MARCINKIEWICZ AVERAGES OF SMOOTH ORTHOGONAL
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ABSTRACT. We construct a single smooth orthogonal projection with desired localization
whose average under a group action yields the decomposition of the identity operator. For
any full rank lattice I' € R?, a smooth projection is localized in a neighborhood of an
arbitrary precompact fundamental domain R?/T’. We also show the existence of a highly
localized smooth orthogonal projection, whose Marcinkiewicz average under the action of
SO(d), is a multiple of the identity on L?(S?~!). As an application we construct highly
localized continuous Parseval frames on the sphere.

1. INTRODUCTION

Smooth projections on the real line were introduced in a systematic way by Auscher, Weiss,
and Wickerhauser [2] in their study of local sine and cosine bases of Coifman and Meyer [8]
and in the construction of smooth wavelet bases in L*(R), see also [21]. While the standard
procedure of tensoring can be used to extend their construction to the Euclidean space R,
an extension of smooth projections to the sphere SY~! was shown by the first two authors
in [4]. A general construction of smooth orthogonal projections on a Riemannian manifold
M, which is based partly on the Morse theory, was recently developed by the authors [5].
We have shown that the identity operator on M can be decomposed as a sum of smooth
orthogonal projections subordinate to an open cover of M. This result, which is an operator
analogue of the ubiquitous smooth partition of unity of a manifold, can be used to construct
Parseval wavelet frames on Riemannian manifolds [6].

The goal of this paper is to show the existence of a single smooth projection with desired
localization properties and whose average under a group action yields the decomposition of
the identity operator. We show such result in two settings. In the setting of R? we construct a
smooth orthogonal decompositions of identity on L?*(R?), generated by translates of a single
projection, which is localized in a neighborhood of an arbitrary precompact fundamental
domain. In other words, a characteristic function of a fundamental domain K of R? under
the action of a full lattice I' € R, can be smoothed out to a projection Hestenes operator
localized in a neighborhood of K. In the setting of the sphere S*~! we show the existence
of a single smooth orthogonal projection which has arbitrarily small support and whose
Marcinkiewicz average under the action of SO(d) is a multiple of the identity on L?(S*1).
We also show that the same decomposition works for other function spaces on S*~'. More
precisely, we have the following theorem.
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Theorem 1.1. Let B be a ball in S, Let i = pg is a normalized Haar measure on SO(d).
For b € SO(d) and a function f on S, let T, f(x) = f(b~'x). Then the following holds.

(i) There exist a Hestenes operator Pg localized on B such that Pg : L>(S¢™') — L?(S%71)
is an orthogonal projection and for all f € L?(S41)

(1.1) Lm@ﬂo&oﬂlﬁﬂM@:cG@ﬂ

where ¢(Pg) is a constant depending on Pg; the integral in (1.1) is understood as Bochner
integral with values in L?(S71).

(ii) Let X be one of the following quasi-Banach spaces: Triebel-Lizorkin space F;q(Sd*l),
0<p,qg<oo,seR, Besov space Bqu(Sd’l), 0<p,qg<oo,seR, Sobolev space W;(Sd’l),
1 < p < oo, and C¥(S¥1), k > 0. Then the formula (1.1) holds for all f € X with the
integral in (1.1) understood as the Pettis integral. In the case X is Banach space the integral
18 Bochner integral.

In the literature there are two approaches to construct a continuous frame on L*(S?1). A
purely group-theoretical construction started with a paper by Antoine and Vandergheynst
[1]. A continuous wavelet on the sphere is a function g € L*(S?"!) such that the family

(TyDyg : (b,t) € SO(d) x R, },

is a continuous frame in L?(S?°!), where D; is a dilation operator. The existence of such g is
highly non-trivial already for S? and was investigated by [9]. The second approach involves
a more general wavelet transform, where dilations are replaced by a family of functions
{g: : t > 0} C L*S* ). This family generates a continuous Parseval frame if wavelet
transform

W(f)(b,t) = / g (b7 2) f(x)dog_1(z), W :L*(S™) = L*(SO(d) x R, dugda/a)
gd—1
is an isometric isomorphism, see [22, Theorem III.1]. If functions g, are zonal, that is
g:(z) = g:({y, z)) for some y € S¢~1, then wavelet transform takes a simplified form

W6 = [ al(ea)f@doiaa), W: LS = 8™ x Ry dogeadal)
Such transforms were studied for d = 3 in [14, 15]. For more general weights on RT, see
[23, Theorem 3.3]. A general approach to construct continuous frame wavelets on compact
manifolds was done by Geller and Mayeli [17].

As an application of Theorem 1.1 we construct a highly localized continuous frame in
L?(S*1). Unlike earlier constructions of continuous wavelet frames on S~!, the “dilation”
space R is replaced by a parameter space X of a local continuous Parseval frame. More-
over, our continuous wavelet frames have arbitrarily small support. A recent solution of
discretization problem by Freeman and Speegle [16] yields a discrete frame on sphere [3, 13].

