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According to recent new definitions, a multiparty behavior is genuinely multipartite nonlocal (GMNL) if
it cannot be modeled by measurements on an underlying network of bipartite-only nonlocal resources,
possibly supplemented with local (classical) resources shared by all parties. The new definitions differ on
whether to allow entangled measurements upon, and/or superquantum behaviors among, the underlying
bipartite resources. Here, we categorize the full hierarchy of these new candidate definitions of GMNL in
three-party quantum networks, highlighting the intimate link to device-independent witnesses of network
effects. A key finding is the existence of a behavior in the simplest nontrivial multipartite measurement
scenario (three parties, two measurement settings, and two outcomes) that cannot be simulated in a bipartite
network prohibiting entangled measurements and superquantum resources—thus witnessing the most
general form of GMNL—but can be simulated with bipartite-only quantum states with an entangled
measurement, indicating an approach to device-independent certification of entangled measurements with
fewer settings than in previous protocols. Surprisingly, we also find that this (3,2,2) behavior, as well as the
others previously studied as device-independent witnesses of entangled measurements, can all be simulated
at a higher echelon of the GMNL hierarchy that allows superquantum bipartite resources while still
prohibiting entangled measurements. This poses a challenge to a theory-independent understanding of
entangled measurements as an observable phenomenon distinct from bipartite nonlocality.
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Quantum nonlocality [1] is a fascinating phenomenon
that can be convincingly demonstrated in experiments of
two spatially separated parties [2–5]. Quantum mechanics
also predicts nonlocal effects in experiments of three or
more spatially separated parties. Naturally, a three-party
experiment should only be considered genuinely multiparty
nonlocal (GMNL) if it exhibits some nonlocal behavior
beyond the two-party type, ruling out scenarios where, for
instance, two parties observe nonlocality with each other
while the third party’s statistics are not correlated with the
first two in any way.
A first approach to defining genuine multipartite

nonlocality, introduced by Svetlichny [6] and later
refined [7,8], proposes that a probability distribution of
experimental outcomes be considered GMNL if it cannot
be expressed as a convex mixture of distributions where
each one factors into a product of at-most-bipartite nonlocal
distributions. However, this definition admits anomalies
[9–11]: for instance, if one measuring party simultaneously
participates in two parallel but unrelated two-party Clauser-
Horne-Shimony-Holt (CHSH [12]) experiments, one with
the second party and the other with the third party, the
combined statistics of all three parties will be classified as
GMNL according to Svetlichny-type definitions.
Recently, some authors [10,11,13] have proposed new

definitions of GMNL based on whether a behavior can be
simulated by an underlying network of bipartite nonlocal
resources, possibly with access to local or classical

resources shared by all parties (shared randomness).
Figure 1 gives a schematic representation of such an
underlying network for the three-party scenario, where a
bipartite resource such as ωAB shared by Alice and Bob
could be an entangled Bell state ðj00i þ j11iÞ= ffiffiffi

2
p

, but
three-way nonclassical states such as the GHZ state [14] are
disallowed. According to the new paradigm, a three-party
behavior is considered GMNL if it cannot be induced by an

FIG. 1. A bipartite network model for a tripartite scenario.
Tripartite behaviors that cannot be induced by an underlying
bipartite network model of the above form—bipartite nonclass-
ical sources (ω) possibly supplemented with classical random-
ness shared by all three parties (SLR)—are considered genuinely
multipartite nonlocal (GMNL) according to recent new defini-
tions [10,11,13].
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underlying network like that of Fig. 1. The parallel-CHSH-
experiment example of the previous paragraph would here
be ruled (only) bipartite nonlocal.
The new definitions [10,11,13] differ on the impositions

made on the underlying network. The strictest of these
definitions—that is, the one which would categorize the
largest class of behaviors as (only) bipartite nonlocal—is
that of Coiteux-Roy et al. [11]. This definition allows the
parties to perform entangled measurements, and also allows
superquantum nonsignaling bipartite resources [such as
Popescu-Rohrlich (PR) boxes [15] ] in the underlying
bipartite network. Tripartite behaviors ruling out this class,
which can be achieved with appropriate measurements on
the three-way entangled GHZ state [11,16], naturally also
rule out other definitions with more restrictions on the
networks such as a definition disallowing entangled
measurements [13], a definition disallowing superquantum
bipartite resources [10], or a fourth candidate definition
disallowing both. Recent experimental results [16–18] pro-
vide initial evidence, subject to fair-sampling-type assump-
tions, for the existence of three-party behaviors that cannot
be modeled by even the most general underlying bipartite
networks of Ref. [11]. Different perspectives on what
phenomena transcend that of (only) bipartite nonlocality
motivate a closer study of the new definitions of GMNL that
are less restrictive than that of Ref. [11]. To illustrate,
observe that device-independent and self-testing witnesses
of entangled measurements [19–21] are fundamentally
multipartite phenomena, requiring at a minimum two distant
parties and a third “entangling” party in between: any strictly
two-party setup involving entangled measurements on differ-
ent subsystems can always be easily simulated by a higher
dimensional setup that does not employ entangled measure-
ments [see Supplemental Material (SM), Sec. 1 [22] ].
Constraints derived under notions of GMNL that disallow
entangled measurements will indeed be intimately linked to
device-independent certificates of entangled measurements,
a crucial tool for teleportation and entanglement swapping
protocols in quantum networks [23]. A device-independent
perspective suggests disallowing superquantum nonsignal-
ing bipartite resources (i.e., PR boxes [15]) among the ω
sources in Fig. 1 as nonphysical, but a more foundational
perspective seeking a better theory-independent understand-
ing of the nature of entangled measurements, which have
recently been argued to remain poorly understood [24],
recommends consideration of the GMNL paradigm where
superquantum resources are allowed. We will consider
both viewpoints.
In this Letter, we study the full hierarchy of new

definitions of GMNL and classify their interrelationships
for the tripartite scenario. A main result of this work is the
demonstration of a quantum behavior, using entangled
measurements on bipartite-only quantum states, that wit-
nesses the most general form of multiparty nonlocality—that
disallowing entangled measurements and superquantum

resources in the Fig. 1 network—in the simplest possible
(3,2,2) scenario of three measuring parties, two measurement
settings per party, and two possible outcomes for each
measurement. This behavior demonstrates an important
separation between different definitions of GMNL, while
also providing a promising approach to the task of device-
independent certification of entangled measurements with
the fewest possible number of settings and outcomes—
reducing the number of settings from previous scenarios
achieving this task [19–21]. Note that as this behavior is not
considered GMNL according to the stricter definition of
Ref. [11], the non-fan-out inflation technique [25] used in
Refs. [11,16] is inapplicable for demonstrating the weaker
notion of GMNL studied here, and our proof uses a different
approach invoking self-testing [26].
This (3,2,2) behavior demonstrates GMNL according to

the definition where the ω in Fig. 1 are limited to quantum-
achievable resources. We continue the study by asking
whether this behavior is still GMNL according to a
paradigm in which superquantum resources (i.e., nonsignal-
ing Popescu-Rohrlich boxes [15]) are allowed for the
underlying bipartite network, while still prohibiting
entangled measurements and superquantum generalizations
thereof. We find—perhaps surprisingly—that bipartite PR
box networks can simulate the (3,2,2) behavior discussed
above without appealing to entangled measurements (or
superquantum generalizations of the notion). Hence, this
behavior exhibits only bipartite nonlocality according to the
GMNL definition allowing nonsignaling resources in Fig. 1.
Motivated by this finding, we asked whether such a

model exists for the more complicated behavior introduced
by Ref. [19], which has been studied in various forms
[20,21] as the canonical behavior certifying the presence of
an entangled measurement in a fully device-independent
manner. Similarly, we find a model for the behavior of
Ref. [19] using a network of bipartite PR boxes without
entangled measurements. Hence, none of these behaviors
bear a theory-independent signature of the phenomenon
of entangled measurements (i.e., without reference to the
axioms of quantum mechanics), raising questions about
exactly what such a signature might be, or if it exists.
We now give a precise formulation of the bipartite network

model in which we rigorously derive our results. The three
parties Alice, Bob, and Charlie of Fig. 1 make choices of
measurements represented by respective random variablesX,
Y, and Z, and record measurement outcomes A, B, and C.
An experiment is then characterized by the behavior
PðA; B;CjX; Y; ZÞ, the settings-conditional outcome distri-
bution. Behaviors PðABCjXYZÞ that can be induced by a
network of the form in Fig. 1 are said to be notGMNL,where
the precise class of behaviors singled out differs based on the
nature of the bipartite sources ωPQ and the form of the
measurements allowed to Alice, Bob, and Charlie.
QB2 is the smallest class of behaviors in the hierarchy of

bipartite network models, which are summarized in Fig. 2.
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Here, the bipartite sources ωPQ are taken to be quantum
states ρPQ, so that the joint quantum state of the system is of
the form ρAB ⊗ ρBC ⊗ ρAC. The parties Alice, Bob, and
Charlie apply quantum measurements [positive operator-
valued measures (POVMs)] to their respective systems, but
must separately measure subsystems shared with different
players. This is a scenario of “quantum boxes” (motivating
the choice of name QB2), where quantum states are
effectively input-output machines as entangling dynamics
on the states are prohibited. Because of this, the POVM
elements of Bob (for example), which act on the state space
of the reduced system trAC½ρAB ⊗ ρBC�, are expressible in
the separable form (Ref. [27], Proposition 6.5),

