Detecting a long even hole

Linda Cook
Princeton University, Princeton, NJ 08544, USA

Paul Seymour!
Princeton University, Princeton, NJ 08544, USA

August 28, 2019; revised September 24, 2020

IPartially supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.

Abstract

For each integer ¢ > 4, we give a polynomial-time algorithm to test whether a graph contains an
induced cycle with length at least ¢ and even.

1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. A hole in a graph is an induced
subgraph which is a cycle of length at least four. The length of a path or cycle A is the number
of edges in A and the parity of A is the parity of its length. For graphs G, H we will say that G
contains H if some induced subgraph of G is isomorphic to H. We say G is even-hole-free if G does
not contain an even hole. We denote by |G| the number of vertices of a graph G. A graph algorithm
is polynomial-time if its running time is at most polynomial in |G|.

This paper concerns detecting holes in a graph with length satisfying certain conditions. It is
of course trivial to test for the existence of a hole of length at least ¢, in polynomial time for each
constant £ > 4, as follows. We enumerate all induced paths P of length ¢ — 2. For each choice of P,
let its ends be x and y, let P* = V(P)\ {x,y}, and let N be the set of vertices different from x,y that
belong to or have a neighbour in P*. Then we check whether and y are in the same component
of G\ N. This depends on ¢ being fixed; if ¢ is part of the input, then the problem is NP-complete,
because it contains the hamilton cycle problem.

But the problem is much less trivial if we impose restrictions on the parity of the hole length,
or more generally on its residue class modulo some fixed number. Sepehr Hajebi [16] provided a
proof in private communication that if £ is part of the input, then detecting holes of length at least
¢ in a specific residue class is W[1]-hard, and thus not fixed-parameter tractable unless the central
conjecture of parameterized complexity theory (that “FPT # WIJ1]”) is false. More exactly, for all
integers m,r with m > 2 and 0 < r < m, if there is an algorithm that, with input G, ¢, determines in
time O(f(¢)p(|G|)) whether G contains a hole C' of length at least ¢ and with |E(C)| = r mod m,
where f is some computable function and p is a polynomial, then FPT = W][1]. But this is different
from what we are doing in this paper: we are working with ¢ fixed, and Hajebi wants ¢ part of the
input.

Here is an overview of positive results about algorithms to detect even and odd holes, with odd
holes first:

e In 2005, Chudnovsky, Cornuéjols, Liu, Seymour and Vuskovié [7] gave an O(|G|?) algorithm to
test whether a graph G or its complement has an odd hole.

e In 2019, Chudnovsky, Scott, Seymour, and Spirkl [8] gave an algorithm to detect an odd hole
in G in time O(|G|?); and Lai, Lu and Thorup [15] improved this running time to O(|G[®).

e Also in 2019, Chudnovsky, Scott and Seymour [4] gave a O(|G|?%*+40) algorithm to test whether
G contains an odd hole of length at least £, where £ is any fixed number.

e In 2020, Chudnovsky, Scott and Seymour [9] gave an O(|G|**) algorithm that finds a shortest
odd hole in G (if there is one) in time O(|G|**).

For even holes the story is a little different:

e In 2002, Conforti, Cornuéjols, Kapoor and Vugkovic [12] gave an approximately O(|G|*") al-
gorithm to test whether a graph contains an even hole, by using a structure theorem about
even-hole-free graphs from an earlier paper [11].

e In 2003, Chudnovsky, Kawarabayashi, and Seymour [3] provided a simpler algorithm that
searches for even holes directly in O(|G|3!).

e In 2015, Chang and Lu [1] gave an O(|G|'!) algorithm to determine whether a graph contains
an even hole; and Lai, Lu and Thorup [15] improved this running time to O(|G|%) in 2020.

e In 2020, Hou-Teng Cheong and Hsueh-I Lu [2] pointed out that the algorithm of [3], designed
to test for an even hole, actually outputs a shortest even hole if there is one. (A comment from
Seymour: I believe that, shortly after writing that paper, we noticed that it finds a shortest
even hole. But we never got around to modifying the paper to say so, and the fact that we
could do it was eventually forgotten. So its rediscovery by Cheong and Lu was valuable.)

One analogue of what has been done for odd holes is still open for even holes, namely the problem
of detecting long even holes. That is what is solved in this paper.

We remark that even versus odd has been almost the entire focus of previous research, but what
about holes of length a multiple of three, can we detect them in polynomial time? Triangle-free
graphs with no holes of length a multiple of three have some very interesting properties [10], but we
currently have no idea how to recognize such graphs.

Since we are looking for even holes of length at least ¢, we might as well assume that ¢ is even.
Our main result is the following;:

Theorem 1.1. For each even integer £ > 4, there is an algorithm with the following specifications:
Input: A graph G.

Output: Decides whether G has an even hole of length at least £.

Running time: O(|G|?*3).

Our algorithm combines approaches described in [3] and [4]. The algorithm uses a technique called
“cleaning”, as do the algorithms of [3], [4] and many other algorithms to detect induced subgraphs.

Here is an outline of the method. The result is clear if £ = 4, so we might as well assume that
£ > 6; and throughout the paper £ > 6 is a fixed even integer, and a long hole or path is a hole or
path of length at least £. A shortest long even hole is a long even hole of minimum length. If C is a
hole in G, a vertex v of V(G) \ V(C) is C-major if there is no three-vertex path of C' containing all
neighbours of v in V(C). A hole C is clean if it has no C-major vertex.

e First, we test for the presence in the input graph G of certain kinds of induced subgraphs
(“short” long even holes, “long jewels of bounded order”, “long thetas”, “ long ban-the-bombs”,
“long near-prisms”) that are detectable in polynomial time (sometimes, under the assumption
that earlier graphs in this list are not present) and whose presence would imply that G contains
a long even hole. We call these kinds of subgraphs “easily-detectable configurations.” We may
assume these tests are unsuccessful.

e Second, we generate a cleaning list, a list of polynomially many subsets of V(G) such that if C is
a shortest long even hole in G, then for some set X in the list, X contains every C-major vertex
and no vertex of C. This process depends on the absence of easily-detectable configurations.

e Third, for every X in our cleaning list we check whether G\ X contains a clean shortest long
even hole. This also depends on the absence of easily-detectable configurations. We detect a
clean shortest long even hole C by guessing three evenly-spaced vertices along C' and taking
shortest paths between them.

We are calling long near-prisms easily-detectable configurations, but “easily” might be a mis-
nomer, because this is by far the computationally most expensive step of the algorithm, and the bulk
of what is novel in the paper. For a general graph G, deciding whether G contains a long near-prism
is NP-complete; Maffray and Trotignon’s proof [14] that deciding whether G contains a prism is
NP-complete can easily be adjusted to prove that deciding whether G contains a long near-prism is
NP-complete. Fortunately it really is easy to detect the other “easily detectable” configurations, so
we can assume there are none; and in such graphs we can detect the presence of long near-prisms in
polynomial time.

The approach of determining whether G contains an even hole by first testing whether G contains
a theta of a prism was outlined in [3]. Moreover, Chudnovsky and Kapadia gave an algorithm to
decide whether G contains a theta or a prism in [6]. Their algorithm does not translate directly to
long theta and long near-prism detection, but we were able to use a similar algorithmic structure for
our purposes.

2 The easily-detectable configurations

The interior P* of a path P is the set of vertices of P that are not ends of P. Thus P* = () for a
path P of length at most one. If X, Y C V(G), we say X is anticomplete to Y if X NY =) and no
vertex in X is adjacent to a vertex in Y. We begin with a test for what we called “short” long even
holes:

Theorem 2.1. For each integer k > £, there is an algorithm with the following specifications:
Input: A graph G.

Output: Decides whether G has a long even hole of length at most k.

Running time: O(|G|*).

Proof. We enumerate all vertex sets of size £,¢+1,...,k and for each one, check whether it induces
an even hole.]

We need the following easily-detectable configuration of [4] (slightly modified). Let u,v € V(G)
and let @1, @2 be induced paths between u, v of different parity. Let P be an induced path between
u, v of length at least £ — min(|E(Q1)|,|E(Q2)|), such that P* is anticomplete to Q7 U Q5. We say
the subgraph induced on V(P U Q1 U Q2) is a long jewel of order max (|V(Q1)|, |V (Q2)|) formed by
Q1,Q2, P. Any graph containing a long jewel has a long even hole, since the holes PUQ1 and PUQ)>
are both long holes and one of them is even.

We need a slight extension of Theorem 2.2 of [4]:

Theorem 2.2. There is an algorithm with the following specifications.
Input: A graph G and an integer k > 0.
Output: Decides whether G has a long jewel of order at most k.

Running time: O(|G|") where n =k + 1 + max(k,¢ —1).

Proof. We enumerate all triples of induced paths @1, Q2, R of GG, such that:
e (Q1,Q2 join the same pair of vertices, say u, v;
e one of (J1,(Q)2 is odd and the other is even, and each has at most k vertices;

e R has length ¢ — min(|E(Q1)],|E(Q2)|) — 2 (or zero if this number is negative), and has one
end u and the other some vertex w say;

e 1o vertex of V(R) \ {u} equals or has a neighbour in V(Q1 U Q2) \ {u}.

For each such triple of paths, let X be the set of vertices of G that are different from and nonadjacent
to each vertex of V(Q1UQ2UR) \ {v,w}. We test whether there is a path in G[X U{w,v}] between
w, v. If so we output that G contains a long jewel of order at most k. If no triple yields this outcome,
we output that G has no such long jewel.

To see the correctness of the algorithm, certainly the output is correct if G contains no long jewel
of order at most k. Suppose then it does, say formed by @1, @2, P. Let u,v be the ends of P, and
let R be the subpath of P of length ¢ —min(|E(Q1)|, |E(Q2)|) — 2 (or zero if this number is negative)
with one end u. When the algorithm tests the triple Q1, @2, R, it will discover there is a path in
G[X U{w,v}| between w, v, because the remainder of P is such a path. Consequently the output is
correct.

The running time is O(|G|?) for each triple of paths, and there are at most |G|™ such triples
where n = k — 1 + max(k,¢ — 1), so the running time is as claimed. This proves Theorem 2.2. [

Figure 1: A theta (dashed lines mean paths of arbitrary positive length)

A theta is a graph consisting of two non-adjacent vertices u,v and three paths Py, P5, P3 joining
u,v with pairwise disjoint interiors, and we say Pi, P», P3 form a theta. The union of any two of
Py, P>, P53 is a hole, and a long theta is a theta where all three holes are long. If G contains a long
theta, then it contains a long even hole, because at least two of Py, P», P3 must have the same parity.
To detect long thetas, we use the “three-in-a-tree” algorithm of [5], the following:

Theorem 2.3. There is an algorithm with the following specifications:
Input: A graph G and three vertices v1,ve,v3 of G.

Output: Decides whether there is an induced subgraph T' of G with vy, vy, v3 € V(T') such that T is
a tree.

Running time: O(|G[*).

Chudnovsky and Seymour’s algorithm in [5] to detect a theta in a graph G can be adjusted to
detect a long theta, as follows:

Theorem 2.4. There is an algorithm with the following specifications:

Input: A graph G.
Output: Decides whether G contains a long theta.
Running time: O(|G|**71).

