
Detecting a long even hole

Linda Cook
Princeton University, Princeton, NJ 08544, USA

Paul Seymour1

Princeton University, Princeton, NJ 08544, USA

August 28, 2019; revised September 24, 2020

1Partially supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.

Abstract

For each integer ` ≥ 4, we give a polynomial-time algorithm to test whether a graph contains an
induced cycle with length at least ` and even.

1 Introduction
All graphs in this paper are finite and have no loops or parallel edges. A hole in a graph is an induced
subgraph which is a cycle of length at least four. The length of a path or cycle A is the number
of edges in A and the parity of A is the parity of its length. For graphs G,H we will say that G
contains H if some induced subgraph of G is isomorphic to H. We say G is even-hole-free if G does
not contain an even hole. We denote by |G| the number of vertices of a graph G. A graph algorithm
is polynomial-time if its running time is at most polynomial in |G|.

This paper concerns detecting holes in a graph with length satisfying certain conditions. It is
of course trivial to test for the existence of a hole of length at least `, in polynomial time for each
constant ` ≥ 4, as follows. We enumerate all induced paths P of length `− 2. For each choice of P ,
let its ends be x and y, let P ∗ = V (P)\{x, y}, and let N be the set of vertices different from x, y that
belong to or have a neighbour in P ∗. Then we check whether x and y are in the same component
of G \N . This depends on ` being fixed; if ` is part of the input, then the problem is NP-complete,
because it contains the hamilton cycle problem.

But the problem is much less trivial if we impose restrictions on the parity of the hole length,
or more generally on its residue class modulo some fixed number. Sepehr Hajebi [16] provided a
proof in private communication that if ` is part of the input, then detecting holes of length at least
` in a specific residue class is W[1]-hard, and thus not fixed-parameter tractable unless the central
conjecture of parameterized complexity theory (that “FPT 6= W[1]”) is false. More exactly, for all
integers m, r with m ≥ 2 and 0 ≤ r < m, if there is an algorithm that, with input G, `, determines in
time O(f(`)p(|G|)) whether G contains a hole C of length at least ` and with |E(C)| ∼= r mod m,
where f is some computable function and p is a polynomial, then FPT = W[1]. But this is different
from what we are doing in this paper: we are working with ` fixed, and Hajebi wants ` part of the
input.

Here is an overview of positive results about algorithms to detect even and odd holes, with odd
holes first:

• In 2005, Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [7] gave an O(|G|9) algorithm to
test whether a graph G or its complement has an odd hole.

• In 2019, Chudnovsky, Scott, Seymour, and Spirkl [8] gave an algorithm to detect an odd hole
in G in time O(|G|9); and Lai, Lu and Thorup [15] improved this running time to O(|G|8).

• Also in 2019, Chudnovsky, Scott and Seymour [4] gave a O(|G|20`+40) algorithm to test whether
G contains an odd hole of length at least `, where ` is any fixed number.

• In 2020, Chudnovsky, Scott and Seymour [9] gave an O(|G|14) algorithm that finds a shortest
odd hole in G (if there is one) in time O(|G|14).

For even holes the story is a little different:

• In 2002, Conforti, Cornuéjols, Kapoor and Vuškovíc [12] gave an approximately O(|G|40) al-
gorithm to test whether a graph contains an even hole, by using a structure theorem about
even-hole-free graphs from an earlier paper [11].

• In 2003, Chudnovsky, Kawarabayashi, and Seymour [3] provided a simpler algorithm that
searches for even holes directly in O(|G|31).

1

• In 2015, Chang and Lu [1] gave an O(|G|11) algorithm to determine whether a graph contains
an even hole; and Lai, Lu and Thorup [15] improved this running time to O(|G|9) in 2020.

• In 2020, Hou-Teng Cheong and Hsueh-I Lu [2] pointed out that the algorithm of [3], designed
to test for an even hole, actually outputs a shortest even hole if there is one. (A comment from
Seymour: I believe that, shortly after writing that paper, we noticed that it finds a shortest
even hole. But we never got around to modifying the paper to say so, and the fact that we
could do it was eventually forgotten. So its rediscovery by Cheong and Lu was valuable.)

One analogue of what has been done for odd holes is still open for even holes, namely the problem
of detecting long even holes. That is what is solved in this paper.

We remark that even versus odd has been almost the entire focus of previous research, but what
about holes of length a multiple of three, can we detect them in polynomial time? Triangle-free
graphs with no holes of length a multiple of three have some very interesting properties [10], but we
currently have no idea how to recognize such graphs.

Since we are looking for even holes of length at least `, we might as well assume that ` is even.
Our main result is the following:

Theorem 1.1. For each even integer ` ≥ 4, there is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has an even hole of length at least `.

Running time: O(|G|9`+3).

Our algorithm combines approaches described in [3] and [4]. The algorithm uses a technique called
“cleaning”, as do the algorithms of [3], [4] and many other algorithms to detect induced subgraphs.

Here is an outline of the method. The result is clear if ` = 4, so we might as well assume that
` ≥ 6; and throughout the paper ` ≥ 6 is a fixed even integer, and a long hole or path is a hole or
path of length at least `. A shortest long even hole is a long even hole of minimum length. If C is a
hole in G, a vertex v of V (G) \ V (C) is C-major if there is no three-vertex path of C containing all
neighbours of v in V (C). A hole C is clean if it has no C-major vertex.

• First, we test for the presence in the input graph G of certain kinds of induced subgraphs
(“short” long even holes, “long jewels of bounded order”, “long thetas”, “ long ban-the-bombs”,
“long near-prisms”) that are detectable in polynomial time (sometimes, under the assumption
that earlier graphs in this list are not present) and whose presence would imply that G contains
a long even hole. We call these kinds of subgraphs “easily-detectable configurations.” We may
assume these tests are unsuccessful.

• Second, we generate a cleaning list, a list of polynomially many subsets of V (G) such that if C is
a shortest long even hole in G, then for some set X in the list, X contains every C-major vertex
and no vertex of C. This process depends on the absence of easily-detectable configurations.

• Third, for every X in our cleaning list we check whether G \X contains a clean shortest long
even hole. This also depends on the absence of easily-detectable configurations. We detect a
clean shortest long even hole C by guessing three evenly-spaced vertices along C and taking
shortest paths between them.

2

We are calling long near-prisms easily-detectable configurations, but “easily” might be a mis-
nomer, because this is by far the computationally most expensive step of the algorithm, and the bulk
of what is novel in the paper. For a general graph G, deciding whether G contains a long near-prism
is NP-complete; Maffray and Trotignon’s proof [14] that deciding whether G contains a prism is
NP-complete can easily be adjusted to prove that deciding whether G contains a long near-prism is
NP-complete. Fortunately it really is easy to detect the other “easily detectable” configurations, so
we can assume there are none; and in such graphs we can detect the presence of long near-prisms in
polynomial time.

The approach of determining whether G contains an even hole by first testing whether G contains
a theta of a prism was outlined in [3]. Moreover, Chudnovsky and Kapadia gave an algorithm to
decide whether G contains a theta or a prism in [6]. Their algorithm does not translate directly to
long theta and long near-prism detection, but we were able to use a similar algorithmic structure for
our purposes.

2 The easily-detectable configurations
The interior P ∗ of a path P is the set of vertices of P that are not ends of P . Thus P ∗ = ∅ for a
path P of length at most one. If X,Y ⊆ V (G), we say X is anticomplete to Y if X ∩ Y = ∅ and no
vertex in X is adjacent to a vertex in Y . We begin with a test for what we called “short” long even
holes:

Theorem 2.1. For each integer k ≥ `, there is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has a long even hole of length at most k.

Running time: O(|G|k).

Proof. We enumerate all vertex sets of size `, `+ 1, . . . , k and for each one, check whether it induces
an even hole.

We need the following easily-detectable configuration of [4] (slightly modified). Let u, v ∈ V (G)
and let Q1, Q2 be induced paths between u, v of different parity. Let P be an induced path between
u, v of length at least ` −min(|E(Q1)|, |E(Q2)|), such that P ∗ is anticomplete to Q∗1 ∪ Q∗2. We say
the subgraph induced on V (P ∪Q1 ∪Q2) is a long jewel of order max (|V (Q1)|, |V (Q2)|) formed by
Q1, Q2, P . Any graph containing a long jewel has a long even hole, since the holes P ∪Q1 and P ∪Q2
are both long holes and one of them is even.

We need a slight extension of Theorem 2.2 of [4]:

Theorem 2.2. There is an algorithm with the following specifications.

Input: A graph G and an integer k ≥ 0.

Output: Decides whether G has a long jewel of order at most k.

Running time: O(|G|n) where n = k + 1 + max(k, `− 1).

3

Proof. We enumerate all triples of induced paths Q1, Q2, R of G, such that:

• Q1, Q2 join the same pair of vertices, say u, v;

• one of Q1, Q2 is odd and the other is even, and each has at most k vertices;

• R has length ` − min(|E(Q1)|, |E(Q2)|) − 2 (or zero if this number is negative), and has one
end u and the other some vertex w say;

• no vertex of V (R) \ {u} equals or has a neighbour in V (Q1 ∪Q2) \ {u}.

For each such triple of paths, let X be the set of vertices of G that are different from and nonadjacent
to each vertex of V (Q1 ∪Q2 ∪R) \ {v, w}. We test whether there is a path in G[X ∪{w, v}] between
w, v. If so we output that G contains a long jewel of order at most k. If no triple yields this outcome,
we output that G has no such long jewel.

To see the correctness of the algorithm, certainly the output is correct if G contains no long jewel
of order at most k. Suppose then it does, say formed by Q1, Q2, P . Let u, v be the ends of P , and
let R be the subpath of P of length `−min(|E(Q1)|, |E(Q2)|)−2 (or zero if this number is negative)
with one end u. When the algorithm tests the triple Q1, Q2, R, it will discover there is a path in
G[X ∪ {w, v}] between w, v, because the remainder of P is such a path. Consequently the output is
correct.

The running time is O(|G|2) for each triple of paths, and there are at most |G|n such triples
where n = k − 1 + max(k, `− 1), so the running time is as claimed. This proves Theorem 2.2.

Figure 1: A theta (dashed lines mean paths of arbitrary positive length)

A theta is a graph consisting of two non-adjacent vertices u, v and three paths P1, P2, P3 joining
u, v with pairwise disjoint interiors, and we say P1, P2, P3 form a theta. The union of any two of
P1, P2, P3 is a hole, and a long theta is a theta where all three holes are long. If G contains a long
theta, then it contains a long even hole, because at least two of P1, P2, P3 must have the same parity.
To detect long thetas, we use the “three-in-a-tree” algorithm of [5], the following:

Theorem 2.3. There is an algorithm with the following specifications:

Input: A graph G and three vertices v1, v2, v3 of G.

Output: Decides whether there is an induced subgraph T of G with v1, v2, v3 ∈ V (T) such that T is
a tree.

Running time: O(|G|4).

Chudnovsky and Seymour’s algorithm in [5] to detect a theta in a graph G can be adjusted to
detect a long theta, as follows:

Theorem 2.4. There is an algorithm with the following specifications:

4

Input: A graph G.

Output: Decides whether G contains a long theta.

Running time: O(|G|2`−1).

Proof. The algorithm is as follows. Say (temporarily) a claw is a graph that is the union of three
pathsQ1, Q2, Q3, with a common end a and otherwise vertex-disjoint, of lengths k1, k2, k3 respectively
where k1, k2, k3 ≥ 2, and k1 + k2, k2 + k3, k3 + k1 ≥ `− 2, and k1 + k2 + k3 ≤ 2`− 6. If three paths
P1, P2, P3 of G form a long theta, then P1 ∪P2 ∪P3 includes a claw which is an induced subgraph of
G. (To see this, if P1, P2, P3 all have length at least `/2 take Q1, Q2, Q3 all of length `/2− 1, and if
say P3 has length less than `/2, take Q3 = P3 and Q1, Q2 of length `− 2− |E(P3)|.) Conversely, if
three paths form a theta that includes a claw, then the theta is long.