X

i

ciRA
i ⊗ RC

i ; ð1Þ

where each RP
i is a rank-1 projector acting on the portion of

Bob’s state shared with player P and the ci are positive real
constants not greater than one (see SM, Sec. 2 [22]). The
class of separable measurements of form Eq. (1) is in fact
slightly larger than those measurements strictly admitting a
quantum box description [28].
The framework QB2 disallows superquantum resources

for the ωPQ in Fig. 1, which can be justified on practical
grounds: superquantum correlations such as those of the PR
boxes are generally expected to be nonphysical, and in the
device-independent certification perspective the validity

and completeness of quantum mechanics is generally
assumed. Quantum behaviors outside of QB2 require either
entangled measurements or three-way entangled states, and
so device independently witness the presence of at least one
of these resources.
If one accepts the position that only quantum resources

should be considered for the bipartite resources in Fig. 1,
but that entangled measurements should be permitted,
one arrives at the larger class of bipartite network behaviors
Q2. This corresponds to the notion of GMNL given in
Definition 2 of Ref. [10]. Q2 is precisely the boundary
for a behavior exhibiting tripartite entangled states device
independently; any tripartite quantum behavior lying
outside this set certifies the presence of a three-way-
entangled quantum state (in particular, a genuinely network
3-entangled state as defined in Ref. [29]).
Another option for extending the class QB2 is to allow

for superquantum resources such as PR boxes [15]
while instead maintaining the prohibition on entangled
measurements. For the observable phenomenon of
(bipartite) nonlocality, the most abstract definition of this
phenomenon—that without any appeal to the axioms of
quantum mechanics—involves black boxes that can violate
Bell inequalities while respecting the no-signaling con-
ditions. The framework NS2 allows the classical manipu-
lation whereby outputs of some of the bipartite boxes are
used as inputs to other bipartite boxes, expanding the scope
of simulable tripartite behaviors [30]. Finally, the largest
class GPT2 (standing for generalized probabilistic theories)
allows for both superquantum bipartite sources and
entangled measurements (and possibly superquantum gen-
eralizations thereof); this corresponds to the GMNL def-
inition of Ref. [11].
The containment relationships of the four sets are

summarized in Fig. 2. It is known that some of the
containments are strict: region R4 can be seen to be
nonempty due to the presence of PR box correlations in
NS2 while Tsirelson’s bound [31] rules these out ofQ2, and
the results of Refs. [11,16] demonstrate quantum behaviors
in region R6. It is conjectured in Sec. V C of Ref. [32] that
there are correlations outside NS2 but inside GPT2, but to
date we are unaware of an argument definitively proving
the existence of behaviors in either region R3 or R5.
The three-party behavior introduced by Ref. [19] and

further studied by Refs. [20,21] as a device-independent
certificate of entangled measurements can, due to this
certifying property, be situated in the current context as
lying outside QB2 but inside Q2; see Proposition 7 in
Ref. [32] for an extended discussion. (Whether these
behaviors are in region R2 or R3 requires further analysis;
we answer this question later.) The behavior of Ref. [19]
and all of its later-studied variants are characterized by
having more than two setting choices for at least one of
the parties. In contrast, the following result shows
that a behavior in Q2nQB2 can be found for the simplest

FIG. 2. Summary of features for the different models of an
underlying network of bipartite-only systems in the tripartite
scenario. The Venn diagram illustrates the containment relation-
ships for the corresponding classes of behaviors.
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possible (3,2,2) scenario. All behaviors in any simpler
measurement scenario can always be simulated with
bipartite resources and shared local randomness (see
SM, Sec. 3 [22]).
Theorem 1.—There is a behavior PðABCjXYZÞ in Q2

with binary input and output random variables satisfying
the conditions PðB¼0jY¼1Þ>0, PY¼1;B¼0ðACjXZÞmax-
imally violates the CHSH inequality, and PðA ¼ BjX ¼ 0;
Y ¼ 0Þ ¼ 1. Furthermore, no behavior in QB2 can satisfy
these conditions.
The behavior in Q2 is obtained as follows: Alice

and Bob, and Bob and Charlie, each share a Bell pair
jΦþi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

. No Alice-Charlie state is used.
On setting Y ¼ 1, Bob performs an (entangled) Bell state
measurement on his two portions of the Bell pairs;
conditioned on observing the outcome corresponding to
jΦþi, which occurs with probability 1=4, Bob reports
outcome B ¼ 0 and all other Bell measurement outcomes
are binned into outcome B ¼ 1. Conditioned on B ¼ 0,
Alice and Charlie possess jΦþi on which they can
perform measurements maximally violating the CHSH
inequality with Alice measuring σz on setting X ¼ 0. On
setting Y ¼ 0, Bob measures (only) his qubit shared
with Alice in the same direction σz, which ensures
PðA ¼ BjX ¼ 0; Y ¼ 0Þ ¼ 1. The exact behavior
PðABCjXYZÞ is

1þð−1ÞA⊕BδX;0
8

if Y ¼ 0;
δB;1
4
þ ð−1ÞB

4
CHSHðACjXZÞ if Y ¼ 1;

where CHSHðACjXZÞ ¼ 2þ ð−1ÞA⊕C⊕XZ
ffiffiffi
2

p
=8.

That such behaviors cannot exist in QB2 follows by the
following intuition, which we make precise and prove in
Sec. 4 of SM [22]. Assume Bob can make only a separable
measurement on setting Y ¼ 1 (the proof does not assume
separability of any other measurement). This measurement
cannot create new entanglement between Alice and Charlie,
but Alice and Charlie must be measuring an entangled Bell
state to maximally violate CHSH, and so this must be a Bell
state they initially possess via ωAC. Then since Bob is not
entangled with ωAC, from his perspective Alice is measuring
a fully mixed state and it will be impossible for him to do any
better than blind guessing when trying to align his outcome
with Alice’s for setting Y ¼ 0.
As in Ref. [19], our rigorous proof relies crucially on

self-testing, but we encounter a notable complication in
the need to link a conditional post-Bob-measurement
CHSH violation to restrictions on Bob’s ability to align
with Alice’s outcome when he chooses a different meas-
urement setting, requiring a new argument that necessarily
cedes improved (but not perfect) prospects for Bob to align
outcomes with Alice. Our proof applies in full generality,
i.e., assuming only POVMs (see SM Sec. 6 [22], where
we borrow an argument from Ref. [33] instead of the

standard one [34] for POVM-to-projective-measurement
dilation) on potentially mixed states, and while we do
assume a maximal violation of the CHSH inequality, this
leads to a robust upper bound (strictly less than 1) on
PðA ¼ BjX ¼ 0; Y ¼ 0Þ such that robustness results for
self-testing [35] provide a clear approach for lifting the
argument to experimentally testable constraints, and
thereby a device-independent witness of entangled mea-
surements in the simplest possible (3,2,2) scenario.
We extend our analysis by asking whether this behavior

lies in regionR2 orR3. One might be tempted to think that
the (3,2,2) behavior described above cannot be simulated
in NS2, due to the well-known prohibition on “nonlocality
swapping” [36,37]. However, see Theorem 2.
Theorem 2.—There exists a behavior in NS2 meeting the

conditions of Theorem 1.
Proof.—Figure 3(a) gives an example of a PR box

network that results in the behavior PðABCjXYZÞ given by
δA;B
4

if Y ¼ 0;
δB;1
4
þ ð−1ÞB

2
PRðACjXZÞ if Y ¼ 1;

where PRðACjXZÞ ¼ ðδA⊕C;XZ=2Þ. This behavior satisfies
the conditions of Theorem 1 with the modification that
PY¼1;B¼0ðACjXZÞ violates the CHSH inequality beyond
the Tsirelson’s bound to the nonsignaling maximum of 4.
A convex mixture of this behavior with classical behaviors
can induce violations of the CHSH inequality to only the
quantum maximum of 2

ffiffiffi
2

p
. ▪

A possible idea for why the (3,2,2) behavior might fail to
bear a theory-independent signature of an entangled meas-
urement is that tripartite quantum behaviors outside QB2

only signify either the presence of entangled measurements
or three-way entangled sources, and it is only with the
additional assumption of the absence of three-way entangled
sources that the (3,2,2) behavior certifies entangled mea-
surements specifically. Indeed, Jordan’s lemma ensures that
any (3,2,2) behavior can be simulated with (nonentangled)
measurements on qubits [38] and we provide in SM Sec. 5
an explicit example satisfying the conditions of Theorem 1
with a GHZ state [22]. The assumption of the absence of
three-way entangled sources is also required in Refs. [20,21]
for noise-robust device-independent certification of
entangled measurements, and while the assumption can
be well motivated physically in appropriate setups, it can
be argued to technically represent a weakening to a semi-
device-dependent scenario. However, this assumption is not
invoked in the original argument concerning the noise-free
behavior of Ref. [19]. But we find that even the original
behavior of Ref. [19] is simulable with networks of bipartite
PR boxes.
In the scenario of Ref. [19], reformulated as a Bell game,

