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Abstract. We present full (3+1)D dynamical simulations to study collective be-
havior in ultra-peripheral nucleus-nucleus collisions (UPC) at the Large Hadron
Collider (LHC) with the 3DGlauber+MUSIC+UrQMD framework [1, 2]. By
extrapolating from asymmetric p+Pb collisions, we simulate a quasi-real photon
γ∗ interacting with the Pb nucleus in an ultra-peripheral collision at the LHC,
assuming strong final-state effects. We study the elliptic flow hierarchy between
p+Pb and γ∗+Pb collisions, which is dominated by the difference in longitudi-
nal flow decorrelations. Our theoretical framework provides a quantitative tool
to study collectivity in small asymmetric collision systems at current and future
collider experiments.

1 Introduction

Collective features of strongly-coupled systems have been observed in relativistic nuclear
collisions with light and heavy nuclei, such as p+Au, d+Au, 3He+Au at the Relativistic
Heavy-Ion Collider (RHIC) [3, 4], and p+p and p+Pb collisions at the Large Hadron Collider
(LHC) [5–7]. The theoretical interpretation of these flow-like signals has been a hot topic,
driving our field to unravel how the collective behavior emerges depending on the collision
system size [8, 9]. Recently, the ATLAS Collaboration measured the two-particle azimuthal
correlations in ultra-peripheral Pb+Pb collisions (UPCs) at the LHC [10]. The high mul-
tiplicity UPC events created from the photo-nuclear interactions showed the persistence of
collective phenomena with correlations comparable to those observed in p+p and p+Pb col-
lisions at similar multiplicity [10].

Quantitative understanding of the many-body dynamics in these small collision systems
requires the development and application of full (3+1)D simulations beyond Bjorken’s boost-
invariance paradigm in the high energy limit [11–18]. In photon-nucleus collisions, the quasi-
real photon γ∗’s energy fluctuates event-by-event, and is much smaller than the energy of the
incoming Pb nucleus. Such unbalanced and fluctuating kinematics leads to a highly asym-
metric collision system, strongly violating the longitudinal boost invariance. In these asym-
metric systems, the rapidity decorrelation of the collision geometry plays a crucial role when
computing and measuring the anisotropic flow coefficients.

In this proceeding, we study the flow rapidity decorrelation in detail for γ∗+Pb and p+Pb
collisions, providing complementary information to Ref. [1].
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2 Fluctuations in collision kinematics of γ∗+A collisions in UPCs

The fast-moving Pb spectators in the UPC events generate strong fluxes of quasi-real photons.
The emitted photons have the following energy spectrum [19, 20],

dNγ

dkγ
=

2Z2α

πkγ


wAA

R K0(wAA
R )K1(wAA

R ) −
(wAA

R )2

2
(K2

1 (wAA
R ) − K2

0 (wAA
R ))

 , (1)

where α = 1/137 and wAA
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From Eqs. (1) and (2), we can compute the probability distribution for the center of mass
energy in γ∗+A collisions,
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with the photon momentum kγ = sγ∗N/(2
√

sNN). Because of the unequal incoming longitu-
dinal momentum between the quasi-real photons and the target nucleon, the center of mass
rapidity of the γ∗+Pb system differs from the lab frame rapidity by

∆y = ybeam(√sγ∗N) − ybeam(
√

sNN), (4)

where the beam rapidity for a given center-of-mass collision energy can be computed as
ybeam(

√
s) = arccosh(

√
s/(2mN)).