Let B be a claw in G, and let q1, q2, q3 be its three vertices of degree one in B. Let G′ be the graph
obtained from G by deleting all vertices different from q1, q2, q3 that belong to or have a neighbour
in V (B) \ {q1, q2, q3}. Then B is an induced subgraph of a theta (and hence of a long theta) in G if
and only if there is an induced tree T containing q1, q2, q3 in G′.

So the algorithm is: enumerate all induced claws, and for each one, check if there is an induced
tree as above. Since claws have at most 2` − 5 vertices, there are only O(|G|2`−5) of them, so the
running time is O(|G|2`−1). This proves Theorem 2.4.

Lai, Lu and Thorup [15] provide a faster algorithm for the three-in-a-tree problem. Using
their O(|E(G)|(log |G|)2) algorithm we can reduce the running time for detecting a long theta to
O(|G|2`−3(log |G|)2), but this improvement does not affect the asymptotic running time of our long
even holes detection algorithm.

For brevity, it is convenient to describe enumerating all subgraphs of a certain type as “guessing”
subgraphs of that type. In this language the algorithm can be written as follows: We guess the paths
Q1, Q2 and Q3 and test whether q1, q2, q3 are contained in some induced tree of G′.

We call a path P with ends x, y an xy-path. If P is a path, and x, y ∈ V (P), we denote the subpath
of P with ends x, y by x-P -y. A path with vertices v1, . . . , vk in order is denoted by v1- · · · -vk. If
P,Q are paths with ends u, v and v, w respectively, and their union is a path with ends u,w, we
denote this path by u-P -v-Q-w; and extend this notation for longer concatenations similarly.

Let us say a ban-the-bomb is a graph consisting of

• a cycle u-v1-w-v2-u of length four, and possibly the edge uw (but we insist that v1, v2 are
nonadjacent); and one further vertex x adjacent to u, and nonadjacent to v1, v2, w; and

• for i = 1, 2, an xvi-path Pi of length at least two, where P ∗i is anticomplete to {u, v, w}, and
V (P1) \ {x} is anticomplete to V (P2) \ {x}.

Thus it has three holes; and it is long if all three holes are long. It is easy to see that every graph
containing a long ban-the-bomb has a long even hole.

5

v1 v2
w

u

x

Figure 2: A ban-the-bomb. The dotted line is a possible edge.

If there is no long theta, we can also search for long ban-the-bombs using the three-in-a-tree
algorithm, as follows.

Theorem 2.5. There is an algorithm with the following specifications:

Input: A graph G with no long theta.

Output: Decides whether G contains a long ban-the-bomb.

Running time: O(|G|2`+1).

Proof. Let us say a bomb is a graph consisting of a path R of length 2`−6, with middle three vertices
v1-w-v2 in order and two more vertices u, v, where u is adjacent to v1, v2 and possibly to x, but to
no other vertices of R, and x adjacent to u but to no vertex of R.

v1 v2
w

u

x

q1 q2

Figure 3: A bomb. The dashed lines are paths of length 2` − 6, and the dotted line is a possible
edge.

If there is a long ban-the-bomb in G, with vertices u, v1, v2, w, x and paths P1, P2 as in the
definition, then P1, P2 both have length at least ` − 2. For i = 1, 2 let Qi be the subpath of Pi

of length ` − 4 with one end vi, and let qi be the other end of Qi; then the subgraph induced on
V (Q1 ∪ Q2) ∪ {u,w, x} is a bomb. To search for long ban-the-bombs, we enumerate all induced
subgraphs of G that are bombs. For each such induced bomb B, let L be its three vertices of degree
one; check if there is an induced tree containing the vertices in L, in the graph obtained from G by
deleting all vertices not in L that belong to or have neighbours in V (B) \ L. If so, output that G

6

contains a long ban-the-bomb and stop. If no bomb has such a tree, output that there is no long
ban-the-bomb.

This concludes the description of the algorithm. A bomb has 2` − 3 vertices, so there are
O(|G|2`−3) choices for the bomb, and the running time is O(|G|2`+1).

If a bomb is contained in a long ban-the-bomb, then such a tree exists, and the outcome is correct,
but the converse is less clear. Suppose that for some bomb B there is a tree T as described in the
algorithm. Let R be as in the definition of a bomb, with ends q1, q2 where q1, v1, w, v2, q2 are in order.
There is a vertex t ∈ V (T) and three paths T1, T2, T3 of T (possibly of length zero) between t and
q1, q2, x respectively, pairwise anticomplete except for t. For i = 1, 2, the hole t-Ti-qi-R-v1-w-x-T3-t
is long for i = 1, 2, since Ti ∪ T3 has length at least two; so if t 6= x, there is a long theta formed
by the paths t-Ti-qi-R-vi-u for i = 1, 2, and the path t-T3-x-u, a contradiction. Thus t = x, and we
have a long ban-the-bomb. This proves correctness.

A triangle is a graph consisting of three pairwise adjacent vertices. A near-prism is a graph
consisting of two triangles with vertex sets {a1, a2, a3} and {b1, b2, b3}, sharing at most one vertex,
and three pairwise vertex-disjoint paths P1, P2, P3, such that Pi has ends ai and bi for i ∈ {1, 2, 3},
and it is long if the subgraph induced on V (Pi ∪ Pj) is a long hole for all distinct i, j ∈ {1, 2, 3}.
It is a prism if the two triangles are vertex-disjoint. We call P1, P2, P3 the constituent paths of the
near-prism. It is easy to see that every graph with a long near-prism has a long even hole.

Figure 4: Near-prisms.

3 Detecting a clean lightest long near-prism
Our next goal is a poly-time algorithm to test whether G contains a long near-prism, for graphs G
that contain none of the other easily-detectable configurations; and this and the next two sections
are devoted to this. Let us say a graph G is a prospect if G contains no long even hole of length at
most 2`, no long jewel of order at most `+ 1, no long theta and no long ban-the-bomb. We will show
the following (the outline of this algorithm is like that of [6]):

Theorem 3.1. There is an algorithm with the following specifications:

Input: A prospect G.

Output: Decides whether G contains a long near-prism.

Running time: O(|G|9`+3).

We need:

Lemma 3.2. Let G be a prospect, and let K be a long near-prism in G, with constituent paths
P1, P2, P3. Then at least two of P1, P2, P3 have length at least `.

7

Proof. Suppose that P1, P2 both have length less than `. Then the long hole induced on V (P1 ∪ P2)
is odd, since its length is between ` and 2`, and G is a prospect; and so the paths a3-a1-P1-b1-b3 and
a3-a2-P2-b2-b3 have different parity. Hence these two paths with P3 form a long jewel of order at
most `+ 1, a contradiction. This proves Lemma 3.2.

For a graph G and x, y ∈ V (G), we call the length of a shortest xy-path in G the G-distance
between x and y and denote it by dG(x, y). Let us say a frame F is a graph with the following
properties:

• F is the union of two triangles with vertex sets A,B with at most one vertex in common, and
three graphs F1, F2, F3 that are pairwise vertex-disjoint; and each of F1, F2, F3 has exactly one
vertex in A and one in B;

• for 1 ≤ i ≤ 3, Fi is either a path with one end in A and the other in B of length at most `− 1,
or the disjoint union of two paths, both of length exactly `/2 − 1, one with an end in A and
the other with an end in B (it follows that if the triangles share a vertex then one of the Fi is
a path of length zero); and

• at most one of F1, F2, F3 is a path.

Figure 5: Frames

We call A,B the bases of the frame. A frame in G means an induced subgraph of G that is a
frame. The ends of a frame F are its vertices of degree one, and the set of vertices of F that are not
ends of F is denoted by F ∗.

If K is a near-prism in a prospect G, then K is long if and only if K contains a frame, by Lemma
3.2. (Indeed, every long near-prism contains a unique frame, which we denote by FK .) Thus if at
some stage we have a frame F in the input prospect G, and we find a near-prism K of G containing
F , then we know that K is long without having to check the lengths of the missing parts of its
constituent paths; and conversely, if there is a long near-prism K in G, and we examine all frames
in G and test, for each one, whether it is contained in a long near-prism, then eventually we will
test FK and report success. (Enumerating all frames can be done in polynomial time, since frames
have a bounded number of vertices; the more difficult issue is to handle a given frame in polynomial
time.)

That is our basic method, to try all frames and see if they can be extended to long near-prisms.
But it is helpful to have a little more information about the long near-prism we are looking for than
just its frame. For instance, for the first frame in figure 5, we would like to know which vertex of
the left triangle corresponds to which one of the right. Let us say an ordered frame F consists of a
frame F together with a linear ordering of both of its bases. Let K be a long near-prism and let FK

be its frame. Let K have constituent paths P1, P2, P3, where |E(P1)| ≤ |E(P2)| ≤ |E(P3)|, and for
1 ≤ i ≤ 3 let Pi have ends ai, bi. Then these six (or possibly, five) vertices belong to the two bases

8

of FK , and we would like to know this labelling. We define FK to be the ordered frame consisting
of FK and the orderings a1 < a2 < a3 and b1 < b2 < b3, and call it an ordered frame of K. (It is not
quite unique, because two of P1, P2, P3 might have the same length.)

If F is an ordered frame of a long near-prismK, with bases {a1, a2, a3}, {b1, b2, b3} and constituent
paths P1, P2, P3, where Pi has ends ai, bi for i = 1, 2, 3, we say that P1, P2, P3 are numbered according
to F if the orderings of F are a1 < a2 < a3 and b1 < b2 < b3.

IfK is a long near-prism in G, we call a vertex q ∈ V (G)\V (K) K-major if there is no three-vertex
path of K containing all neighbours of q in V (K), and we say K is clean if there are no K-major
vertices. We call a long near-prism K ′ shorter than a long near-prism K if |V (K ′)| < |V (K)|, and
thereby define a shortest long near-prism.

We will test for long near-prisms as follows. Shortest long near-prisms have special properties
that make them easier to detect than general long near-prisms, so we will hunt for a near-prism with
these special properties. Sometimes it is convenient to pin down the target even further: we will
hunt for the “lightest” long near-prism, the lexicographically earliest of all shortest long near-prisms.

To do this we will first guess its ordered frame: so now we need a poly-time algorithm that, given
an ordered frame, will test whether there is a lightest long near-prism with this ordered frame. This
comes in two phases:

• Given an ordered frame, we generate a “cleaning list” of polynomially many sets of vertices,
such that for every shortest long near-prism K of G with the given ordered frame, there exists
X in the list such that K is clean in G \X; that is, X is disjoint from V (K), and X contains
all K-major vertices. This is explained in section 5.

• For each X in this cleaning list, we search for a clean lightest long near-prism with the given
ordered frame in G \X. This algorithm is explained in the remainder of this section.

A long near-prism K in G is tidy if F ∗K is anticomplete to V (G) \ V (K). If we have a frame F in
G, and we are trying to test if there is a long near-prism K with FK = F , we might as well delete all
vertices of G not in V (F) that have a neighbour in F ∗, because no such vertex belongs to V (K). If
G′ is the graph that remains, and the long near-prism we are looking for exists, then it is tidy in G′.