Alice and Charlie still have binary settings and outcomes,
but now Bob has three settings Y ∈ f0; 1; 2g, each with

PHYSICAL REVIEW LETTERS 130, 250201 (2023)

250201-4



four outcomes modeled as a binary pair B ¼ ðBA; BCÞ.
When Y ∈ f0; 1g, two subgames are won if A ⊕ BA ¼ XY
and C ⊕ BC ¼ ZY; these are two parallel CHSH games
played by Alice-Bob and Bob-Charlie. When Y ¼ 2, the
winning condition is A ⊕ C ¼ XZ ⊕ ðXBA ⊕ BCÞ; this
constitutes four variants of an Alice-Charlie CHSH game,
corresponding to each potential value of B. As argued in
Ref. [19], a strategy utilizing bipartite Bell states and a

Bell basis measurement for Y ¼ 2 can win all the CHSH
games to the quantum maximum [cos2ðπ=8Þ ≈ 85%],
whereas no strategy without an entangled measurement
can do so even if tripartite entangled states are available.
However, a network of PR boxes as in Fig. 3(b) fulfills the
following theorem.
Theorem 3.—The Bell game of Rabello et al. [19]

described above can be won with probability 1 by a
behavior in NS2.
The results of this Letter provide a minimally complex

approach to witnessing entangled measurements, situated
in the wider context of classifying different notions
of genuine multipartite nonlocality. The techniques of
Theorem 1 may also be useful in other paradigms: for
example, in the triangle network without global shared
randomness, the behavior of Ref. [39] was conjectured to
require entangled measurements but was only recently
proven to do so [40]. And the results of Theorems 2 and
3 indicate that claims of nonsimulability by PR boxes for
behaviors invoking entangled measurements (such as is
suggested for the behavior in Ref. [39], but this remains
unproven) must be carefully evaluated. Whether any
tripartite behaviors exist in region R3 of Fig. 2 remains
an open question with important implications for a theory-
independent understanding of entangled measurements.
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Supplement to “A Hierarchy of Multipartite Nonlocality and Device-Independent
Effect Witnesses”

1. TWO PARTY BEHAVIORS NEVER REQUIRE ENTANGLED MEASUREMENTS

If two parties Alice and Bob share multiple quantum states, and perform entangled measurements on their different
sub-states, it is always possible to re-write the shared quantum states as a single quantum state

∑
ij γij |i〉A ⊗ |j〉B

using bases {|i〉} and {|j〉} that ignore any subsystem structure. Then the corresponding measurements will no longer
have any entangled structure. For example, suppose Alice and Bob possess two separate Bell pairs

(1/
√

2) (|0A0B〉+ |1A1B〉)⊗ (1/
√

2) (|0A′0B′〉+ |1A′1B′〉)

and Alice makes an entangled measurement on her A and A′ subsystems. Then using the relabeling |0〉 = |0A〉⊗|0A′〉,
|1〉 = |0A〉 ⊗ |1A′〉, |2〉 = |1A〉 ⊗ |0A′〉, |3〉 = |1A〉 ⊗ |1A′〉, Alice’s measurements are replaced by (unentangled)
measurements on a single 4-dimensional qudit.

2. SEPARABLE MEASUREMENTS ENCOMPASS “QUANTUM BOX” DYNAMICS

We illustrate how Expression (1) in the main text encompasses “quantum box” dynamics. Such dynamics include
strategies where Bob measures his portion of ρAB , then depending on this outcome chooses a measurement on his
portion of ρBC , possibly repeating this process multiple times across ρAB and ρBC if these consist of parallel sub-
resources, with Bob finally reporting a final outcome B as a function of these sub-measurements’ outcomes.

First we state the following elementary fact (for a proof see Proposition 6.5 in [1]):

Fact. Any operator of the form Π =
∑
i P

A
i ⊗ PCi , where the PAi and PCi are positive operators, can be expressed

in the form
∑
j cjR

A
j ⊗ RCj where RAj , R

C
j are rank one projectors and the cj are positive constants. If Π is also a

POVM element then the cj are bounded above by 1.

Now let us consider a simple cascaded submeasurement approach performed by Alice on the subsystems she shares
respectively with Bob and Charlie. Suppose Alice measures the register A(b), which is her portion of the state shared
with Bob, with POVM elements {P i}i∈{0,1}; if her outcome to this measurement is 0, she measures her subsystem A(c)

shared with Charlie with {Si}i∈{0,1}, but if her outcome is 1, she chooses a different measurement {T i}i∈{0,1} for the
Charlie subsystem. Then this whole measurement procedure can be represented as a single (separable) measurement
with four measurement operators:

P 0
A(b) ⊗ S0

A(c) P 0
A(b) ⊗ S1

A(c) P 1
A(b) ⊗ T 0

A(c) P 1
A(b) ⊗ T 1

A(c) .

If she chooses to bin some of these together for a coarse-grained final outcome A, she can achieve the same behavior
by employing a POVM whose corresponding element is the sum of the binned elements. Then by the above fact, this
is representable with the form of Expression (1) in the main text.

A more complicated scenario with multiple subsystems comprising both A(b) and A(c), with various earlier mea-
surements controlling choices of later measurements in the different subsystems, still leads to separable measurements
where each measurement operator is of a form like[

P
A

(b)
1
⊗Q

A
(b)
2
⊗R

A
(b)
3

]
A(b)
⊗
[
S
A

(c)
1
⊗ T

A
(c)
2
⊗ U

A
(c)
3

]
A(c)

in which each bracketed term is itself a projector, consisting of a tensor product of projectors. This is an example
of a LOCC (local operations and classical communication) transformation performed by Alice upon her separate
subsystems, with the “classical communication” being transmitted between Alice’s subsystems. Ref. [2] shows that
there are separable measurements that cannot be modeled with such a LOCC approach.

3. (3, 2, 2) IS THE SIMPLEST NONTRIVIAL SCENARIO IN THE PRESENCE OF SHARED LOCAL
RANDOMNESS

The allowance for three-way classical resources in Fig. 1 prevents certain evidently classical behaviors from being
classified as GMNL, such as the fixed setting behavior in which Alice, Bob, and Charlie either all observe “0” or
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all observe “1” with equal probability. This behavior cannot be simulated with bipartite nonclassical systems alone;
see Example 1 of Ref. [3] and the further discussion in Section V.D therein. It is still possible to study three-party
networks under an assumption of the absence of three-way shared randomness, and with this assumption one can
witness the presence of nonclassical effects in scenarios simpler than (3, 2, 2): for example, [4] observes a form of
nonlocality in a three-party network where each party has only one choice of setting. However, this is not possible in
our paradigm: the (3, 2, 2) scenario is the simplest scenario in which a nonsignaling behavior can rule out simulation
by bipartite-only nonclassical sources and three-way shared local randomness.

To see why, first observe that we clearly cannot reduce the number of parties below three – this results in a bipartite
scenario, and so is of course bipartite simulable.

Furthermore, in an n-partite experiment witnessing GMNL each party must have at least two settings; if not,
an experiment of (n − 1) parties would have the same ability to witness incompatibility with an underlying bi-
partite network. To illustrate, suppose one of the parties in an n-party experiment has only one setting; say Al-
ice. Consider Alice to measure first, obtaining an outcome A = ai which occurs with probability p(i), and let Pi
denote the behavior of the remaining players conditioned on the occurrence of this Alice outcome. In the three
party version, Alice’s lack of setting and the no-signaling property allows the following factorization of the behavior:
P (ABC|Y Z) = P (BC|Y Z,A)P (A|Y Z) = P (BC|Y Z,A)P (A), and Pi = P (BC|Y Z,A = ai). An analogous factor-
ization holds for a higher number of parties. The factorization shows us that if each Pi is bipartite simulable as
an (n − 1)-partite behavior, we can simulate the n-party behavior with the following scheme: distribute networks
capable of simulating each of the Pi behaviors to the the other (n − 1) players, and distribute a classical random
variable Λ to all n parties that takes the value ai with probability p(i). During the experiment, Alice reports the
value of the Λ variable as her outcome A while the remaining parties use the Pi-generating network whose whose
index i corresponds to the observed value of Λ. This will simulate the original behavior, and so the original n-party
behavior is incompatible with an underlying bipartite network only if one of the ai-conditional behaviors of the (n−1)
non-Alice parties is so incompatible.

Finally, every setting must have at least two outcomes. This is because a behavior with a one-outcome measurement
setting will always be simulable by an underlying bipartite network if the reduced behavior without this setting
choice is so simulable. This follows from the no-signaling principle: suppose (say) Alice only has one outcome O
for her last measurement setting m. Then consider the scenario where Alice only has (m − 1) settings and no
setting m. If the corresponding reduced behavior is bipartite simulable, then we can simulate the original behavior
adding back in the mth setting as follows: when the mth setting is queried, Alice does the same thing as for one
of her other (m − 1) measurement settings but just relabels all outcomes to the single possible outcome. Since the
marginal distribution of the remaining parties is required to be the same regardless of Alice’s setting by the no-
signaling principle, the full original behavior is recovered this way. Mathematically, this corresponds to the equalities
P (A = O, BC|X = m,Y Z) = P (BC|X = m,Y Z) = P (BC|X = m− 1, Y Z) =

∑
i P (A = ai, BC|X = m− 1, Y Z).