Proof. The algorithm is as follows. Say (temporarily) a claw is a graph that is the union of three
paths @1, @2, @3, with a common end a and otherwise vertex-disjoint, of lengths k1, ko, k3 respectively
where k1, ko, k3 > 2, and k1 + ko, ko + k3, ks + k1 > £ — 2, and k1 + ko + k3 < 2¢ — 6. If three paths
Py, P, P3 of G form a long theta, then P, U P, U P5 includes a claw which is an induced subgraph of
G. (To see this, if Py, P», P3 all have length at least £/2 take Q1, @2, Q3 all of length ¢/2 — 1, and if
say Ps has length less than ¢/2, take Q3 = P3 and @1, Q2 of length £ — 2 — |E(Ps)|.) Conversely, if
three paths form a theta that includes a claw, then the theta is long.

Let B be a claw in G, and let g1, g2, g3 be its three vertices of degree one in B. Let G’ be the graph
obtained from G by deleting all vertices different from ¢, g2, g3 that belong to or have a neighbour
in V(B)\{q1,¢2,¢3}. Then B is an induced subgraph of a theta (and hence of a long theta) in G if
and only if there is an induced tree T containing q1, q2,q3 in G’.

So the algorithm is: enumerate all induced claws, and for each one, check if there is an induced
tree as above. Since claws have at most 2¢ — 5 vertices, there are only O(|G|>7?) of them, so the
running time is O(|G|*~1). This proves Theorem 2.4. O

Lai, Lu and Thorup [15] provide a faster algorithm for the three-in-a-tree problem. Using
their O(|E(G)|(log |G|)?) algorithm we can reduce the running time for detecting a long theta to
O(|G*73(log |G|)?), but this improvement does not affect the asymptotic running time of our long
even holes detection algorithm.

For brevity, it is convenient to describe enumerating all subgraphs of a certain type as “guessing”
subgraphs of that type. In this language the algorithm can be written as follows: We guess the paths
Q1, Q2 and Q3 and test whether ¢1, g2, g3 are contained in some induced tree of G'.

We call a path P with ends x, y an zy-path. If P is a path, and x,y € V(P), we denote the subpath
of P with ends z,y by z-P-y. A path with vertices vi,...,v; in order is denoted by vi----- vg. If
P, are paths with ends u,v and v, w respectively, and their union is a path with ends u,w, we
denote this path by u-P-v-Q-w; and extend this notation for longer concatenations similarly.

Let us say a ban-the-bomb is a graph consisting of

e a cycle u-vi-w-ve-u of length four, and possibly the edge uw (but we insist that v, ve are
nonadjacent); and one further vertex x adjacent to u, and nonadjacent to v1, v, w; and

e for i = 1,2, an zv;-path P; of length at least two, where P is anticomplete to {u, v, w}, and
V(P1) \ {z} is anticomplete to V(P) \ {z}.

Thus it has three holes; and it is long if all three holes are long. It is easy to see that every graph
containing a long ban-the-bomb has a long even hole.

Figure 2: A ban-the-bomb. The dotted line is a possible edge.

If there is no long theta, we can also search for long ban-the-bombs using the three-in-a-tree
algorithm, as follows.

Theorem 2.5. There is an algorithm with the following specifications:
Input: A graph G with no long theta.

Output: Decides whether G contains a long ban-the-bomb.

Running time: O(|G|**1).

Proof. Let us say a bomb is a graph consisting of a path R of length 2¢ —6, with middle three vertices
v1-w-v9 in order and two more vertices u, v, where u is adjacent to v1,ve and possibly to x, but to
no other vertices of R, and x adjacent to v but to no vertex of R.

qdie U 02

Figure 3: A bomb. The dashed lines are paths of length 2¢ — 6, and the dotted line is a possible
edge.

If there is a long ban-the-bomb in G, with vertices u,vi,ve,w,x and paths Py, P, as in the
definition, then Pj, P, both have length at least £ — 2. For i = 1,2 let @); be the subpath of P,
of length ¢ — 4 with one end v;, and let ¢; be the other end of ();; then the subgraph induced on
V(Q1 U Q2) U{u,w,z} is a bomb. To search for long ban-the-bombs, we enumerate all induced
subgraphs of G that are bombs. For each such induced bomb B, let L be its three vertices of degree
one; check if there is an induced tree containing the vertices in L, in the graph obtained from G by
deleting all vertices not in L that belong to or have neighbours in V/(B) \ L. If so, output that G

contains a long ban-the-bomb and stop. If no bomb has such a tree, output that there is no long
ban-the-bomb.

This concludes the description of the algorithm. A bomb has 2¢ — 3 vertices, so there are
O(|G|**~3) choices for the bomb, and the running time is O(|G|?**1).

If a bomb is contained in a long ban-the-bomb, then such a tree exists, and the outcome is correct,
but the converse is less clear. Suppose that for some bomb B there is a tree T as described in the
algorithm. Let R be as in the definition of a bomb, with ends ¢1, g2 where ¢;, v1, w, v2, g2 are in order.
There is a vertex t € V(T') and three paths T, T5,T5 of T (possibly of length zero) between ¢ and
q1, g2, T respectively, pairwise anticomplete except for ¢. For ¢ = 1,2, the hole ¢t-T;-q;- R-vi-w-z-T5-t
is long for ¢ = 1,2, since T; U T3 has length at least two; so if ¢t # x, there is a long theta formed
by the paths t-T;-¢;-R-v;-u for i = 1,2, and the path ¢-T3-z-u, a contradiction. Thus ¢t = z, and we
have a long ban-the-bomb. This proves correctness.

O

A triangle is a graph consisting of three pairwise adjacent vertices. A mnear-prism is a graph
consisting of two triangles with vertex sets {ai,ag,as} and {b1,be, b3}, sharing at most one vertex,
and three pairwise vertex-disjoint paths Py, P», P, such that P; has ends a; and b; for i € {1,2,3},
and it is long if the subgraph induced on V(P; U P;) is a long hole for all distinct ¢,j € {1,2,3}.
It is a prism if the two triangles are vertex-disjoint. We call Py, P>, P3 the constituent paths of the
near-prism. It is easy to see that every graph with a long near-prism has a long even hole.

Figure 4: Near-prisms.

3 Detecting a clean lightest long near-prism

Our next goal is a poly-time algorithm to test whether G contains a long near-prism, for graphs G
that contain none of the other easily-detectable configurations; and this and the next two sections
are devoted to this. Let us say a graph G is a prospect if G contains no long even hole of length at
most 24, no long jewel of order at most £+ 1, no long theta and no long ban-the-bomb. We will show
the following (the outline of this algorithm is like that of [6]):

Theorem 3.1. There is an algorithm with the following specifications:
Input: A prospect G.
Output: Decides whether G contains a long near-prism.
Running time: O(|G|?*3).
We need:

Lemma 3.2. Let G be a prospect, and let K be a long near-prism in G, with constituent paths
Py, Py, P3. Then at least two of Py, Pa, P3 have length at least £.

Proof. Suppose that Pj, P» both have length less than ¢. Then the long hole induced on V(P U P)
is odd, since its length is between £ and 2¢, and G is a prospect; and so the paths as-a;-P;-b1-bs and
as-ao-Pa-bo-bs have different parity. Hence these two paths with P3 form a long jewel of order at

most £+ 1, a contradiction. This proves Lemma 3.2.
O

For a graph G and z,y € V(G), we call the length of a shortest zy-path in G the G-distance
between x and y and denote it by dg(z,y). Let us say a frame F is a graph with the following
properties:

e F'is the union of two triangles with vertex sets A, B with at most one vertex in common, and
three graphs F1, Fb, F3 that are pairwise vertex-disjoint; and each of F}, Fy, F3 has exactly one
vertex in A and one in B;

e for 1 <4 < 3, F; is either a path with one end in A and the other in B of length at most £ — 1,
or the disjoint union of two paths, both of length exactly ¢/2 — 1, one with an end in A and
the other with an end in B (it follows that if the triangles share a vertex then one of the F; is
a path of length zero); and

e at most one of I, Iy, F3 is a path.

Figure 5: Frames

We call A, B the bases of the frame. A frame in G means an induced subgraph of G that is a
frame. The ends of a frame F' are its vertices of degree one, and the set of vertices of F' that are not
ends of F' is denoted by F™.

If K is a near-prism in a prospect GG, then K is long if and only if K contains a frame, by Lemma
3.2. (Indeed, every long near-prism contains a unique frame, which we denote by Fi.) Thus if at
some stage we have a frame F' in the input prospect G, and we find a near-prism K of G containing
F', then we know that K is long without having to check the lengths of the missing parts of its
constituent paths; and conversely, if there is a long near-prism K in GG, and we examine all frames
in G and test, for each one, whether it is contained in a long near-prism, then eventually we will
test Fx and report success. (Enumerating all frames can be done in polynomial time, since frames
have a bounded number of vertices; the more difficult issue is to handle a given frame in polynomial
time.)

That is our basic method, to try all frames and see if they can be extended to long near-prisms.
But it is helpful to have a little more information about the long near-prism we are looking for than
just its frame. For instance, for the first frame in figure 5, we would like to know which vertex of
the left triangle corresponds to which one of the right. Let us say an ordered frame F consists of a
frame F together with a linear ordering of both of its bases. Let K be a long near-prism and let Fx
be its frame. Let K have constituent paths Pj, Py, P3, where |E(P))| < |E(P2)| < |E(Ps)|, and for
1 <i < 3 let P; have ends a;, b;. Then these six (or possibly, five) vertices belong to the two bases

of F, and we would like to know this labelling. We define Fx to be the ordered frame consisting
of F and the orderings a; < as < as and by < bg < b3, and call it an ordered frame of K. (It is not
quite unique, because two of Pj, P», P; might have the same length.)

If F is an ordered frame of a long near-prism K, with bases {a1, ag, as}, {b1, b2, b3} and constituent
paths Py, P, P3, where P; has ends a;, b; for i = 1,2, 3, we say that Py, Py, P3 are numbered according
to F if the orderings of F are a1 < as < ag and b; < by < bs.

If K is a long near-prism in G, we call a vertex ¢ € V(G)\V (K) K -magjor if there is no three-vertex
path of K containing all neighbours of ¢ in V(K), and we say K is clean if there are no K-major
vertices. We call a long near-prism K’ shorter than a long near-prism K if |[V(K')| < |[V(K)]|, and
thereby define a shortest long near-prism.

We will test for long near-prisms as follows. Shortest long near-prisms have special properties
that make them easier to detect than general long near-prisms, so we will hunt for a near-prism with
these special properties. Sometimes it is convenient to pin down the target even further: we will
hunt for the “lightest” long near-prism, the lexicographically earliest of all shortest long near-prisms.

To do this we will first guess its ordered frame: so now we need a poly-time algorithm that, given
an ordered frame, will test whether there is a lightest long near-prism with this ordered frame. This
comes in two phases:

e Given an ordered frame, we generate a “cleaning list” of polynomially many sets of vertices,
such that for every shortest long near-prism K of G with the given ordered frame, there exists
X in the list such that K is clean in G \ X; that is, X is disjoint from V(K), and X contains
all K-major vertices. This is explained in section 5.

e For each X in this cleaning list, we search for a clean lightest long near-prism with the given
ordered frame in G\ X. This algorithm is explained in the remainder of this section.