Lemma 3.3. Let G be a prospect, and let K be a tidy shortest long near-prism in G, with constituent
paths P1, P2, P3. For all distinct i, j ∈ {1, 2, 3}, there is no induced path Q of G with one end in
V (Pi) and the other in V (Pj), such that

• V (Q) is anticomplete to V (Pk) where k ∈ {1, 2, 3} \ {i, j};

• no vertex of Q∗ is K-major; and

• 2|E(Q)| ≤ 1 + min(|E(Pi)|, |E(Pj)|).

Proof. Suppose that there is such a path Q for some shortest long near-prismK inG, and chooseQ,K
with minimal union. Let the vertices of Q be q0-q1- · · · -qt-qt+1 where q0 ∈ V (Pi) and qt+1 ∈ V (Pj).
From the minimality of Q∪K, none of q2, . . . , qt−1 has a neighbour in V (K). Since q1, . . . , qt are not
K-major, it follows that t ≥ 2, and there is a three-vertex path of K that contains all neighbours
of qt in V (K); and since K is tidy, all neighbours of qt in V (K) belong to V (Pj), and so there is a
minimal subpath Rj of Pj containing all neighbours of qt in V (K). Thus Rj has length zero, one
or two, and we will treat these cases separately. Let the ends of Rj be uj , vj , where aj , uj , vj , bj are

9

in order in Pj (in the usual notation). Since K is tidy, the paths aj-Pj-uj and vj-Pj-bj both have
length at least `/2− 1. Similarly, there is a minimal subpath Ri of Pi containing all neighbours of qi

in V (K), of length at most two, with ends ui, vi say. Let k ∈ {1, 2, 3} \ {i, j}.

(1) Rj does not have length one.

Suppose it does. Let S be the induced path from q1 to ai with interior in V (Pi); then there is
a prism with bases {a1, a2, a3}, {qt, uj , vj} and constituent paths

ai-S-q1- · · · -qt,

aj-Pj-uj ,

ak-Pk-bk-bj-Pj-vj .

All of its holes are long, since 2(`/2−1)+4 ≥ `, and so it is a long prism, and hence not shorter thanK.
Consequently |E(S)|+ t−1 ≥ |E(Pi)|. Similarly, let T be the induced path from qi to bi with interior
in V (Pi); then |E(T)|+ t−1 ≥ |E(Pi)|. Adding, we obtain that |E(S)|+ |E(T)|+(2t−2) ≥ 2|E(Pi)|.
But |E(S)|+|E(T)| ≤ |E(Pi)|+2, and so 2t ≥ |E(Pi)|, contrary to the hypothesis, since |E(Q)| = t+1.
This proves (1).

(2) Rj does not have length zero.

Suppose it does; so uj = vj = qt+1. By (1) with Pi, Pj exchanged, it follows that either ui = vi or
ui, vi are nonadjacent. If ui = vi there is a long theta with constituent paths Q and

q0-Pi-ai-aj-Pj-qt+1

q0-Pi-bi-bj-Pj-qt+1,

a contradiction. If ui, vi are nonadjacent, there is a long theta with constituent paths

q1- · · · -qt,

q1-ui-Pi-ai-aj-Pj-qt+1

q1-vi-Pi-bi-bj-Pj-qt+1,

a contradiction. This proves (2).

From (1) and (2) we may assume that Ri, Rj both have length two. Let P ′j be the path obtained
from Pj by replacing the subpath Rj by uj-qt-vj . Then Pi, P

′
j , Pk are the constituent paths of a

shortest long near-prism K ′, also with frame FK . From the minimality of Q∪K, one of q1, . . . , qt−1
is K ′-major. Since it is not K-major, it is adjacent to qt, and hence must be qt−1. Thus qt−1 has a
neighbour in V (K), and so t = 2 (because none of q2, . . . , qt−1 has a neighbour in V (K)). But then
the subgraph induced on V (Pi ∪ P ′j) ∪ {q1} is a long ban-the-bomb, a contradiction. This proves
Lemma 3.3.

10

If F is a frame with bases A,B, and v is an end of F , choose u ∈ V (A ∪ B) with minimum
F -distance to v; we call v the u-end of K. For each u ∈ V (A ∪ B) there is at most one u-end of
F , but there might be none. For a path P with ends a, b, we call v ∈ V (P) a midpoint of P if
|dP (v, a)− dP (v, b)| ≤ 1.

We would like to assign weights to the edges of G, all very close to one and all different, such
that no two different sets of edges X,Y have the same total weight, and if |X| < |Y | then the total
weight in X is less than that in Y . A convenient way to do this, and a way that is easy to handle
algorithmically, is to take an arbitrary linear ordering of E(G), say E(G) = {e1, . . . , en}, and let
edge ei have weight 1 + 2−i for each i; then the total weight in a set X is less than that in a set Y
if and only if either |X| < |Y |, or |X| = |Y | and X is lexicographically earlier than Y (the latter
means that Y contains ei where i ∈ {1, . . . , n} is minimum with ei ∈ (X \ Y) ∪ (Y \X)). So, let us
take some linear order of E(G), and for X,Y ⊆ E(G), we say X is lighter than Y if either |X| < |Y |,
or |X| = |Y | and X is lexicographically earlier than Y . If G has a long near-prism, it has at least
one shortest long near-prism, and exactly one of them is the lightest long near-prism; and we find
that for algorithms it is better to hunt for the lightest long near-prism than just a shortest one.
These weights have O(|G|2) bits, so doing arithmetic with them is a little time-consuming; but we
can certainly find the lightest st-path in time O(|G|3) (and if it mattered, we could do it faster).

Let us say an st-path P in a graph G is locally lightest if for every st-path Q that is lighter than
P , some vertex v of Q satisfies max(dG(s, v), dG(t, v)) > |E(P)|/2. It follows immediately that there
is no such path Q, because

dG(s, v) + dG(t, v) ≤ |E(Q)| ≤ |E(P)|

for every vertex v of V (Q), and therefore every locally lightest st-path is the (unique) lightest st-path.

Theorem 3.4. There is an algorithm with the following specifications:

Input: A prospect G, a linear order of E(G), and an ordered frame F in G.

Output: Decides either that G contains a long near-prism with ordered frame F , or that there is a
no long near-prism that is the lightest among all long near-prisms, and has ordered frame F ,
and is clean.

Running time: O(|G|3).

Proof. Here is the algorithm. Let the frame F of F have bases {a1, a2, a3} and {b1, b2, b3}, where the
linear orders of F are a1 < a2 < a3 and b1 < b2 < b3. For 1 ≤ i ≤ 3, let si be the ai-end of F and
let ti be the bi-end of F , if they exist. (Certainly s2, t2, s3, t3 exist, but s1, t1 might not.) Let W0 be
the set of all vertices of G that are not ends of F , and belong to or have a neighbour in F ∗, and let
G0 = G \W0.

Step 1: If s1 is defined, compute the lightest s1t1-path M1 in G0 (if there is no such path, output
“failure”, that is, the desired near-prism does not exist, and stop). If s1 is not defined, let
M1 be the null graph. In either case let W1 be the set of vertices of G0 that belong to or
have a neighbour in V (M1), and let G1 = G0 \W1.

Step 2: Compute the lightest s2t2-path M2 in G1 (reporting failure if there is no such path). Let
W2 be the set of vertices of G1 that belong to or have a neighbour in V (M2), and let
G2 = G1 \W2.

11

Step 3: Compute the lightest s3t3-path M3 in G2 (reporting failure if there is no such path).

Step 4: Check whether F ∪M1∪M2∪M3 is a long near-prism in G, and if so, output that fact and
stop.

This concludes the description. For running time, we just have to find the sets W0,W1,W2, which
take time O(|G|2), and solve three lightest-path problems, so the total running time is O(|G|3).

To prove correctness: the positive output is clearly correct, but we need to check the negative
output. Assume then that there is a a long near-prism K that is the lightest among all near-prisms,
and it has ordered frame F , and is clean. Let its constituent paths be P1, P2, P3, numbered according
to F , and hence with |E(P1)| ≤ |E(P2)| ≤ |E(P3)|.

We claim that in step 1 above, the algorithm will compute some M1, and if s1, t1 exist then M1
is the path s1-P1-t1. To see this, the claim is true if s1, t1 do not exist, so we assume they do. Then
there is an s1t1-path in G0, namely the path s1-P1-t1, and so the algorithm will not report failure in
step 1, and so computes the lightest s1t1-path M1 in G0. But s1-P1-t1 is a locally lightest s1t1-path
in G0, because of Lemma 3.3, and therefore equals M1. This proves our claim.

Similarly in step 2, the algorithm computes M2, and if s2, t2 exist then M2 is the path s2-P2-t2,
because s2-P2-t2 is locally lightest in G1 (though not necessarily in G0). And in step 3 the algorithm
computes M3; and F ∪M1 ∪M2 ∪M3 is a long near-prism, and the output is correct. This proves
Theorem 3.4.

When the algorithm of Theorem 3.4 finds a long near-prism K, it is tempting to claim that K
is the lightest long near-prism with ordered frame F . But that might not be true; perhaps some
vertices of K are K ′-major, where K ′ is the lightest long near-prism with ordered frame F , and then
the algorithm might find K instead of K ′.

4 Major vertices on near-prisms
In this section we prove some properties of K-major vertices, when K is a shortest long near-prism.
If K is a long near-prism with constituent paths P1, P2, P3, and each Pi has ends ai, bi as usual, and
x is K-major with a neighbour in V (Pi), we define αi(x) to be the neighbour v of x in V (Pi) such
that the path v-Pi-ai is minimal; and define βi(x) to be the neighbour v of x in V (Pi) such that the
path v-Pi-bi is minimal. We begin with some lemmas:

Lemma 4.1. Let K be a tidy shortest long near-prism in a graph G. If x is a K-major vertex, then
x has neighbours in at least two constituent paths of K.

Proof. In the usual notation, suppose that all neighbours of x in V (K) are contained in V (P1), say;
so α1(x)-P1-β1(x) has length strictly greater than two. We obtain a near-prism K ′ shorter than K
by replacing α1(x)-P1-β1(x) in P1 with the path α1(x)-x-β1(x). Since K ′ contains the same frame
as K, it follows that K ′ is a long near-prism, a contradiction. This proves Lemma 4.1.

Lemma 4.2. Let K be a tidy shortest long near-prism in a graph G, with constituent paths P1, P2, P3.
For all distinct i, j ∈ {1, 2, 3}, if x is a K-major vertex with no neighbours in V (Pj), then x either
has exactly one neighbour in V (Pi), or two nonadjacent neighbours in V (Pi).

12

Proof. Suppose that x has no neighbour in V (P3), and α1(x), β1(x) are distinct and adjacent, say.
Then there is a long prism with bases {a1, a2, a3} and {x, α1(x), β1(x)} and constituent paths

a1-P1-α1(x),

a2-P2-α2(x),

a3-P3-b3-b1-P1-β1(x),

and it is shorter than K, a contradiction. This proves Lemma 4.2.

Lemma 4.3. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G. If x is a K-major vertex, then x has three pairwise non-adjacent neighbours in V (K).

Proof. Suppose not. By Lemma 4.1, in the usual notation we may assume x has a neighbour in
V (P1) and a neighbour in V (P2), and we may assume that x has no neighbours in V (P3). If x has
exactly one neighbour in V (P1) and exactly one neighbour in V (P2), then V (P1 ∪ P2) ∪ {x} induces
a long theta. So by Lemma 4.2 we may assume that x has two nonadjacent neighbours in V (P1);
but then the claim is true. This proves Lemma 4.3.

Lemma 4.4. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths P1, P2, P3. Let x, y be nonadjacent K-major vertices. If i, j ∈ {1, 2, 3}, and
x has no neighbours in V (Pi) and y has no neighbours in V (Pj) then i = j.