By the above considerations, any scenario witnessing GMNL is always as or more complicated than a simplified
scenario witnessing GMNL with n ≥ 3 parties, at least two measurement settings per party, and at least two outcomes
per measurement, and the (3, 2, 2) scenario is minimally complicated among such scenarios. The above considerations
also show that no scenario less complicated than (3, 2, 2) can witness GMNL.

4. PROOF OF THEOREM 1

As outlined in the main text, we employ self-testing [5] combined with the separable structure of the measurements
to demonstrate that behaviors in QB2 cannot meet the conditions of Theorem 1. We remark this is different from the
approaches of [6–8] which all use the nonfanout inflation technique [3] to derive constraints on the behavior class that
we call GPT2. That technique is inapplicable for demonstrating the weaker notion of GMNL studied here, because
behaviors in Q2 – which can meet the conditions of Theorem 1 – are not considered GMNL according to the stricter
definition of [6] that considers anything in GPT2 bipartite-only nonlocal. Hence constraints on GPT2 obtained with
the nonfanout inflation technique, while necessarily obeyed by behaviors in QB2, will never be incompatible with
meeting the conditions of Theorem 1.

We restate the conditions of Theorem 1 as follows:

P (B = 0|Y = 1) > 0 and PY=1,B=0(AC|XZ) maximally violates CHSH inequality (1)

P (A = B|X = 0, Y = 0) = 1 (2)

Self-testing was also invoked in the arguments of Refs. [9–11], but in these works, the CHSH violation restricting the
structure of the state was not conditional on a third player’s outcome as in (1) above. We thus require an additional
argument to link this post-outcome CHSH violation to constraints on the pre-measurement Alice-Bob state that
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prevent condition (2) from being met. One consequence of this conditionality is that Bob’s degree of failure of (2)
is linked to P (B = 0|Y = 1); quantitatively, we find below that P (A 6= B|X = 0, Y = 0) is bounded below by half
of P (B = 0|Y = 1). A quantitative lower bound on P (A 6= B|X = 0, Y = 0) such as this one, rather than just the
impossibility of unit probability in (2), is important in consideration of future work extending the following argument
to a robust testable version featuring sub-maximal CHSH violations.

We prove Theorem 1 in the most general case of POVM measurements on mixed states. Some of the arguments
below, however, apply only to projective measurements and/or pure states. In particular, self-testing results are
generally formulated with an assumption of projective measurements on pure states; see Appendix B of Ref. [5] for
a discussion of this assumption and its implications in the self-testing context. This sometimes-implicit assumption
introduces subtleties for applying self-testing results to other contexts. Thus, for our theorem to hold in full generality,
we adopt a strategy of first showing that if a QB2 behavior meets the conditions (1)-(2), this implies the existence
of a (possibly different) behavior meeting the conditions of (1)-(2) for which the measured state is pure, some of the
measurements are projective, and some of the separable measurement restrictions of QB2 are still met. Then we
show that this different behavior leads to a contradiction; that is, no behavior meeting these modified restrictions can
actually satisfy conditions (1)-(2). This strategy requires some care since standard state purification and measurement
dilation arguments do not necessarily preserve characteristic structures of QB2 (separable measurements and a product
structure of the measured states).

In the proof, we use the following properties of partial trace:

Fact. For the tensor product Hilbert space HX ⊗HY , the partial trace TrY has the following properties:

Linearity: TrY

(∑
i

λiρ
i
XY

)
=
∑
i

λiTrY
(
ρiXY

)
(3)

Partial Cyclicity: TrY [(IX ⊗MY )ρXY ] = TrY [ρXY (IX ⊗MY )] (4)

where ρXY , IX (identity) and MY operate on HX ⊗HY , HX , and HY respectively

Proof of Theorem 1. An example of a behavior in Q2 meeting conditions (1)-(2) is provided in the main text. We
show here that no behavior in QB2 can meet these conditions, employing a proof by contradiction.

Step 1: Simplifying states and measurements. Assume that a behavior in QB2 meets the conditions (1)-(2)
with POVMs on a mixed state. Such a behavior implies the existence of a (possibly different) behavior in QB2 meeting
the conditions using the same POVMs on a pure state by the following convexity argument: by the nature of QB2

the measured mixed state is of the form ρAB ⊗ ρBC ⊗ ρAC . One can represent each of the three component mixed

states ρPQ as a convex mixture of pure states
∑
λi |ψPQi 〉 〈ψ

PQ
i |. Then applying the POVMs to the composite pure

state (
|ψABi 〉 〈ψABi |

)
⊗
(
|ψBCj 〉 〈ψBCj |

)
⊗
(
|ψACk 〉 〈ψACk |

)
yields a behavior such that the convex mixture of all such behaviors with respective weights λiλjλk recovers the
original behavior. Clearly (2) must hold for each individual behavior in this convex mixture. Moreover, if a convex
mixture of quantum behaviors satisfies the condition (1), then at least some of the individual behaviors must satisfy
this condition as well, since some of the individual behaviors must satisfy P (B = 0|Y = 1) > 0 and the average

CHSH value over all such behaviors is 2
√

2 requiring each individual behavior in this class to achieve 2
√

2 as CHSH
values exceeding 2

√
2 are impossible. So some of the behaviors in the convex mixture meet the conditions (1)-(2) with

POVMs on a pure state.
Thus it suffices to demonstrate impossibility of satisfying the conditions (1)-(2) in QB2 with a pure state. To apply

our argument, we require a further simplification of Alice and Charlie’s measurements to be projective; this enables
a direct application of self-testing results as well as some other simplifications. Replacing POVMs with projective
measurements yielding the same behavior is always possible, but we are careful to employ a method that preserves
the factored form of the state

|ψ〉 = |ψ〉AB ⊗ |ψ〉BC ⊗ |ψ〉AC . (5)

The method described on p. 95-6 of [12] cannot be used because it involves the party that is replacing the POVM
with a projective measurement to apply a unitary to the state which could entangle the two portions that the party
shares with the two other parties. We instead follow a method close to that of [13]. As we show in Theorem 3 of
Section 6, this approach allows us to replicate the behavior while replacing the state |ψ〉 with a new state |ψ〉′ of the
form

|ψ〉′ = |α〉A ⊗ |ψ〉AB ⊗ |ψ〉BC ⊗ |ψ〉AC ⊗ |α〉C (6)

= |ψ〉′AB ⊗ |ψ〉BC ⊗ |ψ〉
′
AC (7)
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where Alice performs a projective measurement on her previous state space plus an introduced qudit |α〉A, Charlie
does similarly with |α〉C , and Bob’s POVM is unchanged. Collecting the introduced qudits into respective states

|ψ〉′AB and |ψ〉′AC then makes the state still conform with the QB2-style factorization of (5). This process will not in
general preserve the separability of Alice and Charlie’s measurements, but we do not need this below. Conversely, we
do require separability of Bob’s measurements which is why we leave his measurements unchanged.

To recap, we have shown that the existence of a behavior in QB2 satisfying conditions (1)-(2) implies the existence
of a (possibly different) behavior satisfying these conditions where the measured state is a pure state of form (5), Alice
and Charlie’s measurements are projective, and Bob’s measurements are separable as in Expression (1) in the main
text. We now show that for a behavior induced this way, satisfaction of (1) is in fact incompatible with satisfaction
of (2).

Step 2: Implications of self-testing. Bob’s POVM on measurement setting Y = 1 is given by {E0, E1} where E0

is of separable form

E0 =

m∑
i=1

Ei0 =

m∑
i=1

ci |ϕi〉 〈ϕi| ⊗ |ϕ′i〉 〈ϕ′i| (8)

where |ϕi〉 〈ϕi| acts on the state shared with Alice and |ϕ′i〉 〈ϕ′i| acts on the state shared with Charlie. Because of
the tensor product structure of the measurements among the parties (or, relatedly, the no signaling principle), we
can consider Bob to perform his measurement on (5) first, followed by Alice and Charlie measuring their resulting
post-measurement state, which will be

TrB [(IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC) |ψ〉 〈ψ|] /Prob(E0) (9)

where Prob(E0) = Tr [(IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC) |ψ〉 〈ψ|] and the notation MP (q) indicates an operator on a register
possessed by party P that is (potentially) entangled with party Q. Note the expression above for the reduced state
given in terms of the POVM element E0, which is used as Equation (1) in [10], is equivalent to (2.160) of [12] by the
partial cyclicity of the partial trace (4).

Let us compute Equation (9) explicitly. First we expand |ψ〉AB =
∑
l λ
AB
l |ξl〉A(b) ⊗ |ηl〉B(a) and |ψ〉BC =∑

l′ λ
BC
l′ |ξl′〉B(c)⊗|ηl′〉C(b) in their Schmidt decompositions. Then the above (unnormalized) post-Bob’s-measurement

reduced state is given by

TrB [(IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC) |ψ〉 〈ψ|] =
∑
i

ciTrB [(IA(b) ⊗ |ϕi〉 〈ϕi|B(b) ⊗ |ϕ′i〉 〈ϕ′i|B(c) ⊗ IC(b) ⊗ IAC) |ψ〉 〈ψ|]

=

m∑
i=1

ci |x′i〉 〈x′i| ⊗ |y′i〉 〈y′i| ⊗ |ψ〉 〈ψ|AC ,

where

|x′i〉 =
∑
l

λABl 〈ϕi|ηl〉 |ξl〉A(b) and |y′i〉 =
∑
l′

λBCl′ 〈ϕ′l′ |ξl′〉 |ηl′〉C(b) .