A long near-prism K in G is tidy if F}; is anticomplete to V(G) \ V(K). If we have a frame F in
G, and we are trying to test if there is a long near-prism K with Fg = F', we might as well delete all
vertices of G not in V(F) that have a neighbour in F™*, because no such vertex belongs to V(K). If
G’ is the graph that remains, and the long near-prism we are looking for exists, then it is tidy in G'.

Lemma 3.3. Let G be a prospect, and let K be a tidy shortest long near-prism in G, with constituent
paths Py, Py, P3. For all distinct i,7 € {1,2,3}, there is no induced path Q of G with one end in
V(P;) and the other in V (P;), such that

o V(Q) is anticomplete to V (Py) where k € {1,2,3}\ {i,j};
e no vertex of Q* is K-major; and
e 2[E(Q)| < 1+ min([E(F)],[E(F;)]).

Proof. Suppose that there is such a path @) for some shortest long near-prism K in G, and choose @, K
with minimal union. Let the vertices of @ be qo-q1--- - - q-qi+1 where gy € V(P;) and ¢4 € V(F;).
From the minimality of QU K, none of g, ..., g1 has a neighbour in V(K). Since qi, ..., g are not
K-major, it follows that ¢ > 2, and there is a three-vertex path of K that contains all neighbours
of ¢ in V(K); and since K is tidy, all neighbours of ¢; in V(K) belong to V(P;), and so there is a
minimal subpath R; of P; containing all neighbours of ¢; in V(K). Thus R; has length zero, one
or two, and we will treat these cases separately. Let the ends of R; be u;,v;, where a;,uj,v;,b; are

in order in P; (in the usual notation). Since K is tidy, the paths a;-Pj-u; and v;-Pj-b; both have
length at least /2 — 1. Similarly, there is a minimal subpath R; of P; containing all neighbours of ¢;
in V(K), of length at most two, with ends u;,v; say. Let k € {1,2,3}\ {4,7}.

(1) R; does not have length one.

Suppose it does. Let S be the induced path from ¢; to a; with interior in V' (F;); then there is
a prism with bases {a1, a2, a3}, {q:, uj,v;} and constituent paths

ak‘Pk‘bk‘bj‘Pj‘Uj~

All of its holes are long, since 2(¢/2—1)4+4 > ¢, and so it is a long prism, and hence not shorter than K.
Consequently |E(S)|+t—1 > |E(P;)|. Similarly, let T" be the induced path from ¢; to b; with interior
in V(P,); then |E(T)|4+t—1 > |E(P;)|. Adding, we obtain that |E(S)|+|E(T)|+ (2t —2) > 2|E(P;)|.
But |E(S)|+|E(T)| < |E(P;)|+2, and so 2t > |E(F;)|, contrary to the hypothesis, since |E(Q)| = t+1.
This proves (1).

(2) R; does not have length zero.

Suppose it does; so uj = v; = ¢+1. By (1) with P;, P; exchanged, it follows that either u; = v; or
ui, v; are nonadjacent. If u; = v; there is a long theta with constituent paths @ and

qo-F;-a-a;-Pj-qi1

qo-P;-bi-b;-Pj-qi 41,

a contradiction. If u;, v; are nonadjacent, there is a long theta with constituent paths

qi--- -4,
q1-ui-Pi-ai-aj-Pi-qt 41
q1-v3-P;-b;-bj-Pj-qi 41,

a contradiction. This proves (2).

From (1) and (2) we may assume that R;, R; both have length two. Let P] be the path obtained
from P; by replacing the subpath R; by wuj-q-v;. Then Pi,P](,Pk are the constituent paths of a
shortest long near-prism K’, also with frame Fx. From the minimality of Q U K, one of qi,...,q_1
is K'-major. Since it is not K-major, it is adjacent to ¢, and hence must be ¢;—1. Thus ¢;—1 has a
neighbour in V(K), and so ¢ = 2 (because none of qo, ..., g1 has a neighbour in V(K)). But then
the subgraph induced on V(FP; U Pj’) U{q} is a long ban-the-bomb, a contradiction. This proves

Lemma 3.3.
O

10

If F'is a frame with bases A, B, and v is an end of F, choose u € V(A U B) with minimum
F-distance to v; we call v the u-end of K. For each u € V(A U B) there is at most one u-end of
F, but there might be none. For a path P with ends a,b, we call v € V(P) a midpoint of P if
|dp(v,a) —dp(v,b)| < 1.

We would like to assign weights to the edges of G, all very close to one and all different, such
that no two different sets of edges X,Y have the same total weight, and if | X| < |Y| then the total
weight in X is less than that in Y. A convenient way to do this, and a way that is easy to handle
algorithmically, is to take an arbitrary linear ordering of E(G), say E(G) = {e1,...,e,}, and let
edge e; have weight 1 4 277 for each 7; then the total weight in a set X is less than that in a set Y
if and only if either |X| < |Y], or |X| = |Y| and X is lexicographically earlier than Y (the latter
means that Y contains e; where ¢ € {1,...,n} is minimum with ¢; € (X \ Y)U (Y \ X)). So, let us
take some linear order of F(G), and for X,Y C E(G), we say X is lighter than Y if either | X| < |Y],
or |X| = |Y| and X is lexicographically earlier than Y. If G has a long near-prism, it has at least
one shortest long near-prism, and exactly one of them is the lightest long near-prism; and we find
that for algorithms it is better to hunt for the lightest long near-prism than just a shortest one.
These weights have O(|G|?) bits, so doing arithmetic with them is a little time-consuming; but we
can certainly find the lightest st-path in time O(|G|?) (and if it mattered, we could do it faster).

Let us say an st-path P in a graph G is locally lightest if for every st-path) that is lighter than
P, some vertex v of @ satisfies max(dg(s,v),dqg(t,v)) > |E(P)|/2. It follows immediately that there
is no such path @, because

da(s,v) +da(t,v) < |[E(Q)| < |[E(P)]
for every vertex v of V(Q), and therefore every locally lightest st-path is the (unique) lightest st-path.
Theorem 3.4. There is an algorithm with the following specifications:
Input: A prospect G, a linear order of E(G), and an ordered frame F in G.

Output: Decides either that G contains a long near-prism with ordered frame F, or that there is a
no long near-prism that is the lightest among all long near-prisms, and has ordered frame F,
and is clean.

Running time: O(|G]?).

Proof. Here is the algorithm. Let the frame F' of F have bases {a1, as,as} and {b1, b2, b3}, where the
linear orders of F are a1 < as < ag and by < by < b3. For 1 <1 < 3, let s; be the a;-end of F and
let t; be the b-end of F, if they exist. (Certainly so, ta, s3, t3 exist, but sy, t; might not.) Let Wy be
the set of all vertices of G that are not ends of F', and belong to or have a neighbour in F*, and let
Go =G\ W

Step 1: If s; is defined, compute the lightest sit1-path M; in G (if there is no such path, output
“failure”, that is, the desired near-prism does not exist, and stop). If s; is not defined, let
M be the null graph. In either case let W be the set of vertices of GGy that belong to or
have a neighbour in V' (M), and let G; = Go \ W1.

Step 2: Compute the lightest soto-path My in G (reporting failure if there is no such path). Let
W5 be the set of vertices of G; that belong to or have a neighbour in V(Ms), and let
Gy =Gy \ Wa.

11

Step 3: Compute the lightest ssts-path M3 in Go (reporting failure if there is no such path).

Step 4: Check whether F'U M; U My U Mj is a long near-prism in G, and if so, output that fact and
stop.

This concludes the description. For running time, we just have to find the sets Wy, W1, Wy, which
take time O(|G|?), and solve three lightest-path problems, so the total running time is O(|G|?).

To prove correctness: the positive output is clearly correct, but we need to check the negative
output. Assume then that there is a a long near-prism K that is the lightest among all near-prisms,
and it has ordered frame F, and is clean. Let its constituent paths be P;, P», P3, numbered according
to F, and hence with |E(Py)| < |E(P)| < |E(Ps)|.

We claim that in step 1 above, the algorithm will compute some M7, and if s1,t; exist then M;
is the path s1-Pi-t1. To see this, the claim is true if s1,#; do not exist, so we assume they do. Then
there is an sjt;-path in Gy, namely the path s;-P;-t1, and so the algorithm will not report failure in
step 1, and so computes the lightest siti-path M7 in Gg. But s1-Pi-t1 is a locally lightest sit1-path
in G, because of Lemma 3.3, and therefore equals M;. This proves our claim.

Similarly in step 2, the algorithm computes My, and if s9, t9 exist then My is the path so-Pa-to,
because sg-Ps-tg is locally lightest in G; (though not necessarily in Gg). And in step 3 the algorithm
computes Ms; and F'U My U My U M3 is a long near-prism, and the output is correct. This proves
Theorem 3.4.

O

When the algorithm of Theorem 3.4 finds a long near-prism K, it is tempting to claim that K
is the lightest long near-prism with ordered frame F. But that might not be true; perhaps some
vertices of K are K'-major, where K’ is the lightest long near-prism with ordered frame F, and then
the algorithm might find K instead of K'.

4 Major vertices on near-prisms

In this section we prove some properties of K-major vertices, when K is a shortest long near-prism.
If K is a long near-prism with constituent paths P;, P», P3, and each P; has ends a;, b; as usual, and
x is K-major with a neighbour in V(F;), we define o;(x) to be the neighbour v of z in V(F;) such
that the path v-P;-a; is minimal; and define 3;(x) to be the neighbour v of z in V(P;) such that the
path v-P;-b; is minimal. We begin with some lemmas:

Lemma 4.1. Let K be a tidy shortest long near-prism in a graph G. If x is a K-major vertex, then
x has neighbours in at least two constituent paths of K.

Proof. In the usual notation, suppose that all neighbours of = in V(K) are contained in V' (P), say;
so aq(z)-P1-f1(x) has length strictly greater than two. We obtain a near-prism K’ shorter than K
by replacing aq(z)-Pi-f1(x) in Py with the path aj(x)-2-0;1(z). Since K’ contains the same frame
as K, it follows that K’ is a long near-prism, a contradiction. This proves Lemma 4.1. O

Lemma 4.2. Let K be a tidy shortest long near-prism in a graph G, with constituent paths Py, Ps, Ps3.
For all distinct i,j € {1,2,3}, if v is a K-major vertex with no neighbours in V(P;), then x either
has exactly one neighbour in V(F;), or two nonadjacent neighbours in V (F;).

12

Proof. Suppose that z has no neighbour in V(P3), and ay(x), 51(x) are distinct and adjacent, say.
Then there is a long prism with bases {a1, a2,a3} and {z,a1(z), f1(z)} and constituent paths

a1-Pr-aq(x),

ag-Pr-az(x),
as-P3-b3-b1-P1-51 (),

and it is shorter than K, a contradiction. This proves Lemma 4.2.
O

Lemma 4.3. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G. If x is a K-major vertex, then x has three pairwise non-adjacent neighbours in V(K).