Proof. Suppose that x has no neighbours in V (P3), and y has no neighbours in V (P1), say. Then x
has neighbours in V (P1) and in V (P2), and y has neighbours in V (P2) and V (P3) by Lemma 4.1.
Let M be an induced xy-path with interior in V (P2). By Lemma 4.2, α1(x), β1(x) are either equal
or nonadjacent, and α3(y), β3(y) are either equal or nonadjacent. Thus there are four cases, but in
each case there is a long theta induced on the union of the vertex sets of the paths α1(x)-P1-a1,
β1(x)-P1-b1, α3(y)-P3-a3, β3(y)-P3-b3 and M , a contradiction. This proves Lemma 4.4.

We need some more definitions. Let K be a tidy shortest long near-prism in G. For v ∈ V (K)\F ∗K
and integers m,n ≥ 0, we define the path Km

n (v) as follows. In the usual notation, let v ∈ V (Pi)
say. Let M be the maximal subpath of the path v-Pi-ai that has one end v and has length at most
m, and has no internal vertex in F ∗K . (Thus, M is permitted to have an end in F ∗K , but no more.)
Let N be the maximal subpath of the path v-Pi-bi that has one end v and has length at most n, and
has no internal vertex in F ∗K ; and let Km

n (v) = M ∪N .
Also, if x is K-major, then for 1 ≤ i ≤ 3, if x has a neighbour in V (Pi) let Ai(x) be the vertex

set of the path αi(x)-Pi-ai, and if x has no such neighbour let Ai(x) = V (Pi). For i, j ∈ {1, 2, 3}, let
Ai,j(x) = Ai(x)∪Aj(x), and let A1,2,3(x) = A1(x)∪A2(x)∪A3(x). If x, y are K-major, we say that
y is distant from x if

• x, y are nonadjacent, and y has a neighbour in A1,2,3(x);

• for 1 ≤ i ≤ 3, if x has a neighbour in V (Pi), then y has no neighbour in V (K`−2
1 (αi(x))); and

• for 1 ≤ i ≤ 3, if x has no neighbour in V (Pi), then for some j ∈ {1, 2, 3} \ {i}, y has no
neighbour in V (K0

`−3(βj(x))).

13

We need to prove some properties of distant pairs.

Lemma 4.5. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths P1, P2, P3. Let x, y be K-major, where y is distant from x. Then y has
exactly two neighbours in A1,2,3(x) and they are adjacent.

Proof. We begin with:

(1) If x has a neighbour in each of V (P1), V (P2), V (P3) then the theorem holds.

Suppose that x has a neighbour in each of V (P1), V (P2), V (P3). If y has a neighbour in each of A1(x),
A2(x), A3(x), there is a long theta formed by three xy-paths with interiors in A1(x), A2(x), A3(x),
a contradiction. So we may assume that y has no neighbour in A3(x). Suppose that y also has no
neighbour in A2(x). By Lemma 4.1, y has a neighbour in one of V (P2), V (P3), say V (P2). Let M
be an induced xy-path with interior in V (P2). If y has a unique neighbour in A1(x), there is a long
theta induced on A1(x) ∪A3(x) ∪ V (M). If y has two nonadjacent neighbours in A1(x), there is an
induced α1(x)a1-path R with interior in A1(x) ∪ {y} containing y, and then there is a long theta
induced on V (R) ∪ A3(x) ∪ V (M), a contradiction. So y has exactly two adjacent neighbours in
A1(x) and the theorem holds.

x

a1

a2

a3

b1

b2

b3

α1(x)

α2(x)

α3(x)

β1(x)

β2(x)

β3(x)

A1(x)

A2(x)

A3(x)

Figure 6: x has a neighbour in each of P1, P2, P3 (possibly αi(x) = βi(x)).

So we may assume that y has a neighbour in A1(x) and in A2(x), and not in A3(x). If y has
two nonadjacent neighbours in A1(x), or two nonadjacent neighbours in A2(x), there is a long theta
formed by three xy-paths all with interior in A1,2,3(x), a contradiction. So by Lemma 4.3,there
exists i ∈ {1, 2, 3} such that y has a neighbour in V (Pi) \ Ai(x). This neighbour is nonadjacent to
α1(x), α2(x), obviously if i = 3 and from the definition of “distant” if i ∈ {1, 2}. Hence there is
an induced xy-path R with interior in (V (Pi) \ Ai(x)) ∪ V (P3), containing no neighbour of α1(x)
or α2(x). But then there is a long theta formed by the path R and two xy-paths with interiors in
A1(x), A2(x) respectively, a contradiction. This proves (1).

We may therefore assume that x has no neighbour in V (P1), and hence A1(x) = V (P1). By
Lemma 4.3, x has two nonadjacent neighbours in one of V (P2), V (P3), say in V (Pj) where j ∈ {2, 3};
thus αj(x), βj(x) are distinct and nonadjacent. By Lemma 4.4, y has a neighbour in V (Pi) for i = 2, 3.

14

x

a1

a2

a3

b1

b2

b3

α2(x)

α3(x)

β2(x)

β3(x)

A1(x)

A2(x)

A3(x)

Figure 7: x has no neighbour in V (P1).

(2) y does not have two nonadjacent neighbours in A2(x) ∪A3(x).

Suppose that it does; then there are two long xy-paths R1, R2, with R∗1, R
∗
2 ⊆ A2(x) ∪ A3(x) and

with R∗1 anticomplete to R∗2. If y has a neighbour in V (Pi)\Ai(x) for some i ∈ {2, 3}, this neighbour
is nonadjacent to αi(x) from the definition of “distant”; so if y has a neighbour in V (Pi) \Ai(x) for
some i ∈ {2, 3}, or a neighbour in V (P1), there is an xy-path with interior in V (K)\ (A2(x)∪A3(x))
with interior anticomplete to R∗1, R∗2, and these three paths form a long theta, a contradiction. So
every neighbour of y in V (K) belongs to A2(x)∪A2(x). By Lemma 4.1, y has a neighbour in A2(x)
and one in A3(x), and by Lemma 4.3 we may assume it has two nonadjacent neighbours in V (P2);
but then there is a long theta formed by the paths

y-β2(y)-P2-α2(x)-x,

y-β3(y)-P3-α3(x)-x

y-α2(y)-P2-a2-a1-P1-b1-bj-Pj-βj(x)-x,

a contradiction. This proves (2).

(3) We may assume that y has a neighbour in V (P1).

Suppose that y has no neighbour in V (P1). We may therefore assume that y has a unique neighbour
v ∈ A1,2,3(x), because otherwise the theorem holds, and we may assume that v ∈ A2(x). Both x, y
have a neighbour in V (P2 ∪ P3) that is not in A2,3(x) and has no neighbour in this set; and so there
is an xy-path R with interior anticomplete to A2,3(x). But then there is a long theta formed by the
paths

v-P2-α2(x)-x,

v-y-R-x

v-P2-a2-a3-P3-α3(x)-x

a contradiction. This proves (3).

(4) y has no neighbour in A2(x) ∪A3(x).

15

Now y has at most two neighbours in A2(x) ∪A3(x). If y has two neighbours u, v in A2(x) ∪A3(x),
then they are adjacent and we may assume they belong to A2(x), and a2, u, v, α2(x) are in order in
P2. But then there is a long prism with bases {a1, a2, a2} and {y, u, v} and constituent paths

y-α1(y)-P1-a1,

u-P2-a2

v-P2-α2(x)-x-α3(x)-P3-a3,

and it is shorter than K, a contradiction. Thus y has at most one neighbour in A2(x)∪A3(x). If there
is such a neighbour, say v ∈ A2(x), letM be an induced xy-path with interior in V (β1(y)-P1-b1-bj-Pj-βj(x));
then there is a long theta formed by the paths

v-P2-α2(x)-x,

v-P2-a2-a3-P3-α3(x)-x,

v-y-M -x,

a contradiction. This proves (4).

From the definition of “distant”, we may assume that y has no neighbour in V (K0
`−3(β2(x))).

Since y has a neighbour in V (P1), there is an xy-path R1 with one end β2(x) and with interior in the
vertex set of β1(y)-P1-b1-b2-P2-β2(x), which is therefore long. By Lemma 4.4, y has a neighbour in
V (P3) not in A3(x) and not adjacent to α3(x); let R3 be an induced xy-path with interior in V (P3),
chosen with interior anticomplete to α3(x) if j = 3. Let R2 be the path y-α1(y)-P1-a1-aj-Pj-αj(x).
If α1(y) is distinct from and nonadjacent to β1(y), the three paths R1, R2, R3 form a long theta, a
contradiction. If α1(y) = β1(y), then the three paths R1 \ {y}, R2 \ {y}, α1(y)-y-R3-x form a long
theta, a contradiction. Thus α1(y), β1(y) are distinct and adjacent. This proves Lemma 4.5.

Lemma 4.6. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in G,
with constituent paths P1, P2, P3. Let x, y, z be K-major, such that y, z are both distant from x and
y, z are nonadjacent. For all distinct i, j, k ∈ {1, 2, 3}, either there is no yz-path of length at least
`− 2 with interior in Ai,j(x), or there is no yz-path of length at least `− 2 with interior in V (Pk).

Proof. Suppose that M1 is a yz-path of length at least ` − 2 with interior in Ai,j(x), and M2 is
a yz-path of length at least ` − 2 with interior in V (Pk). By Lemma 4.5, y, z each have exactly
two neighbours in Ai,j(x) and they are adjacent. By Lemma 4.2, y, z each have a third neighbour in
V (Pi∪Pj), and this neighbour does not belong to Ai,j(x) and has no neighbour in Ai,j(x), since (x, y)
and (x, z) are distant. Consequently there is an induced yz-path M3 with interior in V (Pi ∪Pj) and
anticomplete to M∗1 ∪M∗2 ; and M1,M2,M3 form a long theta, a contradiction. This proves Lemma
4.6.

Lemma 4.7. Let G be a graph with no long theta, and let K be a tidy shortest long near-prism in
G, with constituent paths P1, P2, P3. Let x, y, z be K-major, such that y, z are both distant from x.
If there exist i, j ∈ {1, 2, 3} such that y has no neighbour in V (Pi) and z has no neighbour in V (Pj)
then i = j.

16

Proof. Suppose that y has no neighbour in V (Pi) and z has no neighbour in V (Pj), and i 6= j. By
Lemma 4.4, y, z are adjacent; and also by Lemma 4.4 (applied to x, y and to x, z), x has a neighbour
in each of V (P1), V (P2), V (P3). From Lemma 4.5, y, z each have exactly two neighbours in A1,2,3(x)
and they are adjacent, and from the symmetry we may assume that y, z have no neighbour in A3(x).
Let R be the path α1(x)-P1-a1-a2-P2-α2(x), and let the neighbours of y in V (R) be y1, y2, where
α1(x), y1, y2, α2(x) are in order in R. Define z1, z2 similarly. We may assume that α1(x), y1, z2, α2(x)
are distinct and in order in R. If the path y2-R-z1 has length at least ` − 3, then there is a long
prism with bases {y, y1, y2}, {z, z1, z2}, and constituent paths

y-z,

y2-R-z1,

y1-R-α1(x)-x-α2(x)-R-z2

and it is shorter than K, a contradiction. Thus y2-R-z1 has length at most `−4 and so {y1, y2, z1, z2}
is a subset of one of A1(x), A2(x); and we may assume that {y1, y2, z1, z2} ⊆ A1(x). So y, z have
no neighbours in A2(x) and no neighbours in A3(x), restoring the symmetry between P2, P3; and
therefore we may assume that i = 3 and j = 2, that is, y has no neighbour in V (P3) and z has no
neighbour in V (P2). By Lemma 4.1, y has a neighbour in V (P2) and z has a neighbour in V (P3).