Letting |xi〉 = |x′i〉 /‖ |x′i〉 ‖ and |yi〉 = |y′i〉 /‖ |y′i〉 ‖ we get that the reduced Alice-Charlie-state, after Bob’s measure-
ment Y = 1 and outcome B = 0, is ∑

i

c′i |xi〉 〈xi|A(b) ⊗ |yi〉 〈yi|C(b) ⊗ |ψ〉 〈ψ|AC , (10)

where c′i are now modified positive scalars which sum to 1. Expression (10) is thus equivalent to a convex mixture of
i-indexed states. So whatever Alice and Charlie’s measurements on (10) are, these same measurements must produce
a CHSH-maximizing behavior when applied to any of the individual i-indexed states appearing in (10), recalling
that if an average of quantum-achievable behaviors maximally violates CHSH, each individual behavior must as well.
Continuing the analysis for an individual state is simplified because each i-th state in (10) is pure.

Now we are well-positioned to apply the self-testing argument to show that |ψ〉AC is effectively a Bell state. Fix a
choice of i in (10). Re-ordering terms, relabeling |xi〉A(b) and |yi〉C(b) as |0〉A(b) and |0〉C(b) , and employing a Schmidt
decomposition for |ψ〉AC , Alice and Charlie’s state is

|0〉A(b) ⊗

∑
j

γj |ψj〉A(c) ⊗ |ψj〉C(a)

⊗ |0〉C(b) .
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The self-testing construction of Figure 4 of Šupić and Bowles [5] tells us that, since Alice and Charlie’s measurements
of this state maximally violates CHSH, then given the state

|0〉a′ ⊗ |0〉A(b) ⊗

∑
j

γj |ψj〉A(c) ⊗ |ψj〉C(a)

⊗ |0〉C(b) ⊗ |0〉c′

=
∑
j

γj |0〉a′ ⊗ |0〉A(b) ⊗ |ψj〉A(c) ⊗ |ψj〉C(a) ⊗ |0〉C(b) ⊗ |0〉c′ , (11)

where the adjoined |0〉 states with the primed subscripts are qubits (the original |0〉 states could be in higher dimen-
sional spaces), there exist local unitaries U and V operating respectively on the first and last three registers such that
U ⊗ V applied to the above state yields ∑

i∈{0,1}

1√
2
|i〉a′ ⊗ |ξ〉 ⊗ |i〉c′ ; (12)

that is, the Bell state |Φ+〉 = (|00〉+ |11〉)/
√

2 on the outer introduced qubits, tensored with a pure state |ξ〉 on the
middle-four registers. To consider the constraints that this condition imposes on the form of the original state in (11),
let us write |ξ〉 in a Schmidt decomposition of

∑n
k=1 δk |Ak〉 |Ck〉; in general it is possible that the vectors |Ak〉 are

entangled over Alice’s two subsystems, and similarly for |Ck〉. With this we re-write (12) as

∑
i∈{0,1}

n∑
k=1

δk√
2
|i〉 ⊗ |Ak〉 ⊗ |Ck〉 ⊗ |i〉 (13)

which considered as a single sum of 2n terms consists of real positive coefficients δk/
√

2 of orthogonal sets {|i〉⊗|Ak〉}i,k
and {|Ck〉 ⊗ |i〉}i,k, and so is itself a Schmidt decomposition. Now, let us consider what happens when we apply the
inverse map U† ⊗ V † to this state. The result will be a state of the form

2n∑
j=1

λj |A′j〉 ⊗ |C ′j〉 , (14)

again a Schmidt decomposition as the |A′j〉 and |C ′j〉 are orthogonal due to the unitarity of U† and V †. Now because
(14) is the same state as (11), each state |A′j〉 must be of the form |0〉 |0〉 |ϕ〉 for some state |ϕ〉. (One way to see

this is to observe that the partial trace ρC of the state in (14) is
∑
j |λj |2 |A′j〉 〈A′j | which is a diagonal representation

that must be equal to the diagonal representation ρA =
∑
j |γj |2 |0〉a′ |0〉A(b) |ψj〉A(c) 〈0|a′ 〈0|A(b) 〈ψj |A(c) obtained from

(11); the second representation demonstrates that all non-null eigenspaces of ρA are spanned by vectors of the form
|0〉 |0〉 |ϕ〉, and since the |A′j〉 belong to these eigenspaces, they must be of this form as well.) Thus re-writing each
|A′j〉 as |0〉 |0〉 |ψaj 〉, where we remark the |ψaj 〉 must be orthogonal, and doing similarly for the |C ′j〉, we see that the
state (11) admits a (possibly modified/reordered) Schmidt decomposition of the form

2n∑
j=1

γj |0〉a′ ⊗ |0〉A(b) ⊗ |ψaj 〉A(c) ⊗ |ψcj〉C(a) ⊗ |0〉C(b) ⊗ |0〉c′ (15)

such that each term in the above summand maps through U ⊗ V to a distinct term in the summand (13), and
importantly we observe that half of these – assume, without loss of generality, those with indices j ∈ {1, ..., n} – are
mapping to terms with |0〉s in the a′/c′ registers, while the remaining half maps to the |1〉 terms. Combining terms

within the two groups together as |ψ0〉 =
√

2
∑n
j=1 γj |ψaj 〉⊗|ψcj〉 and |ψ1〉 =

√
2
∑2n
j=n+1 γj |ψaj 〉⊗|ψcj〉, we can re-write

the state in (15) as

|F 〉 =
∑

k∈{0,1}

1√
2
|0〉a′ ⊗ |0〉A(b) ⊗ |ψk〉AC ⊗ |0〉C(b) ⊗ |0〉c′ (16)

with the two summands mapping to 1√
2
|0〉 ⊗ |ξ〉 ⊗ |0〉 and 1√

2
|1〉 ⊗ |ξ〉 ⊗ |1〉, respectively, under the map U ⊗ V . We

note the appearance of the prefactor of 1/
√

2 corresponds the states |ψk〉AC being normalized, as follows from the
length-preserving property of U ⊗ V and the fact that |0〉 ⊗ |ξ〉 ⊗ |0〉 and |1〉 ⊗ |ξ〉 ⊗ |1〉 are unit length.
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Equation (16) captures the precise manner in which Alice and Bob’s shared state |ψ〉AC has the essence of a Bell

state. We continue the self-testing analysis to formulate how Alice’s measurement effectively ignores the A(b) register
shared with Bob, acting only on |ψ〉AC . Let us denote Alice’s measurement on setting X = 0 with the projectors

{Π0,Π1} corresponding to outcomes 0 and 1. By Equation (39) of Šupić and Bowles [5] (the roles of Alice and Bob
are exchanged here), we can say that Π0 is the σ+

z operator in the following sense, where IC = IC(a) ⊗ IC(b) :

(U ⊗ V )(Ia′ ⊗Π0 ⊗ IC ⊗ Ic′) |F 〉 = (|0〉 〈0| ⊗ I|ξ〉 ⊗ Ic′)
∑

i∈{0,1}

1√
2
|i〉 ⊗ |ξ〉 ⊗ |i〉 =

1√
2
|0〉 ⊗ |ξ〉 ⊗ |0〉

and so applying U† ⊗ V † to both sides we see

(Ia′ ⊗Π0 ⊗ IC ⊗ Ic′) |F 〉 = |0〉a′ ⊗ |0〉A(b) ⊗ |ψ0〉AC ⊗ |0〉C(b) ⊗ |0〉c′ ,

which implies, along with a parallel argument for Π1, that (now disregarding the introduced states |0〉a′ and |0〉b′) we
have

Πi ⊗ IC

 ∑
k∈{0,1}

1√
2
|0〉A(b) ⊗ |ψk〉AC ⊗ |0〉C(b)

 =
1√
2
|0〉A(b) ⊗ |ψi〉AC ⊗ |0〉C(b) (17)

for both choices of i ∈ {0, 1}. With Alice’s measurement “ignoring” |0〉A(b) in this way, while yielding 50-50 coin toss
via a measurement on the portion shared with Charlie, it would impossible for Bob to guess Alice’s outcome with
perfect probability.

The complete picture is, however, more complicated than (17): first, carrying through the above analysis with a
different choice of i in (10) associated with Bob’s measurement outcome B = 0 on setting Y = 1 could lead to a
different (though analogous) form of (17): the state |0〉A(b) could be different, and furthermore |ψ〉AC could “split”
into two different halves |ψ∗0〉AC and |ψ∗1〉AC . Second, while Alice and Charlie’s post-Bob-measurement state in (10)
will be a convex mixture of such analogous states, their pre-Bob-measurement state will be something else, and it is
that pre-measurement state that Bob will be confronted with when trying to devise a measurement on setting Y = 0
to align with Alice’s.

