in the prior distribution f(t | g) rather than the signal distribution h(s | t, g).

Similarly, representativeness might distort the recollection of evidence after it has been observed,

producing a bias similar to ours but in the memory of evidence rather than in its perception.

Indeed, as we show in Online Appendix A, these types of recollective distortions will generate

biased estimates that satisfy the first two hypotheses. However, relative to these distortions, RSD

makes a distinctive prediction that separates it from these alternatives. In our formulation of

the inference problem above, the decision maker learns the group identity of individuals before

observing evidence directly about their type. This ordering should have no impact on this bias

if representativeness operate by distorting the prior or the memory of evidence: under both such

mechanisms we would expect to find biased estimates regardless of the timing of events (see Section

7 for more discussion on this point).10 By contrast, because RSD involves a misperception of the

signal itself that is guided by group information, it should disappear in an alternative ordering in

which the decision maker learns of the group after she has already evaluated evidence. We state

this as a third hypothesis.

H3 When (i) an agent evaluates signal s prior to learning the individual’s group g, Bg = 0 but (ii)

when she evaluates the signal after learning the individual’s group, Bg 6= 0.

Thus, if Bg were invariant to the order in which we present the group identity and the signal,

we would have evidence against RSD as modeled above. Results consistent with the first two hy-

potheses which also violate the third would be evidence in favor of representativeness that operates

through memory rather than perception, as discussed above.11

Finally, RSD makes no prediction about the extent of over or under-inference, a bias that, as we

have mentioned, is of a di↵erent nature. Importantly, all of our hypotheses hold for any weight that

agents place on the prior mean vs. the signal, regardless of whether this weight is optimal. It is

worth highlighting, however, that as Equation 5 indicates, the bias that results from RSD increases

10This observation does not rule out the possibility that the ordering of information might influence the weight

people place on the signal relative to the prior under one of these alternative mechanisms. Importantly, however, we

can measure such weight e↵ects using our estimates of !g and separate this from the bias created by representativeness.

As we show below, the order in which subjects observe information has no impact on the relative weight placed on

signal and prior.
11As presented in the next section, our experimental design will deliberately minimize the possibility that repre-

sentativeness impacts inference through these alternative channels.
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with the weight on the signal, implying that base-rate neglect will exacerbate the impact of RSD

on estimates. Thus, while these biases are of a distinct nature, their interaction and separation

will be important for explaining deviations from optimal behavior and predicting counterfactual

behavior, as we demonstrate in Section 6.

4 Experimental Design

In our experiment subjects face a series of inference tasks. In each task, they are asked estimate

the type of a fictitious individual by combining (i) statistical information about the type distribu-

tion associated the individual’s group, and (ii) imperfect subjective information directly about the

individual. Our goal is to cleanly measure representative signal distortion (RSD) in a simple and

stylized design that has key features of many statistical discrimination settings, and to examine

its implications for the tradeo↵ between accuracy and discrimination described by statistical dis-

crimination models. As such, we designed the experiment around the model, empirical framework

and hypotheses described in Sections 2 and 3. In Section 4.1, we present the inference task used in

the experiment by describing our Baseline treatment. In Section 4.2, we describe how this task is

used in our sessions and how it varies across treatments. In Section 4.3, we explain how this design

allows us to achieve the empirical goals of our paper. Finally, in Section 4.4, we describe details on

the implementation of the experiment.

4.1 The Inference Task

The experiment consists of a series of 75 inference tasks. In each task, the computer first ran-

domly selects one of two distributions (or “groups”) of “types” that are approximately normally

distributed and di↵er only in their mean.12 The “high-mean group” (called the “Orange group” in

the experiment) has a mean type of 60, the “low-mean group” (the “Green group”) has a mean type

of 40 and both have a standard deviation of 10. The computer then randomly draws the “type” of

one fictitious “person” from the distribution of the selected group.13 The subject’s task is to assess

or guess the type of the person the computer has selected by inputting a number between 0 and

100, and they are paid based on the accuracy of this assessment (as described in Section 4.4).

In our Baseline treatment, subjects are tasked with combining two types of information to make

12We discretize the distribution using integers between 0 and 100.
13In the experimental interface “types” are referred to as “values”.
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Figure 1: Screenshot from the Inference Task as Employed in Baseline. Notes: The square grid showing the actual

score of the person (number of black dots) disappears after 0.25 seconds.

their assessment. Figure 1 shows a screenshot of the task.14

First, the subject is reminded of the two distributions, on the left side of the screen. Then,

the subject is given “group information,” shown in the center of the screen. In the example, the

subject has been told the person is from the Orange group.

Next, the subject is shown a perceptually noisy “signal,”on the right side of her screen. The

signal is a grid of 100 dots (white and black) which flashes on the screen for 0.25 seconds. The

number of black dots in this grid is always equal to the actual type of the person, but the subject

does not have time to exactly count. Therefore, the signal is, in practice, noisy.

After seeing the grid flash on her screen, the subject is given a text box to input her guess. She

is, afterwards, immediately shown the true type for the task and then clicks a button to move on

to the next task, which will feature a new draw and possibly a di↵erent group.15

14Please see instructions for our Baseline treatment in Appendix L on how we implemented these distributions in

the laboratory and trained subjects in terms of their properties.
15Providing feedback about true type at the end of each round gives subjects an opportunity to recognize patterns

in their mistakes, enabling them to potentially adjust their inference strategy.
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4.2 Session and Treatment Design

The experiment employs a between-subjects design consisting of four treatments. One is the Base-

line treatment, described above. The other three are variations on the same design, consisting of

75 independent inference tasks, the same set of distributions, the same grid signals displayed for

the same amount of time (0.25 seconds) and the same incentives.

One of the treatments allows us to verify the comparative statics of statistical discrimination

models:

NoGroup: Like Baseline, but subjects make their assessments without ever receiving group

information. Subjects observe the distributions shown on the left side of Figure 1 but are

never provided the group information (the middle panel). Instead, they click a button to

observe the signal (the right panel) for 0.25 seconds and enter their assessment.

The other two treatments provide the subject with the same information as the Baseline treat-

ment (i.e., both group information and signal). However, they provide the information in two

distinct ways and provide insight into how subjects perceive signals and integrate the two pieces of

information we provide them:

SignalFirst: Like Baseline, but subjects observe the signal before knowing which group the

person belongs to rather than after. Subjects first click a button to observe the signal for 0.25

seconds. Three seconds later, group information appears on their screen and remains there

for the remainder of the task.16

OneGroup: Like Baseline, but instead of randomly observing members of the low-mean and

high-mean groups over the course of the 75 tasks, subjects are assigned to always observe

members of one group only (high-mean or low-mean) over all 75 tasks. Subjects are only

shown one of the two distributions on the left side of Figure 1 and are only informed about

that group in the instructions.

4.3 Understanding the Design

We designed the experiment to identify RSD empirically and examine its properties, guided by the

theoretical and empirical considerations in Sections 2 and 3. Here we highlight how the design

16In the Baseline, there was a similar three second delay after group information was revealed before subjects could

click to see the signal.
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facilitates this identification.

First, we deliberately designed an inference problem with subjective, perceptual signals rather

than the objective, statistical signals usually employed in inference experiments. We did this

because RSD involves distorted perception or evaluation of new evidence and so it is important

that we include signals that are rich enough to be subjectively misinterpreted. This led us to show

subjects a matrix of dots as a signal rather than, e.g., a number with a known distribution as in a

typical inference experiment. Showing that signal quickly (in a quarter of a second) ensures that

it will be perceived noisily and also that there is very little scope for using deliberate e↵ort (á la a

costly information acquisition model) to reduce this noise.

Second, on the other hand, we deliberately designed an inference problem with an objective,

salient set of prior distributions. In particular we trained subjects on the properties of the prior

distribution, quizzed them on these properties and visually reminded them of these distributions

on the screen throughout decision making. We did this to minimize the possibility that repre-

sentativeness can impact inference through other channels than RSD. For instance, stereotypes,

as documented in Bordalo et al. (2016), rely on misrepresentation of prior distributions, and we

make this unlikely by making the priors objective and salient throughout choice. We did this not

because we think stereotypes are unimportant in applications but rather to give us clearer and less

confounded measurement of RSD, our paper’s main novelty.

Third, unlike most inference experiments, we studied a setting with normal (Gaussian) prior

distributions (typically inference experiments focus on simpler binary settings). We did this to

facilitate simple recovery of parameters using the empirical framework described in Section 3.

Specifically (i) normality of types and (ii) normality of the signal error jointly guarantee that the

conditional expectation E[t̂ | t] is linear in the type t. While only (i) is controllable by us in

the design, we verify below that subjects’ inferences are consistent with the linearity assumption.

This linearity allows us to cleanly estimate Bg, the bias from RSD, separate it from over- and

under-inference, and test that the properties predicted for it in Hypothesis 1 are satisfied.

Fourth, we included treatment OneGroup to test Hypothesis 2. As that hypothesis specifies,

a distinctive implication of RSD that distinguishes it from other perceptual distortions is that it

should disappear in environments in which subjects lack a comparison group against which to assess

representativeness. The OneGroup treatment implements this, allowing us to test whether the bias

is an outgrowth of representativeness.

Fifth, we included treatment SignalFirst to test Hypothesis 3. That hypothesis states that
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(unlike other e↵ects of representativeness like stereotyping), RSD should disappear when a subject

learns the group after observing the signal. RSD requires the decision maker to distort her per-

ception or interpretation of evidence, guided by representativeness, and this cannot happen if the

agent does not know the group at the moment of she observes the signal. The SignalFirst treat-

ment switches the order of evaluation relative to Baseline, allowing us to look for this distinctive

comparative static.

Sixth, we included the NoGroup treatment to allow us to study the basic comparative static

of statistical discrimination models and study how it is distorted by biases like RSD and base-rate

neglect.

Seventh, we included a large number of periods of repetition (75) of the inference task for two

reasons. First, this allows us to study the persistence of RSD and other biases in the presence

of feedback. Specifically, we are able focus our analysis on the last half of the experiment after

subjects already have dozens of periods of experience with the task, likely improving the external

validity of our conclusions. Second, it allows us to estimate the parameters of the model described

in Section 3 also at the individual subject level.

Finally, we made a deliberate decision to study a completely abstract problem involving fic-

tional groups (orange and green) and individuals. We did this for identification reasons. Settings

involving real group labels (e.g. ‘men’ and ‘women’) introduce a risk that unmeasured taste-based

discrimination (or deeply seated stereotypes) might confound our measurements of RSD. RSD is a

purely cognitive bias, and as such can be cleanly measured in a purely abstract setting in which

these confounding preferences and beliefs cannot interfere with measurement.

4.4 Implementation Details

We ran all treatments of the experiment simultaneously on Prolific on June 19th 2021 with 241

subjects from the US (57 in Baseline, 61 in NoGroup, 62 in SignalFirst and 61 in OneGroup). The

experiment was conducted using software programmed by the authors in Javascript and deployed

using Qualtrics. All subjects had to successfully answer comprehension questions in which they

were tested on the properties of the prior distributions to begin the experiment. The experiment

also included a risk measure adopted from the Caltech Cohort Study (Gillen et al. 2019) which was

presented to the subjects at the end of the experiment. There were no time limits and on average

the experiment lasted for 60 minutes.

All subjects received a base payment of $7.50. They also had the chance to win an additional
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$20 depending on the accuracy of their answers and up to $2.20 depending on their choice in the

risk elicitation task. The percent chance of winning $20 was set to 100 minus the mean squared

error of their assessments over the 75 rounds.17 Earnings for subjects ranged from $7.50 to $29.60

with average earnings of $15.90.

5 Evidence on Representative Signal Distortion

In this section, we report estimates from our statistical model (Section 3) and use these estimates

to test the hypothesis of representative signal distortion (RSD). We report systematic evidence of

RSD (a new inferential error) and also of base-rate neglect (an old one).

In order to focus our analysis on the behavior of subjects experienced with the interface and

the decision problem, we report results using the last half of the session (after period 37); we

report results from the full dataset in Appendix H and flag di↵erences (i.e., evidence of learning)

where relevant in the text. Except where otherwise stated, all statistical tests reported in the

text are based on linear regressions with errors clustered at the subject level whenever there are

multiple observations per subject. For measures computed at the aggregate level or derived from

regression estimates (such as �g or ⇠
2
g), we use bootstrapping to make statistical statements. In

pooled statistics (but not in individual-level analysis), we remove 10 (out of our 241) subjects who

made extreme forecasting errors and were clearly inattentive or confused.18 Doing this provides a

more accurate portrait of the data’s central tendencies, but does not change any of our qualitative

conclusions.