If y1 = z1 and hence y2 = z2, there is a long prism with bases {a1, a2, a3}, {y, z, y2} and constituent
paths

y2-P1-a1,

y-α2(y)-P2-a2

z-α3(z)-P3-a3,

and it is shorter than K, a contradiction. So y1 6= z1, and therefore y1, z2 are noadjacent. Then
there is a long theta with constituent paths

z-y-y1-P1-α1(x)-x,

z-z2-R-α2(x)-x,

and an induced xz-path with interior in V (P3), a contradiction. This proves Lemma 4.7.

5 Cleaning lightest long near-prisms
In this section we will complete the proof of Theorem 3.1, by showing how to compute a cleaning
list for lightest long near-prisms.

Let Q be a set of paths of G, pairwise anticomplete. We define V (Q) to be the union of the
vertex sets of the members of Q, and Q∗ to be the union of the interiors of the member of Q, and
the cost of Q to be the cardinality of V (Q).

Let K be a shortest long near-prism, with an ordered frame F , and with constituent paths
P1, P2, P3, numbered according to F . A K-major vertex x is (K,F)-extremal if either

17

• there is a K-major vertex with no neighbour in V (P1), and x is chosen with no neighbour in
V (P1) and with A2(x) maximal; or

• every K-major vertex has a neighbour in V (P1), and x is chosen with A1(x) maximal.

Thus if x is (K,F)-extremal, and has a neighbour in V (P1), then every K-major vertex has a
neighbour in A1(x); and otherwise A1(x) = V (P1), and every K-major vertex has a neighbour in
V (P1) ∪ A2(x). A (K,F)-contrivance consists of a quintuple (x, y, α, h,Q), where x, y are K-major
(possibly y = x), and x is (K,F)-extremal, and Q is a set of paths of K, pairwise anticomplete, and
α ∈ Q∗, and h ∈ {1, 2}, such that:

• every K-major vertex is either adjacent to one of x, y or has a neighbour in Q∗;

• if x has a neighbour in V (P1) then h = 1 and α = α1(x), and otherwise h = 2 and α = α2(x);
and

• every neighbour of x or y in A1,2(x) belongs to Q∗.

Its cost is the cost of Q. From Lemma 4.6 we have:

Lemma 5.1. Let G be a prospect, and let K be a tidy shortest long near-prism in G with an ordered
frame F , and with a K-major vertex. Then there is a (K,F)-contrivance with cost at most 6`− 2.

Proof. Let P1, P2, P3 be the constituent paths of K. Choose x (K,F)-extremal, and let S be the set
of all K-major vertices that are distant from x.

If x has a neighbour in V (P1) let h = 1 and α = α1(x), and otherwise let h = 2 and α = α2(x).
If x has a neighbour in V (Pi) for i = 1, 2, 3, let Qi be the path K`−1

2 (αi(x)) for i = 1, 2, 3. If x
has neighbours in V (Pi), V (Pj) and not in V (Pk), where {i, j, k} = {1, 2, 3} and i < j, let Q1 be
the path K`−1

2 (αi(x)), let Q2 be the path K`−1
2 (αj(x)), and let Q3 be the path K1

`−2(βi(x)). Every
K-major vertex has a neighbour in A1,2,3(x), since x is (K,F)-extremal; and so every K-major vertex
nonadjacent to x either belongs to S or has a neighbour in one of Q∗1, Q∗2, Q∗3, from the definition
of “distant”. If S = ∅, let Q be the set of components of the graph induced on the union of the
vertex sets of Q1, Q2, Q3; then (x, x, α, h,Q) is a (K,F)-contrivance satisfying the theorem, so we
may assume that S 6= ∅.

If every vertex in S has a neighbour in V (P3), let k = 3, and otherwise let k = 2; then by Lemma
4.7, every vertex in S has a neighbour in V (Pk). Choose y ∈ S with Ak(y) maximal, let Q4 be the
path K`−4

1 (αk(y)) and let Q5 be a path of K of length 2` − 7 such that the two neighbours of y in
A1,2(x) are the two middle vertices of Q5.

(1) Every vertex in S nonadjacent to y has a neighbour in Q∗4 ∪Q∗5.

Let z ∈ S be nonadjacent to y, and suppose it has no neighbour in Q∗4 ∪ Q∗5. From the choice
of x, it follows that y, z both have a neighbour in A1,2(x), and so there is a yz-path M1 of length
at least ` − 2 with interior in A1,2(x); and M1 has length at least ` − 2 since z has no neighbour
in Q∗5. By Lemma 4.6, there is no yz-path of length at least ` − 2 with interior in A3(x). Suppose
that k = 3; then from the choice of y, there is a yz-path with interior in A3(y), which has length
at least `− 2 since z has no neighbour in Q∗4, a contradiction. So k = 2, and therefore some vertex
in S has no neighbour in V (P3); and so by Lemma 4.4, x and z both have a neighbour in V (P1)

18

and in V (P2); and z has a neighbour in A2(y) from the choice of y. Hence there is a yz-path M2
with interior in A2(y), which has length at least ` − 2 since z has no neighbour in Q∗4. But x has
a neighbour in V (P1), and therefore y, z both have neighbours in A1(x) since x is (K,F)-extremal,
and so y, z have no neighbours in A2(x) by Lemma 4.5; and it follows that M1 has interior in V (P1).
This contradicts Lemma 4.6, (taking i = 1, j = 3 and k = 2). This proves (1).

Let Q be the set of components of the graph induced on the union of the vertex sets of Q1, . . . , Q5;
then (x, y, α, h,Q) is a (K,F)-contrivance satisfying the theorem. This proves Lemma 5.1.

If K is a tidy long near-prism, and F is an ordered frame for K, and the constituent paths of K
are P1, P2, P3 numbered according to F , and x is K-major, let L(x) = A1(x) if x has a neighbour
in V (P1), and L(x) = V (P1) ∪ A2(x) otherwise. If K is a tidy, lightest long near-prism, then a
knowledge of the ordered frame F and of a (K,F)-contrivance (x, α, h,Q) allows us to reconstruct
L(x), as the next result shows:

Lemma 5.2. Let G be a prospect, let K be a tidy lightest long near-prism in G, let F be an ordered
frame of K, with frame F , and let (x, y, α, h,Q) be a (K,F)-contrivance. Let P1, P2, P3 be the
constituent paths of K, numbered according to F , where Pi has ends ai, bi as usual. Let si, ti be the
ai-end and bi-end of F respectively, if they exist. Let Z1 be the set of all vertices of G not in V (Q)
but with a neighbour in Q∗, and let Z2 be the set of all vertices adjacent to x or y that are not in
V (F) or in V (Q). Let G1 = G \ (Z1 ∪ Z2).

• If h = 1 (and therefore x has a neighbour in V (P1), and α = α1(x), and s1 is defined), then
s1-P1-α1 is the lightest s1α-path in G1.

• Assume that h = 2 (and so x has no neighbour in V (P1), and α = α2(x), and s2 is defined). If
s1 is not defined, then P1 is the a1b1-path in F \ {a2, a3, b2, b3}, and s2-P2-α2(x) is the lightest
s2α-path in G1. If s1 is defined, then s1-P1-t1 is the lightest s1t1-path in G1, and s2-P2-α2(x)
is the lightest s2α-path in G2, where G2 is obtained from G1 by deleting all vertices that belong
to or have a neighbour in V (s1-P1-t1).

Proof. To prove the first bullet, we assume that h = 1, and so x has a neighbour in V (P1), and
therefore s1, t1 are defined, and α = α1(x). The path s1-P1-α1(x) is the locally lightest s1α1(x)-path
in G1 by Lemma 3.3, and hence is the lightest s1α-path in G1. This proves the first bullet.

For the second bullet, we assume that h = 2, and so x has no neighbour in V (P1), and therefore
x has a neighbour in V (P2) by Lemma 4.1; and so s2, t2 are defined and α = α2(x). If s1 is not
defined, then P1 is a path of F as claimed, and s2-P2-α2(x) is the locally lightest s2α2(x)-path in G1
by Lemma 3.3, and hence is the lightest s2α-path in G1. So we assume that s1, t1 are defined. Then
s1-P1-t1 is a locally lightest s1t1-path in G1, by Lemma 3.3, and hence is the lightest s1t1-path in
G1. Similarly s2-P2-α2(x) is a locally lightest s2α2(x)-path in G2 (though not necessarily in G1) by
Lemma 3.3, and so is the lightest s2α2(x)-path in G2. This proves the second bullet and so proves
Lemma 5.2.

Thus, if there is a lightest long near-prism K, with a given ordered frame F and a given (K,F)-
contrivance (x, y, α, h,Q), we can reconstruct L(x) algorithmically, using the construction of Lemma

19

5.2, in time O(|G|3). More exactly, if h = 1, then the first bullet of Lemma 5.2 gives a method to
compute A1(x) = L(x). If h = 2, we first compute P1 using the method of the second bullet of
Lemma 5.2; then compute G2; and then compute A2(x), again using the method of the second bullet
of Lemma 5.2. In summary:

Lemma 5.3. There is an algorithm with the following specifications:

Input: A prospect G, a linear order of the edges of G, an ordered frame F in G, and a quintuple
(x, y, α, h,Q) where x, y, α ∈ V (G) and Q is a set of pairwise anticomplete induced paths of G.

Output: A subgraph L of G, such that if there is a long near-prism in G, and the lightest long
near-prism K is tidy and has ordered frame F and (x, y, α, h,Q) is a (K,F)-contrivance, then
L = L(x).

Running time: O(|G|3).

The good thing about having reconstructed L(x) is that every K-major vertex has a neighbour
in L(x), either in the interior of the path G[L(x)] or in Q∗; and no vertices not in V (K) \L(x) have
such a neighbour, so now we can clean the K-major vertices. More exactly, let Z4 be the set of all
vertices of G that are not in V (F) ∪ V (Q) ∪ V (L(x)) and have a neighbour either in Q∗ or in the
interior of a path of L(x); then Z4 ∪ V (K) = ∅ and every K-major vertex belongs to Z4. We obtain:

Lemma 5.4. There is an algorithm with the following specifications:

Input: A prospect G, a linear order of the edges of G, an ordered frame F in G, and a quintuple
(x, y, α, h,Q) where x, y, α ∈ V (G) and h ∈ {1, 2}, and Q is a set of pairwise anticomplete
induced paths of G.

Output: A subset X ⊆ V (G), such that if there is a long near-prism in G, and the lightest long
near-prism K is tidy and has ordered frame F and (x, y, α, h,Q) is a (K,F)-contrivance, then
X contains all K-major vertices and is disjoint from V (K).

Running time: O(|G|3).

We can now prove Theorem 3.1, which we restate:

Theorem 5.5. There is an algorithm with the following specifications:

Input: A prospect G.

Output: Decides whether G contains a long near-prism.

Running time: O(|G|9`+3).

Proof. Fix a linear order of the edges of G. Enumerate all ordered frames F in G. For each one, let
F have frame F , and compute G1, the graph obtained from G by deleting all vertices not in F ∗ but
with a neighbour in F ∗, except the ends of F . Compute the linear order of E(G1) induced from the
given linear order of E(G). Compute all quintuples (x, y, α, h,Q) where x, y ∈ V (G1), and α ∈ Q∗,
and h ∈ {1, 2}, and Q is a set of pairwise anticomplete induced paths of G1 with cost at most 6`− 2.
Apply the algorithm of Lemma 5.4 to G1, the linear order of E(G1), F and (x, y, α, h,Q), to obtain

20

a set X ⊆ V (G1). Apply the algorithm of Theorem 3.4 to G1 \ X, the induced linear order of its
edge set, and the given frame. If this tells us that G1 has a long near-prism, output this and stop. If
after examining all choices of (x, y, α, h,Q) we have not found a long near-prism, move to the next
ordered frame; and if after examining all ordered frames we have not found a long near-prism, report
that there is none.