Step 3: Characterizing Alice’s A(b) register. To address these issues, we will show that Alice’s A(b) register in
(17) admits an orthogonal decomposition into subspaces

Asplit ⊕Arest = Asplit
0 ⊕ · · · ⊕Asplit

K ⊕Arest (18)

such that Πi ⊗ IC(a) “splits” |a〉A(b) ⊗ |ψ〉AC as in (17) whenever |a〉A(b) lies in Asplit
0 , whereas if |a〉A(b) lies in a

different Asplit
j the state splits as in (17) but with a different splitting of |ψ〉AC into distinct halves |ψ∗k〉AC , one Asplit

j

for each potential splitting. The action of Πi for |a〉A(b) lying in Arest is uncharacterized but we can show Alice’s pre-
Bob-measurement state must contain nonzero amplitudes in the Asplit component, making condition (2) impossible.

We remark that the possibility of multiple distinct Asplit
j spaces cannot be discounted as it can occur if Alice and

Charlie share multiple separate singlets jointly comprising |ψ〉AC and don’t always measure the same one; we provide
an explicit example in fuller detail after the conclusion of the proof.

To arrive at (18), let us first consider the collection of first-register states that lead to the same splitting of |ψ〉AC
as in (17); i.e., define Asplit

0 as the subset of states |a〉A(b) for which

Πi ⊗ IC(b)

 ∑
k∈{0,1}

1√
2
|a〉A(b) ⊗ |ψk〉AC

 =
1√
2
|a〉A(b) ⊗ |ψi〉AC .

(Note that we are safely ignoring the extra register |0〉C(b) that appears in (17); a state satisfies the above condition if

and only if it satisfies the same condition with the extra register included.) It is straightforward to check that Asplit
0

is closed under linear combinations and is thus a subspace of dimension k ≥ 1. For each alternate possible splitting

into different halves |ψ∗k〉AC , we can define a different Asplit
j , which must also be a subspace. What is not apparent a

priori is that these different subspaces must be orthogonal as claimed in (18).

To prove that the various Asplit
j are orthogonal, we use the following refined observation about the action of Πi

in (17). Recalling that the |ψk〉 in (17) can be expressed as sums of states of the form |ψaj 〉 ⊗ |ψcj〉 as in (15), we
observe that Π0 must preserve these individual Alice states |0〉A(b) ⊗ |ψaj 〉A(c) for j ∈ {1, ..., n} while annihilating the
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j ∈ {n + 1, ..., 2n} states, and vice versa for Π1. To see why this is, in (17) expand all the the |ψk〉 in terms of
|ψaj 〉 ⊗ |ψcj〉 and apply the linearity of Π0 on the left side to obtain the equality

2n∑
j=1

γj

[
Π0

(
|0〉A(b) ⊗ |ψaj 〉A(c)

)]
⊗ |ψcj〉C(a) ⊗ |0〉C(b) =

n∑
j=1

γj |0〉A(b) ⊗ |ψaj 〉A(c) ⊗ |ψcj〉C(a) ⊗ |0〉C(b) .

Then applying the projector IA⊗|ψcj′〉 〈ψcj′ |C(a)
⊗|0〉 〈0|C(b) on both sides of the above equation for each fixed j′ yields

the desired result, recalling that the different |ψcj〉 are orthogonal as they arise from a Schmidt decomposition.

The above observation is useful because it allows us to show that Π0 maps any product state with a A(b) register

lying in the orthogonal complement of Asplit
0 to a vector whose A(b) components remain in the orthogonal complement

of Asplit
0 : let |0〉A(b) , ..., |k − 1〉A(b) be an orthonormal basis of Asplit

0 and extend this to a complete orthonormal basis
with vectors |i〉A(b) , i ≥ k. Consider the expansion of Π0 as a sum of ket-bras in the orthonormal product basis of all
states of the form |i〉A(b) ⊗ |ψaj 〉A(c) , j ∈ {1, ..., 2n}. (We safely ignore possible additional dimensions of the AC state

space, since the state |ψ〉AC does not have any components in those dimensions and so they are irrelevant.) This sum
form of Π0 will include the terms |i〉 |ψaj 〉 〈i| 〈ψaj | with i ranging from 0 to k − 1 and j ranging from 1 to n, while no
other additional terms can have the form c |x〉 |ψay〉 〈i| 〈ψaj | for i ∈ {0, ..., k−1}, which would contradict Π0’s action on
|i〉 |ψaj 〉 states as discussed in the previous paragraph. By the self-adjointness of Π0, this importantly rules out terms
of the form c |i〉 |ψaj 〉 〈x| 〈ψay | for i ∈ {0, ..., k − 1} and x ≥ k. Hence Π0 maps any state having a first register lying in

the orthogonal complement of Asplit
0 to a vector whose first register components remain in the orthogonal complement

of Asplit
0 . Naturally, this argument will hold for Π1 and any other Asplit

0 .

We can now show that if |a〉 ∈ Asplit
j for j 6= 0, then |a〉 ⊥ Asplit

0 . We prove this claim as follows: it is always

possible to express |a〉 in the form α |a〉N + β |a〉N
⊥

with |a〉N ∈ Asplit
0 and |a〉N

⊥
⊥ Asplit

0 ; the claim holds if this

expression requires |a〉N = ~0 or α = 0. We can write

(1/
√

2)(α |a〉N + β |a〉N
⊥

)⊗ |ψ∗0〉AC = (1/
√

2) |a〉 ⊗ |ψ∗0〉AC
= (Π0 ⊗ IC(a)) |a〉 ⊗ |ψ〉AC
= (Π0 ⊗ IC(a))α |a〉N ⊗ |ψ〉AC + (Π0 ⊗ IC(a))β |a〉N

⊥
⊗ |ψ〉AC

=
α√
2
|a〉N ⊗ |ψ0〉AC + β (Π0 ⊗ IC(a)) |a〉N

⊥
⊗ |ψ〉AC .

Applying the projector (PN
⊥

)A(b) ⊗ IAC , where PN
⊥

is the projector onto (Asplit
0 )⊥, to both sides above yields

β√
2
|a〉N

⊥
⊗ |ψ∗0〉AC = β (Π0 ⊗ IC(a)) |a〉N

⊥
⊗ |ψ〉AC , (19)

using the fact that Π0 ⊗ IC(a) maps states with first register in (Asplit
0 )⊥ to states with first register in (Asplit

0 )⊥, on

which PN
⊥ ⊗ IAC will act as identity. Now substituting (19) into the preceding equality requires |α| = 0 or |ϕ〉N = ~0,

recalling that |ψ∗0〉AC 6= |ψ0〉AC .

We now have the orthogonal decomposition of (18): all Asplit
j subspaces must be orthogonal by the arguments

above, and we can take Arest be the orthogonal complement of the union of all such subspaces. By construction Arest

does not have the splitting property, so conditioned on Bob seeing outcome B = 0 given setting Y = 1, Alice’s first

register in the post-measurement state is contained in Asplit = Asplit
0 ⊕ · · · ⊕Asplit

K .

Step 4: Obtaining a bound on Bob’s alignment probability. Alice’s state before Bob performs measurement
Y = 1 and observes outcome B = 0 could have positive amplitudes on states with A(b) register outside Asplit; for such
states, Alice’s measurement may not act trivially on her portion with Bob and/or it might measure |ψ〉AC differently.
This means that when Bob chooses to measure Y = 0, he may have nontrivial opportunities to align his measurement
outcome with Alice. However, we can demonstrate that the sum of the magnitude of Alice’s amplitudes on Asplit-type
states must be bounded below by P (B = 0|Y = 1) > 0, which is sufficient to show Bob cannot align his Y = 0
outcomes with Alice perfectly. To proceed, expand the Alice-Bob state |ψ〉AB in a product basis such that Alice’s
basis aligns with the orthogonal subspaces of (18), permitting an expression

|ψAB〉 =
∑

j∈Asplit

γj |aj〉A(b) |bj〉B(a) +
∑

j∈Arest

γj |aj〉A(b) |bj〉B(a) (20)
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where the |aj〉 are orthogonal though the |bj〉 are not necessarily, and now, recalling the representation of Bob’s
separable POVM element from (8), we can write

P (B = 0|Y = 1) = Tr [IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC |ψ〉 〈ψ|]

=
∑
i

Tr
[
IA(b) ⊗ Ei0 ⊗ IC(b) ⊗ IAC |ψ〉 〈ψ|

]
=
∑
i

Tr

[(
IA(b) ⊗

√
Ei0 ⊗ IC(b) ⊗ IAC

)
|ψ〉 〈ψ|

(
IA(b) ⊗

√
Ei0 ⊗ IC(b) ⊗ IAC

)]
(21)

using (4) in the last line where the square root of Ei0 given by the simple expression
√
ci |ϕi〉 〈ϕi| ⊗ |ϕ′i〉 〈ϕ′i|. Now

we can simplify (21) by writing out |ψ〉 as in (5) with |ψ〉AB expanded as in (20) and observing that each IA(b) ⊗√
ci |ϕi〉 〈ϕi|B(a)⊗|ϕ′i〉 〈ϕ′i|B(c)⊗IC(b)⊗IAC must map all terms of the form γj |aj〉A(b) |bj〉B(a) |ψ〉BC |ψ〉AC for j ∈ Arest

to ~0, since otherwise Alice’s post measurement state would contain Arest components in the first register, and such
states are incompatible with a maximal CHSH violation. Thus we can replace |ψ〉 in (21) with

|ψ′〉 =

 ∑
j∈Asplit

γj |aj〉A(b) |bj〉B(a)

⊗ |ψ〉BC ⊗ |ψ〉AC
to get an equivalent expression; applying (4) in reverse and pulling the sum back into the expression yields

P (B = 0|Y = 1) = Tr [IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC |ψ′〉 〈ψ′|]

= || |ψ′〉 ||2Tr

[
IA(b) ⊗ E0 ⊗ IC(b) ⊗ IAC

(
|ψ′〉
|| |ψ′〉 ||

)(
〈ψ′|
|| |ψ′〉 ||

)]
≤ || |ψ′〉 ||2

=
∑

j∈Asplit

|γj |2 (22)

where the inequality follows from the fact that the trace expression is a probability, corresponding to a measurement
of the quantum state given by the normalized form of |ψ′〉. This is our desired lower bound on the amplitudes on the
Asplit states.