The main novelty of the paper compared with our earlier works on the sphere [4] and on
Riemannian manifolds [5, 6] is the presence of a single smooth projection which generates a
decomposition of the identity operator on L? under a group action. Our previous construction
of such decomposition is generated by a family of smooth projections parametrized by an

open precompact cover of a Riemannian manifold. In contrast, a Parseval frame constructed
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in this paper is generated by a single localized window function unlike our earlier construction
on the sphere [4], which requires a family of generators.

Geller and Pesenson [18] have constructed localized Parseval frames on compact symmetric
Riemannian manifolds. This suggests that Theorem 1.1 might have a generalization when
the sphere S%~! is replaced by compact or non-compact symmetric Riemannian manifolds.
These are Riemannian manifolds which admit an involutive and transitive group action of
isometries [19, 20]. However, it is an open problem whether, and to what extent, Theorem
1.1 holds in such setting.

The paper is organized as follows. In Section 2 we recall the definition of Hestenes opera-
tors and Marcinkiewicz averages. In Section 3 we show the existence of a smooth orthogonal
decomposition of identity on L?*(RY) generated by a single projection. In Sections 4-5 we
study Marcinkiewicz averages of smooth orthogonal projections on the sphere. This culmi-
nates in the proof of the first part of Theorem 1.1 in Section 6. The proof of the second part
of Theorem 1.1 dealing with function spaces is shown in Section 7. In Section 8 we construct
a continuous Parseval frame on the sphere.

2. PRELIMINARIES

We recall the definition of Hestenes operators [5, Definition 1.1] and their localization [5,
Definition 2.1]. Although the following two definitions make sense when M is a Riemannian
manifold, in this paper we only consider M = R? or S%1.

Definition 2.1. Let ® : V — V'’ be a C diffeomorphism between two open subsets
V.,V C M. Let ¢ : M — R be a compactly supported C* function such that

suppp ={z € M : p(x) #0} C V.
We define a simple H-operator H, ¢y acting on a function f : M — C by

p(@)f(®(z)) zeV
0 re M\V.

(21) H%q)"/f(l’) = {

Let Co(M) be the space of continuous real-valued functions vanishing at infinity. Clearly, a
simple H-operator induces a continuous linear map of the space Cy(M) into itself. We define
a Hestenes operator to be a finite combination of such simple H-operators. The space of all
H-operators is denoted by H(M).

Definition 2.2. We say that an operator T € H (M) is localized on an open set U C M, if
it is a finite combination of simple H-operators H,, ¢, satisfying V' C U and ®(V) C U.

By [5, Lemma 2.1] an operator T is localized on U C M if and only if there exists a
compact set K C U such that for any f € Cy(M)

(2.2) suppT'f C K,
(2:3) supp fNK =0 = Tf =0,
For any function f on S?!, define its rotation by b € SO(d) as
T,(f)(x) = f(b'z), zeS""

Let D = C>(S%!) be the space of test functions. Let D’ be the dual space of distributions
on S4-1.
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Definition 2.3. Let X be a quasi Banach space on which X’ separates points such that:

(1) we have continuous embeddings D < X < D’ and D dense in X,
(2) there is a constant C' > 0 such that for all b € SO(d)

Tl xox < C,

Let P : X — X be a bounded linear operator. We define the Marcinkiewicz average S(P)
as the Pettis integral

(2.4) SN = [ TioPoTia(fdu),  feX,

50(d)

where 1 = pq4 is the normalized Haar measure on SO(d).

Remark 2.1. Marcinkiewicz has considered such averages in the context of interpolation of
trigonometric polynomials, see [28, Theorem 8.7 in Ch. X]. In Section 7 we will show that
the mapping

SO(d) 5b— T OPOTlfl(f) eX

is continuous. Hence, in the case X is a Banach, (2.4) exists as the Bochner integral by
[11, Theorem I1.2]. In particular, when X = C(S%"!) we can interpret (2.4) as the Bochner
integral.

Lemma 2.4. Let 1y € C®(S%1). Let My be a multiplication operator, i.e. My(f) = o f.
Then for f € C(S¥1) and € € ST1,

S(My)f(€) = C(@)f(§),  where C(¢) = P(§)da(E).

Sd—1

Proof. Note that
S(My)f(§) = f(§) P(b7H(€))du(b).