There are only at most 3` vertices in a frame, and so only O(|G|3`) different ordered frames to
examine. For each one, there are only O(|G|6`) different quintuples (x, y, α, h,Q) to check, since
Q has cost at most 6` − 2 and there are only at most 6` − 2 choices for α. For each choice of the
quintuple, applying the algorithm of Lemma 5.4 takes time O(|G|3), and then applying the algorithm
of Theorem 3.4 takes time O(|G|3). So the total running time is O(|G|9`+3).

For correctness, certainly if the algorithm reports a long near-prism then this is correct. To check
the converse, suppose that G contains a long near-prism, and let K be the lightest long near-prism.
Let F be an ordered frame for K. Since K has a tidy frame in G1, Lemma 5.1 implies that there is a
(K,F)-contrivance (x, y, α, h,Q) in G1, where Q has cost at most 6`−2. When the algorithm checks
this ordered frame and this quintuple, the algorithm of Lemma 5.4 outputs a set X that contains all
K-major vertices and does not intersect V (K); so K is clean in G1 \X. The algorithm of Theorem
3.4, applied to G1 \X cannot output that there is no long near-prism that is the lightest among all
long near-prisms, and has ordered frame F , and is clean, because there is one. Thus it will output
that G1 contains a long near-prism. This proves correctness, and so proves Theorem 5.5.

6 Detecting a clean lightest long even hole
Let us say a graph G is a candidate if it contains no long even hole of length at most 2`, no long
jewel of order at most ` + 1, no long theta, no long ban-the-bomb, and no long near-prism. Thus,
candidates are prospects.

Let C be a hole in a graph G. We recall that a vertex x ∈ V (G) \ V (C) is C-major if no three-
vertex path of C contains all the neighbours of x in V (C), and C is clean if there is no C-major
vertex. In this section we provide an algorithm to detect a clean lightest long even hole in a candidate
if there is one. We begin with:

Lemma 6.1. Let G be a candidate, and let C be a shortest long even hole in G, and let x be C-major.
Then x has three pairwise nonadjacent neighbours in V (C), and for every three-vertex path Q of C,
x has at least two neighbours in V (C) \ V (Q).

Proof. Since G is a candidate it follows that C has length at least 2` + 2. If x has at least five
neighbours in V (C) then both claims are true, so we assume that x has at most four neighbours in
V (C), say v1, . . . , vk in order, where 2 ≤ k ≤ 4. If k = 2 let P1, P2 be the two v1v2-paths of C, and
if k ∈ {3, 4} let Pi be the vivi+1-path of C not containing vi+2 for 1 ≤ i ≤ k (reading subscripts
modulo k).

(1) For 1 ≤ i ≤ k, if Pi has length at least ` − 2 then Pi is odd, and the path C \ P ∗i has length at
least `+ 2.

If Pi has length at least `− 2, then (reading subscripts modulo k) the hole x-vi-Pi-vi+1-x is long and

21

shorter than C, and therefore odd, and so Pi is odd. Consequently C \ P ∗i is also odd, since C is
even; and hence the paths C \ P ∗i , v1-x-v2 and v1-Pi-v2 form a long jewel, which therefore has order
at least `+ 2, that is, C \ P ∗i has length at least `+ 2. This proves (1).

Let P1 be the longest of P1, . . . , Pk. If k = 2, then P1 is long, and so (1) implies that the paths
P1, P2 and v1-x-v2 form a long theta, a contradiction, so k ≥ 3. Suppose that k = 3. If P2, P3 both
have length at least three then both claims are true, so we may assume that P2 has length at most
two. So P1 is long, and hence so is P3, by (1), and therefore they are both odd, by (1) again. Thus
P2 is even, and so has length two, and hence G[V (C)∪{x}] is a long ban-the-bomb, a contradiction.
This proves that k = 4.

If two of P2, P3, P4 have length at least two, then both claims are true; so we may assume that
P2 has length one, and one of P3, P4 has length one, and therefore P1 is long. Now there are two
cases. If P3 has length one then P4 is long, by (1), and so G[V (C) ∪ {x}] is a long ban-the-bomb, a
contradiction; and if P4 has length one then P3 is long, by (1), and G[V (C)∪{x}] is a long near-prism,
a contradiction. This proves Lemma 6.1.

Let C be a shortest long even hole. For u, v distinct and non-adjacent vertices in V (C) we call a
uv-path Q a shortcut if V (Q) contains no C-major vertices and Q has length less than dC(u, v). We
begin by proving the following.

Theorem 6.2. Let G be a candidate and let C be a shortest long even hole in G. Then C has no
shortcut.

Proof. Suppose that G has a shortest long even hole C with a shortcut Q. Thus |E(C)| ≥ 2` + 2,
since G is a candidate. Choose C,Q to minimize |E(Q)|, and subject to that, to maximize dC(u, v),
where u, v are the ends of Q. It follows that Q∗ ∩ V (C) = ∅. Let Q have vertices u-q1-q2- · · · -qk-v
in order. It follows that Q has length k + 1, and so dC(u, v) ≥ k + 2. Consequently k > 1, since Q
contains no C-major vertices.

(1) The set of neighbours of q1 in V (C) is a clique, and the same holds for qk, and q1, qk have
no common neighbour in V (C).

Suppose that q1 has two nonadjacent neighbours in V (C), say x, y. Since q1 is not C-major, there is
a vertex z of C such that x-z-y is a path of C, and every neighbour of q1 in V (C) is one of x, y, z.
Let C ′ be the hole induced on (V (C) \ {z}) ∪ {q1}. Then C ′ has the same length as C, and so is a
shortest even hole, and dC′(q1, v) = dC(z, v) ≥ dC(u, v) − 1. Let Q′ = Q \ {u}. From the choice of
C,Q it follows that Q′ is not a shortcut for C ′, and so some vertex of Q′ is C ′-major, and hence is
adjacent to q1. Consequently q2 is C ′-major, and yet all its neighbours in V (C ′) except q1 lie in a
three-vertex path of C and hence of C ′, contrary to Lemma 6.1. This proves the first assertion of
(1). The second follows since dC(u, v) ≥ k + 2 ≥ 4. This proves (1).

(2) If 1 ≤ i ≤ k and qi is adjacent to w ∈ V (C) \ {u, v}, then dC(u,w) = |E(R)|, where R is
the uw-path of C \ {v}. The same holds with u, v exchanged.

Suppose not; then the shorter of the two uw-paths of C strictly includes one of the uv-paths of

22

C, and so has length more than dC(u, v), contradicting the choice of C,Q. This proves (2).

(3) One of q2, . . . , qk−1 has a neighbour in V (C).

Suppose not. By (1), q1 either has one, or two adjacent, neighbours in V (C), and the same for
qk. There are two minimal paths R1, R2 of C with one end adjacent to q1 and the other to qk, and
since the sum of their lengths is at least |E(C)| − 2 ≥ 2`, we may assume that R2 is long. Let the
ends of R2 be u′, v′ where u′ is adjacent to q1 and v′ to qk. Let S be the u′v′-path of C different
from R2, and let Q′ be the path u′-q1-Q-qk-v′. Now Q′ has the same length as Q, and therefore less
than dC(u, v) ≤ |E(S)|. Consequently the hole Q′ ∪ R2 has length less than C, and it is long and
therefore odd. So Q′, S have different parity. If R1 is not long, then S has length at most `+ 1, and
so does Q, and hence the paths S,Q′, R2 form a long jewel of order at most ` + 1, a contradiction.
So R1 is long.

Not both q1, qk have a unique neighbour in V (C), since G contains no long theta, and they do
not both have two adjacent neighbours, since G contains no long near-prism. Thus we may assume
that q1 has two adjacent neighbours x, v′ in V (C), and qk has exactly one (namely v = v′). Since
Q′, S have different parity, it follows that the hole x-q1-Q-v-R1-x is long, even, and shorter than C,
a contradiction. This proves (3).

Let L1 be a uv-path of C such that one of q2, . . . , qk−1 has a neighbour in V (L1), and let L2 be
the other uv-path of C.

(4) Q∗ is anticomplete to L∗2.

Choose i ∈ {2, . . . , k − 1} such that qi has a neighbour w1 in V (L1), and suppose that there ex-
ists j ∈ {1, . . . , k} such that qj has a neighbour w2 in V (L2). By exchanging u, v if necessary, we
may assume that i ≤ j. See figure 8.

u

v

w1

w2

qi

qj

R1

S1

R2

S2

Figure 8: For step (4).

From the choice of C,Q it follows that w1, w2 6= u, v. For i = 1, 2, let Ri be the uwi-path of
C \ {v}, and let Si be the vwi-path of C \ {u}. Let Ri, Si have length ri, si for i = 1, 2. Each of
the paths u-q1-qi-w1, w1-qi- · · · -qj-w2, w2-qj-qk-v is strictly shorter than Q (because 2 ≤ i ≤ k − 1),
and hence none of them is a shortcut. From (2), it follows that r1 = dC(u,w1) ≤ i + 1, and

23

dC(w1, w2) ≤ j − i+ 2, and s2 ≤ k − j + 2. Adding, we deduce that

r1 + dC(w1, w2) + s2 ≤ (i+ 1) + (j − i+ 2) + (k − j + 2) = k + 5 = |E(Q)|+ 4.

But dC(w1, w2) = min(r1 + r2, s1 + s2). Suppose that dC(w1, w2) = r1 + r2. It follows that
r1 + (r1 + r2) + s2 ≤ |E(Q)| + 4, but r2 + s2 > |E(Q)| since Q is a shortcut, and so r1 ≤ 1, and
therefore dC(w1, v) ≥ dC(u, v)−1. But i > 1, and so w1-qi- · · · -qk-v is a shortcut for C, contradicting
the choice of C,Q. Thus dC(w1, w2) = s1 + s2 < r1 + r2.

Hence r1 + (s1 + s2) + s2 ≤ |E(Q)| + 4. But r1 + s1 ≥ dC(u, v) > |E(Q)|, and so s2 = 1. Since
u-Q-qj-w2 is not a shortcut for C that is shorter than Q, it follows that j = k. Since r1 ≤ i+ 1 and

s1 + 1 = dC(w1, w2) ≤ j − i+ 2 = k − i+ 2,

we deduce (adding) that r1 + s1 ≤ k + 2. But r1 + s1 > |E(Q)| = k + 1, and so equality holds;
that is, r1 = i + 1 and s1 = k − i + 1, and r1 + s1 = |E(Q)| + 1. Hence r1 + s1 ≤ r2 + s2; and
since dC(u,w2) ≤ dC(u, v) (from the choice of C,Q, since otherwise u-Q-qk-w2 would be a short-
cut for C contrary to the choice of u, v), it follows that r2 + s2 = r1 + s1 = |E(C)|/2. Moreover,
we showed that qj = qk and w2 is adjacent to v, on the assumption that i ≤ j; and it follows
from the symmetry that the only edges between Q∗ and L∗2 are the edge qkw2 and possibly an
edge from q1 to the neighbour (w3) say of u in L2, say w3. If the latter edge does not exist, then
u-Q-qk-w2-L2-u is an even hole, of length |E(C)| − 2, a contradiction; so q1 is adjacent to w3. We
already showed that dC(w1, w2) = s1 + 1, and it follows by the same argument with u, v exchanged
that dC(w1, w3) = r1 +1 = i+2, and so the path w3-q1- · · · -qi-w1 is a shortcut for C, a contradiction.
This proves (4).