We now finish the argument by showing that, considering Alice to perform measurement X = 0 first, there is a
non-trivial overlap in Bob’s two potential reduced states (corresponding to Alice’s two different outcomes) such that
he cannot distinguish between her outcomes perfectly. Utilizing (20) to write the pre-measurement state ∑

j∈Asplit

γj |aj〉 |bj〉

⊗ |ψ〉BC ⊗ |ψ〉AC +

 ∑
j∈Arest

γj |aj〉 |bj〉

⊗ |ψ〉BC ⊗ |ψ〉AC ,
the result of Alice’s measurement {Πi}i∈{0,1} given outcome i is a subnormalized state that can be written as∑

j∈Asplit

γj |aj〉A(b) |bj〉B(a) ⊗ |ψ〉BC ⊗
(

1√
2
|ψji 〉AC

)
+ δresti |ψi〉restABC (23)

where we do not know too much about the form of the normalized state |ψ〉restABC , though we do know that it can have

|aj〉A(b) components only in Arest when expanded with this basis, and so |ψ〉restABC is orthogonal to all the vectors in the
first sum which are in turn orthogonal to each other. This orthogonality allows us to say that the outcome i occurs
with probability P (i) =

∑
j∈Asplit |γj |2/2 + |δresti |2, with only the second term depending on i. Now tracing out (23)

over A and C to obtain Bob’s reduced state, and again taking advantage of the orthogonality of each summed term
in (23), we see that Bob’s normalized reduced state given Alice’s outcome i is

ρB =
1

P (i)

 ∑
j∈Asplit

|γj |2

2
|bj〉 〈bj | ⊗ trC(|ψ〉BC 〈ψ|BC)

+ |δresti |2trAC(|ψi〉restABC 〈ψ
i|restABC)

 .
This reduced state is equivalent to a convex combination piρ + qiτi of two density operators where ρ is independent
of i and pi = [P (i)]−1

∑
j∈Asplit |γj |2/2, qi = 1 − pi. There is no measurement allowing Bob to perfectly distinguish
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between these two reduced states, and we have, using the shorthand N =
∑
j∈Asplit |γj |2 and Ti = |δresti |2,

P (A 6= B|X = 0, Y = 0) = P (A = 0, B = 1|X = 0, Y = 0) + P (A = 1, B = 0|X = 0, Y = 0)

=
∑

i∈{0,1}

[piP (B 6= i|ρ) + qiP (B 6= i|τi)]P (A = i|X = 0)

≥ [p0P (B = 1|ρ)](N/2 + T0) + [p1P (B = 0|ρ)](N/2 + T1)

= (N/2)P (B = 1|ρ) + (N/2)P (B = 0|ρ)

= N/2

≥ P (B = 0|Y = 1)/2,

with the last inequality following from (22). �

In the proof, we remarked after Eq. (18) that the possibility of multiple distinct Asplit
j spaces comprising Asplit

cannot be discounted. To aid intuition, we provide an example of a scenario in which this will occur. Let Alice and
Charlie share two separate singlets jointly comprising |ψ〉AC . Alice performs CHSH measurements on her portion
of the first |ψ〉AC singlet if a measurement of a (separate) qubit maximally entangled with Bob yields “0”, whereas
she performs CHSH measurements on the second |ψ〉AC singlet if the Bob-linked measurement yields “1”. Charlie
employs a parallel strategy, also using a qubit maximally entangled with Bob to govern which of the |ψ〉AC singlets
he chooses to measure. Bob thus possesses a qubit entangled with Alice and a qubit entangled with Charlie. If Bob
measures these in the computational basis and sees both as 0, or both as 1, he knows Alice and Charlie are measuring
the same singlet, upon which he reports outcome B = 0 (which will occur 50% percent of the time) leading to a
maximal Alice-Charlie CHSH violation conditioned on this outcome. Depending on which singlet is being measured,
the (17) “split” of the single state |ψ〉AC , which comprises both singlets shared by Alice and Charlie, will not be the

same: the A(b) and C(b) registers will lie in different Asplit
j spaces, and the two halves |ψk〉AC that sum to |ψ〉AC will

be different.

5. SATISFYING THE CONDITIONS OF THEOREM 1 WITH A GHZ STATE AND NO ENTANGLED
MEASUREMENT

We can induce a behavior P (ABC|XY Z) satisfying the conditions of Theorem 1 without entangled measurements

by distributing the three-qubit entangled GHZ state (|000〉+ |111〉)/
√

2 to all three players. Let Bob’s measurement

for setting Y = 1 be the projectors onto |+〉 = (|0〉 + |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2. Then conditioned on Bob’s
observation of |+〉, which occurs with positive probability P (B = 0|Y = 1) = 1/2, Alice and Charlie possess the Bell

state |Φ+〉 = (|00〉 + |11〉)/
√

2. This can yield a maximal CHSH value while Alice measures σz for setting X = 0;
i.e., she is measuring in the computational basis {|0〉 , |1〉}. Finally, if Bob also measures in the computational basis
when his setting is Y = 0, the condition P (A = B|X = 0, Y = 0) = 1 is met.

6. DILATION OF POVMS TO PROJECTIVE MEASUREMENTS

In this section, we reproduce the argument in Section 9-6 of [13] which shows that a POVM can be replaced with
a projection valued measurement (PVM) without modifying the structure of the state. This construction is different
from the standard construction, for instance Section 2.2.8 in [12]. In the following, [K] denotes the set {1, ..,K} of
the first K positive integers.

Lemma 1 Let H be a d-dimensional Hilbert space, and suppose {|xk〉}k∈[K] (for some K ∈ N with K > d) are

non-zero vectors such that
∑K
k=1 |xk〉 〈xk| = IH . Let r = K − d. Then, for each k ∈ [K], there exists a vector

|ϕk〉 ∈ Cr, such that the set {|yk〉 := |xk〉+ |ϕk〉}k∈[K] ⊆ H ⊕ Cr forms an orthonormal set.

Proof. Fix an orthonormal basis {|l〉}d−1l=0 of H, and for each k ∈ [K] let |xk〉 =
∑d−1
l=0 xk,l |l〉, where xk,l ∈ C.

Writing the equation
∑K
k=1 |xk〉 〈xk| = IH in component-form, we get

K∑
k=1

xk,ixk,j = δi,j , i, j ∈ {0, .., d− 1}. (24)
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For each k ∈ [K], we want to show that there are choices of constants λk,l for which |ϕk〉 :=
∑K−1
l=d λk,l |l〉 satisfies

the claim of the Lemma, where we are using |d〉 , ..., |K − 1〉 as a basis for Cr. The set {|yk〉}Kk=1 is orthonormal if
and only if 〈yk, yl〉 = δk,l for all k, l ∈ [K], that is,

δk,l = 〈xk|xl〉+ 〈ϕk|ϕl〉 =

d−1∑
i=0

xk,ixl,i +

K−1∑
i=d

λk,iλl,i, k, l ∈ [K]. (25)

Consider the following K ×K scalar matrix:

U =


x1,0 x1,1 . . . x1,d−1 λ1,d λ1,d+1 . . . λ1,K−1
x2,0 x2,1 . . . x2,d−1 λ2,d λ2,d+1 . . . λ2,K−1

...
...

...
...

...
...