SO(d)
Letting G = SO(d) and H = {b € SO(d) : b(1) = 1} C SO(d), we have G/H = S L.
Hence, by [12, Theorem 2.51]

Cy) = Y(b7(€)dp(b) = »(€)do(£). D

SO(d) Sd—1

2.1. Marcinkiewicz averages in L*(S?!). Let HZ be the linear space of real harmonic
polynomials, homogeneous of degree n, on R?. Spherical harmonics are the restrictions of
elements in H¢ to the unit sphere, see [10, Definition 1.1.1]. Let

proj, : L*(S*') — H4

denote the orthogonal projection. Since L?(S%1) is the orthogonal sum of the spaces HZ,
n=20,1,..., we can define multiplier operator with respect to spherical harmonic expansions
[10, Definition 2.2.7].

Definition 2.5. A linear operator 7' : L?(S¥1) — L*(S%!) is called a multiplier operator
if there exists a bounded sequence {\,},>¢ of real numbers such that for all f € L*(S%!)
and alln >0

proj, (T f) = Anproj,, f-
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Conversely, any bounded sequence {\, },>o defines a multiplier operator on L?(S*!)
Tf = Z)\nprojnf for f € L*(S*1).
n=0

The following result characterizes Marcinkiewicz averages on the sphere, see [10, Proposition
2.2.9].

Theorem 2.6. Let T : L*(S41) — L2(S? 1) be a bounded linear operator. The following
are equivalent:

(1) T is a multiplier operator.
(i1) T is invariant under the group of rotations, that is, TT, = TyT for all b € SO(d),
(i11)) S(T)=T.

3. ORTHOGONAL DECOMPOSITION BY SHIFTS OF A LOCALIZED PROJECTION

In this section we will show the existence of smooth orthogonal decompositions of identity
on L?(R%), which are generated by translates of a single projection, which is localized in a
neighborhood of an arbitrary precompact fundamental domain.

Let s € C*°(R) be a real-valued function such that

supp s C [—4, +00) for some 6 > 0,
2 (t) +s*(—t)=1  forallt € R.

Following [4, eq. (2.9)] and [21, egs. (3.3) and (3.4) in Ch. 1], for a given e <  and 6 < B*Ta,
we define an orthogonal projection Py, g : L*(R) — L*(R) by

(3.1)

(0 t<a-—0,
S2(t—a)f(t) +s(t—a)s(a—t)f2a—1t) t€a—7ba+d],
(32)  Paaf) =14 f(0) te(atsf—0),
R(5—1)](1) — s(t — D)s(B— D@5 —1) telB—5.5+4)

L0 t>p+0.

Let T} be the translation operator by k € R given by Ty f(z) = f(x — k). Note that for all
functions f and all a < 3, k € R, we have

(3.3) Plaripri)(f)(@) = (TePagT-r) f(2).
By [21, Theorem 1.3.15] we have the following sum rule for projections on adjacent intervals
corresponding to the same § < min((8 — «)/2, (v — 8)/2),

(3.4) P[oc,ﬂ] + P[B,ﬂ = P[ow]'

Let K C R? be a fundamental domain of R?/T, where I' C R? is a full rank lattice. That
is, {K + :v € I'} is a partition of R? modulo null sets. Define an orthogonal projection
onto L*(K) by Pf(x) = 1x(z)f(x). Then, we have a decomposition of the identity operator
I on L*(RY),

> T,PT_, =L
yel
The following theorem shows that there exists a smooth variant of an operator P, satisfying

the same decomposition identity, which is an H-operator localized on a neighborhood of K.
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Theorem 3.1. Let I' C R? be a full rank lattice. Let K C R? be a precompact fundamental
domain of R?/T. Then for any ¢ > 0, there exists a Hestenes operator P, which is an
orthogonal projection localized on e-neighborhood of K, such that

(3.5) > T,PT_, =1

vyel

Here the convergence is in the strong operator topology in L?(R%). In particular, projections
T,PT_,, v eT, are mutually orthogonal.

Proof. We will show first that it suffices to prove the theorem for the lattice Z¢. Assume
momentarily that Theorem 3.1 holds in this special case. An arbitrary full rank lattice
I' ¢ R? is of the foorm I' = MZ? for some d x d invertible matrix M. If K C R? is
a precompact fundamental domain of R?/T', then M~!(K) is a precompact fundamental
domain of R?/Z? since

(M ™YK +7):vyel}y={MYK)+k:kecz'}

is a partition of R? modulo null sets. Hence, for any € > 0, there exists a Hestenes operator
P’ which is an orthogonal projection localized on e-neighborhood of M~!(K) such that

> TLPT =L

kezd
Define a Hestenes operator P = Dy;-1P' Dy, where D), is a dilation operator Dy, f(z) =
f(Mz). Since | det M|*/2Dy; is an isometric isomorphism of L?(R?) we deduce that P is an
orthogonal projection. Since Ty Dy = DTy, we have

> T,PT_, =Y TurDy-P'DyT_yr =Y  Dy-TiP'T_ Dy

~verl kezd kezd

= Dy 0 (Z TkP,T_k> oDy =1

kezd

Since P’ is localized on e-neighborhood U of M~1(K) we deduce that P = Dy;-1P'Dy; is
localized in M (U), which is contained in || M ||e-neighborhood of K. Since € > 0 is arbitrary,
this concludes the reduction step.