Proof. Suppose not. By Lemma 4.1, in the usual notation we may assume z has a neighbour in
V(Py) and a neighbour in V(P2), and we may assume that = has no neighbours in V(P3). If x has
exactly one neighbour in V(P;) and exactly one neighbour in V(F,), then V(P U Py) U {z} induces
a long theta. So by Lemma 4.2 we may assume that = has two nonadjacent neighbours in V' (P});
but then the claim is true. This proves Lemma 4.3. 0

Lemma 4.4. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths P1, Py, Ps. Let x,y be nonadjacent K-major vertices. Ifi,7 € {1,2,3}, and
x has no neighbours in V(P;) and y has no neighbours in V(Pj) then i = j.

Proof. Suppose that x has no neighbours in V(Ps), and y has no neighbours in V(P;), say. Then x
has neighbours in V(P;) and in V(P), and y has neighbours in V(P;) and V(P3) by Lemma 4.1.
Let M be an induced zy-path with interior in V(P»). By Lemma 4.2, a1 (x), 51(z) are either equal
or nonadjacent, and as(y), B3(y) are either equal or nonadjacent. Thus there are four cases, but in
each case there is a long theta induced on the union of the vertex sets of the paths «ai(x)-Pi-ai,
B1(x)-P1-b1, as(y)-Ps-as, P3(y)-Ps-bs and M, a contradiction. This proves Lemma 4.4.

O

We need some more definitions. Let K be a tidy shortest long near-prism in G. For v € V(K)\ Fj;
and integers m,n > 0, we define the path K]"(v) as follows. In the usual notation, let v € V(F;)
say. Let M be the maximal subpath of the path v-P;-a; that has one end v and has length at most
m, and has no internal vertex in F}. (Thus, M is permitted to have an end in F};, but no more.)
Let NV be the maximal subpath of the path v-P;-b; that has one end v and has length at most n, and
has no internal vertex in F}; and let K]'(v) = M UN.

Also, if = is K-major, then for 1 < i < 3, if 2 has a neighbour in V(F;) let 4;(x) be the vertex
set of the path a;(z)-P;-a;, and if x has no such neighbour let A;(x) = V(P;). For i,j € {1,2,3}, let
A;j(x) = Ai(xz) UAj(x), and let Ayp3(x) = Ai(x) U Az(z) U Ag(x). If 2,y are K-major, we say that
y is distant from x if

e 1,y are nonadjacent, and y has a neighbour in A; 5 3(x);

e for 1 <i < 3, if has a neighbour in V(P;), then y has no neighbour in V(K¢2(a;(x))); and

e for 1 < i < 3, if x has no neighbour in V(F;), then for some j € {1,2,3} \ {i}, vy has no
neighbour in V(K} 5(8;(z))).

13

We need to prove some properties of distant pairs.

Lemma 4.5. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths Py, Ps, Py. Let x,y be K-major, where y is distant from x. Then y has
exactly two neighbours in Ay 23(x) and they are adjacent.

Proof. We begin with:
(1) If x has a neighbour in each of V(Py),V (Ps),V(Ps) then the theorem holds.

Suppose that z has a neighbour in each of V(Py), V(P2), V(Ps). If y has a neighbour in each of 4;(x),
Ag(x), As(x), there is a long theta formed by three xy-paths with interiors in Aj(x), As(x), As(z),
a contradiction. So we may assume that y has no neighbour in Az(x). Suppose that y also has no
neighbour in As(z). By Lemma 4.1, y has a neighbour in one of V(P),V(Ps), say V(FP2). Let M
be an induced zy-path with interior in V(P). If y has a unique neighbour in A;(x), there is a long
theta induced on A;(x) U Ag(z) U V(M). If y has two nonadjacent neighbours in A;(z), there is an
induced «(x)ai-path R with interior in Aj(x) U {y} containing y, and then there is a long theta
induced on V(R) U As(z) U V(M), a contradiction. So y has exactly two adjacent neighbours in
Ai(z) and the theorem holds.

b1

b3

Figure 6: x has a neighbour in each of P;, Py, P3 (possibly «;(x) = SB;(x)).

So we may assume that y has a neighbour in A;(z) and in As(x), and not in As(x). If y has
two nonadjacent neighbours in A;(x), or two nonadjacent neighbours in Ay (z), there is a long theta
formed by three xy-paths all with interior in Aj23(z), a contradiction. So by Lemma 4.3,there
exists ¢ € {1,2,3} such that y has a neighbour in V(F;) \ A;(z). This neighbour is nonadjacent to
a1 (z), as(z), obviously if i = 3 and from the definition of “distant” if ¢ € {1,2}. Hence there is
an induced xy-path R with interior in (V(F;) \ 4;(x)) U V(Ps), containing no neighbour of a1 (x)
or a(x). But then there is a long theta formed by the path R and two xy-paths with interiors in
Aq(z), Aa(z) respectively, a contradiction. This proves (1).

We may therefore assume that x has no neighbour in V(P;), and hence A;(x) = V(P;). By

Lemma 4.3, z has two nonadjacent neighbours in one of V(P), V(P3), say in V(P;) where j € {2,3};
thus oj(x), Bj(x) are distinct and nonadjacent. By Lemma 4.4, y has a neighbour in V (P;) for ¢ = 2, 3.

14

az(z) B3 ()
Figure 7: x has no neighbour in V' (P}).
(2) y does not have two nonadjacent neighbours in Ag(x) U As(x).

Suppose that it does; then there are two long zy-paths Ry, Re, with RY, RS C As(x) U As(z) and
with R} anticomplete to Rj. If y has a neighbour in V(P;) \ A;(x) for some i € {2, 3}, this neighbour
is nonadjacent to «;(z) from the definition of “distant”; so if y has a neighbour in V' (F;) \ A;(x) for
some i € {2, 3}, or a neighbour in V(P}), there is an zy-path with interior in V(K) \ (Az2(z)U A3(z))
with interior anticomplete to R}, R5, and these three paths form a long theta, a contradiction. So
every neighbour of y in V(K) belongs to Aa(z) U Az(z). By Lemma 4.1, y has a neighbour in As(x)
and one in As(z), and by Lemma 4.3 we may assume it has two nonadjacent neighbours in V (P»);

but then there is a long theta formed by the paths
y-Ba(y)-Po-aa(z)-,
y-Bs(y)-Ps-as(z)-x

y-aa(y)-Pr-ag-a1-P1-b1-bj-Pj-Bj(z)-,

a contradiction. This proves (2).
(3) We may assume that y has a neighbour in V(P).

Suppose that y has no neighbour in V(P;). We may therefore assume that y has a unique neighbour
v € Aj23(z), because otherwise the theorem holds, and we may assume that v € As(x). Both z,y
have a neighbour in V(P, U P3) that is not in A 3(z) and has no neighbour in this set; and so there
is an zy-path R with interior anticomplete to As3(z). But then there is a long theta formed by the
paths

v-Py-cva(x)-z,

v-y-R-x
v-Py-as-a3-Ps-as(x)-x

a contradiction. This proves (3).

(4) y has no neighbour in As(x) U Az(x).

15

Now y has at most two neighbours in Ay (x) U Az(x). If y has two neighbours u, v in As(z) U As(x),
then they are adjacent and we may assume they belong to As(z), and a9, u, v, as(x) are in order in
P,. But then there is a long prism with bases {a1, as, a2} and {y,u,v} and constituent paths

y-c1(y)-Pr-a1,
U—PQ—CLQ
v-Py-cua(x)-1-a3(x)- P3-as,

and it is shorter than K, a contradiction. Thus y has at most one neighbour in As(x)UAs(x). If there
is such a neighbour, say v € As(x), let M be an induced zy-path with interior in V(81 (y)-P1-b1-b;-Pj-B;(z));
then there is a long theta formed by the paths

v-Py-cva(x)-z,
v-Ps-as-a3-Ps-a3(x)-x,
v-y-M-x,

a contradiction. This proves (4).

From the definition of “distant”, we may assume that y has no neighbour in V(K} 5(82(x))).
Since y has a neighbour in V(Py), there is an zy-path R; with one end f2(x) and with interior in the
vertex set of 31 (y)-Pi-bi-ba-Pa-fa2(x), which is therefore long. By Lemma 4.4, y has a neighbour in
V(Ps) not in Ag(x) and not adjacent to az(x); let R3 be an induced xy-path with interior in V(P3),
chosen with interior anticomplete to as(x) if j = 3. Let Ry be the path y-ay(y)-Pi-ai-a;-Pj-a;(x).
If ay(y) is distinct from and nonadjacent to 51(y), the three paths R;, Re, Rs form a long theta, a
contradiction. If a;(y) = B1(y), then the three paths Ry \ {y}, R2 \ {y}, @1(y)-y-R3-x form a long
theta, a contradiction. Thus «;(y), 81(y) are distinct and adjacent. This proves Lemma 4.5.

O

Lemma 4.6. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in G,
with constituent paths Py, Py, P3. Let x,y, z be K-major, such that y,z are both distant from x and
Y,z are nonadjacent. For all distinct i,5,k € {1,2,3}, either there is no yz-path of length at least
¢ — 2 with interior in A; j(x), or there is no yz-path of length at least £ — 2 with interior in V (Py).

Proof. Suppose that M is a yz-path of length at least ¢ — 2 with interior in A; ;(x), and My is
a yz-path of length at least ¢ — 2 with interior in V(Py). By Lemma 4.5, y, z each have exactly
two neighbours in A; j(«) and they are adjacent. By Lemma 4.2, y, z each have a third neighbour in
V(P;UPj), and this neighbour does not belong to A; j(z) and has no neighbour in A; ;(x), since (z,y)
and (z, z) are distant. Consequently there is an induced yz-path M3 with interior in V(P; U P;) and
anticomplete to M7 U M5; and Mj, Ma, M3 form a long theta, a contradiction. This proves Lemma
4.6.

O

Lemma 4.7. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths Py, Py, P3. Let x,y,z be K-major, such that y,z are both distant from x.
If there exist i,j € {1,2,3} such that y has no neighbour in V(P;) and z has no neighbour in V (P;)
then i = j.

16

Proof. Suppose that y has no neighbour in V(F;) and z has no neighbour in V(P;), and ¢ # j. By
Lemma 4.4, y, z are adjacent; and also by Lemma 4.4 (applied to x,y and to z, z), = has a neighbour
in each of V(P,),V(P,), V(P3). From Lemma 4.5, y, z each have exactly two neighbours in A; 2 3(x)
and they are adjacent, and from the symmetry we may assume that y, z have no neighbour in As(z).
Let R be the path «aj(z)-Pi-a1-as-Pe-as(z), and let the neighbours of y in V(R) be y1,y2, where
a1(z),y1, Y2, az(x) are in order in R. Define 21, z9 similarly. We may assume that aq(z),y1, 22, ae(x)
are distinct and in order in R. If the path ys-R-z; has length at least ¢ — 3, then there is a long
prism with bases {y,y1,v2}, {2, 21, 22}, and constituent paths

Y-z,
yo-R-21,
y1-R-aq (z)-z-ca(x)-R-29

and it is shorter than K, a contradiction. Thus yo-R-21 has length at most £—4 and so {y1, y2, 21, 22}
is a subset of one of A;j(x), A2(x); and we may assume that {yi,y2, 21,22} C Ai(x). So y,z have
no neighbours in As(x) and no neighbours in As(x), restoring the symmetry between P,, P3; and
therefore we may assume that ¢ = 3 and j = 2, that is, y has no neighbour in V(Ps) and z has no
neighbour in V(P,). By Lemma 4.1, y has a neighbour in V' (P») and z has a neighbour in V(P3).