Figure 2 gives us a first view of the data by plotting mean assessments as a function of true

type, and corresponding linear fits for each group (the low group in green and the high group in

orange) in each treatment. The size of the circles represent the relative frequency with which a

specific type (within each group/treatment) was observed in the data. The plots reveal approximate

linearity in assessments for both groups in all treatments. In Appendix F, we test and fail to reject

the hypothesis that assessments are linear in type. The observation that average assessments are

17Note that since the underlying distribution for each group has variance of 100, a subject who ignored the signal

in the Baseline and only reported the group mean in every round would be expected to win the $20 with 0 percent

chance.
18Specifically, we removed the 5% of subjects whose MSE (mean squared error of assessment) was greater than 200

– the MSE a subject could achieve simply by choosing the unconditional mean of 50 every period, ignoring group- and

individual-level information. It is virtually impossible to make such extreme errors unless inattentive or confused,

and removing such subjects is typically necessary in experiments using online samples.
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sharply increasing with the true type reassures us that subjects are attentive to the signals and

willing to learn from them.

These raw views of the data preview our main findings. Key parameters of the empirical

model—B and ! from equation (4)—can be visually identified in the graphs: the slope of the best

linear fit corresponds to 1�! and the vertical distance between the best linear fit and the 45 degree

line at t = µ visualizes average group bias B in assessments. In the NoGroup treatment, where

statistical discrimination is impossible, linear fits are identical across groups and coincide with

the 45-degree line, which suggests that there is no group bias and all the weight is placed on the

subjective signal (i.e., perfect base-rate neglect). When subjects are shown group information (in

the Baseline treatment) they show clear evidence of subjects engaging in statistical discrimination:

conditional on type, members of each group are evaluated very di↵erently (i.e., best linear fits are

vertically separated for the two groups) and the slopes of linear fits are similar across the groups

and clearly di↵erent from 1 (indicating positive ! values). Most importantly, this discrimination is

biased: negative and positive deviations from the 45-degree line at means of 40 and 60 (measuring

bias term, B) in the low-mean green and high-mean orange groups respectively, are consistent with

hypothesis H1. These biases disappear altogether in OneGroup and SignalFirst as predicted by H2

and H3 respectively, suggesting the bias is driven by representativeness and is mostly a bias in the

perception of the signal. The raw data thus matches the empirical fingerprint of RSD, as described

in Section 3.

Table 1 reports estimates of OLS parameters (group bias B and weight on prior !), structural

parameters derived from these estimates (weight-adjusted bias �, variance of the subjective signal,

⇠
2 and optimal weight on signal !Bay) obtained by pooling all observations as if they were coming

from the same individual. These measures are estimated separately for each treatment and each

group (high-mean and low-mean, di↵erentiated by subscript g 2 {l, h}). Below, we show that

similar results hold when these parameters are estimated instead at the individual level.
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Figure 2: Average Assessment by Type in Each Treatment Notes: The size of the circles represent the relative

frequency with which a specific type (within each group/treatment) is observed in the data. Green (Orange) dots are for low-

mean (high-mean) group. Green (to the right) and Orange lines (to the left) depict best linear fit by group and treatment;

gray line depicts 45 degree line. Empirical strategy is described in Table 1. See Sections 2 and 3 for further discussion and

interpretation of B and !.

20



Table 1: Model Estimates

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

!l 0.199⇤⇤⇤ 0.0192 0.184⇤⇤⇤ 0.0898⇤⇤⇤

(0.0393) (0.0330) (0.0302) (0.0218)

!h 0.157⇤⇤⇤ 0.0196 0.151⇤⇤⇤ 0.164⇤⇤⇤

(0.0331) (0.0360) (0.0268) (0.0339)

Bl -1.743⇤⇤⇤ -0.289 -0.327 0.408

(0.314) (0.589) (0.368) (0.317)

Bh 1.836⇤⇤⇤ -0.0990 0.245 -0.156

(0.402) (0.466) (0.404) (0.377)

Estimates derived from ! and B:

�l -2.17⇤⇤⇤ -0.30 -0.40 0.45

�h 2.18⇤⇤⇤ -0.10 0.30 -0.19

⇠
2

l
74⇤⇤⇤ 68⇤⇤⇤ 77⇤⇤⇤ 47⇤⇤⇤

⇠
2

h
82⇤⇤⇤ 80⇤⇤⇤ 75⇤⇤⇤ 60⇤⇤⇤

!
Bay

l
0.43⇤⇤⇤ 0.25⇤⇤⇤ 0.43⇤⇤⇤ 0.32⇤⇤⇤

!
Bay

h
0.45⇤⇤⇤ 0.29⇤⇤⇤ 0.43⇤⇤⇤ 0.37⇤⇤⇤

Tests:

H0: !l = !h 0.318 0.995 0.341 0.072

H0: Bl = Bh 0.000 0.741 0.317 0.257

H0: �l = �h 0.000 0.350 0.164 0.134

H0: !l = !
Bay

l
0.000 0.000 0.000 0.000

H0: !h = !
Bay

h
0.000 0.000 0.000 0.000

Observations 2052 2204 2242 2280

Notes: For each treatment and group g 2 {l, h}, we estimate Bg and !g using OLS on the following specification:

yg,i = Bg + !gxg,i + "g,i, where i denotes each distinct observation, yg,i ⌘ t̂g,i � tg,i, and xg,i ⌘ µg � tg,i. This

specification is derived by subtracting tg,i from both sides of equation (4). Given estimates for Bg and !g, we back

out �g using equation (5) and estimate ⇠2g by identifying the error associated with the signal using "i,g = (1�!g)✏i,g

and then taking the sample average of ✏2i,g. Given ⇠2g , !Bay
g is derived from equation (2). See Sections 2 and 3

for further discussion. Standard errors (clustered at the subject level) are reported in parentheses. ⇤⇤⇤1%, ⇤⇤5%,
⇤10% significance. Rows on tests report p-value associated with test of each hypothesis. Statistical assessments on

estimates derived from ! and B use bootstrapping.
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Figure 3: Estimates of Representative Signal Distortion (�) and Base-Rate Neglect (!Bay�!) by Treatment

and Group Notes: Empirical strategy is described in Table 1. Orange bars (on the left) and green bars (on right) depict

high-mean and low-mean groups, respectively. See Sections 2 and 3 for further discussion. Vertical lines denote 95 percent

confidence intervals.

Estimates of the group bias terms Bl and Bh in Table 1, confirm that in the Baseline treatment

(i) the biases in each group (h and l) are large, significant and symmetric, (ii) of opposite sign and

therefore (iii) widely separated, producing a large (and statistically significant) irrational discrimi-

natory gap in the assessment of individuals from the two groups. This pattern of group-driven bias

is characteristic of RSD, producing support for hypothesis H1.

Relative to the bias described by the model in Section 2, these group bias terms are attenuated

by a factor of (1 � !) as reflected in Equation 5. Table 1 corrects for this to produce structural

estimates of the key RSD parameter from the model: �h (weight-adjusted bias for the high-mean

group, in orange) and �l (weight-adjusted bias for the low-mean group, in green). We visualize

these parameters in the left panel of Figure 3. Again, we find that (i) the two biases are large and

symmetric, (ii) of opposite sign and therefore (iii) widely separated. These results suggest that

when faced with members of the low-mean group, the signals subjects infer are downward biased;

when faced with members of the high-mean group they are instead upward biased. As Table 1

shows, for the Baseline treatment, (i) each of these bias terms is significantly di↵erent from zero

and (ii) the di↵erence between the two, �h ��l is as well.

Result 1. In the Baseline treatment, subjects’ estimates are (i) significantly biased downwards for

the low-mean group and (ii) biased upwards for the high-mean group producing (iii) a significant

irrational discriminatory gap in assessments. The results are thus consistent with Hypothesis H1.
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In contrast to the Baseline treatment, Table 1 and Figure 3 shows that the bias (whether

measured by reduced form parameter B or structural parameter �) virtually disappears when

subjects are unable to contrast the two groups with one another (the OneGroup treatment). As

the error bars in Figure 3 suggest and formal tests in Table 1 confirm, in the OneGroup treatment

�h, �l and their di↵erence, �h ��l are all statistically indistinguishable from zero (as are Bh, Bl

and Bh �Bl). This suggests that the bias we estimate in the Baseline treatment is a consequence

of a contrast e↵ect between groups. The disappearance of the bias when such contrast e↵ects are

removed is another characteristic feature of RSD and provides support for hypothesis H2.

Result 2. In the OneGroup treatment, the bias measured in the Baseline treatment – and the

discriminatory gap in assessments it produces – disappear. The results are thus consistent with H2:

the bias measured in the Baseline treatment is an outgrowth of representativeness.

Similarly, Figure 3 and Table 1 show that the bias terms (again whether measured by B or �)

disappear when subjects observe the signal prior to learning the group (the SignalFirst treatment).

This suggests that the bias we estimate in the Baseline treatment operates by distorting subjects’

evaluation of perceptual evidence (rather than by distorting memory of the prior or signal). The

disappearance of the bias term in the SignalFirst treatment comes about with experience. Estimates

using all 75 periods (see Appendix H for detailed analysis) shows a sharp attenuation of the bias

term in SignalFirst relative to Baseline but not a complete disappearance. This suggests that

subjects may su↵er also from distortions in memory of the signal (at the point where inferences

are made) or the prior in early rounds of SignalFirst, but such distortions (unlike the distortion in

signal perception) are transitory and mostly disappears with experience. The data thus matches

the third main characteristic of RSD, articulated in H3.

Result 3. In the SignalFirst treatment, the bias measured in the Baseline treatment – and the

discriminatory gap in assessments it produces – mostly disappear with experience. The results

are thus consistent with H3: for experienced subjects, the bias works almost entirely by distorting

subjects’ perception or evaluation of the signal.

Together, then, our results provide strong evidence of RSD: the bias we measure matches the

distinctive empirical fingerprint of RSD described in Section 3. In addition to this new bias, Table

1 also provides evidence of a classical error that also distorts assessments in our data: base-rate

neglect. In the Table we provide estimates of the weight, ! subjects place on the prior mean

µ, (relative to the signal s) for the low/green group (!l) and the high/orange group (!h). To

complement, the table also gives the weight a Bayesian would place on the prior mean (!Bay

l
and

!
Bay

h
) given the estimated variance of subjects’ perception of the signal (⇠2). The results in Table
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1 reveal that subjects put significantly more weight on their subjective signals (and less weight on

the prior) than a Bayesian would given the noisiness of their evaluations. In other words, subjects

act as if their perception of the signal is more accurate than it really is.

The right panel of Figure 3 plots the di↵erence between !
Bay�! for each group and treatment.

Positive values show evidence of base-rate neglect (over-inference or under-weighting of the prior)

while negative values show evidence of conservatism (under-inference or over-weighting of the prior).

The results are universally positive and therefore show clear evidence of base-rate neglect. Moreover,

in contrast to our results on RSD in the left panel, estimates of !Bay � ! in the right panel reveal

a remarkably consistent level of base-rate neglect across groups and treatments.

Result 4. In addition to RSD, there is significant evidence of base-rate neglect for both groups in

all four treatments. Unlike with RSD, the degree of base-rate neglect is mostly una↵ected by group

or treatment.

We make three further observations that help us to interpret and contextualize these results.

First, the NoGroup treatment (in which subjects are forced to make assessments without being

informed of the group) serves as a useful sanity check on our estimates. The fact that RSD does

not arise in NoGroup (neither Bh, Bl, �h or �l are statistically di↵erent from zero) reassures us

that the technology we use to represent signals (a grid with dots shown for .25 seconds) is unbiased,

and that the existence of the bias we observe in Baseline is indeed driven by knowledge of group

identity in a setting where there are two groups (rather than, for instance, contrast e↵ects that

arise by comparison of signals from sequentially observed candidates). Indeed, estimates of ! from

Table 1 show that subjects in NoGroup ignore the prior entirely – even without group information,

subjects could significantly increase accuracy by putting some weight on the global mean of 50.19.