Next we will show the theorem in the special case when the lattice I' = Z¢ and the
fundamental domain is the unit cube K = [0, 1]%. Let Py 1] be the orthogonal projection on
L*(R), which is given by (3.2), and localized on open interval (—d,1 + §). Since Pjy ) has
opposite polarities at the endpoints, by (3.3) and (3.4) we have

(3.6) > TPoyT-x =1,
keZ

where the convergence is in the strong operator topology in L?(R), see [21, Formula (3.18)
in Ch. 1]. Define Pk as the d-fold tensor product Px = Po1y®...® P, see [4, Lemma
3.1]. That is, Pk is defined initially on separable functions

(i®...@ fo)(x,...,xq) = fi(z1) - falza), for x = (z1,...,24) € R?,

by
Pr(fi®...® fa) = Poy(fi) ® ... ® Poy(fa)
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and then extended to a Hestenes operator on R?. Then, Px is an orthogonal projection
localized on a cube (—d,1+ )% Then, using (3.6) we can verify its d-dimensional analogue
for separable functions

N TiPkT (i@ 0f)= > TuPoyTown(f)®...® Ti,PoyT r,(fa)
(3.7)  kezd (K1, ka) €27

=H®...0 fa

Since linear combinations of separable functions are dense in L?(R?), the above formula holds
for all functions in L?(R?). Choosing § > 0 such that v/d§ < € yields the required projection
P = Py satisfying (3.5).

By the scaling argument we obtain the same conclusion for the lattice I' = n~!Z9,
and the fundamental domain n=1[0,1]¢, where n € N. That is, define a projection P’ =
Dy-1 P 1ja Dy, where M = n~ 1, is a multiple of d x d identity matrix I;. That is, P’ is a
Hestenes operator, which is an orthogonal projection on L*(R?) satisfying

(3.8) Y TPT,=1
ken—174

Let K be an arbitrary precompact fundamental domain of R?/Z?. Choose n € N such
that

(3.9) (Vd+2)/n < e

Let P’ be a Hestenes operator, which is orthogonal projection localized on 1/n-neighborhood
of n71[0,1]¢ such that (3.8) holds. Let

(3.10) Fy={ken™Z%: (070, 11" + k)N K # (}.
Since K is a fundamental domain of R?/Z? we have
(3.11) U+ F)=n"z"

lezd

We define an equivalence relation on Fy: k, k' € Fy are in relation if k — k¥’ € Z%. Then,
we choose a subset I} C F|y containing exactly one representative in each equivalence class.
Hence, the family {I + Fy : | € Z%} is a partition of the lattice n™'Z%. Define a Hestenes
operator

P= Z T.P'T 4.

ke Fy

Since projections T, P'T_;,, k € n~'Z¢, are mutually orthogonal, P is also an orthogonal
projection on L*(R9). Since the operator T}, P'T_; is localized on 1/n-neighborhood of the
cube n710, 1]¢ + k, whose diameter is < € by (3.9), we deduce by (3.10) that P is localized
on e-neighborhood of K. Combining (3.8) with the fact that {l + F} : | € Z%} is a partition
of the lattice n=1Z¢ yields

Z TPT_; = Z Z Tt P'T 4y = 1.
lezd lezd keFy

The convergence is in the strong operator topology in L*(RY). O
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FIGURE 1. Sets K and M 'K.

F1GURE 2. Construction in Theorem 3.1 for scaling parameter n = 10.

The following example illustrates Theorem 3.1 by an example. Let K be a hexagon with
the vertices:

p1=(1,0), p2 = (1/2,v3/2), ps = (—1/2,V3/2), ps = —p1, ps = —p2, P6 = —Ps.
The set K is a fundamental domain for the lattice I' = MZ?, where

M = [wifwy],  wi = [\(/)ﬁ} ) 2= l\%?Q] '

Then we transform K so that M 1K is a fundamental domain for the lattice Z2, see Figure
1.

Next we consider a grid 1/nZ?, where n is a scaling parameter. We color all cubes which
have nonempty intersection with M ~'K. If a scaling parameter n is sufficiently small we
have all cubes in € neighborhood of M 1K, see Figure 2. To construct orthogonal projection
from Theorem 3.1 we need to choose cubes that form a fundamental domain for the lattice
72 by eliminating redundant cubes, see Figure 2.

Corollary 3.2. Let B be a ball in the torus T = RY/Z%. Then there erists a discrete
subgroup G C T and a Hestenes operator P, which is orthogonal projection localized on B,
such that

Y T,PT_.f=f  foradllfeL*T%.

veG



In particular, progections T, PT_., v € I', are mutually orthogonal.