If y; = 21 and hence yo = 29, there is a long prism with bases {a1, a2, as}, {y, 2z, y2} and constituent
paths

Yo-Pr-a,

y-az(y)-Po-as

z-a3(2)-Ps-as,
and it is shorter than K, a contradiction. So y; # z1, and therefore y, 2o are noadjacent. Then
there is a long theta with constituent paths

z-y-y1-Pr-oq (z)-z,

z-z9-R-ao(x)-,

and an induced zz-path with interior in V' (P3), a contradiction. This proves Lemma 4.7.

5 Cleaning lightest long near-prisms

In this section we will complete the proof of Theorem 3.1, by showing how to compute a cleaning
list for lightest long near-prisms.

Let Q be a set of paths of G, pairwise anticomplete. We define V' (Q) to be the union of the
vertex sets of the members of Q, and Q* to be the union of the interiors of the member of Q, and
the cost of Q to be the cardinality of V(Q).

Let K be a shortest long near-prism, with an ordered frame JF, and with constituent paths
Py, Py, P3, numbered according to F. A K-major vertex x is (K, F)-extremal if either

17

e there is a K-major vertex with no neighbour in V(P;), and z is chosen with no neighbour in
V(P1) and with Ag(z) maximal; or

e every K-major vertex has a neighbour in V' (Py), and x is chosen with A;(z) maximal.

Thus if z is (K, F)-extremal, and has a neighbour in V(P;), then every K-major vertex has a
neighbour in A;(x); and otherwise A;(x) = V(P1), and every K-major vertex has a neighbour in
V(P) U As(x). A (K, F)-contrivance consists of a quintuple (x,y, a, h, Q), where x,y are K-major
(possibly y = z), and z is (K, F)-extremal, and Q is a set of paths of K, pairwise anticomplete, and
a € Q* and h € {1,2}, such that:

e every K-major vertex is either adjacent to one of x,y or has a neighbour in Q;

e if x has a neighbour in V(P;) then h =1 and o = «;(x), and otherwise h = 2 and o = aa(x);
and

e cvery neighbour of = or y in A; 2(x) belongs to Q*.
Its cost is the cost of Q. From Lemma 4.6 we have:

Lemma 5.1. Let G be a prospect, and let K be a tidy shortest long near-prism in G with an ordered
frame F, and with a K-major vertex. Then there is a (K, F)-contrivance with cost at most 6¢ — 2.

Proof. Let Py, Py, P3 be the constituent paths of K. Choose z (K, F)-extremal, and let S be the set
of all K-major vertices that are distant from .

If x has a neighbour in V(Py) let h = 1 and o = 1 (), and otherwise let h = 2 and o = aa(x).
If has a neighbour in V(B;) for i = 1,2,3, let Q; be the path K5 '(ay(z)) for i = 1,2,3. If =
has neighbours in V(FP;),V(P;) and not in V(P), where {i,j,k} = {1,2,3} and i < j, let Q1 be
the path K5 (ai(z)), let Qo be the path K5 !(aj(z)), and let Q3 be the path K} ,(5i(z)). Every
K-major vertex has a neighbour in A 2 3(z), since z is (K, F)-extremal; and so every K-major vertex
nonadjacent to x either belongs to S or has a neighbour in one of @7, @3, Q3, from the definition
of “distant”. If S = (), let Q be the set of components of the graph induced on the union of the
vertex sets of Q1,Q2,Qs3; then (z,z,a,h, Q) is a (K, F)-contrivance satisfying the theorem, so we
may assume that S # ().

If every vertex in S has a neighbour in V(Ps), let k = 3, and otherwise let k& = 2; then by Lemma
4.7, every vertex in S has a neighbour in V' (Pg). Choose y € S with Ax(y) maximal, let Q4 be the
path Kf_4(ak(y)) and let (5 be a path of K of length 2¢ — 7 such that the two neighbours of y in
A o(x) are the two middle vertices of Qs.

(1) Every vertex in S nonadjacent to y has a neighbour in Q3 U Q5.

Let z € S be nonadjacent to y, and suppose it has no neighbour in Q) U 5. From the choice
of z, it follows that y, z both have a neighbour in A; 2(z), and so there is a yz-path M; of length
at least ¢ — 2 with interior in A 2(z); and M; has length at least £ — 2 since z has no neighbour
in Q. By Lemma 4.6, there is no yz-path of length at least ¢ — 2 with interior in Agz(x). Suppose
that & = 3; then from the choice of y, there is a yz-path with interior in A3(y), which has length
at least £ — 2 since z has no neighbour in @)}, a contradiction. So k = 2, and therefore some vertex
in S has no neighbour in V(Ps); and so by Lemma 4.4, x and z both have a neighbour in V(P;)

18

and in V(P); and z has a neighbour in As(y) from the choice of y. Hence there is a yz-path My
with interior in As(y), which has length at least ¢ — 2 since z has no neighbour in Q}. But x has
a neighbour in V(P;), and therefore y, z both have neighbours in A;(x) since z is (K, F)-extremal,
and so y, z have no neighbours in As(x) by Lemma 4.5; and it follows that M; has interior in V' (P}).
This contradicts Lemma 4.6, (taking ¢ = 1, j = 3 and k& = 2). This proves (1).

Let Q be the set of components of the graph induced on the union of the vertex sets of @1, ..., @s;
then (x,y,a, h, Q) is a (K, F)-contrivance satisfying the theorem. This proves Lemma 5.1.
O

If K is a tidy long near-prism, and F is an ordered frame for K, and the constituent paths of K
are Py, P, P3 numbered according to F, and x is K-major, let L(x) = A;(z) if has a neighbour
in V(P), and L(z) = V(P1) U Ay(z) otherwise. If K is a tidy, lightest long near-prism, then a
knowledge of the ordered frame F and of a (K, F)-contrivance (x,a, h, Q) allows us to reconstruct
L(xz), as the next result shows:

Lemma 5.2. Let G be a prospect, let K be a tidy lightest long near-prism in G, let F be an ordered
frame of K, with frame F, and let (x,y,a,h, Q) be a (K,F)-contrivance. Let Py, Ps, Py be the
constituent paths of K, numbered according to F, where P; has ends a;,b; as usual. Let s;,t; be the
a;-end and bi-end of F respectively, if they exist. Let Zy be the set of all vertices of G not in V(Q)
but with a neighbour in Q*, and let Zy be the set of all vertices adjacent to x or y that are not in

V(F) orin V(Q). Let Gy = G\ (Z1 U Z3).

o Ifh =1 (and therefore x has a neighbour in V(Py), and o = i (x), and sy is defined), then
s1-P1-aq is the lightest sia-path in G1.

o Assume that h =2 (and so x has no neighbour in V(P1), and oo = aa(x), and sz is defined). If
s1 is not defined, then Py is the a1bi-path in F'\ {ag,as,ba, b3}, and so-Py-ca(x) is the lightest
soa-path in Gy. If sy is defined, then si-Py-t1 is the lightest siti-path in G1, and sg-Pa-as(x)
is the lightest soa-path in G, where Go is obtained from G1 by deleting all vertices that belong
to or have a neighbour in V(s1-Pj-ty).

Proof. To prove the first bullet, we assume that h = 1, and so x has a neighbour in V(P;), and
therefore sy, are defined, and a = oy (x). The path s1-Pj-aq(z) is the locally lightest s; a1 (z)-path
in G1 by Lemma 3.3, and hence is the lightest sja-path in G;. This proves the first bullet.
For the second bullet, we assume that h = 2, and so = has no neighbour in V(P;), and therefore
x has a neighbour in V(P,) by Lemma 4.1; and so sg,t2 are defined and o = aa(z). If s1 is not
defined, then P is a path of F' as claimed, and so- Po-aa() is the locally lightest soao(x)-path in Gy
by Lemma 3.3, and hence is the lightest soa-path in GG1. So we assume that si,t; are defined. Then
s1-Pi-t1 is a locally lightest siti-path in G1, by Lemma 3.3, and hence is the lightest sit;-path in
G1. Similarly so-Pr-ao(x) is a locally lightest saag(z)-path in G2 (though not necessarily in Gp) by
Lemma 3.3, and so is the lightest soag(z)-path in Go. This proves the second bullet and so proves
Lemma 5.2.
O

Thus, if there is a lightest long near-prism K, with a given ordered frame F and a given (K, F)-
contrivance (z,y, a, h, Q), we can reconstruct L(x) algorithmically, using the construction of Lemma

19

5.2, in time O(|G[?). More exactly, if h = 1, then the first bullet of Lemma 5.2 gives a method to
compute Ay(z) = L(z). If h = 2, we first compute P; using the method of the second bullet of
Lemma 5.2; then compute Go; and then compute As(x), again using the method of the second bullet
of Lemma 5.2. In summary:

Lemma 5.3. There is an algorithm with the following specifications:

Input: A prospect G, a linear order of the edges of G, an ordered frame F in G, and a quintuple
(z,y,a, h, Q) where x,y,a € V(G) and Q is a set of pairwise anticomplete induced paths of G.

Output: A subgraph L of G, such that if there is a long near-prism in G, and the lightest long
near-prism K is tidy and has ordered frame F and (x,y,a, h, Q) is a (K, F)-contrivance, then
L = L(x).

Running time: O(|G?).

The good thing about having reconstructed L(x) is that every K-major vertex has a neighbour
in L(x), either in the interior of the path G[L(x)] or in Q*; and no vertices not in V(K \ L(z) have
such a neighbour, so now we can clean the K-major vertices. More exactly, let Z; be the set of all
vertices of G that are not in V(F) U V(Q) U V(L(z)) and have a neighbour either in Q* or in the
interior of a path of L(x); then Z4 UV (K) = () and every K-major vertex belongs to Z4. We obtain:

Lemma 5.4. There is an algorithm with the following specifications:

Input: A prospect G, a linear order of the edges of G, an ordered frame F in G, and a quintuple
(z,y,a,h, Q) where z,y,a € V(G) and h € {1,2}, and Q is a set of pairwise anticomplete
induced paths of G.

Output: A subset X C V(G), such that if there is a long near-prism in G, and the lightest long
near-prism K is tidy and has ordered frame F and (z,y,a, h, Q) is a (K, F)-contrivance, then
X contains all K-major vertices and is disjoint from V(K).

Running time: O(|G?).
We can now prove Theorem 3.1, which we restate:
Theorem 5.5. There is an algorithm with the following specifications:
Input: A prospect G.
Output: Decides whether G contains a long near-prism.
Running time: O(|G|?*3).

Proof. Fix a linear order of the edges of G. Enumerate all ordered frames F in G. For each one, let
F have frame F', and compute G1, the graph obtained from G by deleting all vertices not in F™* but
with a neighbour in F*, except the ends of F'. Compute the linear order of F(G1) induced from the
given linear order of E(G). Compute all quintuples (z,y, a, h, Q) where z,y € V(G1), and o € QF,
and h € {1,2}, and Q is a set of pairwise anticomplete induced paths of G with cost at most 6£ — 2.
Apply the algorithm of Lemma 5.4 to Gy, the linear order of E(G1), F and (x,y, a, h, Q), to obtain

20

a set X C V(Gy). Apply the algorithm of Theorem 3.4 to G1 \ X, the induced linear order of its
edge set, and the given frame. If this tells us that G; has a long near-prism, output this and stop. If
after examining all choices of (z,y, a, h, Q) we have not found a long near-prism, move to the next
ordered frame; and if after examining all ordered frames we have not found a long near-prism, report
that there is none.