(5) |E(L1)| = |E(Q)|+ 1 ≤ |E(L2)|.

Choose i ∈ {2, . . . , k − 1} such that qi has a neighbour w ∈ L∗1. Since u-Q-qi-w and w-qi- · · · -Q-v
are not shortcuts for C, it follows from (2) that the sum of their lengths is at least |E(L1)|, and so
|E(L1)| ≤ |E(Q)| + 2. Since one of L1, L2 is long (because |E(C)| ≥ 2`), it follows that the hole
Q∪L2 is long, and shorter than C, and therefore odd; and so Q,L2 have opposite parity. Since L1, L2
have the same parity, and |E(L1)| > |E(Q)| ≥ |E(L1)| − 2, we deduce that |E(L1)| = |E(Q)| + 1.
Since |E(L2)| > |E(Q)| = |E(L1)| − 1 it follows that |E(L1)| ≤ |E(L2)|. This proves (5).

By (5), we may number the vertices of L1 as u-c1- · · · -ck+1-v in order.

(6) For 1 ≤ i ≤ k, if qi is adjacent to cj where 1 ≤ j ≤ k + 1, then j ∈ {i, i+ 1}.

If i ∈ {1, k} this is true since q1, qk are not C-major, so we may assume that 2 ≤ i ≤ k − 1.
The path u-Q-qi-cj has length i + 1, shorter than Q, and so is not a shortcut; and hence by (2),
j = dC(u, cj) ≤ i+1. Since cj-qi-Q-v is not a shortcut, it follows that k+2−j = dC(v, cj) ≤ k+2−i,
and so i ≤ j. This proves (6).

By (3), (4) and (6), there exists i ∈ {2, . . . , k − 1} such that qi is adjacent to one of ci, ci+1, and
by exchanging u, v if necessary, we may assume that qi is adjacent to ci. By (6),

u-c1- · · · -ci-qi-Q-v-L2-u

24

is a hole C ′ say. Since the paths ci-ci+1- · · · -ck+1-v and ci-qi- · · · -qk-v have the same length, it follows
that C ′ has the same length as C, and so is a shortest long even hole. From the choice of C,Q, the
path u-q1- · · · -qi is not a shortcut for C ′. But its length is i < dC′(u, qi), and so one of its vertices
is C ′-major. Hence there exists h ∈ {1, . . . , i− 1} such that qh is C ′-major and not C-major, and so
qh has a neighbour in {qi, . . . , qk}. But qh is nonadjacent to {qi+1, . . . , qk}, and therefore h = i− 1,
so qi−1 is C ′-major. By Lemma 6.1, at least two neighbours in qi−1 in V (C) are not in {ci−1, ci, qi},
contrary to (4) and (6). This proves Theorem 6.2.

We will also need:

Theorem 6.3. Let C be a clean shortest long even hole in a candidate G. Let u, v be distinct,
non-adjacent vertices in V (C) with dC(u, v) ≤ |E(C)|/2− 2, and let L1, L2 be the two uv-paths of C
where |E(L1)| ≤ |E(C)|/2− 2. Then P ∪ L2 is a shortest long even hole for every shortest uv-path
P in G.

Proof. Let P be a shortest uv-path in G, with vertices u-p1- · · · -pk-v. Since C is clean, it follows
from Theorem 6.2 that P has the same length as L1. Suppose that for some i ∈ {1, . . . , k}, pi is
equal or adjacent to some w ∈ L∗2. By Theorem 6.2, the path u-p1- · · · -pi-w (or u-p1- · · · -pi if w = pi)
is not a shortcut for C, and so i + 1 ≥ dC(u,w). Since i + 1 ≤ k + 1 = |E(L1)| it follows that
the shorter uw-path of C is a subpath of L2, and hence i + 1 ≥ dC(u,w) = dL2(u,w). Similarly
k − i+ 2 ≥ dL2(w, v). Consequently

|E(P)|+ 2 = k + 3 ≥ dL2(u,w) + dL2(w, v) ≥ dL2(u, v) = |E(L2)| ≥ |E(L1)|+ 4,

a contradiction. This proves Theorem 6.3.

This can be strengthened: it is shown in [13] that

Theorem 6.4. Let C be a clean shortest long even hole in a candidate G. Let u, v be distinct,
non-adjacent vertices in V (C), and let L1, L2 be the two uv-paths of C where |E(L1)| ≤ |E(L2)|.
Then for every shortest uv-path P in G, either P ∪ L2 is a clean shortest long even hole in G, or
|E(L1)| = |E(L2)| and P ∪ L1 is a clean shortest long even hole in G.

We will not need this stronger form, however, so we omit it here.
Let us fix a linear order of the edges of G; then we can search for a lightest long even hole, instead

of just a shortest one, and it is easier to find if it exists. For instance, from Theorem 6.3 we obtain

Theorem 6.5. Let C be a lightest long even hole in a candidate G. Let u, v be distinct, non-
adjacent vertices in V (C) with dC(u, v) ≤ |E(C)|/2 − 2, and let L1, L2 be the two uv-paths of C
where |E(L1)| ≤ |E(C)|/2 − 2. Then L1 is the lightest uv-path in G that contains no C-major
vertices.

Proof. Let P be the lightest uv-path in G that contains no C-major vertices, and let G′ be the graph
obtained from G by deleting all C-major vertices. Thus P is the lightest uv-path in G′. But C is
clean in G′, and so by Theorem 6.3, P ∪L2 is a shortest long even hole. It cannot be lighter than C,
and so P is not lighter than L1. On the other hand L1 is not lighter than P , since P is the lightest
uv-path in G′. Hence P = L1. This proves Theorem 6.5.

25

Now the main result of the section:

Theorem 6.6. There is an algorithm with the following specifications:

Input: A candidate G, and a linear ordering of E(G).

Output: Decides either that G has a long even hole or that there is no clean lightest long even hole
in G.

Running time: O(|G|4).

Proof. For all distinct u, v ∈ V (G), compute a lightest uv-path Q(uv) = Q(vu), and compute the set
N(uv) of all vertices that belong to or have a neighbour in Q(uv)∗. Enumerate all triples (v1, v2, v3)
of distinct vertices in G, and check whether

Q(v1v2) ∪Q(v2v3) ∪Q(v3v1)

is a long even hole, and if so, report this and stop. If all triples are examined without success, report
that G contains no clean lightest long even hole. That concludes the description of the algorithm.

Each triple can be handled in time O(|G|) (by using the sets N(uv)), and so the total running
time is O(|G|4).

To prove correctness, let C be a clean lightest long even hole in G; we must show that there is a
triple (v1, v2, v3) for which the algorithm will find a long even hole. Since C has length at least 12
and hence |E(C)| ≤ 3(|E(C)|/2− 2), there exist v1, v2, v3 ∈ V (C) such that each pair of vertices in
this triple is joined by a path of C of length at most |E(C)|/2 − 2 that does not contain the third
vertex in the triple. By Theorem 6.5 Q(v1v2), Q(v2v3) and Q(v3v1) are all paths of C and they have
union C. This proves 6.6.

7 Cleaning a shortest long even hole
Our method of cleaning is very much like that used for shortest long near-prisms, and the next result
is an analogue of Lemma 4.5. Let C be a shortest long even hole in a candidate G. For a C-major
vertex x, we call a path P of C of length at least two a (C, x)-gap if both ends of P are neighbours
of x and no interior vertex of P is adjacent to x. Thus, adding x to P yields a hole.

We begin with:

Lemma 7.1. Let C be a shortest long even hole in G, and let x, y be nonadjacent C-major vertices.
Let P be a (C, x)-gap of length at least ` − 2, with ends p1, p2. If y has a neighbour in V (P), then
either

• for some i ∈ {1, 2}, some neighbour v of y in V (P) satisfies dP (pi, v) ≤ `− 5; or

• for some i ∈ {1, 2}, y is adjacent to a neighbour of pi in C; or

• y has exactly two neighbours in V (P) and they are adjacent.

26

Proof. Let Q be the p1p2-path of C different from P . Thus Q has length at least three. The hole
x-p1-P -p2-x is long and shorter than C, and so odd, and hence P,Q are odd. Let R be the graph
obtained from Q by deleting its first two and last two vertices. We may assume that the first two
bullets of the theorem are false.

(1) x and y have a neighbour in V (R).

By Lemma 6.1, x has a neighbour in V (R). Suppose that y does not. Since the first two bul-
lets of the theorem are false, it follows that all neighbours of y in V (C) belong to P ∗, and hence y
has two nonadjacent neighbours in V (P). Let P ′ be the induced p1p2-path with interior in V (P)∪{y}
that contains y. Since the first bullet of the theorem is false, it follows that P ′ has length at least
2(` − 4) + 2 ≥ `, and so the hole x-p1-P ′-p2-x is long and shorter than C, and so odd. Hence P ′ is
odd; but Q is also odd, and P ′ ∪Q is a long even hole shorter than C, a contradiction. This proves
(1).

By (1), there is an induced xy-path with interior in V (R), say M . By hypothesis, y has at least
one neighbour in V (P). If y has only one neighbour v in V (P), then there is a long theta formed by
the two xv-paths with interior in V (P) and x-M -y-v, (because the first two paths both have length
at least ` − 3, and the third has length at least three) a contradiction. If y has two nonadjacent
neighbours in V (P), there is a long theta formed by the two induced xy-paths with interior in V (P)
and M , again a contradiction. Hence y has exactly two neighbours in V (P) and they are adjacent.
This proves Lemma 7.1.

Let C be a shortest long even hole. A C-contrivance is a six-tuple (x, y, p1, p2,m,Q), where

• x, y are C-major vertices (possibly y = x), and there is a (C, x)-gap P with ends p1, p2 and
midpoint m such that every C-major vertex has a neighbour in V (P);

• Q is a set of paths of C, pairwise anticomplete;

• every neighbour of x or y in V (P) belongs to Q∗; and

• x, y and all C-major vertices nonadjacent to both x, y have a neighbour in Q∗.

Its cost is the number of vertices in V (Q).
These objects will be the analogue of (K,F)-contrivances, and we will use them in the same way.

The next result is an analogue of Lemma 5.1.

Lemma 7.2. Let G be a candidate and let C be a shortest long even hole in G such that for some
C-major vertex x, there is a (C, x)-gap. Then there is a C-contrivance with cost at most 4`− 4.

Proof. Choose a maximal path P of C such that there is a C-major vertex x for which P is a (C, x)-
gap. Let P have ends p1, p2, and let m be a midpoint of P . It follows that every C-major vertex has
a neighbour in V (P). For i ∈ {1, 2} let Qi be the path of C whose vertex set consists of all vertices
of V (P) with P -distance at most `− 4 from pi and the two vertices of V (C) \ V (P) with C-distance
at most two from pi.

27

Let S be the set of all C-major vertices with no neighbour in Q∗1 ∪ Q∗2 ∪ {x}. We may assume
that S 6= ∅, because otherwise (x, x, p1, p2,m,Q) is a C-contrivance satisfying the theorem, where Q
is the set of components of G[V (Q1 ∪ Q2)]. Hence Q1, Q2 are vertex-disjoint. For each y ∈ S, we
define Py to be the (C, y)-gap with p1 ∈ P ∗y . Choose y ∈ S with |E(Py) \ E(P)| maximum, and let
p3, p4 be the ends of Py, where p3 /∈ V (P). (By Lemma 7.1, one end of Py is not in V (P).) Since y
has no neighbour in Q∗1 ∪Q∗2 ∪{x} and y has at least one neighbour in V (P), it follows from Lemma
7.1 that y has exactly two neighbours in V (P) and they are adjacent. One of them is p4; let the
other be p5.