However, the level of base-rate neglect (!Bay � !) is similar to the other three treatments.

Second, Table 1 also reports values of the signal variance – the noisiness with which we estimate

subjects perceived the signal. We find no di↵erences in estimated variances for the Baseline,

NoGroup, and SignalFirst treatments, and the estimated variances are similar in magnitude to

the population variance that we picked for the experiment.20 However, we find one surprising

19For the NoGroup treatment, we also estimate a linear model where subjects put weight on the signal and on

the average mean of 50. The Bayesian prediction is no longer linear in this case, for the subtle reason that a signal

provides information about the population from which a person is being drawn, and, therefore, the optimal weight on

the prior vs. the signal depends on the signal itself. However, the optimal prediction (as shown in Online Appendix

D) and the aggregate assessment strategy of our subjects in our data (as shown in Online Appendix F) are both

approximately linear.
20These findings reassure us on three features of our design: (i) the fact that population and signal variances are of
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result from our analysis of signal variances: a significant decrease in signal variance in OneGroup

relative to Baseline (p = 0.001 for g = l and p = 0.038 for g = h), suggesting that when subjects

are restricted to make inferences about only one group they perceive signals about members of

that group not only without bias but also with less noise. We discuss this finding in more detail in

Section 6.21

Finally, we re-conducted our estimation at the individual subject level (i.e., we estimated the

full raft of parameters for each subject individually) and obtained similar results. Figure 4 plots

CDFs of individual-level �g estimates (in Online Appendix G we provide similar CDFs of !Bay�!

estimates); results are qualitatively similar if we replace� with B in this exercise. Although there is

significant heterogeneity in estimates across subjects, (i)�h strongly first-order stochastically domi-

nates�l in the Baseline treatment and (ii) the two distributions converge significantly in SignalFirst

and especially OneGroup. Equality of the distributions can be rejected by a Kolmogorov-Smirnov

test in Baseline and SignalFirst with p = 0.000 and p = 0.019, respectively. This is not the case

for OneGroup (p = 0.868) or NoGroup (p = 0.929). Di↵erences between �h and �l in SignalFirst,

while much smaller than in Baseline, are distinguishable from zero. This suggests that while RSD

is responsible for most of the bias in Baseline, at least for some subjects, representativeness also

biases assessments to a smaller degree even when signals are observed prior to knowledge of group

identity.22 By contrast, Figure 9 in Online Appendix shows that !Bay � ! is overwhelmingly posi-

tive (indicating base-rate neglect) for the vast majority of subjects, varying little across groups and

treatments.23

similar magnitudes imply that the optimal Bayesian weight on the signal is close to 0.5; this is empirically valuable

because it leaves plenty of room to find either over or under-reaction to the prior or signal; (ii) the fact that variances

do not di↵er by group suggests that subjects are paying similar attention to the signals from both groups, which is

indeed optimal in our case because population variances are the same for both groups; and (iii) there seems to be little

opportunity for subjects to put more or less e↵ort in reading the 0.25 second signal, since otherwise we would have

observed significantly lower variance for the subjective signal in the NoGroup treatment, where group information is

not provided and the signal is therefore more valuable.
21The biggest e↵ect of learning in our dataset is a reduction in signal variance over time. Relative to the last-half

sample studied here, estimates of ⇠2 in the full sample are larger. Intuitively, subjects learn to form less noisy (but

not less biased) perceptions of the signal over time.
22In Appendix G we also include the cumulative distribution of �h ��l estimated on the individual level. For 75

percent of subjects in Baseline �h > �l. This decreases to 63 percent in SignalFirst and 49 percent in NoGroup.
23In Appendix G, we present the counterparts of Table 1 and Figure 5, reporting median-values from individual-level

estimates.
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Figure 4: Estimates of Representative Signal Distortion � by Group and Treatment Notes: Green line (on

the left except in OneGroup) represents estimated bias parameter for low-mean group. Orange line (on the right except in

OneGroup) represents estimated bias parameter for high-mean group. Vertical lines denote median value. Empirical strategy

is described in Table 1. See Sections 2 and 3 for further discussion.

6 The Accuracy-Discrimination Tradeo↵

A key consequence of representative signal distortion (RSD) is that it produces an irrational ampli-

fication of the gap in decision makers’ mean assessments between two groups. While this bias has

implications in many contexts, in this section we focus on arguably the most important application:

statistical discrimination, where contrasts between groups seem especially salient.

In rational statistical discrimination, a decision maker optimally conditions her estimates on

the group identity of the individual being evaluated to maximize accuracy. An implication of this

is that any deviation from this benchmark (for example, any reduction in discrimination) has an

accuracy cost. In this section, we demonstrate how RSD generates an ine�ciency in assessments

that instead produces scope for simultaneous improvement in both accuracy and discrimination.

First, we define formal measures of accuracy and discrimination. We will measure (in)accuracy
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using mean squared error (MSE), which is also the measure we used to incentivize subjects in the

experiment.24 We will measure discrimination by looking at group di↵erences (GD), defined as the

expected di↵erence in assessments between members of the high-mean and low-mean groups when

they are of the same actual type.25 GD measures the extent to which individuals from di↵erent

groups who are otherwise identical are assessed di↵erently on average. In this sense, group di↵erence

corresponds to the standard notion of discrimination used in economics (for instance, as captured

by the concept of “equal pay for equal work” in labor economics, mandated by the Equal Pay Act

of 1963).26

Assuming that the signal variance ⇠2 and the weight on the prior mean ! do not di↵er by group

(which, as shown in the previous section, is roughly true in the data of our experiment), these

measures simplify to:

MSE = !
2
�
2 + (1� !

2)(⇠2 +
�2

l
+�2

h

2
) (6)

and

GD = !(µh � µl) + (1� !)(�h ��l). (7)

Expressions for these measures clearly demonstrate that RSD is costly in terms of both accuracy

and discrimination, since �l 6= 0, �h 6= 0 and �h ��l > 0. For MSE, �l and �h have the same

e↵ect as an increase in the signal variance, and the impact of this bias increases with the weight

placed on the signal. For GD, the first component, !(µh � !l), is the standard term capturing the

fact that a decision maker, for the sake of accuracy, partly relies on the prior means in forming

assessments, thus leading to discriminatory outcomes. But the second component, (1�!)(�h��l),

is an irrational amplification of the discriminatory gap due to RSD.

24Formally, MSE := 1
2E

⇥
(t̂h � th)

2
⇤
+ 1

2E
⇥
(t̂l � tl)

2
⇤
. This measure computes the expected squared distance

between assessments and actual scores, given the assumption that observations are equally likely be from the low-

mean or high-mean groups.
25Formally, GD :=

R
E
⇥
t̂h � t̂l | th = tl = t

⇤
f(t)dt, where f is the mixture distribution of the low-mean and high-

mean groups. In practice, the distribution f will not end up mattering much because the weights !l,!h are similar

across groups implying the integrand to change little with t .
26In Appendix C, we discuss other measures of discrimination and specifically relate GD to measures used in

the machine learning literature. In Appendix E (Tables 3 to 5), to contextualize treatment di↵erences further, we

report the implied likelihood of correctly identifying the higher type among two randomly selected individuals in each

treatment.
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Figure 5: Mean Squared Error and Group Di↵erence by Treatment Notes: Translucent dots show bootstrapped

values. Solid line is the accuracy-discrimination frontier, pBRN depicts the perfect base-rate neglect counterfactual, OptNoDis-

crimination depicts the counterfactual with highest accuracy (at zero discrimination), Bayesian refers to the counterfactual

with highest accuracy, and NoBias is the counterfactual where assessments are debiased but there is still base-rate neglect.

Figure 5 plots the mean inaccuracy of subjects’ assessments (mean squared error) on the y-axis

against the mean level of discrimination between members of the two groups (group di↵erence in

assessment) on the x-axis for each of our four treatments.27 Translucent dots show bootstrapped

values to visualize the degree of variation in the data.

Over this, we overlay several important theoretically-driven counterfactuals. All of these theo-

retical benchmarks set biases �h = �l = 0 and are calculated using the estimated signal variance

27We use non-parametric estimates of MSE and GD when comparing these measures across treatments, but use

parametric estimates to construct counterfactual benchmarks. For MSE, the non-parametric estimate simply com-

putes the sample average of the squared distance between assessments and actual values. For GD, the non-parametric

estimate restricts attention to values of t for which we have at least 10 or more observations for each group in the

data. We then estimate the di↵erence in predicted values conditional on th = tl = t, and finally aggregate for di↵erent

values of t using the mixed distribution of t.
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in the Baseline treatment (in addition to the primitives implemented in the experiment).28

• Bayesian: represents the highest accuracy level (lowest MSE) outcome achievable and the

level of discrimination (GD) associated with this outcome. The inferential strategy producing

this benchmark is described by Equations 1 and 2.

• OptNoDiscrimination: represents the highest accuracy level (lowest MSE) outcome achiev-

able subject to a zero discrimination constraint (i.e. GD=0).

• pBRN: represents the outcome produced by an inferential strategy that only uses the signal

(i.e. ! = 0 in Equation 1), ignoring the prior. Because this strategy su↵ers from perfect

base-rate neglect, it also produces zero discrimination. However, the contrast with the OptN-

oDiscrimination benchmark reveals the ine�ciency associated with this strategy.29

• NoBias: represents the outcome corresponding to an inferential strategy that places the

same weight on the prior vs. the signal as estimated for the Baseline treatment. Because �h

and �l are assumed to be zero, this corresponds to a benchmark in which we shut down RSD

but keep base-rate neglect (as measured in the Baseline treatment).

Bridging the Bayesian and OptNoDiscrimination counterfactuals is the accuracy-discrimination

frontier, showing the locus of MSE-GD pairs that could be achieved by a social planner whose

objective is to minimize �GD + (1 � �)MSE for some � 2 [0, 1].30 The Bayesian counterfactual

corresponds to the solution when � = 0, the OptNoDiscrimination counterfactual corresponds to

the solution when � = 1, and the accuracy-discrimination frontier depicts solutions for intermediate

values of �.

The Figure shows, first, that subjects engage in statistical discrimination in our Baseline treat-

ment and follow the comparative statics of statistical discrimination models. Recall that the only

28Because we cannot reject the hypothesis that the signal variances associated with the high and low mean groups

are the same, we use the average of the estimated variances in Table 1 for the Baseline. In Appendix G we show that

the results are very similar when using the median of all the individual-level variances (as opposed to the variance

estimated from the pooled data).
29Even subject to a zero discrimination constraint, accuracy of assessments can be improved by putting some weight

on the average mean, µ̄ = (µh + µl)/2, as achieved with OptNoDiscrimination.
30Formally, the frontier is obtained by minimizing �GD+(1��)MSE over all linear inference strategies that have

the following structure:

t̂ = !
⇣
↵(

µl + µh

2
) + (1� ↵)µg

⌘
+ (1� !)s,

where ! 2 [0, 1] and ↵ 2 [0, 1]. This linear restriction gives us tractability and is consistent with our focus on linear

strategies in the behavioral model. Since the frontier depicts solutions subject to this linearity constraint, our results

on how far outcomes are from the accuracy-discrimination frontier can be interpreted as presenting a lower bound.
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di↵erence between Baseline and NoGroup is that, in the former, subjects are told the group from

which the type is drawn. Comparing Baseline vs. NoGroup in Figure 5, we see that subjects dis-

criminate significantly more in Baseline by locating to the right of NoGroup in the graph (p = 0.000)

and that MSE in Baseline drops relative to NoGroup (p = 0.090).31

However, Figure 5 also reveals that this discrimination is ine�cient, both relative to the

Bayesian benchmark (which is the right benchmark for our subjects whose incentive is to mini-

mize MSE) and relative to the accuracy-discrimination frontier. The Baseline point is to the north

of the Bayesian benchmark, meaning subjects (i) discriminate at similar levels to the Bayesian

bechmark (p = 0.164), but (ii) make ine�ciently inaccurate assessments (p = 0.000). The Base-

line point is also significantly far from the accuracy-discrimination frontier, meaning, simply by

correcting statistical errors, subjects could dramatically improve accuracy without increasing dis-

crimination at all. Or, alternatively, subjects could maintain their observed level of accuracy but

with zero discrimination, simply by making better use of their information.