There are only at most 3¢ vertices in a frame, and so only O(|G|3) different ordered frames to
examine. For each one, there are only O(|G|%) different quintuples (z,y,a,h, Q) to check, since
Q has cost at most 6/ — 2 and there are only at most 6/ — 2 choices for a. For each choice of the
quintuple, applying the algorithm of Lemma 5.4 takes time O(|G|?), and then applying the algorithm
of Theorem 3.4 takes time O(|G|?). So the total running time is O(|G|***3).

For correctness, certainly if the algorithm reports a long near-prism then this is correct. To check
the converse, suppose that GG contains a long near-prism, and let K be the lightest long near-prism.
Let F be an ordered frame for K. Since K has a tidy frame in G1, Lemma 5.1 implies that there is a
(K, F)-contrivance (z,y, a, h, Q) in G, where Q has cost at most 6¢ —2. When the algorithm checks
this ordered frame and this quintuple, the algorithm of Lemma 5.4 outputs a set X that contains all
K-major vertices and does not intersect V(K); so K is clean in G \ X. The algorithm of Theorem
3.4, applied to G1 \ X cannot output that there is no long near-prism that is the lightest among all
long near-prisms, and has ordered frame JF, and is clean, because there is one. Thus it will output

that GG1 contains a long near-prism. This proves correctness, and so proves Theorem 5.5.
O

6 Detecting a clean lightest long even hole

Let us say a graph G is a candidate if it contains no long even hole of length at most 2¢, no long
jewel of order at most ¢ + 1, no long theta, no long ban-the-bomb, and no long near-prism. Thus,
candidates are prospects.

Let C be a hole in a graph G. We recall that a vertex x € V(G) \ V(C) is C-major if no three-
vertex path of C contains all the neighbours of z in V(C), and C' is clean if there is no C-major
vertex. In this section we provide an algorithm to detect a clean lightest long even hole in a candidate
if there is one. We begin with:

Lemma 6.1. Let G be a candidate, and let C be a shortest long even hole in G, and let x be C'-major.
Then x has three pairwise nonadjacent neighbours in V(C'), and for every three-vertex path Q of C,
x has at least two neighbours in V(C)\ V(Q).

Proof. Since G is a candidate it follows that C' has length at least 2 4+ 2. If x has at least five
neighbours in V(C') then both claims are true, so we assume that x has at most four neighbours in
V(C), say v1,...,v in order, where 2 < k < 4. If k = 2 let P;, P» be the two vjve-paths of C, and
if k € {3,4} let P; be the v;v;11-path of C' not containing v;;o for 1 < i < k (reading subscripts
modulo k).

(1) For 1 <i <k, if P; has length at least ¢ — 2 then P; is odd, and the path C'\ P} has length at
least €+ 2.

If P; has length at least £ — 2, then (reading subscripts modulo k) the hole z-v;- Pj-v;4 -2 is long and

21

shorter than C, and therefore odd, and so P; is odd. Consequently C'\ P is also odd, since C is
even; and hence the paths C'\ P, vi-z-vy and v1-P;-vg form a long jewel, which therefore has order
at least £+ 2, that is, C'\ P/ has length at least £ + 2. This proves (1).

Let P; be the longest of Pi,..., P;. If Kk =2, then P; is long, and so (1) implies that the paths
Py, P, and vi-z-v9 form a long theta, a contradiction, so k > 3. Suppose that k = 3. If P, P3 both
have length at least three then both claims are true, so we may assume that P, has length at most
two. So Pj is long, and hence so is Ps, by (1), and therefore they are both odd, by (1) again. Thus
P, is even, and so has length two, and hence G[V(C)U{x}] is a long ban-the-bomb, a contradiction.
This proves that k = 4.

If two of P, Ps, Py have length at least two, then both claims are true; so we may assume that
P, has length one, and one of Ps, Py has length one, and therefore P; is long. Now there are two
cases. If P3 has length one then P; is long, by (1), and so G[V(C) U {z}] is a long ban-the-bomb, a
contradiction; and if P, has length one then P is long, by (1), and G[V(C')U{z}] is a long near-prism,
a contradiction. This proves Lemma 6.1.

O

Let C be a shortest long even hole. For u, v distinct and non-adjacent vertices in V' (C) we call a
uv-path @ a shortcut if V(Q) contains no C-major vertices and @) has length less than d¢(u,v). We
begin by proving the following.

Theorem 6.2. Let G be a candidate and let C' be a shortest long even hole in G. Then C has no
shortcut.

Proof. Suppose that G has a shortest long even hole C' with a shortcut . Thus |E(C)| > 2¢ + 2,
since G is a candidate. Choose C,Q to minimize |E(Q)|, and subject to that, to maximize d¢(u,v),
where u,v are the ends of Q. It follows that @* N V(C) = 0. Let @ have vertices u-qi-go- - - Qv
in order. It follows that @ has length k + 1, and so d¢(u,v) > k + 2. Consequently k > 1, since @
contains no C-major vertices.

(1) The set of neighbours of q1 in V(C) is a clique, and the same holds for qi, and qi,q; have
no common neighbour in V(C).

Suppose that ¢; has two nonadjacent neighbours in V(C), say x,y. Since ¢; is not C-major, there is
a vertex z of C such that x-z-y is a path of C, and every neighbour of ¢; in V(C) is one of z,y, z.
Let C’ be the hole induced on (V(C) \ {z}) U{q1}. Then C’ has the same length as C, and so is a
shortest even hole, and dev(q1,v) = de(z,v) > de(u,v) — 1. Let Q" = @ \ {u}. From the choice of
C, Q it follows that @’ is not a shortcut for C’, and so some vertex of ' is C’-major, and hence is
adjacent to ¢;. Consequently g2 is C’-major, and yet all its neighbours in V(C”) except ¢; lie in a
three-vertex path of C' and hence of C’, contrary to Lemma 6.1. This proves the first assertion of
(1). The second follows since d¢(u,v) > k + 2 > 4. This proves (1).

(2) If 1 < i < k and g; is adjacent to w € V(C) \ {u,v}, then do(u,w) = |E(R)|, where R is
the uw-path of C'\ {v}. The same holds with u,v exchanged.

Suppose not; then the shorter of the two ww-paths of C strictly includes one of the wwv-paths of

22

C, and so has length more than d¢(u,v), contradicting the choice of C, Q. This proves (2).
(3) One of g2, . ..,qx—1 has a neighbour in V(C).

Suppose not. By (1), q1 either has one, or two adjacent, neighbours in V(C), and the same for
qr- There are two minimal paths Ry, Ry of C' with one end adjacent to g; and the other to g, and
since the sum of their lengths is at least |E(C)| — 2 > 2/, we may assume that Ry is long. Let the
ends of Ry be u/,v" where v’ is adjacent to ¢; and v’ to . Let S be the u/v'-path of C different
from Rs, and let) be the path u/-q1-Q-qx-v'. Now Q' has the same length as @), and therefore less
than de(u,v) < |E(S)|. Consequently the hole ' U Ry has length less than C, and it is long and
therefore odd. So @', S have different parity. If R; is not long, then S has length at most £+ 1, and
so does (), and hence the paths S, Q’, Ry form a long jewel of order at most £ + 1, a contradiction.
So R is long.

Not both ¢, g have a unique neighbour in V(C'), since G contains no long theta, and they do
not both have two adjacent neighbours, since G contains no long near-prism. Thus we may assume
that ¢ has two adjacent neighbours z,v" in V(C'), and ¢x has exactly one (namely v = v’). Since
@', S have different parity, it follows that the hole x-q;-Q-v-R;-z is long, even, and shorter than C,
a contradiction. This proves (3).

Let L1 be a uv-path of C' such that one of go, ..., qr_1 has a neighbour in V(L1), and let Ly be
the other uv-path of C.

(4) Q* is anticomplete to L.
Choose i € {2,...,k — 1} such that ¢; has a neighbour w; in V(L;), and suppose that there ex-

ists j € {1,...,k} such that g; has a neighbour wy in V(L3). By exchanging u,v if necessary, we
may assume that ¢ < j. See figure 8.

v S
N
// ! \\
S 7 ! .
1// qj.‘ — W2
! | \
1 | \
| ! |
|
\\ , I!
|
W) a——047; !
N 1 //RQ
. ! -
-t
Ry

Figure 8: For step (4).

From the choice of C,Q it follows that wy,ws # u,v. For i = 1,2, let R; be the uw;-path of
C \ {v}, and let S; be the vw;-path of C'\ {u}. Let R;,S; have length r;,s; for i = 1,2. Each of
the paths u-q1-g;-w1, wi-g-- - - ¢j-w2, Wwa-q;-qi-v is strictly shorter than @ (because 2 <i <k —1),
and hence none of them is a shortcut. From (2), it follows that r;1 = deo(u,w;) < i+ 1, and

23

do(wy,we) < j—i+2,and s9 < k —j+ 2. Adding, we deduce that
r+do(wi,wa)+s2<(i+1)+(G—i+2)+(k—j+2)=k+5=|EQ)|+4

But do(wi,w2) = min(ry + 72,81 + s2). Suppose that do(wi,w2) = r1 + ro. It follows that
1+ (r1 +r2) + s2 < |E(Q)| + 4, but 72 + s2 > |E(Q)] since @ is a shortcut, and so r; < 1, and
therefore do(wy,v) > do(u,v)—1. But i > 1, and so wq-¢;-- - - - qr-v is a shortcut for C, contradicting
the choice of C, Q. Thus do(wy,ws) = s1 + s2 < 11 + 2.

Hence 71 + (51 + s2) + s2 < |E(Q)| + 4. But r; + 51 > deo(u,v) > |E(Q)|, and so so = 1. Since
u-Q-g;-wsz is not a shortcut for C that is shorter than @), it follows that j = k. Since r; <4+ 1 and

81+1=dc(w1,w2)Sj—i+2=k—i+2,

we deduce (adding) that m1 +s; < k+ 2. But m1 + s1 > |E(Q)| = k + 1, and so equality holds;
that is, 1 =i+ 1and s; = k—i¢+ 1, and 1 + s; = |[E(Q)| + 1. Hence r1 + s1 < ra + s9; and
since do(u,w2) < do(u,v) (from the choice of C, @, since otherwise u-Q-gi-w2 would be a short-
cut for C' contrary to the choice of u,v), it follows that ro + so = r1 + s1 = |E(C)|/2. Moreover,
we showed that ¢; = ¢, and wy is adjacent to v, on the assumption that ¢ < j; and it follows
from the symmetry that the only edges between Q* and L3 are the edge grws and possibly an
edge from ¢ to the neighbour (ws) say of u in Lo, say ws. If the latter edge does not exist, then
u-Q-qr-wa-Lo-u is an even hole, of length |E(C)| — 2, a contradiction; so ¢ is adjacent to ws. We
already showed that dc (w1, w2) = s1 + 1, and it follows by the same argument with u, v exchanged
that do(wy,ws) =11 +1 =1i+2, and so the path w3-q1--- - ¢;-w1 18 a shortcut for C, a contradiction.
This proves (4).