The left panel of Figure 1 shows the probability distributions of the center-of-mass col-
lision energies in Au+Au and Pb+Pb UPC events at RHIC and LHC. The center-of-mass
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Figure 1. Left Panel: The probability distributions of the center-of-mass collision energies for photon-
nucleus collisions in Au+Au and Pb+Pb UPC events at three collision energies. Right Panel: The
probability distributions of the global rapidity shifts in γ∗+A collisions from the center-of-mass frame
to the lab frame. Negative ∆y represents the shift towards the nucleus-going direction.
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Figure 1. Left Panel: The probability distributions of the center-of-mass collision energies for photon-
nucleus collisions in Au+Au and Pb+Pb UPC events at three collision energies. Right Panel: The
probability distributions of the global rapidity shifts in γ∗+A collisions from the center-of-mass frame
to the lab frame. Negative ∆y represents the shift towards the nucleus-going direction.

collision energies in γ∗+A collisions are much smaller than in their corresponding heavy-ion
collisions. The values of √sγ∗N fluctuate over wide ranges, which results in broad intervals
for rapidity shifts between the center-of-mass frame and lab frame, as shown in the right panel
of Figure 1. For UPC events in Pb+Pb collisions at 5020 GeV, the rapidity shifts fluctuate
from −2 to −8.5. Therefore, it is important to include these kinematics fluctuations in γ∗+A
collisions, which result in non-trivial effects in the rapidity direction. We note that small col-
lision energy and large global rapidity shift result in little particle production at mid-rapidity
in the lab frame. Therefore, triggering high multiplicity events at mid-rapidity effectively
selects the γ∗+A collisions with large √sγ∗N .

3 Flow rapidity decorrelation in γ∗+Pb and p+Pb collisions
In the work [1], we found the different amounts of longitudinal flow decorrelations in γ∗+Pb
and p+Pb collisions led to the elliptic flow hierarchy observed by the ATLAS Collabora-
tion [10]. The different flow rapidity decorrelations in γ∗+Pb and p+Pb collisions come from
the difference in center-of-mass collision energy and the global rapidity shift in γ∗+Pb colli-
sions [1].
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Figure 2. Left Panel: Initial-state ellipticities of the fireballs in 1 < |ηs| < 2.5 at τ = 0.6 fm/c for
γ∗+Pb and p+Pb collisions at

√
s = 894 GeV and

√
s = 5020 GeV. Right Panel: Final-state elliptic

flow event-plane correlation with respect to a reference flow angle ψref
2 at 1 < η < 2.5 for γ∗+Pb and

p+Pb collisions at two collision energies.

To investigate the flow rapidity correlations at a charged hadron multiplicity of 40 − 50,
we focus on the following analysis with γ∗+Pb collisions at their highest energy, 894 GeV.
The left panel of Figure 2 shows that the values of initial-state ellipticity are almost the same
between γ∗+Pb and p+Pb collisions as a function of the particle multiplicity, which means
that the shape fluctuations in the transverse plane are at the same level for the two colli-
sion systems. The right panel of Figure 2 shows the evolution of event-plane correlations
in steps from p+Pb collisions at 5020 GeV to γ∗+Pb at 894 GeV collisions. The ATLAS
Collaboration measured the two-particle correlation with a rapidity gap of |∆η| > 2. This
analysis method computes the flow angular correlation between the two pseudorapidity in-
tervals, namely η1 ∈ [−2.5,−1] and η2 ∈ [1, 2.5]. The right panel of Figure 2 shows that the
angular correlations of the elliptic flow vectors are strong in p+Pb collisions at 5020 GeV,
very close to unity between these two η intervals. Reducing the collision energy to 894 GeV
shortens the length of the produced strings in the rapidity space, weakening the event-plane
correlation to ∼ 0.9. The extra global rapidity shift in γ∗+Pb collisions further reduces the
correlation strength to ∼ 0.7.
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4 Conclusion
We applied a newly developed (3+1)D dynamical framework to study the collectivity in
highly asymmetric relativistic nuclear collisions, such as p+A collisions and γ∗+A in the
ultra-peripheral A+A collisions at RHIC and LHC energies [1, 2]. In this proceeding, we
present a detailed analysis of the flow rapidity decorrelation in γ∗+Pb and p+Pb collisions.
We discuss how to include fluctuating collision energies in simulating the 3D dynamics of
γ∗+A collisions in the UPC events. At LHC energies, the elliptic flow hierarchy between
the γ∗+Pb and p+Pb collisions can be explained by the different amounts of flow rapidity
decorrelations in these systems, demonstrating the necessity of full (3+1)D simulations for
these asymmetric collision systems.
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