...
...

xK,0 xK,1 . . . xK,d−1 λK,d λK,d+1 . . . λK,K−1

 .
Then, U is a unitary matrix ⇔ UU∗ = IK ⇔ Equation (25) holds ⇔ {|yk〉}Kk=1 is an orthonormal set. Moreover,
Equation (24) tells that the first d columns of U are orthonormal. It is then clear that the existence of vectors
|ϕk〉 ∈ Cr corresponds to extending the first d orthonormal columns to an orthonormal basis of CK , which is always
possible. �

Above, |yk〉 〈yk| are rank-one projection operators on the larger space CK whose actions on vectors wholly contained
in the subspace Cd are identical to the actions of the |xk〉 〈xk|, which themselves constitute a POVM with rank-one
elements on the subspace. The following results show how to add the extra needed dimensions by introducing a
tensored qudit, while also extending the result to POVMs with general elements. We use the concept of an isometry :
a linear map V : H1 → H2 between Hilbert spaces satisfying 〈ϕ|ψ〉H1

= 〈ϕ|V ∗V |ψ〉H2
for all choices of |ϕ〉 and |ψ〉

in H1. In particular, the map V : H → H ⊗ Cr given by V |ξ〉 = |ξ〉 ⊗ |0〉, where |0〉 is a fixed basis element of Cr, is
an isometry satisfying

V ∗ (|ξ〉 ⊗ |i〉) =
∑
j

|j〉 〈j|
[
V ∗ (|ξ〉 ⊗ |i〉)

]
=
∑
j

|j〉 〈V j|
(
|ξ〉 ⊗ |i〉

)
=
∑
j

|j〉 〈j|ξ〉 〈0|i〉 =

{
|ξ〉 if i = 0

0 if i ∈ {1, ..., r − 1}
(26)

for all |ξ〉 ∈ H, where the |j〉 are an orthonormal basis of H. Consequently,

V V ∗ = IH ⊗ |0〉 〈0| and V ∗V = IH (27)

Lemma 2. Let H be a d-dimensional Hilbert space, and suppose {|xk〉}k∈[K] (for some K ∈ N with K > d) are

non-zero vectors such that
∑K
k=1 |xk〉 〈xk| = IH . Let r = K − d + 1 and fix a unit vector |η〉 ∈ H. Then, for each

k ∈ [K], there exists a vector |ϕk〉 ∈ Cr orthogonal to the basis vector |0〉 ∈ Cr, such that the set

Y = {|yk〉 := |xk〉 ⊗ |0〉+ |η〉 ⊗ |ϕk〉}k∈[K] ⊆ H ⊗ Cr (28)

forms an orthonormal set. Moreover, if V : H → H ⊗Cr is the isometry defined by V |ξ〉 = |ξ〉 ⊗ |0〉 (for all |ξ〉 ∈ H),
then one has V ∗ |yk〉 = |xk〉 for all k ∈ [K].

Proof. Applying Lemma 1, we get vectors |ϕ̃k〉 ∈ CK−d (for k ∈ [K]) such that the set {|ỹk〉 := |xk〉 + |ϕ̃k〉}k∈[K]

is orthonormal in H ⊕ CK−d. For each k ∈ [K], let |ϕ̃k〉 =
∑K−d−1
i=0 λk,i |i〉 where the |i〉 are the basis vectors of

CK−d numbered to start at 0, and define |ϕk〉 ∈ CK−d+1 = Cr by |ϕk〉 =
∑K−d
i=1 λk,i−1 |i〉, which are by construction

orthogonal to |0〉 ∈ Cr. Then, it is straightforward to check that the set Y as defined in (28) is orthonormal.
Moreover, it is clear that |yk〉 − V |xk〉 = |η〉 ⊗ |ϕk〉 ⊥ range(V ). By (26), V ∗ maps such elements to 0, and hence,
0 = V ∗(|yk〉 − V |xk〉) = V ∗ |yk〉 − |xk〉, as required. �

Theorem 3 Let (Rk)Kk=1 be a K-outcome POVM on a finite-dimensional Hilbert space H. Then, there exists a
finite-dimensional Hilbert space G and a K-outcome PVM (Pk)Kk=1 on H ⊗G such that Rk = V ∗PkV for all k ∈ [K],
where V : H → H ⊗G is the isometry given by V |ξ〉 = |ξ〉 ⊗ |0〉.

Proof. Let Rk =
∑L
l=1 |xk,l〉 〈xk,l| for non-zero vectors |xk,l〉 ∈ H. (This is possible for any choice of L greater

than or equal to maxk Rank(Rk)). Then,
∑K
k=1

∑L
l=1 |xk,l〉 〈xk,l| = IH . Applying Lemma 2, we get a Hilbert space
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G = CKL−d+1 and an orthonormal set Y = {|yk,l〉 : k ∈ [K], l ∈ [L]} ⊆ H ⊗G. Let P⊥ ∈ B(H ⊗G) be the projection
onto Y ⊥. Define for each k ∈ [K],

Pk = δk,KP
⊥ +

L∑
l=1

|yk,l〉 〈yk,l| . (29)

By Lemma 2, we also know that |xk,l〉 〈xk,l| = V ∗ |yk,l〉 〈yk,l|V for all k ∈ [K] and l ∈ [L], from which it is immediate
that Rk = V ∗PkV for all k ∈ [K − 1]. To show that it also holds for the final k = K case, we need to show that the
term V ∗P⊥V vanishes, which can be seen as follows: for any |ξ〉 ∈ H,

V ∗P⊥V |ξ〉 = V ∗

(
IH⊗G −

∑
k.l

|yk,l〉 〈yk,l|

)
(|ξ〉 ⊗ |0〉)

= V ∗

|ξ〉 ⊗ |0〉 −∑
k,l

〈xk,l|ξ〉
(
|xk,l〉 ⊗ |0〉+ |η〉 ⊗ |ϕk,l〉

)
= V ∗

−∑
k,l

〈xk,l|ξ〉 |η〉 ⊗ |ϕk,l〉

 = 0,

where the final equality holds by (26). �

Theorem 3 allows us to replace a POVM on the state |ξ〉 with a PVM on the state |ξ〉 ⊗ |0〉 that yields the same
outcome probabilities. We can furthermore iterate the construction in Theorem 3 above to construct an isometry
when there are two or more measurement settings. For instance, suppose {Ex,a : a ∈ [K]} is a POVM for settings
x ∈ {0, 1}. Then, for the setting x = 0 applying Theorem 3 we get an isometry V0 : H → H ⊗K0 and a K-outcome
PVM {P0,a : a ∈ [K]} on H ⊗K0 such that E0,a = V ∗0 P0,aV0 for all a ∈ [K]. We thus can construct an intermediate
set of POVMs on the space H ⊗K: {E′x,a : a ∈ [K]} for x ∈ {0, 1}, where

E′x,a =


P0,a if x = 0,{
V0E1,1V

∗
0 + (I − V0V ∗0 ) if a = 1

V0E1,aV
∗
0 if a ≥ 2

if x = 1.
(30)

The POVM corresponding to the setting x = 1 may not projective, so we now apply Theorem 3 to the set {E′1,a : a ∈
[K]}, to get another isometry V1 : H ⊗K0 → (H ⊗K0)⊗K1 and a PVM {P1,a : a ∈ [K]} such that E′1,a = V ∗1 P1,aV1
for all a ∈ [K]. Then, we get our final set of POVMs {E′′x,a : a ∈ [K]} for x ∈ {0, 1} given by

E′′x,a =


{
V1P0,1V

∗
1 + (I − V1V ∗1 ) if a = 1

V1P0,aV
∗
1 if a ≥ 2

if x = 0,

P1,a if x = 1.

(31)

Observe that since (P0,a)Ka=1 is a PVM, so is (E′′0,a)Ka=1. Moreover, the final isometry VA : H → H ⊗ (K0 ⊗ K1) is
VA = V1 ◦ V0, which from Theorem 3 is seen to be given by VA |x〉 = |x〉 ⊗ |e1〉 ⊗ |e1〉.

In the proof of Theorem 1 in SM 4, the state is given by ψ = |ψ〉AB⊗|ψ〉BC ⊗|ψ〉AC . We want to replace Alice and
Charlie’s POVMs with PVMs, for which, we use the procedure mentioned in the previous paragraph. We then get
PVMs in a possibly bigger space HA⊗KA (for Alice) and HB⊗KC (for Charlie) and isometries VA : HA → HA⊗KA

and VC : HA → HC ⊗KC given by VA |ξ〉 = |ξ〉 ⊗ |0〉A (for Alice) and similarly VC |η〉 = |η〉 ⊗ |0〉C for Charlie. Then,
the new state we are looking at is (VA⊗ IB ⊗ VC)ψ = |0〉A⊗ |ψ〉AB ⊗ |ψ〉BC ⊗ |ψ〉AC ⊗ |0〉C , justifying Expression (6)
in the proof.
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[8] H. Cao, M.-O. Renou, C. Zhang, G. Massé, X. Coiteux-Roy, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. Wolfe,

Experimental demonstration that no tripartite-nonlocal causal theory explains nature’s correlations, Phys. Rev. Lett. 129,
150402 (2022).

[9] R. Rabello, M. Ho, D. Cavalcanti, N. Brunner, and V. Scarani, Device-independent certification of entangled measurements,
Phys. Rev. Lett. 107, 050502 (2011).

[10] J.-D. Bancal, N. Sangouard, and P. Sekatski, Noise-resistant device-independent certification of Bell state measurements,
Phys. Rev. Lett. 121, 250506 (2018).

[11] M.-O. Renou, J. Kaniewski, and N. Brunner, Self-testing entangled measurements in quantum networks, Phys. Rev. Lett.
121, 250507 (2018).

[12] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge,
2000).

[13] A. Peres, ed., Quantum Theory: Concepts and Methods (Springer Netherlands, 2002).