Result 5. Subjects engage in statistical discrimination and follow its comparative statics, improv-

ing accuracy by discriminating on the basis of group. However, discrimination observed in the

Baseline treatment is ine�cient: by eliminating mistakes in inference it would be possible to reduce

discrimination without reducing accuracy.

This ine�ciency is a product of the interaction of the two key errors identified in the previous

section (RSD and base-rate neglect) which both reduce accuracy, but have opposite e↵ects on

discrimination: while base-rate neglect tends to lower discrimination by causing agents to put

too little weight on group information, RSD pushes behavior in the opposite direction. Figure 5

illustrates the e↵ect of each of these two errors by plotting the counterfactual NoBias benchmark,

which represents the case where the weight remains as in the Baseline but RSD is eliminated. In

particular, while eliminating RSD results in a small improvement to accuracy, it actually decreases

discrimination by half. Also, the fact that the NoBias benchmark lies roughly halfway between the

Bayesian and pBRN benchmarks, indicates a significant degree of base-rate neglect in the Baseline

treatment. Correcting base-rate neglect (by changing weight ! to optimal !Bay) would result in

achievement of the Bayesian benchmark, yielding an additional 25% increase in accuracy at the

expense of a more than doubling of discrimination.32

31See Appendix E for details. As reported in Appendix H, the drop is slightly larger when we look at all rounds

(p = 0.015).
32The NoGroup point lies slightly below the pBRN benchmark because the estimated subject variance is slightly

lower (though statistically not di↵erent) for the NoGroup treatment than for Baseline, and as noted above the Baseline

variance was used to construct the pBRN benchmark.
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Result 6. Ine�ciency in the Baseline treatment relative to the accuracy-discrimination frontier is

a joint consequence of (i) base-rate neglect and (ii) RSD. Eliminating RSD decreases discrimination

by 50% at no cost to accuracy. In addition, correcting for base-rate increases accuracy by about

25%, but doing so more than doubles the amount of discrimination.

To whatever degree RSD arises in real discrimination contexts, our treatments, NoGroup, Sig-

nalFirst and OneGroup (which allowed us to identify RSD in the previous section), double as

candidate behavioral interventions for improving outcomes. We therefore re-evaluate these treat-

ments, focusing on how these treatments improve outcomes in terms of accuracy and discrimination

given the ine�ciencies we observe in the Baseline treatment.

Interpreted as a behavioral intervention, the NoGroup treatment mirrors “identity-blinded eval-

uation policies,” an approach to discrimination that has been of great interest to applied economists

in the last few decades.33 In the field, these policies, among other things, remove scope for taste-

based discrimination. Here (where scope for taste-based discrimination is already removed by

design), we identify the impact such policies have purely on the quality of inference. Withholding

information on group identity completely eliminates discrimination by (i) removing scope for sta-

tistical discrimination and (ii) removing RSD. The negative implication is only a marginal increase

in inaccuracy. Our results show that, due to the inferential mistakes measured in the Baseline

treatment, the NoGroup treatment presents a more attractive policy option than classical models

would suggest: at least in our data, it eliminates irrational discrimination and (because of errors

in inference) sacrifices little in terms of accuracy in the process.

Result 7. Withholding group identity fully eliminates discrimination with only a small cost to

accuracy.

The SignalFirst treatment presents a more subtle, and arguably more attractive intervention.

Simply requiring subjects to observe the signal before they learn the group leads to a significant

reduction (a significant leftward shift relative to Baseline, p = 0.002) in discrimination without any

cost to accuracy.

The plot also shows why this intervention works. The SignalFirst dot is identical to the NoBias

counterfactual in the plot, suggesting that the intervention works entirely by eliminating RSD.

Indeed, results from the estimates reported in the previous subsection show just this. By forcing

33This includes studies of the e↵ect of “veiling” characteristics of workers’ from evaluators, includes the worker’s

gender (Goldin & Rouse 2000, Krause et al. 2012), ethnicity (Behaghel et al. 2015), criminal history (Agan & Starr

2018, Doleac & Hansen 2020, Sherrard 2021), credit history (Bos et al. 2018, Ballance et al. 2020), salary history

(Agan et al. 2021) and gender categorization of jobs (Kuhn & Shen 2021).
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subjects to see the signal before learning group information, SignalFirst eliminates the bias alto-

gether. However, the intervention has no complementary e↵ect on the severity of base-rate neglect,

which is resistant to this treatment.

Result 8. Forcing subjects to evaluate evidence prior to learning the group causes subjects to

discriminate significantly less at no cost to accuracy.

A third intervention – though one that may be more di�cult to implement in practice – is to

task evaluators to specialize in assessing members of only one group, removing scope for represen-

tativeness. The OneGroup treatment implements such an intervention by assigning each subject to

evaluate only one group (high/orange or low/green) throughout the experiment. Figure 5 reveals a

resulting strong reduction in both inaccuracy and discrimination (p = 0.001 for MSE and p = 0.000

for GD) in OneGroup relative to Baseline. Indeed, the OneGroup point lies below the Bayesian

accuracy-discrimination frontier that we calibrated using the Baseline signal variance.

Once again, estimates in Table 1 and Figure 3 shed light on how this dramatic improvement in

inference is achieved. As with the SignalFirst treatment, OneGroup completely eliminates the bias

generated by RSD: removing scope for representativeness causes subjects to evaluate the signal in

an unbiased way. Also like SignalFirst, OneGroup has no corresponding e↵ect on base-rate neglect:

! � !
Bay is similar. However, unlike SignalFirst, estimates for signal variance are substantially

lower in OneGroup than in Baseline (p = 0.016 for low-mean group and p = 0.051 for high-mean

group), indicating that subjects are able to extract more precise signals from the evidence provided

to them. Recall that as the variance of the signal decreases, the frontier moves downward–this

explains why the OneGroup point is below the Baseline frontier, since the latter is computed

using the lower signal precision of the Baseline treatment. The decrease in signal variance in

OneGroup seems unlikely to be due to the removal of representativeness (our initial motivation for

implementing this treatment) since variance does not decrease in the NoGroup treatment, where

subjects similarly make assessments without scope for contrasting groups. Instead, it is more likely

to be a result of the fact that in OneGroup subjects are specialized in assessing values from one

population, potentially decreasing the complexity of the task. The decrease in variance is broadly

consistent with the literature on e�cient coding (e.g., Khaw, Li & Woodford (2021) and Frydman

& Jin (2022)), which argues and provides experimental evidence that when the prior distribution

has lower variance (as in OneGroup, where subjects face one distribution as opposed to a mixture

over two distributions) then encoding of information is such that the signal is also more precise.

We provide further analysis and discussion of this in Online Appendix K.

In summary, this kind of specialization-in-assessment is a particularly e↵ective intervention in
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our setting: it eliminates RSD while also improving the precision of signals. To the extent that

these results carry over to field settings, such policies might lead to improvements in important

applications (e.g, hiring decisions). The results suggest that (keeping all else constant about the

informational environment) specialization can lead to more accurate assessments. But more re-

search is needed to study how specialization can be implemented in the field. In our experiment,

we are able to entirely remove scope for representativeness via specialization by making the sub-

jects completely unaware of the existence of a contrasting group or its properties. This is ideal for

testing the hypothesis of RSD (as we do in the previous section), but it is not clear that this can be

implemented in the most important discrimination contexts in the field. For instance, specializing

evaluators of e.g. resumes to examine only members of one gender may not produce an e↵ect like

the one we measure here because evaluators are aware that another gender exists and may have pre-

existing beliefs about how types across these groups contrast with one another, plausibly producing

RSD.34 This type of intervention seems most likely to be e↵ective in settings in which evaluators

do not have strong pre-existing beliefs about how the type (i.e., the measure being evaluated) is

di↵erentially distributed across groups. On the other hand, the surprising boost in the precision of

signal evaluation we observe in the OneGroup treatment may well apply more generally, meaning

this intervention may nonetheless be valuable for improving statistical discrimination.

Result 9. Tasking subjects to specialize in evaluating only one group causes subjects to discriminate

significantly less and simultaneously significantly improves the accuracy of their assessments.

A final candidate intervention is to explicitly use our model and suitable data to directly debias

decision-makers a✏icted by RSD. In particular, if a policy maker has access to data on (i) true types

and (ii) assessments, she can use estimates from a model like ours to directly improve outcomes.35

In Online Appendix J, we describe an algorithm to do this and evaluate its e↵ectiveness using our

data. Forming a training sample using half of our data, we estimate (�,!, ⇠
2) and use them to

adjust predictions in a testing sample consisting of the other half of our data. In the Appendix, we

show that a policy maker targeting zero discrimination (i.e. the OptNoDiscrimination benchmark)

can adjust assessments to reduce discrimination and inaccuracy. We also show that a policy maker

34Bohnet, Van Geen & Bazerman (2016) provides evidence against specialization, documenting separate evaluation

of job candidates to induce greater reliance on group stereotypes relative to joint evaluation.
35This type of data might be available, for example, to firms that can combine data on initial assessment of workers

at the hiring stage with long run productivity of workers, as revealed in internal reviews and career trajectories.

However, in many applications, there can be challenges associated with constructing a data set of this kind for two

reasons: (i) biases in initial assessments can have long lasting e↵ects, making it di�cult to identify true type; (ii)

representation of di↵erent groups or types in the data set can be impacted by initial assessments creating selection

problems. See Bohren, Hull & Imas (2022) for discussion on related issues.
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who simply wants to maximize accuracy (i.e., targeting the Bayesian benchmark) can use this

debiasing to significantly improve accuracy.

7 Alternative explanations and connections to literature

In this section we discuss how RSD is related to and distinguishable from other related behavioral

regularities in the literature.

Over-/Under-Inference. Our work relates to a long empirical literature on biases in inference,

reviewed in Benjamin (2019), that focuses on mistakes people make in aggregating distinct pieces

of information (for example, a prior and a signal). The literature shows that subjects regularly fail

to combine information in a Bayesian way, often making mistakes in how much weight they put

on di↵erent pieces of information in updating their beliefs. Perhaps the most salient inferential

distortions described in this literature are over-inference (base-rate neglect) and under-inference

(conservatism) whereby decision makers put too much or too little weight on the signal relative to

the prior when integrating them to form a posterior.36

RSD is distinct from these biases because it is not an error in how people aggregate prior and

signal, but instead an error in how people perceive or interpret the signal itself. In our data, we find

evidence of base-rate neglect (over-inference) – subjects put too little weight on their prior (and

consequently too much on their signal), perhaps driven by subjects’ overconfidence in the quality

of their subjective evaluations of the perceptual signal (“overprecision”).37 However, we are able to

show that RSD is distinct from this bias. As we discuss in Section 3, our empirical approach allows

us to separately identify RSD (measured by the � term) from over-inference and under-inference

(measured by ! relative to !
Bay term) in our statistical model. Although we find strong evidence

of over-inference (base-rate neglect) in our data, we also find strong separate evidence of a bias

term that obeys the comparative static predictions of RSD. Thus, our main results are not driven

36Base-rate neglect is one of the most frequently documented biases in updating (going back to Kahneman &

Tversky (1972a)). See Benjamin, Bodoh-Creed & Rabin (2019) and Esponda, Vespa & Yuksel (2022) for recent

perspectives on this bias. Conservatism (under-inference) is another commonly identified mistake in the literature

and refers to subjects putting too little weight on the signal. Recently, Mobius, Niederle, Niehaus & Rosenblat (2022)

provide evidence of this in a context in which subjects form beliefs about their own performance, and suggest that

this bias could be due to ego utility.
37Moore & Healy (2008) argue that overprecision is a type of overconfidence that is characterized by excessive

certainty regarding the accuracy of one’s beliefs and provide experimental evidence of this phenomenon. See Soll &

Klayman (2004), Grubb (2009) and Grubb & Osborne (2015) for further documentation and discussion of overpreci-

sion.
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by classical inferential biases like base-rate neglect.