() [E(L1)] = [E(Q)] + 1 < [E(Ly)].

Choose ¢ € {2,...,k — 1} such that ¢; has a neighbour w € Lj. Since u-Q-g;-w and w-q;--- - Q-v
are not shortcuts for C, it follows from (2) that the sum of their lengths is at least |E(L;)|, and so
|E(Ly)| < |E(Q)| + 2. Since one of Ly, Lo is long (because |E(C)| > 2¢), it follows that the hole
QU L5 is long, and shorter than C', and therefore odd; and so), Lo have opposite parity. Since L1, Lo
have the same parity, and |E(L;)| > |E(Q)| > |E(L1)| — 2, we deduce that |E(L1)| = |E(Q)| + 1.
Since |E(L2)| > |E(Q)| = |E(L1)| — 1 it follows that |E(Ly)| < |E(Lg2)|. This proves (5).

By (5), we may number the vertices of Ly as u-cy----- Ck+1-v in order.
(6) For 1 < i<k, if g; is adjacent to ¢; where 1 < j < k+1, then j € {i,i+ 1}.

If i € {1,k} this is true since ¢i,qr are not C-major, so we may assume that 2 < ¢ < k — 1.
The path u-Q-g;-c; has length i + 1, shorter than @, and so is not a shortcut; and hence by (2),
Jj =dc(u,c;) <i+1. Since ¢j-¢;-Q-v is not a shortcut, it follows that k+2—j = dc(v,¢j) < k+2—1,
and so i < j. This proves (6).

By (3), (4) and (6), there exists i € {2,...,k — 1} such that ¢; is adjacent to one of ¢;, ¢; 11, and
by exchanging u, v if necessary, we may assume that ¢; is adjacent to ¢;. By (6),

u-c1- - -¢-qi-Q-v-Lo-u

24

is a hole C’ say. Since the paths ¢;-¢;1- - -cpy1-v and ¢-¢;- - - - - qr-v have the same length, it follows
that C’ has the same length as C, and so is a shortest long even hole. From the choice of C,Q, the
path u-g1-----g; is not a shortcut for C’. But its length is ¢ < dev(u, ¢;), and so one of its vertices
is C’-major. Hence there exists h € {1,...,7 — 1} such that g;, is C’-major and not C-major, and so
gn, has a neighbour in {g¢;,...,qt}. But g is nonadjacent to {¢+1,...,qx}, and therefore h =i — 1,
0 gi—1 is C'-major. By Lemma 6.1, at least two neighbours in ¢;—1 in V(C) are not in {¢;—1,¢;, i },
contrary to (4) and (6). This proves Theorem 6.2.

O

We will also need:

Theorem 6.3. Let C' be a clean shortest long even hole in a candidate G. Let u,v be distinct,
non-adjacent vertices in V(C') with dc(u,v) < |E(C)|/2—2, and let Ly, Lo be the two uv-paths of C
where |E(Ly)| < |E(C)|/2 —2. Then P U Ly is a shortest long even hole for every shortest uv-path
P in G.

Proof. Let P be a shortest uv-path in G, with vertices u-pi-----pg-v. Since C is clean, it follows
from Theorem 6.2 that P has the same length as L;. Suppose that for some ¢ € {1,...,k}, p; is
equal or adjacent to some w € L3. By Theorem 6.2, the path u-p;-- - - -p;~w (or u-p1-----p; if w = p;)
is not a shortcut for C, and so i +1 > de(u,w). Since i +1 < k+ 1 = |E(Ly)| it follows that
the shorter uw-path of C' is a subpath of Lo, and hence i +1 > d¢(u,w) = dp,(u, w). Similarly
k—i+42>dr,(w,v). Consequently

[E(P)|+2=k+32dp,(u,w) +dr,(w,v) = dr, (u,v) = |E(L2)| = |E(L1)| + 4,

a contradiction. This proves Theorem 6.3.

This can be strengthened: it is shown in [13] that

Theorem 6.4. Let C' be a clean shortest long even hole in a candidate G. Let u,v be distinct,
non-adjacent vertices in V(C), and let L1, Ly be the two uv-paths of C where |E(L1)| < |E(L3)|.
Then for every shortest uv-path P in G, either P U Lo is a clean shortest long even hole in G, or
|E(L1)| = |E(L2)| and P U Ly is a clean shortest long even hole in G.

We will not need this stronger form, however, so we omit it here.
Let us fix a linear order of the edges of G; then we can search for a lightest long even hole, instead
of just a shortest one, and it is easier to find if it exists. For instance, from Theorem 6.3 we obtain

Theorem 6.5. Let C be a lightest long even hole in a candidate G. Let u,v be distinct, non-
adjacent vertices in V(C) with do(u,v) < |E(C)|/2 — 2, and let Ly, Ly be the two uv-paths of C
where |E(Ly)| < |E(C)|/2 — 2. Then Ly is the lightest uv-path in G that contains no C-major
vertices.

Proof. Let P be the lightest uv-path in G that contains no C-major vertices, and let G’ be the graph
obtained from G by deleting all C-major vertices. Thus P is the lightest uv-path in G'. But C is
clean in G’, and so by Theorem 6.3, P U Ly is a shortest long even hole. It cannot be lighter than C,
and so P is not lighter than L;. On the other hand L; is not lighter than P, since P is the lightest
uv-path in G’. Hence P = Ly. This proves Theorem 6.5.

O

25

Now the main result of the section:
Theorem 6.6. There is an algorithm with the following specifications:
Input: A candidate G, and a linear ordering of E(G).

Output: Decides either that G has a long even hole or that there is no clean lightest long even hole
in G.

Running time: O(|G[*).

Proof. For all distinct u,v € V(G), compute a lightest uv-path Q(uv) = Q(vu), and compute the set
N (uv) of all vertices that belong to or have a neighbour in Q(uv)*. Enumerate all triples (v1, ve, v3)
of distinct vertices in GG, and check whether

Q(v1v2) U Q(v2v3) U Q(v3v1)

is a long even hole, and if so, report this and stop. If all triples are examined without success, report
that G contains no clean lightest long even hole. That concludes the description of the algorithm.

Each triple can be handled in time O(|G]) (by using the sets N(uv)), and so the total running
time is O(|G|*).

To prove correctness, let C be a clean lightest long even hole in GG; we must show that there is a
triple (v1,v2,v3) for which the algorithm will find a long even hole. Since C' has length at least 12
and hence |E(C)| < 3(|E(C)|/2 — 2), there exist v1,v2,v3 € V(C) such that each pair of vertices in
this triple is joined by a path of C of length at most |E(C)|/2 — 2 that does not contain the third
vertex in the triple. By Theorem 6.5 Q(v1v2), Q(v2v3) and Q(vsvy) are all paths of C' and they have
union C'. This proves 6.6.

O

7 Cleaning a shortest long even hole

Our method of cleaning is very much like that used for shortest long near-prisms, and the next result
is an analogue of Lemma 4.5. Let C' be a shortest long even hole in a candidate G. For a C-major
vertex x, we call a path P of C of length at least two a (C,z)-gap if both ends of P are neighbours
of z and no interior vertex of P is adjacent to . Thus, adding = to P yields a hole.

We begin with:

Lemma 7.1. Let C be a shortest long even hole in G, and let x,y be nonadjacent C-major vertices.
Let P be a (C,x)-gap of length at least £ — 2, with ends p1,p2. If y has a neighbour in V(P), then
either

e for some i € {1,2}, some neighbour v of y in V(P) satisfies dp(p;,v) <€ —5; or
e for some i € {1,2}, y is adjacent to a neighbour of p; in C; or

e y has exactly two neighbours in V(P) and they are adjacent.

26

Proof. Let (Q be the pipo-path of C different from P. Thus () has length at least three. The hole
x-p1-P-po-x is long and shorter than C, and so odd, and hence P,(Q are odd. Let R be the graph
obtained from @ by deleting its first two and last two vertices. We may assume that the first two
bullets of the theorem are false.

(1) and y have a neighbour in V(R).

By Lemma 6.1, = has a neighbour in V(R). Suppose that y does not. Since the first two bul-
lets of the theorem are false, it follows that all neighbours of y in V(C) belong to P*, and hence y
has two nonadjacent neighbours in V(P). Let P’ be the induced p; pa-path with interior in V(P)U{y}
that contains y. Since the first bullet of the theorem is false, it follows that P’ has length at least
2(¢ —4) + 2 > ¢, and so the hole z-pi-P’-po-z is long and shorter than C, and so odd. Hence P’ is
odd; but Q is also odd, and P’ U Q is a long even hole shorter than C, a contradiction. This proves

(1).

By (1), there is an induced xy-path with interior in V(R), say M. By hypothesis, y has at least
one neighbour in V(P). If y has only one neighbour v in V(P), then there is a long theta formed by
the two xv-paths with interior in V(P) and z-M-y-v, (because the first two paths both have length
at least ¢ — 3, and the third has length at least three) a contradiction. If y has two nonadjacent
neighbours in V(P), there is a long theta formed by the two induced zy-paths with interior in V' (P)
and M, again a contradiction. Hence y has exactly two neighbours in V' (P) and they are adjacent.

This proves Lemma 7.1.
O

Let C be a shortest long even hole. A C-contrivance is a six-tuple (z,y, p1, p2, m, Q), where

e x,y are C-major vertices (possibly y = x), and there is a (C,x)-gap P with ends pj,p2 and
midpoint m such that every C-major vertex has a neighbour in V(P);

e O is a set of paths of C, pairwise anticomplete;
e every neighbour of x or y in V(P) belongs to Q*; and
e 7,y and all C-major vertices nonadjacent to both x,y have a neighbour in Q*.

Its cost is the number of vertices in V(Q).
These objects will be the analogue of (K, F)-contrivances, and we will use them in the same way.
The next result is an analogue of Lemma 5.1.

Lemma 7.2. Let G be a candidate and let C be a shortest long even hole in G such that for some
C-major vertex x, there is a (C,xz)-gap. Then there is a C-contrivance with cost at most 40 — 4.

Proof. Choose a maximal path P of C such that there is a C-major vertex z for which P is a (C, z)-
gap. Let P have ends p1, p2, and let m be a midpoint of P. It follows that every C-major vertex has
a neighbour in V(P). For i € {1,2} let @Q; be the path of C whose vertex set consists of all vertices
of V(P) with P-distance at most £ — 4 from p; and the two vertices of V' (C') \ V(P) with C-distance
at most two from p;.

27

Let S be the set of all C-major vertices with no neighbour in Q7 U @3 U {z}. We may assume
that S # (0, because otherwise (z, z, p1, p2, m, Q) is a C-contrivance satisfying the theorem, where @
is the set of components of G[V(Q1 U @2)]. Hence @1, Q2 are vertex-disjoint. For each y € S, we
define P, to be the (C,y)-gap with p1 € P;. Choose y € S with [E(P,) \ E(P)| maximum, and let
p3, P4 be the ends of P, where p3 ¢ V(P). (By Lemma 7.1, one end of P, is not in V(P).) Since y
has no neighbour in Q7 U Q35U {z} and y has at least one neighbour in V' (P), it follows from Lemma
7.1 that y has exactly two neighbours in V(P) and they are adjacent. One of them is py4; let the
other be ps.