Proof. Let p : R4 — T¢ = R?/Z? be the quotient map. Then, a ball B in the torus
T? = RY/Z% is of the form B = p(B(z,r)), where B(z,r) is a ball in R%. Without loss
of generality, we can assume that © < 1/(2v/d), so that the balls B(z + k,r), k € Z¢, are
disjoint. Choose sufficiently large n € N such z+[0,1/n]? C B(z,r). Then, K = z+[0,1/n]?
is a fundamental domain of R?/T', where I' = n~'Z%. By Theorem 3.1 there exists a Hestenes
operator P’ on R? which is localized in B(x,), such that P’ is an orthogonal projection
satisfying (3.8). Define Z9-periodization of P’ by

P=> T.PT.
kezd
We can treat P as a Hestenes operator on T?, which is an orthogonal projection on L?(T¢)

localized on B. This follows from the fact that P’ is localized in B(z,r) and the balls

B(z + k,r), k € Z4, are disjoint. Hence, we obtain the conclusion for the group G =
(n=17%) )74 O

We end this section with a continuous analogue of Theorem 3.1 on the real line, which
motivates results in subsequent sections.

Proposition 3.3. For firted 6 > 0 and o < B satisfying B_TO‘ > 0, let P g be a smooth

orthogonal projection given by (3.2). For any continuous function f : R — R and any t € R,
we have

[ TeRaaT-ed (0 = [ Psusrn O = (6 - )10
R R

Proof. The first equality follows by (3.3). By (3.2) we have

t—a—9

/R Plevacsn f(t)de = £(t)de

t—B46

t—a+o
v Gt — (a4 ) ) + sl — (a+ ))sla+ € — O F(2a+ ) — t)de

—a—0
t—B+6
bR B eS0T st~ (53 €016+ - i
t_ —
Since P, g has opposite polarities at endpoints, the change of variables yields
5

[ Resneant(0de = 103 - o= 28) +2£0) [ Sy

— F(6)(B — a—25) + 2£(1) / (2(u) + $*(—w))du = (B — )£ ().

The last equality follows from (3.1). O

4. AVERAGES OF SMOOTH PROJECTIONS ON S!

In this section we show that the Marcinkiewicz average of a smooth projection on an arc
in S' ={z € C:|z| =1} is a multiple of the identity.
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Definition 4.1. Let P be a Hestenes operator on R, localized on (a,b) with b — a < 27.

Take p such that p < a < b < p+ 27. Define an operator P acting on a function f : S* — R
by

Pf(e")=P(foW))(t), t€[pp+2m),

where W, (t) = ¢*. Then P is a Hestenes operator on S!, localized on an arc Q = Wy ((a, b)) C
S'. In particular, localization of P on (a,b) implies that Pf(w) = 0 for w € S'\ Q. This
implies that definition of P does not depend on p, provided p < a < b < p + 27.

Fixa<fand 0 < < 55—0‘ Define an operator R, acting on functions f on R by
R.f(t) = s(t — a)s(a —t)f(2a — t) for t € R.
Define a multiplication operator M f(t) = m(t) f(t), with

(0 for t < a— 9,
s*(t—a) forte a—4ba+d],

m(t) =<1 fort € (a4 6,8 —9),
s’ (B—t) forte[B—4,8+04],
L0 fort > g+ 0.

Then, the operator P, g, given by formula (3.2), satisfies
(4.1) P =M+ Ry — Rp.

Observe M, R,, and Rz are simple Hestenes operators localized on intervals (o — 6, 8 + 9),
(v —d,ac+9), and (5 — 6,8+ 9), respectively. Note that

(4.2) TR T ¢ f(t) = s(t — (e + §))s(a+ & =) f(2(a + &) — t) = Rase f (1)
Hence,
TePoapTe = TeMT ¢+ Rate — Rpye,

and TeMT. f(t) = m(t — ) £ (2).
In the sequel, we need to consider both translation operators on R and on S*. To distin-
guish between these two operators, we denote a translation (rotation) operator 7, on S* by

7.f(w) = f(z7'w), where f: S! = R and z,w € S'.

Lemma 4.2. Let P be a Hestenes operator localized on an interval (a,b) with b —a < 27.
Define a Hestenes operator P on S by Definition 4.1. Then, P; = T¢PT_¢ is a Hestenes
operator localized on (a + &b+ &) and P is defined as well. Moreover, we have

(4.3) /]5g = 7. Pr,—1, where z=¢".

Proof. The fact that P; is a Hestenes operator localized on (a + £, b + &) follows from an
explicit formula for P; when P is a simple Hestenes operator. To verify (4.3), take f : S' — R.
Observe first that for u € R,

Tu(f 9 \Ijl) = (Teiuf) o \Dl-
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Indeed, we have
Tu.(foi)(t) = (foWi)(t —u) = fle'e™)
= (Tein f)(€") = (Tein f) 0 V1 (2).