Confirmation Bias. Our work also relates to a long literature on confirmation bias (see Nickerson

(1998) and Klayman (1995) for reviews) – a mistake whereby prior beliefs distort decision makers’

perception of new information. This line of research suggests that, in settings (like ours) in which

signals are subjective and ambiguous, people are prone to interpret evidence in a way that favors

(or is consistent) with their initial beliefs. Namely, confirmation bias describes a tendency to ‘see

what one is looking for’.38

However, the bias we document is conceptually and empirically distinct from standard varieties

of confirmation bias: we do not find evidence that subjects are reluctant to update beliefs and

form assessments far from the prior mean, a fingerprint of asymmetric updating that is typically

associated with confirmation bias.39 Moreover, RSD is distinct from confirmation bias because it

is generated not by objective characteristics of the subject’s prior (as with confirmation bias) but

by the contrast between the prior and other distributions that are, strictly speaking, irrelevant to

inference. As a result, the bias we document appears in our Baseline treatment but disappears in

our OneGroup treatment – two treatments that should not produce di↵erent behaviors in standard

models of confirmation bias. As a result, RSD is a perceptual distortion that we should expect to be

particularly relevant to the context of statistical discrimination. One natural way of characterizing

RSD (and our results) is as a novel form of confirmation bias generated by representativeness

38Kelley (1950), Darley & Gross (1983), and Lord, Ross & Lepper (1979) are prominent early examples in psychology

providing evidence on how people’s perceptions can be distorted by what they expect to see. A prominent model of

confirmation bias is Rabin & Schrag (1999). More recent work on this issue include Enke (2020), Charness, Oprea

& Yuksel (2021), and Oprea & Yuksel (2022). This also connects to a literature that studies the importance of “first

impressions,” persistence of initial beliefs in the face of feedback. As Nickerson (1998) concludes “People often form

an opinion early in the process and then evaluate subsequently acquired information in a way that is partial to that

opinion”. Similarly, a recent literature also documents how people distort their evaluation of information to justify

self-serving decisions (Gneezy et al. 2020, Saccardo & Serra-Garcia 2022). These experiments study investment advise

in which the advisor receives a commission that depends on their recommendation. Treatments vary the time at which

advisors learn about their own incentives relative to evaluating investment options. The papers show that advice

is more self-serving when advisors learn about their incentives before evaluating the investment options. This is a

timing e↵ect that we also find in our SignalFirst treatment, but it is driven by a very di↵erent behavioral mechanism.
39Recently, Sarsons (2017) used data on physicians referrals of surgeons to study whether gender influences the

way new information is interpreted. The data reveals clear asymmetries in how physicians’ beliefs about a female or

male surgeon’s ability changes with new information. However, it is not possible in that data to determine whether

these asymmetries are driven by incorrect priors about men and women or by di↵erences in how new information

is interpreted. Einhorn & Hogarth (1985) studies how contrast e↵ects can impact beliefs in a sequential updating

setting with multiple signals. See Fryer Jr, Harms & Jackson (2019) and Ruzzier, Woo et al. (2022) for more recent

work studying implications of confirmation bias for polarization and discrimination.
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rather than attachment to the prior: decision makers “see what they are looking for” but rather

than looking for evidence that matches the prior, they look for evidence that is representative of a

group relative to a reference group.

Representativeness and Stereotypes. Our paper is connected to a literature studying how

representativeness produces distorted beliefs. The representativeness heuristic (see Tversky &

Kahneman (1983) for an early formulation) is a mental shortcut that simplifies probabilistic assess-

ments about heterogeneous groups, and, as shown in recent literature, can lead to the formation

of stereotypes. Stereotypes are beliefs that contain a “kernel of truth,” as they are rooted in true

di↵erences between groups, but overweight the prevalence of ‘representative’ types in each popula-

tion.40 Bordalo et al. (2016) model and empirically that representativeness-based recall can distort

the (prior) beliefs people hold about di↵erent groups.41 Our paper complements this earlier work

by showing a distinct distorting e↵ect of representativeness. While the stereotypes described in

Bordalo et al. (2016) are distortions in prior beliefs (beliefs about the characteristics of groups),

RSD is a distortion in the perception of signals (new evidence) about individual group members.42

Building on the framework of Bordalo et al. (2016), we show theoretically and empirically how

contrasts between two groups with di↵erent distributions can impact the perception of a distinct

piece of new information (rather than the perception of the group distributions themselves) during

the updating process.

There are two reasons to believe that the bias we measure in our experiment is driven by RSD,

rather than the type of distortion in the memory or internal representation of the prior described

by accounts like Bordalo et al. (2016). First, ex ante, we took great pains to shut down misrep-

resentation of the prior as a potential channel by training subjects on the prior distributions and

reminding them of these distributions on their screen throughout their decision making process.

40For example, because people in Florida are, on average, older than those in California, one might incorrectly

overestimate the share of old people in Florida and the share of young people in California.
41There is also a related literature on sequential contrast e↵ects studying how inferences can be impacted by recent

(theoretically irrelevant) prior experiences. This is documented in speed dating (Bhargava & Fisman 2014), investor

behavior (Hartzmark & Shue 2018), and candidate evaluation (Radbruch & Schiprowski 2021, Kessler et al. 2022).

In our experiment, there is similar scope for these kinds of sequential e↵ects in all of our treatments and so such

e↵ects, if present, should not be a↵ected by our treatments. The fact that the bias we measure is highly responsive

to treatment and group identity suggests instead that we are measuring a bias generated by contrasts between prior

distributions.
42Bordalo, Gennaioli & Shleifer (2018) present a model of forecast errors based on representiveness. Agents distort

their beliefs by overweighting the likelihood of future outcomes that are more representative of recently observed news

relative to past expectations. Such forecasts are excessively volatile, overreact to news, and are subject to predictable

reversals.
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This salient and consistent provision of prior information reduces the scope for priors to be mis-

understood or mis-remembered. Second, ex post, while stereotypes can produce results consistent

with Hypotheses 1 and 2, they are inconsistent with Hypothesis 3. If the bias we document was

produced by distortions in subjects’ memory or representation of the prior, these distortions should

not in any obvious way be impacted by the order in which subjects later observe the signal or

learn the group. However, RSD requires that decision makers know the group before observing the

signal: otherwise there would be no clear distinction between representative vs. unrepresentative

evidence available to systematically distort perception. The fact that the bias is observed strongly

and persistently only when the group membership is known prior to observing the signal, strongly

suggests the distortion is in the evaluation of the signal (RSD) rather than the prior (a stereotype

e↵ect).43

Behavioral Discrimination. More generally, our findings are relevant to an empirical and exper-

imental literature examining how behavioral biases influence discrimination.44 This behavioral lit-

erature has almost universally focused on documenting “irrational” statistical discrimination driven

by incorrect prior beliefs about group di↵erences.45 Recent examples include Arnold, Dobbie &

Yang (2018), who show that racial bias in bail decisions is possibly driven by judges’ exaggerated

beliefs about the relative danger of releasing black defendants, and Bohren, Haggag, Imas & Pope

(2019), who outline implications of incorrect beliefs for identification of the source of discrimination

(they also document discrimination against Americans partly based on wrong stereotypes).46 This

43Another hypothesis for how our results might result from the stereotypes modeled by Bordalo et al. (2016) is

that the SignalFirst treatment might cause subjects to focus entirely on the signal, ignoring their biased prior beliefs.

This would produce the bias we measure in Baseline but remove it in SignalFirst, matching our data. However, our

estimates in Table 1 strongly reject this explanation because they show that subjects put almost identical weight on

the prior in the Baseline and SignalFirst treatments.
44See Charles & Guryan (2011), Bertrand & Duflo (2017), Neumark (2018), and Bohren, Hull & Imas (2022)

for recent reviews on the extensive literature studying discrimination, its potential causes, and policies intended to

counteract it.
45One important exception is Bartoš, Bauer, Chytilová & Matějka (2016) which studies how allocation of costly

attention a↵ects discrimination. Our experimental design minimizes scope for costly attention mechanisms (because

subjects observe signals for only a fraction of a second, giving them little control over attention) and theoretically

equalizes incentives to attend to information across most of our treatments.
46Fershtman & Gneezy (2001) use trust and dictator games in the laboratory to document systematic mistrust

in Israel Jewish society toward men of Eastern origin, due to mistaken ethnic stereotypes. Mobius & Rosenblat

(2006) show that subjects wrongly believe that attractive people are more productive and that such belief di↵erences

translate into a wage beauty premium. More recently, focusing on discrimination against women in a hiring context,

Co↵man, Exley & Niederle (2021) identify beliefs about average group di↵erences as a key driver of discrimination,

Barron et al. (2022) document, in addition, implicit discrimination where gender-biased decisions are rationalized by

adjusting beliefs about which signals are more predictive of performance.
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literature has also produced evidence that providing statistical information can decrease or elim-

inate statistical discrimination driven by inaccurate beliefs about groups (e.g., Reuben, Sapienza

& Zingales (2014), Bohren et al. (2019)). Mengel & Campos Mercade (2021) use an experiment

to highlight the implications of non-Bayesian updating (particularly conservatism) on discrimina-

tion.47 While inaccurate prior beliefs and non-Bayesian updating are clearly important sources of

discrimination in many settings, our contribution is to instead document biases in the perception

of individual-level evidence.

Noisy Coding and Rational Inattention. Finally, our paper is related a class of models

that study noisy evaluation of evidence, and how the decision environment shapes the information

extracted by agents.

In noisy coding models, agents observe, process or represent non-stochastic inputs to beliefs

like perceptual objects, numbers (e.g. dollar amounts or dates) or calculations with noise (“noisy

coding”), and then optimally account for this noise by forming inferences that are shaded towards

the prior mean (“decoding”). Thus, our baseline model of inference (presented in section 2) can

be interpreted as a noisy coding model, where decision makers (i) receive a noisy signal (mental

representation of new evidence, e.g., perception of a set of dots) and (ii) combine this noisy signal

with a prior to produce a belief.48 Relative to this literature, our contribution is to show that

people in statistical discrimination settings conduct this updating in a non-Bayesian way. We find

that inferences are not su�ciently shaded towards the prior mean given the level of perceptual noise

we measure in the data. More importantly, we find evidence for RSD, a bias in the perception or

interpretation of evidence.

A closely related literature models the origins of signal noise, describing how it can arise as

an optimal responses to costs and constraints associated with information processing. Models of

rational inattention describe an optimization problem in which processing information is costly

and agents choose a signal structure (i.e. which exact pieces of information to attend to) that

maximize expected utility given these costs. Relatedly, e�cient coding models (inspired by findings

in neuroscience) assume that the brain allocates scarce cognitive resources so that perception is less

noisy for stimuli that are payo↵ relevant in the decision problem and expected to occur relatively

47Like us, Mengel & Campos Mercade (2021) find that subjects behave as if their subjective perceptions are more

accurate than they actually are. However, because Mengel & Campos Mercade (2021) provide subjective information

about the prior rather than the signal, this results in conservatism rather than base-rate neglect.
48In the noisy coding literature, the noise originates from the manner the brain processes information, even if

information is provided in a clear format. In our paper, noise should also be expected from the fact that subjects see

the signal for only a quarter of a second.
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more frequently.49

The bias we document is not predicted by either of these classes of models (e�cient coding or

rational inattention) for the simple reason that both models assume agents are Bayesian (though

Bayesian with cognitive costs) while the bias we document represents a systematic violation of

Bayes’ rule that cannot be captured by standard inferential mistakes (as discussed above). In

particular, Bayesianism, by definition, rules out the key findings of our paper (corresponding to

Hypotheses 1, 2 and 3). A central property of Bayesian learning is that beliefs are a martingale,

i.e. the expected posterior must equal to the prior, implying that the expected assessment must

equal to the prior mean. In the context of our model, this property requires that Bg and �g be

zero. While both rational inattention and e�cient coding models can produce local distortions in

inference, they therefore cannot produce global distortions that would produce non-zero values of

Bg and �g. But RSD is exactly characterized by non-zero values of Bg and �g and therefore is

not a Bayesian phenomenon consistent with standard models of rational inattention or e�cient

coding.50

Nonetheless, these models do make predictions about how inferences might di↵er across our

treatments in other ways. In Online Appendix K, we demonstrate this by contrasting inferences

across our treatments assuming e�cient coding, and show that while it cannot reproduce RSD,

it can produce secondary patterns some of which resemble our data.51 More broadly, our work

shares with this literature an interest in the ways features of the decision environment (in our case

representativeness) influences information processing. While our results cannot be rationalized by

standard models of e�cient coding or rational inattention, it is very possible that RSD as identified

in this paper is a byproduct of a similar or shared mechanism by which the brain optimizes responses

to noisy perception (imperfect evaluation of new information) under cognitive constraints or costs.