Let R denote the path pi-P,-p3. For i = 3,4, let (); be the path of C' whose vertex set consists
of all vertices of V' (P,) with Py-distance at most ¢ — 4 from p; and the two vertices of V(C)\ V(P,)
with C-distance at most two from p;. Then ps € Q.

Figure 9: For Lemma 7.2.
(1) Every C-major vertex has a neighbour in Q7 U Q35U Q5 U Q} U {x,y}.

Suppose that z is C-major and has no neighbour in this set. Thus z # x,y. Since z has a neighbour
in V(R) from the choice of y, it follows from Lemma 7.1 applied to z and P, that z has exactly two
neighbours in V(P,) and they are adjacent, say ri,r2. Since z has a neighbour in V(R) and z is not
adjacent to pi, it follows that 71,72 € V(R). Number them such that ps,r1, 72, p1 are in order in P,.
Since z has a neighbour in V(P), and no neighbour in p;-P-py4, there is a zps-path M with interior
in the vertex set of ps-P-ps. But then there is a long prism with bases {y, ps,ps}, {2,71,72}, and
constituent paths M, y-ps-Py-r1 and 72-Py-p4, a contradiction. This proves (1).

Let Q be the set of components of the subgraph induced on V(Q1) U---UV(Q4). From (1), it
follows that (x,y, p1,p2, m, Q) satisfies the theorem. This proves Lemma 7.2. O

If we know a C-contrivance (x,y, p1, p2, m, Q) for some lightest long hole C' (but we do not know
(), it is possible to construct a set X of vertices that contains all C-major vertices and does not
intersect C. To do so, we first need to reconstruct the path P (in the notation above). If we
could do that, then since every C-major vertex has a neighbour in one of P*, Q* and no vertex
in V(C)\ (V(P)UV(Q)) has such a neighbour, we would have the desired set X. So, how to
reconstruct P? As for long near-prisms, it is easier if C is the lightest long even hole, rather than
just the shortest, and then we would like to use Theorem 6.5 as the analogue of Lemma 3.3. There
is a slight problem that did not arise for long near-prisms: the path P we are trying to reconstruct

28

might have length more than |E(C)|/2 or close to that, and then we cannot use Theorem 6.5 directly.
But if we know a midpoint m of P, then m divides P into two subpaths that are short enough to
be reconstructed via Theorem 6.5. For that reason we put the extra vertex m in the definition of a
C-contrivance. We can now prove the main result of this section, an analogue of Lemmas 5.2, 5.3
and 5.4.

Theorem 7.3. There is an algorithm with the following specifications:
Input: A candidate G, and a linear ordering of E(G).

Output: A list of O(|G|*~1) sets with the following property: for every lightest long even hole C
there is some X in the list such that X contains all C-major vertices and X NV (C) = 0.

Running time: O(|G|**?)

Proof. First we output the set of all neighbours of y different from x, z, for every induced path z-y-z
in G.

Now guess three vertices x,y, m of G and a set Q of induced paths of G, pairwise anticomplete,
with cost at most 4¢ —4; and guess p1,p2 € V(Q). If one of x,y belongs to V(Q) or has no neighbour
in @, go on to the next guess.

Let Z; be the set of vertices in V(G) \ V(Q) with a neighbour in Q*. Let Z be the set of all
vertices in V(G) \ (V(Q) U {m}) with a neighbour in {z,y}. Let G' = G\ (Z1 U Z2), and let R, S be
the lightest pym-path and pam-path in G’ respectively. (If these do not exist, or if RU S is not an
induced path, go on to the next guess.) Let Z3 be the set of vertices in V(G) \ Q" with a neighbour
in {z,y} and a neighbour in the interior of R U S. Output Z; U Z3, and go on to the next guess.
That completes the description of the algorithm.

There are O(|G|*~1) guesses of (x,y, p1,p2, m, Q) to check (because py,p2 € V(Q)), and so the
output list has size O(|G|*~!). For each guess, we compute Z1, Zo, Z3 in time O(|G|3). Hence the
total running time is O(|G|**2).

Now we prove the output is correct. Suppose that C is a lightest long even hole in G. If every
C-major vertex is complete to V(C'), then the set X satisfies our requirement, where X is the set
of all neighbours of y different from x, z, for some three-vertex path xz-y-z of C. So we may assume
that some C-major vertex is not complete to V(C).

By Lemma 7.2, G contains a C-contrivance (x,y, p1, p2, m, Q) with cost at most 4¢ — 4. We will
show that when we guess this C-contrivance, we output the set X that we need. Let P denote the
(C, x)-gap with ends p1, p2 and with midpoint m. From the definition of Z;, no vertex of Z; belongs
to V(C), since the paths in Q are paths of C. It remains to show that Z3 N V(C) =), and every
C-major vertex belongs to Z; U Z3.

The path C'\ P* contains all neighbours of z in V(C), and so by Lemma 6.1, C'\ P* has length at
least four. Hence |E(P)| < |E(C)|—4, and so the paths p;-P-m and m-P-py both have length at most
[|E(P)|/2] < |E(C)|/2 — 2. Moreover, p1-P-m is a path of G’, and so the algorithm will compute
the lightest pym-path R in G’, since such a path exists. So p;-P-m is not lighter than R. But R
contains no C-major vertices of G, and by Theorem 6.5, the path pi-P-m is the lightest pym-path
of G that contains no C-major vertices, so R is not lighter than p;-P-m. Consequently R equals the
path pi-P-m. Similarly S is the path m-P-py, and so RUS = P. Consequently Z3 NV (C) = 0.

Now suppose that z is a C-major vertex not in Z;; we must show that z € Z3. Since every
C-major vertex that is nonadjacent to both x,y has a neighbour in Q*, it follows that z is adjacent

29

to one of x,y. Also z has a neighbour in V(P), since every C-major vertex has a neighbour in V' (P);
and so z has a neighbour in P*. Thus z € Z3, as required. This proves correctness, and so proves
Theorem 7.3.

O]

8 The main algorithm

Now we prove our main result Theorem 1.1, which we restate:

Theorem 8.1. For each even integer £ > 4 there is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has an even hole of length at least .

Running time: O(|G|?+3).

Proof. The algorithm is as follows. At each step, if we find that G contains a long even hole, we
output that fact and stop, so in steps 1,2,3,4,5,7 we can assume the algorithm called at that step
outputs the negative answer. Fix a linear ordering of E(G).

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Apply the algorithm of Theorem 2.1 to test whether GG contains a long even hole of length
at most 2¢ in time O(|G|?).

Apply the algorithm of Theorem 2.2 to test whether G contains a long jewel of order at
most £ + 1 in time O(|G|?*+1).

Apply the algorithm of Theorem 2.4 to test whether G contains a long theta in time
OGP,

Apply the algorithm of Theorem 2.5 to test whether G contains a long ban-the-bomb, in
time O(|G|?*1). (If we have not yet found a long even hole, then G is a prospect.)

Apply the algorithm of Theorem 3.1 to test whether G contains a long near-prism, in time
O(|G|**3). (If we have still not found a long even hole, then G is a candidate.)

Apply the algorithm of Theorem 7.3 to obtain a list £ of subsets of V(G) of length
O(|GI*1Y) in time O(|G|**2), with the property that for every lightest long even hole
C of G there exists X € £ with X N V(C) = () that contains all C-major vertices.

For every X € L, apply the algorithm of Theorem 6.6 to G \ X, to decide that either G\ X
has a long even hole, or G'\ X has no clean lightest long even hole, in time O(|G|*) for each
X, and so in time O(|G[**3) altogether.

Output that G has no long even hole.

For correctness, certainly if the algorithm returns that G has a long even hole then that is true.
For the converse, suppose that G has a long even hole, and hence a lightest long even hole C' say.
Steps 1-5 will either output that there is a long even hole or decide that G is a candidate, and we

30

may assume the latter. Hence, with £ is computed in step 6, there exists X € £ disjoint from V(C)
and containing all C-major vertices. Then in step 7, since C' is a clean lightest long even hole of
G \ X, the algorithm of Theorem 6.6 cannot report that G\ X has no clean lightest long even hole,
and so it will report that G \ X has a long even hole, and we return this fact correctly.

For the running time, testing whether G is a candidate (steps 1-5) takes time O(|G|***3), and
determining whether the candidate G contains a long even hole (steps 6-8) takes time O(|G|**3).
Hence, the total running time is O(]G|***2). This proves Theorem 8.1. O

References

[1] H.-C. Chang and H.-I. Lu, “A faster algorithm to recognize even-hole-free graphs” J. Combina-
torial Theory, Ser. B 113 (2015), 141-161.

[2] H-T. Cheong and H.-I. Lu, “Finding a shortest even hole in polynomial time”,
arXiv:2008.06740.

[3] Maria Chudnovsky, Ken-Ichi Kawarabayashi and Paul Seymour, “Detecting even holes”, J.
Graph Theory 48 (2005), 85-111.

[4] Maria Chudnovsky, Alex Scott and Paul Seymour, “Detecting a long odd hole”, submitted for
publication, arXiv:1904.12273.

[5] Maria Chudnovsky and Paul Seymour, “The three-in-a-tree problem”, Combinatorica 30 (2010),
387-417.

[6] Maria Chudnovsky and Rohan Kapadia, “Detecting a theta or a prism”, SIAM J. Discrete
Mathematics 22 (2008), 1164-1186.

[7] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vuskovié¢, “Recognizing Berge
graphs”, Combinatorica, 25 (2005), 143-186.

[8] Maria Chudnovsky, Alex Scott, Paul Seymour and Sophie Spirkl, “Detecting an odd hole”, J.
Assoc. Comput. Mach., 67 (2020), 1-12, arXiv:1903.00208.

[9] Maria Chudnovsky, Alex Scott and Paul Seymour, “Finding a shortest odd hole”, submitted for
publication, arXiv:2004.11874.

[10] Maria Chudnovsky, Alex Scott, Paul Seymour and Sophie Spirkl “Proof of the Kalai-Meshulam
conjecture”, Israel J. Math., to appear, arXiv:1810.00065

[11] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuskovié¢, “Even-hole-free graphs part I: Decom-
position theorem”, J. Graph Theory 39 (2002), 6-49.

[12] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuskovié¢, “Even-hole-free graphs part II: Recog-
nition algorithm”, J. Graph Theory 40 (2002), 238-266.

[13] Linda Cook, PhD thesis, Princeton University, in preparation.

31

[14] Frédéric Maffray and Nicolas Trotignon, “Algorithms for perfectly contractile graphs”, STAM J.
Discrete Mathematics 19 (2005), 553-574.

[15] Kai-Yuan Lai, Hsueh-I Lu and Mikkel Thorup, “Three-in-a-tree in near linear time”, Proc. 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, 1279-1292.

[16] Sepehr Hajebi, private communication, 2019.

32

	Introduction
	The easily-detectable configurations
	Detecting a clean lightest long near-prism
	Major vertices on near-prisms
	Cleaning lightest long near-prisms
	Detecting a clean lightest long even hole
	Cleaning a shortest long even hole
	The main algorithm