Fix p such that p < a < b < p+2xw. Clearly, p+ & <a+&<b+& < p+ &+ 2m, and
telp+& p+E&+2m) if and only if ¢t — &€ € [p, p+ 27) Therefore, for t € [p+ &, p+ & + 27)

Pef(e") = Pe(f o W)(t) = TePT-¢(f 0 W1)(1)
= P(T-e(f o W))(t = &) = P((re-ic f) 0 Wi)(t = )
= P11 f)(e79) = P(r.-1 f)(e"27") = . Pr.—a f(e™). O

Since SO(2) ~ S' with normalized Haar measure u, the Marcinkiewicz average of an
operator P is given by

S(P)f(w) = /S1 T, PT,-1 f(w)du(z), w e St

Theorem 4.3. Let o < 8 be such that f — o < 2w. Let 6 > 0 be such that
(4.4) 20 <min(f — a, 217 — (B — a)).

For Q = ¥y (o, f]), consider an operator Py = ]3[;;] as in Definition 4.1. Then, for any
continuous function f : S* — R and any w € S, the Marcinkiewicz average satisfies

(4.5 S(Pa)()w) = 7 flu).
Proof. Denote k = 3 — a and v = €. By (4.2)
R,B = ROH—H = TnRaT—m

and consequently by Lemma 4.2 we have

(4.6) Rg = TyRoTp1.
Therefore,
(4.7) TZ%Tzfl = TZTUE;TUATZA = TZUE;T(ZU)fl.

Observe that M f =mgqf, where mg is a function on S' given by
s2(t—a) te|a—0d,a+d,
mo(e”) =< 1 te(a+d,8-9),
s2(B—t) te[B—0,2m+a—0).
By (4.1) and (4.6) we have
Py = 15[;;} — M + Ry — TyRoTy 1.
By (4.7) this implies that
T.PoT,-1 = TZMTZ—l + TZ/RS;TZ—l — TZUE;T(ZU)—L
Further, note that

M7, f(w) = mo(wz") f(w).
11



Summarizing, we get
(48) TZPQTz_lf(w) = mQ<wzil)f(w> + TZETz_lf(w) - TZU/RS;T(ZU)_If(w)'

By the invariance of Haar measure applied to g(z) = TZETZ—I f(w) we see that

/ Tzﬁ;Tzqf(w)du(z) :/ TZU./R\;T(ZU)flf(w>dM(Z).
st st

Therefore, integrating (4.8) over S! we obtain

/ o Por f(w)dn(z) = f(w) [ mows)du(z) = fw) | mo(z)du(2).

S st st
The conclusion follows from the fact that

2m4a—6 —a
mq(z)du(z) = ! / m(t)dt ! m(t)dt = 627T

st 21 Jos 2 Jr

5. LATITUDINAL PROJECTIONS ON SPHERE

In this section we define latitudinal operators, whose action depends only on latitude
variable, by transplanting one dimensional Hestenes operators to meridians. We also show
that the Marcinkiewicz average of latitudinal projection is a multiple of the identity.

For k > 2, we define a surjective function

@y : [0, 7] x SF — §*
by the formula
(5.1) O (9,€) = (€sind, cos V), where (¥, &) € [0, 7] x SF1,
Note that &, is a diffeomorphism
®yp: (0,7) x S — §F\ {1F, —1%},

where 1% = (0,...,0,1) € S* is the “North Pole”. Let d, be Riemannian metric on a sphere
and let 1 = 1971, Note that for £ € S, d,(1,€) = ¢, where (1,&) = cost.

Definition 5.1. Let P : C[0,7] — C[0, 7] be a continuous operator. For fixed k > 2, let I
be the identity operator on C(S*7!). Define an operator

P®I:C([0,7] x S¥1) — C([0, 7] x S¥71),

acting on a continuous function g on [0, 7] x S¥~! by
(P@D)g(t,y) = P(g(v) (1),  (ty) €[0,7] x S
It can be checked by direct calculations that if P,Q : C[0, 7] — C[0, 7], then
(5.2) (PI)o(Q®I)=(Po@Q)®L
Definition 5.2. Let
Co([0, 7)) = {f € C([0,7]) : f(0) = f(x) = 0}

Let P : C[0,7] — C]0, 7] be a continuous linear operator such that

(5.3) P(Cyl0,7]) C Col0, 7].
12



We define a latitudinal operator acting on f € C(S*) by
(PRI(fody))(27(¢), €eSF\{1F -1%}
PPf(§) = PRI(fod)(0,15),  ¢=1*
PRI(fo®)(r 151), &= -—1F
Lemma 5.3. If P: C[0, 7] — C[0, 7] satisfies condition (5.3), then P# : C(S¥) — C(S*).
Proof. Denote
Cb([ouﬂ-] X Skil) = {g € C([Ovﬂ'] X Skil) : ElaoﬂfrvEGSk*lg(O?g) = ao,g(ﬂ',f) = a’ﬂ'}'

Let f be a function on S*. Then f € C(S¥) if and only if f o ®; € Cy([0, 7] x S¥~1). Indeed
Sk is homomorphic with the quotient space [0, 7] x S¥71/ ~ which identifies {0} x S¥~! and
{m} x S¥=! with single points corresponding to poles 1* and —1*, respectively.