We hope future research can shed more light on this potential connection.

49See Caplin et al. (2022) and Maćkowiak et al. (2021) for recent reviews on rational inattention. See Frydman &

Jin (2022), Khaw et al. (2021) and Heng et al. (2020) for recent work in economics on e�cient coding.
50It should also be noted that there are conceptual challenges with reformulating these models outside the Bayesian

paradigm.
51With e�cient coding perception is more accurate (around the prior mean) for types that are more likely to be

observed, creating non-linearity in how mean assessment varies with true type. The model also predicts lower MSE

in OneGroup relative to SignalFirst (and NoGroup). See Online Appendix K for further discussion.
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8 Discussion

We provide experimental evidence that representativeness can severely distort the way people eval-

uate new evidence – an error that we call “representative signal distortion” (RSD). Subjects misper-

ceive information on individual group members to be more representative of the group the individual

belongs to (relative to a reference group) than it really is. This error produces an irrational ampli-

fication of discriminatory assessments between individuals from di↵erent groups. Importantly, we

show that this bias is highly resistant to learning, continuing to distort inference even after dozens

of periods of experience and feedback. However, we also show that simple cognitively-driven in-

terventions are highly e↵ective at removing this bias, simultaneously reducing discrimination and

improving the accuracy of individual judgements.

This error, driven as it is by representativeness, is particularly relevant to settings of statistical

discrimination, in which assessment of individual group members are necessarily formed in the

shadow of some other reference group. As such our results may have relevance to perennial e↵orts

to reduce discrimination in naturally occurring settings like employment, credit markets, education,

law and policing. In many such settings, decision makers must process complex information about

individuals that is open to interpretation, producing scope for the sorts of evaluative distortions

we document here. To the degree this bias indeed arises outside of the lab, our paper o↵ers new

tools for combating discrimination using relatively “light touch” policies that can e↵ectively reduce

discrimination without reducing the accuracy of judgements.52

When should we expect this bias to occur outside of the laboratory, amplifying discrimination in

the field? Ultimately, this is an empirical question – and one well-worth investigating. However we

can provide some informed speculation. For this, it is important to emphasize two key features of our

experiment: (i) it focuses on a specific perceptual task (estimation of the number of dots observed on

a screen) and (ii) it involves two abstract groups (orange vs. green). The first feature creates scope

for misperception while the second feature makes contrasts between prior distributions of the two

groups clear and salient. As such, the magnitudes we measure for RSD evaluation (and its severity

52Of course, the availability of the interventions used in our experiment will vary widely across field contexts. For

instance, in many contexts it will not be possible to have decision makers assess evidence about individuals before

knowing the group the individual belongs to. Likewise, decision makers will not always have information su�cient

to use our model to debias decision making. Finally, it is not clear whether (or when) specializing decision makers to

make assessments about members of only one group will replicate the treatment e↵ect of our OneGroup treatment –

it may be that even then, knowledge of the existence of another group will weaken or even eliminate the treatment

e↵ect we observe.
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relative to other biases) should hardly be expected to be universal, but rather should be expected

to depend on how strongly the real world environment deviates from these characteristics. We

conjecture that RSD is likely to be more important in settings where (i) information on individuals

is complex or highly subjective and therefore open to selective (mis-)interpretation and (ii) contrast

between di↵erent groups are highly salient. To the degree that individual signals derive from hard

evidence (where there is no scope for misinterpretation) or contrasts between groups are not as

pronounced or salient, we would expect to see attenuation or even elimination of RSD relative to

what we report here.53

Similarly, it is an empirical question how important RSD is relative to alternative drivers of

discrimination considered in the literature. Our experiment was designed to isolate RSD and

understand its nature, and we therefore purposely shut down scope for surely-important competing

drivers of discrimination like incorrect beliefs about group di↵erences, taste-based discrimination,

or animus. Doing this allowed us to investigate the nature of this bias with a level of clarity that

would be di�cult or impossible using field evidence. But in order to understand the importance

of this error relative to other drivers of discrimination, we must move outside of the lab, into the

contexts where the full suite of determinants of discrimination are allowed to appear with their

natural strengths. For this kind of investigation, our description of the psychological mechanism

underlying the bias and our documentation of treatment e↵ects may provide important diagnostic

guidance on how to identify RSD and its relative importance in driving discrimination in the field.
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A Representative Signal Distortion

A.1 Model with distortion of prior and signal

Assume f(t | g) is normally distributed with mean µg and variance �
2. The normal prior implies

the following odds ratio between any two values t1 and t2:

r(t1, t2) =
f(t1)

f(t2)
= e

� 1
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� 1
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This implies that if for any (t1, t2) the odds ratio can be written as above, then the distribution of

t is normally distributed with mean µ and variance �
2.

Lemma 1. For any �, f̃(t | g) := f(t | g)
⇣

f(t | g)
f(t |�g)
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, is normally distributed with distorted mean

µ̃g = µg + �(µg � µ�g) and variance �
2.

Proof. Without loss, focus on the likelihood ratios:
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Note that when � = 0, we get the correct likelihood ratio corresponding to f(t1 | g)
f(t2 | g) (as in Equation

8). For � > 0, we get the likelihood ratio associated with a normal distribution with the same

standard deviation but a distorted mean where µ̃g = µg + �(µg � µ�g).

Lemma 2. Assume h(s | t) and f(t | g) are normally distributed with mean t and variance ⇠
2 in

the first case and µg and �
2 in the second case. For any �, h̃(s | t, g) := h(s | t)

⇣
y(s | g)
y(s |�g)

⌘�

with

y(s | g) :=
R
h(s | t)f(t | g)dt is normally distributed with distorted mean t + �⇠
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2 and variance ⇠

2.

Proof. Note that s = µg + ✏1 + ✏2 where ✏1 ⇠ N (0,�2) and ✏2 ⇠ N (0, ⇠2). So y(s | g) is normally

distributed with mean µg and variance �
2 := �
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2. Again, focus on the likelihood ratios:
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Note that when � = 0, we get the correct likelihood ratio corresponding to h(s1 | t)
h(s2 | t) , for � > 0, we

get the likelihood ratio associated with a normal distribution with the same standard deviation but

a distorted mean where the mean is not t (as it should be), but t+ �⇠
2

�2
(µg � µ�g)).

In general, consider three distinct ways representativeness can distort beliefs in the updating

process.

Distortion 1 (Distortion of the prior): As in Bordalo et al. 2016, representativeness may

distort the prior (i.e., the memory of or characterization of each group’s distribution). Let �1 � 0

be a measure of this distortion as described above.

Distortion 2 (Recollective Signal Distortion): If agents learn group identity after evaluating

the signal, the recollection of the signal (at the updating stage) could be impacted by group identity.

The idea is that agents might su↵er from a form of “associative memory” where they remember

the image in a way that is more representative of that group. Let �
2 � 0 be a measure of this

distortion as described above.

Distortion 3 (Representative Signal Distortion, referred to as RSD in the paper):

If agents know group identity before evaluating the signal, the perception of the signal might

be impacted by that knowledge. The idea is that the agent “looks for” evidence that is more

representative of the group (high signals for high-mean group, low signals for low-mean group). Let

�
3 � 0 is a measure of this distortion as described above.

Assume h(s | t) and f(t | g) are normally distributed with mean t and variance ⇠
2 in the first

case and µg and �
2 in the second case. By Lemmas 1 and 2, the agent will update under distorted

prior f̃(t | g) which is normal with mean µ̃g = µg + �
1(µg � µ�g) and variance �

2 and distorted

subjective signal h̃(s | t) which is normal with mean t̃ = t+ (�1 + �
2) ⇠

2

�2+⇠2
(µg � µ�g) and variance

⇠
2.54

54This computation assumes that the signal distortions (2 and 3) are una↵ected by the prior distortion (1). It is

possible that the distorted prior also influences the signal distortion. This could be modelled as prior distortion taking

place first and then feeding into the how representativeness of di↵erent signals are computed (formally, f would be

replaced by f̃ in Lemma 2).
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A.2 Micro-foundation for distortion of signal

This section proposes a micro-foundation for how representativeness could distort the perception

of the signal, shifting the distribution of perceived subjective signals to h̃ from the objective distri-

bution of h.

First, we distinguish between s and s̃. The former, s, corresponds to what the agent objec-

tively observes. This can be understood as the actual perceptual stimuli received by the agent.

We assume (and results from treatments such as NoGroup, OneGroup and SignalFirst suggest)

that s is unbiased, normally distributed with mean t and variance ⇠
2. The latter, s̃, is what the

agents incorrectly thinks she observes. We write a simple model in which the agent distorts s to s̃

when evaluating it. Following a long tradition of models on utility-based biases in beliefs (such as

Brunnermeier & Parker (2005)), in processing the signal, the agent implicitly solves the following

optimization problem:

max
s̃

B(s̃)� C(s, s̃) (11)

As a general model, this represents the idea that the agent receives some psychological benefit

(captured by B) from observing certain types of signals over others, but there is a cost to distorting

the truth (as captured by C).

We assume the agent looks for signals representative of group g (relative to �g) because she

receives utility when her subjective perception is representative. One natural reason she might do

this is because she expects to see representative evidence and receives utility when this expectation

is confirmed. Specifically, we assume that B is an increasing concave function of R(s, g,�g), the

representativeness of signal s of group g relative to �g as defined in Section 2. The cost function

C, on the other hand, captures the idea that the agent can’t fool themselves too much and that it

is costly to deviate too much from the objective truth s.

Below we provide a specific example in which:

B(s̃) = � ln(R(s̃, g,�g)) where � � 0 denotes how much the agent receives psychological

utility from observing representative signals.

C(s, s̃) = (s̃�s)
2

2⇠2
. The idea is that the noisier is the signal (higher ⇠2), the easier it is for the

agent to misinterpret things.

This simple formulation delivers the precise distortion identified in the paper. Namely, every

objective signal s is misinterpreted subjectively as s̃ where s̃ = s + �g with �g = �⇠
2

�2
(µg � µ�g)

where �
2 = �

2 + ⇠
2 with �

2 representing the variance of types t and ⇠
2 the variance of the signal.

3



To see this, note that

R(s, g,�g) = e
1

2�2
(�(s�µg)

2
+(s�µ�g)

2) = e
1

2�2
(2s(µg�µ�g)�(µ

2
g�µ

2
�g)).

By the first assumption above:

B(s̃) =
�

2�2
�
2s̃(µg � µ�g)� (µ2

g � µ
2

�g)
�

Thus, the marginal benefit of increasing s̃ is �(µg�µ�g)

�2
. The marginal cost of increasing s̃ is s̃�s

⇠2
.

Putting them together gives us the model described in the paper.

We conclude by discussing situations in which there are two groups (g1 and g2), but the agent

does not observe which group the signal is associated with. Note that in our experiment, the

NoGroup and SignalFirst treatments (before group identity is revealed) correspond to this case.

It is natural to assume that in order for representativeness to impact “what the decision maker

sees,” the decision maker must already be aware of an individual’s group identity (and thus its

representative characteristics) relative to a reference group before observing new evidence on the

individual. Thus, we formally assume R(s̃, g,�g) = 1 in these cases. An alternative interpretation

of this assumption is that the agent receives equal psychological utility from observing signals

representative of either group in this case since the agent does not yet know which group the

individual actually belongs to. This would imply B(s̃) = �[ln(R(s̃, g1, g2)) + ln(R(s̃, g2, g1))]. Note

that ln(R(s̃, g1, g2)) = � ln(R(s̃, g2, g1)) and thus the two terms cancel each other out, implying no

distortion in the perception of the signal. This is, hence, equivalent to assuming R(s̃, g,�g) = 1 in

cases where group identity is unknown at the point where the signal is perceived.
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B Under or Over Inference

The aim of this section to formally show how classical deviations from Bayesian updating—under

inference (conservatism) or over inference (base-rate neglect)—imply deviations in terms of weight

on prior !, but do not result in biased inference, as captured by B (or �).

The standard approach (since Grether (1980), recently reviewed in Benjamin (2019)) to studying

deviations from Bayesian updating uses the following framework which characterizes distortions in

the posterior likelihood ratio:

p(t = t1 | s)
p(t = t2 | s)

=

✓
p(t1)

p(t2)

◆↵✓
p(s | t = t1)

p(s | t = t2)

◆�

, (12)

where optimal behavior requires ↵ = � = 1.