Let R denote the path p1-Py-p3. For i = 3, 4, let Qi be the path of C whose vertex set consists
of all vertices of V (Py) with Py-distance at most `− 4 from pi and the two vertices of V (C) \ V (Py)
with C-distance at most two from pi. Then p5 ∈ Q∗4.

x

yz

p1

p2

p3

p4
p5r1

r2

Figure 9: For Lemma 7.2.

(1) Every C-major vertex has a neighbour in Q∗1 ∪Q∗2 ∪Q∗3 ∪Q∗4 ∪ {x, y}.

Suppose that z is C-major and has no neighbour in this set. Thus z 6= x, y. Since z has a neighbour
in V (R) from the choice of y, it follows from Lemma 7.1 applied to z and Py that z has exactly two
neighbours in V (Py) and they are adjacent, say r1, r2. Since z has a neighbour in V (R) and z is not
adjacent to p1, it follows that r1, r2 ∈ V (R). Number them such that p3, r1, r2, p1 are in order in Py.
Since z has a neighbour in V (P), and no neighbour in p1-P -p4, there is a zp5-path M with interior
in the vertex set of p5-P -p2. But then there is a long prism with bases {y, p4, p5}, {z, r1, r2}, and
constituent paths M , y-p3-Py-r1 and r2-Py-p4, a contradiction. This proves (1).

Let Q be the set of components of the subgraph induced on V (Q1) ∪ · · · ∪ V (Q4). From (1), it
follows that (x, y, p1, p2,m,Q) satisfies the theorem. This proves Lemma 7.2.

If we know a C-contrivance (x, y, p1, p2,m,Q) for some lightest long hole C (but we do not know
C), it is possible to construct a set X of vertices that contains all C-major vertices and does not
intersect C. To do so, we first need to reconstruct the path P (in the notation above). If we
could do that, then since every C-major vertex has a neighbour in one of P ∗, Q∗, and no vertex
in V (C) \ (V (P) ∪ V (Q)) has such a neighbour, we would have the desired set X. So, how to
reconstruct P? As for long near-prisms, it is easier if C is the lightest long even hole, rather than
just the shortest, and then we would like to use Theorem 6.5 as the analogue of Lemma 3.3. There
is a slight problem that did not arise for long near-prisms: the path P we are trying to reconstruct

28

might have length more than |E(C)|/2 or close to that, and then we cannot use Theorem 6.5 directly.
But if we know a midpoint m of P , then m divides P into two subpaths that are short enough to
be reconstructed via Theorem 6.5. For that reason we put the extra vertex m in the definition of a
C-contrivance. We can now prove the main result of this section, an analogue of Lemmas 5.2, 5.3
and 5.4.

Theorem 7.3. There is an algorithm with the following specifications:

Input: A candidate G, and a linear ordering of E(G).

Output: A list of O(|G|4`−1) sets with the following property: for every lightest long even hole C
there is some X in the list such that X contains all C-major vertices and X ∩ V (C) = ∅.

Running time: O(|G|4`+2)

Proof. First we output the set of all neighbours of y different from x, z, for every induced path x-y-z
in G.

Now guess three vertices x, y,m of G and a set Q of induced paths of G, pairwise anticomplete,
with cost at most 4`−4; and guess p1, p2 ∈ V (Q). If one of x, y belongs to V (Q) or has no neighbour
in Q∗, go on to the next guess.

Let Z1 be the set of vertices in V (G) \ V (Q) with a neighbour in Q∗. Let Z2 be the set of all
vertices in V (G) \ (V (Q)∪ {m}) with a neighbour in {x, y}. Let G′ = G \ (Z1 ∪Z2), and let R,S be
the lightest p1m-path and p2m-path in G′ respectively. (If these do not exist, or if R ∪ S is not an
induced path, go on to the next guess.) Let Z3 be the set of vertices in V (G) \ Q∗ with a neighbour
in {x, y} and a neighbour in the interior of R ∪ S. Output Z1 ∪ Z3, and go on to the next guess.
That completes the description of the algorithm.

There are O(|G|4`−1) guesses of (x, y, p1, p2,m,Q) to check (because p1, p2 ∈ V (Q)), and so the
output list has size O(|G|4`−1). For each guess, we compute Z1, Z2, Z3 in time O(|G|3). Hence the
total running time is O(|G|4`+2).

Now we prove the output is correct. Suppose that C is a lightest long even hole in G. If every
C-major vertex is complete to V (C), then the set X satisfies our requirement, where X is the set
of all neighbours of y different from x, z, for some three-vertex path x-y-z of C. So we may assume
that some C-major vertex is not complete to V (C).

By Lemma 7.2, G contains a C-contrivance (x, y, p1, p2,m,Q) with cost at most 4`− 4. We will
show that when we guess this C-contrivance, we output the set X that we need. Let P denote the
(C, x)-gap with ends p1, p2 and with midpoint m. From the definition of Z1, no vertex of Z1 belongs
to V (C), since the paths in Q are paths of C. It remains to show that Z3 ∩ V (C) = ∅, and every
C-major vertex belongs to Z1 ∪ Z3.

The path C \P ∗ contains all neighbours of x in V (C), and so by Lemma 6.1, C \P ∗ has length at
least four. Hence |E(P)| ≤ |E(C)|−4, and so the paths p1-P -m andm-P -p2 both have length at most
d|E(P)|/2e ≤ |E(C)|/2 − 2. Moreover, p1-P -m is a path of G′, and so the algorithm will compute
the lightest p1m-path R in G′, since such a path exists. So p1-P -m is not lighter than R. But R
contains no C-major vertices of G, and by Theorem 6.5, the path p1-P -m is the lightest p1m-path
of G that contains no C-major vertices, so R is not lighter than p1-P -m. Consequently R equals the
path p1-P -m. Similarly S is the path m-P -p2, and so R ∪ S = P . Consequently Z3 ∩ V (C) = ∅.

Now suppose that z is a C-major vertex not in Z1; we must show that z ∈ Z3. Since every
C-major vertex that is nonadjacent to both x, y has a neighbour in Q∗, it follows that z is adjacent

29

to one of x, y. Also z has a neighbour in V (P), since every C-major vertex has a neighbour in V (P);
and so z has a neighbour in P ∗. Thus z ∈ Z3, as required. This proves correctness, and so proves
Theorem 7.3.

8 The main algorithm
Now we prove our main result Theorem 1.1, which we restate:

Theorem 8.1. For each even integer ` ≥ 4 there is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has an even hole of length at least `.

Running time: O(|G|9`+3).

Proof. The algorithm is as follows. At each step, if we find that G contains a long even hole, we
output that fact and stop, so in steps 1,2,3,4,5,7 we can assume the algorithm called at that step
outputs the negative answer. Fix a linear ordering of E(G).

Step 1: Apply the algorithm of Theorem 2.1 to test whether G contains a long even hole of length
at most 2` in time O(|G|2`).

Step 2: Apply the algorithm of Theorem 2.2 to test whether G contains a long jewel of order at
most `+ 1 in time O(|G|2`+1).

Step 3: Apply the algorithm of Theorem 2.4 to test whether G contains a long theta in time
O(|G|2`−1).

Step 4: Apply the algorithm of Theorem 2.5 to test whether G contains a long ban-the-bomb, in
time O(|G|2`+1). (If we have not yet found a long even hole, then G is a prospect.)

Step 5: Apply the algorithm of Theorem 3.1 to test whether G contains a long near-prism, in time
O(|G|9`+3). (If we have still not found a long even hole, then G is a candidate.)

Step 6: Apply the algorithm of Theorem 7.3 to obtain a list L of subsets of V (G) of length
O(|G|4`−1) in time O(|G|4`+2), with the property that for every lightest long even hole
C of G there exists X ∈ L with X ∩ V (C) = ∅ that contains all C-major vertices.

Step 7: For every X ∈ L, apply the algorithm of Theorem 6.6 to G \X, to decide that either G \X
has a long even hole, or G\X has no clean lightest long even hole, in time O(|G|4) for each
X, and so in time O(|G|4`+3) altogether.

Step 8: Output that G has no long even hole.

For correctness, certainly if the algorithm returns that G has a long even hole then that is true.
For the converse, suppose that G has a long even hole, and hence a lightest long even hole C say.
Steps 1-5 will either output that there is a long even hole or decide that G is a candidate, and we

30

may assume the latter. Hence, with L is computed in step 6, there exists X ∈ L disjoint from V (C)
and containing all C-major vertices. Then in step 7, since C is a clean lightest long even hole of
G \X, the algorithm of Theorem 6.6 cannot report that G \X has no clean lightest long even hole,
and so it will report that G \X has a long even hole, and we return this fact correctly.

For the running time, testing whether G is a candidate (steps 1-5) takes time O(|G|9`+3), and
determining whether the candidate G contains a long even hole (steps 6-8) takes time O(|G|4`+3).
Hence, the total running time is O(|G|9`+3). This proves Theorem 8.1.

References
[1] H.-C. Chang and H.-I. Lu, “A faster algorithm to recognize even-hole-free graphs” J. Combina-

torial Theory, Ser. B 113 (2015), 141–161.

[2] H.-T. Cheong and H.-I. Lu, “Finding a shortest even hole in polynomial time”,
arXiv:2008.06740.

[3] Maria Chudnovsky, Ken-Ichi Kawarabayashi and Paul Seymour, “Detecting even holes”, J.
Graph Theory 48 (2005), 85–111.

[4] Maria Chudnovsky, Alex Scott and Paul Seymour, “Detecting a long odd hole”, submitted for
publication, arXiv:1904.12273.

[5] Maria Chudnovsky and Paul Seymour, “The three-in-a-tree problem”, Combinatorica 30 (2010),
387–417.

[6] Maria Chudnovsky and Rohan Kapadia, “Detecting a theta or a prism”, SIAM J. Discrete
Mathematics 22 (2008), 1164–1186.

[7] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, “Recognizing Berge
graphs”, Combinatorica, 25 (2005), 143-186.

[8] Maria Chudnovsky, Alex Scott, Paul Seymour and Sophie Spirkl, “Detecting an odd hole”, J.
Assoc. Comput. Mach., 67 (2020), 1–12, arXiv:1903.00208.

[9] Maria Chudnovsky, Alex Scott and Paul Seymour, “Finding a shortest odd hole”, submitted for
publication, arXiv:2004.11874.

[10] Maria Chudnovsky, Alex Scott, Paul Seymour and Sophie Spirkl “Proof of the Kalai-Meshulam
conjecture”, Israel J. Math., to appear, arXiv:1810.00065

[11] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković, “Even-hole-free graphs part I: Decom-
position theorem”, J. Graph Theory 39 (2002), 6–49.

[12] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković, “Even-hole-free graphs part II: Recog-
nition algorithm”, J. Graph Theory 40 (2002), 238–266.

[13] Linda Cook, PhD thesis, Princeton University, in preparation.

31

[14] Frédéric Maffray and Nicolas Trotignon, “Algorithms for perfectly contractile graphs”, SIAM J.
Discrete Mathematics 19 (2005), 553–574.

[15] Kai-Yuan Lai, Hsueh-I Lu and Mikkel Thorup, “Three-in-a-tree in near linear time”, Proc. 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, 1279–1292.

[16] Sepehr Hajebi, private communication, 2019.

32

	Introduction
	The easily-detectable configurations
	Detecting a clean lightest long near-prism
	Major vertices on near-prisms
	Cleaning lightest long near-prisms
	Detecting a clean lightest long even hole
	Cleaning a shortest long even hole
	The main algorithm