The assumption P(Cy[0, 7]) C Cy[0, 7] guarantees that

P @ I(Cy([0, 7] x S¥1)) € Cy([0, ] x SF71).
Indeed, let g € Cy([0, 7] xS¥71) and ag = ¢(0,1%7") and a, = g(w,1%7'). Define p(t,y) = ==,
q(t,y) = » and
h(ta y) = g(t7 y) - a0p<t, y) - aﬂq(t7 y)v (t, y) S [07 71—] X Sk_l'
Consequently for all y € SF~!
h0,y) = h(m,y) = 0.
Hence
P®I(h)(0,y) = P®I(h)(m,y)=0.
We conclude that
P®1(g)(0,y) = ao(P @ 1)(p)(0,y) + ax(P @ I)(q)(0,y).

Since p and ¢ do not depend on y € S*7!, functions (P ®1)(p)(0,y) and (P ®1)(q)(0,y) also
do not depend on y € S*¥~!. Hence, P ® I(g) is constant on {0} x S¥~!. The same argument
shows that P ® I(g) is constant on {m} x SF~1. O

Lemma 5.4. If P,Q : C[0, 7] — C[0, 7| both satisfy condition (5.3), then

(5.4) (PoQ)* = P* o Q%.

Proof. By (5.2) and Definition 5.2 the formula (5.4) holds for continuous functions f on S*
which vanish on poles. Let p and ¢ be as in the proof of Lemma 5.3. Likewise, (5.4) holds

for po CD,;l and go <I>,;1. Since any function f on S¥ is a linear combination of po @,:1, qo CIDI;l,
and a function vanishing on poles, the formula (5.4) holds for all f € C(SF). O

For further reference let p : C([0,7]) — C([0,7]) be a reflection operator given by
pf(t) = f(m—t)  for f e C([0,7]).
Let R = p® I, where I is the identity operator on C'(S*~!). Then
Ry(t,y) = g(m —t,y) for g € C([0, 7] x SF71).
By Definition 5.2 we have
PPFE) = f(& o & —Chpr)  for &= (&,... &) €S, f e C(SH).

13



Lemma 5.5. Fiz k > 2. Let L : C[0,7] — C|0,7] be a continuous operator and n €
SO(k+1). Then,
L# ifn(1) =1,

5.5 T.L*FT 1 =
(5:5) N {p#L#p# ifn(1) = —1.

Proof. Suppose that (1) = —1. Then 7 is a block diagonal matrix with two blocks: C €
O(k) and —1 in the last diagonal entry. Hence, for parametrization £ = ®,(¢,y) of sphere
Sk, we have (&) = ®x(m — t, Cy) for a certain matrix C € O(k). Consequently

nHE) = Py(m —t,CMy).
Take f € C(S¥). Letting g = f o @, we have
T,f(€) = f(n'€) = g(m —,C7y).
Let g, = T,-1 f o ®;. Then we have
T, (L*Ty1 f) (&) = LF Ty (f) @il — 1,C7y)
=LRI(T,-1f o®)(m—t,C'y) = R(L®I)(g,)(t,C'y).

Since g,(t',y") = Rg(t',Cy’) and operators R and L ® I act only on the first variable ¢, we
have

(L@ T)(gq)(t,C™"y) = L{gy (-, C7'y))(t) = L(Rg(-,y))(t) = (L@ D) Ry(t.y).
Therefore, R = p ® I yields
T,L*T, 1 f(€) = R(L@ 1) (Rg)(t,y) = (pLp @ Dg(t,y).
Hence, by Definition 5.2 and Lemma 5.4
T,L*T-1 f(§) = (pLp)* f(€) = p" L¥p* f(€).

In the case n(1) = 1, the proof follows similar arguments using a representation 7(§) =
. (t, Cy) for a certain matrix C' € SO(k). O

Corollary 5.6. Fiz k > 2. Let L : C[0,7] — C[0, 7] be a continuous operator which satisfies
condition (5.3). Let K = L — pLp. Then for f € C(SF) and & € Sk,

S(E#) (€)= / T K# Ty f(€)dpigsa (b) = 0.