Lemma 3. If s ⇠ N (t, ⇠2) and t ⇠ N (µ,�2), it can be shown that for any value of (↵,�), assess-

ments consistent with Equation 12 are given by t̂ = !µ+ (1� !)s, where ! = ↵⇠
2

��2+↵⇠2
. That is, !

increases with ↵ and decreases with �, but cannot account for a bias term B.

Proof. Consider a behavioral agent who, conditional on signal s (with g representing the distribution

of s), forms a posteriors odds ratios as below for any (t1, t2).

r̂(t1, t2) =
⇣
f(t1)

f(t2)

⌘↵ ⇣
g(s | t=t1)

g(s | t=t2)

⌘�

=
⇣
e
� t1�t2

2�2 ((t1+t2)�2µ)
⌘↵

✓
e
� t1�t2

2⇠2
((t1+t2)�2s)

◆�

= e
�↵⇠2(t1�t2)

2�2⇠2
((t1+t2)�2µ)

e
���2(t1�t2)

2�2⇠2
((t1+t2)�2s)

= e
� (↵⇠2+��2)(t1�t2)

2�2⇠2

✓
(t1+t2)�2

✓
↵⇠2µ+��2s
↵⇠2+��2

◆◆

(13)

This is equivalent to a normal distribution with mean ↵⇠
2
µ+��

2
s

↵⇠2+��2 and variance �
2
⇠
2

↵⇠2+��2 . Note that

the optimal assessment is the mean of this distribution.
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C Measures of Discrimination

We refer the reader to Barocas, Hardt & Narayanan (2019), Narayanan (2018) and Hutchinson &

Mitchell (2019) for reviews of this literature. We focus on a criteria of non-discrimination that is

most relevant in our setting: Separation.55 In our inference task, this criteria refers to the statistical

properties of the joint distribution of t̃ (assessment), t (true type) and g (group identity).

Separation: t̃ ? g | t. This criterion requires assessments to be independent of the group

identity conditional on type.

Separation allows for the distribution of assessments to di↵er by group, but only to the extent that

such di↵erences can be justified by actual di↵erences in true types between the groups. Namely,

the criterion requires people from di↵erent groups with the same underlying true type to be treated

the same. This is a notion of fairness reflected for example in the slogan “equal pay for equal work”

with regards to the gender pay gap.

Note that group di↵erence (as captured by our measure GD) being equal to zero is a necessary

(but not su�cient) condition for Separation. In this sense, GD provides us a with a preliminary

test of Separation, as well as a simple, easy-to-interpret continuous measure of the degree to which

it is violated. However, it is worth noting that, in using GD, we implicitly focus on the first mo-

ment (di↵erences in means) when we contrast distribution of assessments between di↵erent groups.

More complex measures of discrimination based on the Separation criterion can be constructed by

incorporating di↵erent features (such as second, third moments, etc.) of the distribution.56

55This literature highlights two more criteria for non-discrimination that could be relevant in our setting: Indepen-

dence, and Su�ciency (closely liked to Calibration which is also commonly discussed in this literature).

Independence: t̃ ? g. This criterion requires assessments to be independent of the group identity. Note that

this cannot be a reasonable goal in an inference task where the distribution of types do di↵er by group (as in

our setting).

Su�ciency : t ? g | t̃. This criterion requires types to be independent of the group identity conditional on

assessments. The criterion requires the distribution of true types to be the same for di↵erent groups when we

condition on a specific assessment. The Bayesian Benchmark to our inference task satisfies this criterion.

56We note, however, that it is far from obvious what type of impact these other features of the distribution should

have on a measure of discrimination. Moreover, our take on this issue is highly likely to be context dependent. We

have deliberately kept our experimental design simple by abstracting away from the issue of how assessments impact

the utility of the individuals who are being evaluated. However, in most applications, we worry about discrimination

foremost because of the utility loss it induces on those that are being discriminated against. For example, a manager’s

evaluation of the candidate might influence the likelihood they are hired for a job; a teacher’s evaluation of a student

6



D Bayesian Benchmark in NoGroup Treatment

While the optimal inference about type t is linear in signal s—under the assumption that s ⇠

N
�
t, ⇠

2
�
—in the Baseline, SignalFirst and OneGroup treatments, this is not the case in the

NoGroup treatment where information on group identity is withheld from the subjects. We can

use law of iterated expectations to characterize the optimal inference as a function of signal s in

this treatment:

t̃
Bay = E(t | s) = p(g = h | s)E(t | s, g = h) + p(g = l | s)E(t | s, g = l),

where p(g | s) denotes the probability that the person belongs to group g conditional on signal s.

By Bayes’ rule:

p(g | s) =

R
1

�
�

⇣
t�µg

�

⌘
1

⇠
�

⇣
s�t

⇠

⌘
dt

R
1

�
�
�
t�µh
�

�
1

⇠
�

⇣
s�t

⇠

⌘
dt+

R
1

�
�
�
t�µl
�

�
1

⇠
�

⇣
s�t

⇠

⌘
dt

Figure 6 below depicts the Bayesian benchmark for three di↵erent values of ⇠2 2 {50, 75, 100}.

The Figure shows that for such values (which cover the range estimated in the experiment), the

Bayesian benchmark can be approximated closely with a linear function.
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Figure 6: Bayesian Benchmark in NoGroup Treatment

might impact the kind of college they are able to get into, etc. How di↵erent features of the distribution of assessments

translate into utility di↵erences between di↵erent groups will necessarily depend the specifics of the setting.
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E Statistical Tests and Further Analysis

Table 2: OLS estimation (Dependent Variable: Squared Error in Assessments), Rounds 38-75

(1) (2) (3) (4)

NoGroup 12.02⇤ 8.667 6.929 6.446

(7.069) (6.979) (19.06) (19.92)

OneGroup -17.29⇤⇤⇤ -16.12⇤⇤⇤ -37.20⇤⇤ -37.89⇤⇤

(5.107) (5.141) (14.76) (15.36)

SignalFirst -3.611 -4.335 -9.337 -9.541

(6.301) (6.364) (18.09) (18.52)

Risk measure -0.217⇤⇤⇤ 0.0804

(0.0821) (0.179)

Constant 59.16⇤⇤⇤ 70.31⇤⇤⇤ 82.34⇤⇤⇤ 78.86⇤⇤⇤

(4.308) (6.446) (14.15) (15.75)

Observations 8778 8588 9158 8968

Standard errors (clustered at the subject level) in parentheses.

⇤⇤⇤1%, ⇤⇤5%, ⇤10% significance.

Constant shows MSE at Baseline at risk measure of zero.

Dummies shows di↵erence relative to Baseline.

Lower values for risk measure correspond to higher risk aversion.

Risk measure missing for 5 subjects.

(1) and (2): Subjects with MSE less than or equal to 200.

(3) and (4): All subjects.
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In Tables 3 to 5, given estimates for (!,�, ⇠
2) we compute the likelihood with which agent i

receives a higher assessment than agent j for di↵erent values of ti � tj . We compare cases in which

(i) h vs. l: i is from the high-mean group and j is from low-mean group; (ii) same: i and j are

from the same group; (i) l vs. h: i is from the low-mean group and j is from high-mean group.

To simplify the analysis, given that di↵erences in ! and ⇠
2 are limited between the groups (see

Table 1), we set !h = !l and ⇠
2

h
= ⇠

2

l
and use average estimated value of the two groups in our

computations. By Equation 3, for agent i to receive a higher assessment than agent j, the following

must hold:

(1� !)�gi + !µgi + (1� !)ti + (1� !)"i > (1� !)�gj + !µgj + (1� !)tj + (1� !)"j .

The likelihood of this happening is equal to �
⇣
(�gi��gj )+

!
1�! (µgi�µgj )+(ti�tj))p

2⇠

⌘
. Note that this is

increasing in �gi ��gj .

Table 3: Likelihood of Higher Assessment when ti � tj = 0.

h vs. l same l vs. h

Baseline .76 .50 .24

NoGroup .52 .50 .48

SignalFirst .65 .50 .35

OneGroup .59 .50 .41

Table 4: Likelihood of Higher Assessment when ti � tj = 5.

h vs. l same l vs. h

Baseline .86 .66 .38

NoGroup .67 .66 .64

SignalFirst .78 .66 .51

OneGroup .76 .69 .60

9



Table 5: Likelihood of Higher Assessment when tj � tj = 10.

h vs. l same l vs. h

Baseline .93 .79 .54

NoGroup .81 .79 .78

SignalFirst .88 .83 .66

OneGroup .88 .79 .77

F Testing linearity

In Figure 7, we compare best linear fit with best fractional polynomial fit to demonstrate that the

linearity assumption is with little loss in the relevant region of the value distribution. In Figure

8 we use the binscatter methods developed in Cattaneo, Crump, Farrell & Feng (2019). The

estimated values show nonparametric estimates for assessment conditional on value for each bin,

also displaying confidence bands. We also use the binscatter-based hypothesis testing procedures

developed by Cattaneo, Crump, Farrell & Feng (2019) and find that a linear function form cannot

be rejected in the Baseline treatment for either the high-mean or low-mean group (p = 0.652 and

p = 0.118, respectively).
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Figure 7: Best Linear Fit vs. Best Fractional Polynomial Fit Notes: Size of the dots represent relative

frequency (by group and treatment) of observing each true type. Solid lines depict best linear fit by group and treatment.

Dashed lines depict best fractional polynomial fit.
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Figure 8: Best Linear Fit and Binned Scatter Plots Notes: Dots show binned scatter plots depicting nonparamatric

estimates of guess given true type in each bin. Green and Orange lines depict best linear fit by group and treatment. Black

lines depict 95% confidence intervals. The shaded area depicts 95% confidence bands. All are computed with Stata package

using binscatter methods developed in Cattaneo, Crump, Farrell & Feng (2019).12



G Individual-Level Analysis

Table 6: Model Estimates (Median Values)

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

!l 0.209 -0.009 0.150 0.095

!h 0.204 0.057 0.146 0.172

Bl -2.265 0.266 -0.122 0.243

Bh 2.191 0.265 1.084 -0.176

Estimates derived from ! and B:

�l -2.47 0.27 -0.66 0.30

�h 2.53 0.50 1.04 -0.18

⇠
2

l
46 37 38 34

⇠
2

h
48 46 46 42

!
Bay

l
0.31 0.16 0.27 0.26

!
Bay

h
0.32 0.19 0.31 0.29

Tests:

H0: !l = !h 0.628 0.385 0.824 0.232

H0: Bl = Bh 0.000 0.929 0.053 0.868

H0: �l = �h 0.000 0.929 0.019 0.868

H0: !l = !
Bay

l
0.000 0.000 0.000 0.000

H0: !h = !
Bay

h
0.000 0.000 0.000 0.006

Rows on tests report p-value associated with test of each hypothesis.

Test are on distributions of individual values (Kolmogorov-Smirnov).

Notes: Empirical strategy is described in Table 1 (but here implemented on the individual level). See Sections 2 and

3 for further discussion.
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Figure 9: Estimates of Bayesian Weight vs. Weight on Prior by Group and Treatment Notes: Green (Orange)

solid line represents di↵erence between Bayesian weight on prior !
Bay

and estimated weight on prior ! for low-mean (high-

mean) group. Vertical lines denote median values. Empirical strategy is described in Table 1. See Sections 2 and 3 for further

discussion.
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sents Bayesian weight on prior for low-mean (high-mean) group. Vertical lines denote median individual values.
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H Learning

Table 7: OLS estimation (Dependent Variable: Squared Error in Assessments), All Rounds

(1) (2) (3) (4)

NoGroup 14.88⇤⇤ 10.60⇤ 8.432 6.766

(6.045) (5.887) (17.35) (18.14)

OneGroup -16.43⇤⇤⇤ -15.34⇤⇤⇤ -34.38⇤⇤ -34.99⇤⇤

(4.774) (4.768) (14.01) (14.54)

SignalFirst -1.131 -2.420 -7.115 -7.967

(6.135) (6.161) (16.89) (17.27)

Risk measure -0.251⇤⇤⇤ 0.0205

(0.0763) (0.165)

Constant 63.08⇤⇤⇤ 76.24⇤⇤⇤ 84.91⇤⇤⇤ 84.77⇤⇤⇤

(3.973) (6.017) (13.21) (14.69)

Observations 17325 16950 18075 17700

Standard errors (clustered at the subject level) in parentheses.

⇤⇤⇤1%, ⇤⇤5%, ⇤10% significance.

Constant shows MSE at Baseline at risk measure of zero.

Dummies shows di↵erence relative to Baseline.

Lower values for risk measure correspond to higher risk aversion.

Risk measure missing for 5 subjects.

(1) and (2): Subjects with MSE less than or equal to 200.

(3) and (4): All subjects.
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Table 8: Model Estimates (All Rounds)

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

!l 0.184⇤⇤⇤ -0.00299 0.188⇤⇤⇤ 0.0824⇤⇤⇤

(0.0308) (0.0298) (0.0271) (0.0217)

!h 0.175⇤⇤⇤ -0.0189 0.143⇤⇤⇤ 0.115⇤⇤⇤

(0.0311) (0.0285) (0.0245) (0.0313)

Bl -2.110⇤⇤⇤ -0.495 -0.875⇤⇤⇤ 0.266

(0.322) (0.475) (0.316) (0.304)

Bh 1.519⇤⇤⇤ -0.217 0.500 -0.413

(0.342) (0.351) (0.380) (0.289)

Estimates derived from ! and B:

�l -2.59⇤⇤⇤ -0.49 -1.08⇤⇤⇤ 0.29

�h 1.84⇤⇤⇤ -0.21 0.59 - 0.47

⇠
2

l
79⇤⇤⇤ 73⇤⇤⇤ 85⇤⇤⇤ 53⇤⇤⇤

⇠
2

h
89⇤⇤⇤ 79⇤⇤⇤ 84⇤⇤⇤ 60⇤⇤⇤

!
Bay

l
0.44⇤⇤⇤ 0.27⇤⇤⇤ 0.46⇤⇤⇤ 0.35⇤⇤⇤

!
Bay

h
0.47⇤⇤⇤ 0.29⇤⇤⇤ 0.46⇤⇤⇤ 0.38⇤⇤⇤

Tests:

H0: !l = !h 0.758 0.639 0.089 0.391

H0: Bl = Bh 0.000 0.406 0.011 0.111

H0: �l = �h 0.000 0.198 0.006 0.042

H0: !l = !
Bay

l
0.000 0.000 0.000 0.000

H0: !h = !
Bay

h
0.000 0.000 0.000 0.000

Notes: For each treatment and group g 2 {l, h}, we estimate Bg and !g using OLS on the following specification:

yg,i = Bg + !gxg,i + "g,i, where i denotes each distinct observation, yg,i ⌘ t̂g,i � tg,i, and xg,i ⌘ µg � tg,i. This

specification is derived by subtracting tg,i from both sides of equation (4). Given estimates for Bg and !g, we back

out �g using equation (5) and estimate ⇠2g by identifying the error associated with the signal using "i,g = (1�!g)✏i,g

and then taking the sample average of ✏2i,g. Given ⇠2g , !Bay
g is derived from equation (2). See Sections 2 and 3

for further discussion. Standard errors (clustered at the subject level) are reported in parentheses. ⇤⇤⇤1%, ⇤⇤5%,
⇤10% significance. Rows on tests report p-value associated with test of each hypothesis. Statistical assessments on

estimates derived from ! and B use bootstrapping.
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Table 9 reports changes in (!g, Bg) from early (1-37) to late (38-75) rounds. The table reveals,

for example, !h in the Baseline was 0.192 in the early rounds and decreased by 0.0346 in the late

rounds.

Table 9: Change in Model Estimates by Treatment

Baseline NoGroup SignalFirst OneGroup

!h 0.192⇤⇤⇤ -0.0580 0.135⇤⇤⇤ 0.0655⇤⇤

(0.0392) (0.0386) (0.0353) (0.0305)

!l 0.168⇤⇤⇤ -0.0267 0.188⇤⇤⇤ 0.0746⇤⇤⇤

(0.0326) (0.0366) (0.0397) (0.0288)

Bh 1.222⇤⇤⇤ -0.363 0.750⇤ -0.632

(0.332) (0.380) (0.445) (0.532)

Bl -2.529⇤⇤⇤ -0.702 -1.462⇤⇤⇤ 0.120

(0.436) (0.563) (0.369) (0.336)

Change in !h in Rounds >37 -0.0346 0.0776 0.0165 0.0981⇤⇤⇤

(0.0434) (0.0513) (0.0428) (0.0372)

Change in !l in Rounds >37 0.0310 0.0460 -0.00414 0.0152

(0.0418) (0.0404) (0.0445) (0.0252)

Change in Bh in Rounds >37 0.613⇤ 0.264 -0.504 0.476

(0.348) (0.605) (0.380) (0.705)

Change in Bl in Rounds >37 0.787⇤⇤ 0.413 1.134⇤⇤⇤ 0.288

(0.321) (0.748) (0.379) (0.311)

Observations 4050 4350 4425 4500

Bootstrapped standard errors (clustered at the subject level) in parentheses.

⇤⇤⇤1%, ⇤⇤5%, ⇤10% significance.

Subjects with MSE less than or equal to 200.
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I Additional Figures
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Yellow bars depict empirical histogram. Green line shows normal fit.

Figure 13: Distribution of Estimated Signal Error by Treatment
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Figure 14: Average Actual and Bayesian Assessment by True Type in Each Treatment
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J Using Model Estimates to Improve Outcomes

Our model suggests that an outside observer can construct a simple algorithm to correct for the

errors we find: representative signal distortion and base-rate neglect. Identification and estimation

of these errors allows the observer to improve outcomes at the prediction stage by (i) debiasing

assessments, and (ii) readjusting weight on the signal vs prior information.

Here, we illustrate how this can be done with our own data. We divide our data (focusing on

the Baseline treatment) into two: a training and a testing set. The training set is used to estimate

key parameters of the model (�g,!g, ⇠
2
g). These estimates are then used to “adjust” predictions in

the testing set. By separating the data on which we estimate parameters and apply adjustments,

we can test the performance of the model out of sample. As a proof of concept, we focus on two

types of adjustments that are intended to: (i) maximize accuracy subject to zero discrimination, i.e.

OptNoDiscrimination benchmark; (ii) maximize accuracy subject to no constraint, i.e., Bayesian

benchmark. The adjustments are done using the following steps.

1. Given (�g,!g, ⇠
2
g), for each observation in the testing set, estimate a (debiased) subjective

signal.

• Each assessment t̂ can be represented as follows: t̂ = (1 � !g)�g + !gµ + (1 � !g)su,

where su is an unbiased signal.

2. The signal variance estimate ⇠2g implies an optimal weight !g for each of the two benchmarks.

• For the OptNoDiscrimination benchmark, !Ond =
⇠
2
g

⇠2g+2�2
57

• For the Bayesian benchmark (as described in Section 2), !Bay =
⇠
2
g

⇠2g+�2 .

3. Compute adjusted prediction using estimates for signal su and weights !Ond
g or !Bay

g .

• Adjusted Bayesian prediction t̂
Bay = !

Bay
g µg + (1� !

Bay
g )su.

• Adjusted OptNoDiscrimination prediction t̂
Ond = !

Ond
g

�
µl+µh

2

�
+ (1� !

Ond
g )su.

Table 10 reports results from 500 random repetitions of the procedure described above. We

make two observations. First, adjusted predictions in the OptNoDiscrimination column are welfare

increasing, generating lower inaccuracy and discrimination relative to the data. Second, adjusted

57Consistent with our linearity restriction in Section 3, !g is chosen to minimize expected squared error of predic-

tions t̂ = (1� !g)s+ !g

�µl+µh
2

�
.
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Table 10: Actual vs. Adjusted Predictions

Data OptNoDiscrimination Bayesian

GD 7.98 > (p = 0.000) 0.81 < (p = 0.002) 9.40

MSE 59 > (p = 0.088) 56 > (p = 0.000) 44

Values represent mean estimates from 500 repetitions of the procedure.

Inequalities compare counterfactuals (OptNoDiscrimination and Bayesian) to data.

Reported p-values represent frequency of repetitions in which the inequality was violated.

predictions in the Bayesian column display higher discrimination, but much lower inaccuracy as

expected from our earlier analysis. These results demonstrate that our model might be useful for

correcting for biases like representative signal distortion and base-rate neglect in applications in

which the relevant data is available.
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K E�cient Coding

The goal of this section is the explore treatment di↵erences implied by e�cient coding. As noted in

Section 7, these predicted di↵erences turn out to be orthogonal to our main results on representative

signal distortion (RSD). We follow Frydman & Jin (2022), who build on work by Khaw et al. (2021)

and Heng et al. (2020), in modeling e�cient coding.

The agent faces an information processing constraint. Specifically, the agent encodes the true

type t using a finite number of n “neurons,” where the output state of each neuron takes the value

of 0 or 1. The output states of these n neurons are assumed to be mutually independent, and

each neuron takes the value 1 with probability ✓t and 0 with the remaining probability 1� ✓t. The

encoded value of t is therefore represented by an output vector of 0s and 1s, with length n. Given

that the neurons are mutually independent, a su�cient statistic for the output vector is the sum

across the n output values, which can be denoted by R. Thus, the noisy signal R can take on

integer values from 0 to n. Function f below describes the likelihood of observing R conditional on

true type t:

f(R | t) =
✓
n

R

◆
(✓t)

R(1� ✓t)
n�R

.

Focusing on the discrete distribution in our experiment where t 2 {1, ..., 100}, we numerically

(using Matlab) estimate ✓ = (✓1, ..., ✓100) which minimizes expected square error in assessment (the

incentive given to our subjects). To do this, we follow these steps.

• Fixing ✓, the prior (discrete normal distribution) and f determine the posterior distribution

of t for any signal R.

• Assessment conditional on each signal R is the expected type t given this posterior distribu-

tion.

• Signal distribution f , prior type distribution and assessment conditional on each signal give

us expected square error.

• We search over di↵erent values of ✓ to minimize expected squared error.

Figure 15 and 16 depicts the solution to this separately for OneGroup, SignalFirst and NoGroup

assuming n = 10 and n = 20, respectively. The solutions di↵er by treatment because in OneGroup

the agent uses a di↵erent prior to optimize ✓, in SignalFirst the agent uses the same prior as

NoGroup when optimizing ✓ but faces a di↵erent decision problem (in which group identity is
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revealed at the inference stage). We do not have a separate solution for Baseline for several reasons.

Baseline is theoretically equivalent to OneGroup. But it might be behaviorally di�cult to adjust

perception strategy from round to round. This might imply behavior in Baseline to be somewhere

in between OneGroup and SignalFirst.

Key predictions from e�cient coding can be summarized as follows:

(1) On average, assessments are unbiased. As noted in Section 7, this is a consequence of Bayesian

inference.

(2) On average, assessments are most accurate (least expected squared error) in OneGroup and

least accurate in NoGroup. This is because in OneGroup both perception and inference are

conditioned on group identity. In NoGroup, the agent cannot condition on group identity in

either stage.

(3) Inferences become more accurate as cognitive constraints are relaxed (as n increases).

(4) In OneGroup, assessments are highly accurate around the group mean, but not so away from

the group mean. This is because perception is optimized to be more accurate for types that

are more likely to be observed.

We conclude by discussing our experimental findings in light of these predictions. First, the

main contribution of this paper pertaining to results on RSD are in violation of (1). Namely,

in our Baseline treatment, assessments are on average positively biased by the high-mean group

and negatively biased for the low-mean group. Thus, e�cient coding cannot produce the bias we

attribute to RSD. As discussed in Section 6, we find evidence consistent with (2). Our experimental

design does not allow us to test (3) since we did not try to identify subjects with high or low cognitive

constraints; we also did not vary the di�culty level of (or the time permitted to) perceiving the

image that depicts true type. As discussed in detail in Online Appendix F, we cannot reject in our

setting that mean assessment is linear in true type. Thus, our results do not provide evidence for

the type of non-linearity implied by (4).
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Figure 15: Mean Assessment by Type with E�cient Coding (n = 10)
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Figure 16: Mean Assessment by Type with E�cient Coding (n = 20)
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L Instructions for Baseline Treatment
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Comprehension questions

Subjects had to answer these questions correctly to be able to begin the experiment.
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