SO(k+1)
Proof. Take any n € SO(k + 1) such that n(1) = —1. By Lemma 5.5 we have

(5.6) p? L# p* = T, L*T,
Then, the invariance of measure pg,q yields
S(p*L#p*) = S(T,L*T,-1) = S(L*). O

Let 1,0 be such that 0 <9 — 0 < ¥+ § < w. Define
in(29 — ¢)\ k12
Lof(t) = s(t —9)s(9 — 1) (Sm(—)) F(20 — 1),
sint
It can be checked by a direct calculation that

Lﬂ-,g = pLgp
14



Next, for 0 < ¢ < 7/2 and suitable § > 0, define function ¥y by formula

(0 t <-4,
s2(t — ) tev—0,9+4],

Py(t) =<1 te(W+o,m—9—9),
s2(r—v9—t) ter—19—-06m—19+4,
(0 t>m7—19+06.

Define
Py = My, + Ly — Lr_y = My, + Ly — pLyp,
where My, (f) = g f denotes the multiplication operator.
Next, observe that there is a function 7 € C*°(S*) such that

(MW># - ij'

Let
Ky=Ly— L.y = Lgy— pLyp.
Define and operator U : C(SF) — C(S*) by
U=Pj = (My,)" + Kj = My + Kj.

Theorem 5.7. Fiz k > 2. Let 9,0 be such that 0 < ¢ —0 < 9+ 6 < w/2. Then, U is a
Hestenes operator localized on the latitudinal strip ®5,((9 — 6,7 — 9 + &) x SE71), U extends
to an orthogonal projection on L*(S¥), and

(5.7) SO =CWHfE)  forall feC(sh), st

Proof. Let Ey be an AWW operator from [4, Definition 3.4], see also [4, (3.5),(3.6)]. That
is, for g : [0,7] — C we define

) g@) t>9+6,
59 Bul)(1) = {0 S
For t € [0 — 6,9 4 0] we define
Ey(g)(t) =s*(t — V)g(t)

: (k=1)/2
+s(t —0)s(9 — t) (w) 9(20 — 1).

sint

(5.9)

The above formula also holds for ¢ outside of [¢) — 4,9 + 6], since s(t —)s(¥ —t) = 0 and we
can ignore the second term in (5.9).

By [4, Lemma 3.3] the operator (Ey)* € H(S*) and (Ey)* extends to an orthogonal
projection on L?(SF). Since Py = Ey — E_y, we have

U=E]-E",

The fact that U is an orthogonal projection follows from [4, Lemma 3.4]. By Lemma 2.4

and Corollary 5.6 we deduce (5.7). O
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6. AVERAGES OF SMOOTH ORTHOGONAL PROJECTIONS ON SPHERE

In this section we complete a construction of a smooth orthogonal projection, which is
localized on arbitrarily small ball, such that its average is a multiple of the identity operator.
To achieve this we will use the lifting procedure [4, Definition 4.1].

Definition 6.1. For £ > 2, let
Co(S") ={f € C(8") : f(1*) =0 = f(-1")}.
Suppose that T : C(S¥1) — C(S¥1). We define the lifted operator T' : Co(S¥) — Cy(S¥)

using the relation

T(f)€) (t€) € (0,m) x S
0 t=0 or t=m.

(6.1) T()(t.€) = {

where
FHE) = f(t,6),  (1,€) € (0,m) x ST~ 8P\ {17, -1%}.

It is easy to verify from (6.1) that if f € Cy(S¥), then Tf € Cy(S¥). Moreover, the operator

norms of T and 7" are the same.
For P : C(S*) — C(SF) denote

SUP)(C) = /S ey TroPOT S dins) for [ € ("), ¢ 5"

Lemma 6.2. Let k > 2. Let P : C(SF1) — C(S*1) be a continuous linear operator such
that

(6.2) Sk_1(P)h = c(P)h for h € C(SF71).

Let L : C[0, 7] — Cpl0, 7| be a continuous linear operator. Then the composition operator
PoL#:C(Sk) — C(Sh),

satisfies

(6.3) Se(Po L#*)f = ¢(P)Sy(L*)f  for f € C(SY).

Proof. Let G = SO(k+1), H={be€ SO(k+1):b(1) =1} C SO(k+1). We can identify
G/H =S*. For x € S¥\ {1%,—1%} let b, € SO(k + 1) be a rotation in the plane spanned
by {1, 2} such that b,(1) = x. Note that b. is a continuous selector of coset representatives
of G/H,

v e S\ {1*, -1%} = b, € SO(k + 1).
Let o), be a normalized Lebesgue measure on S*. By Weyl’s formula [12, Theorem 2.51] for
any F' € C(G), we have

(6.4) /S oy Pl = /S k /H F(bya)dyig(a)dog(z),

where p is a normalized Haar measure on SO(k), which can be identified with H. That is,
any a € H is a block diagonal matrix with two blocks: a’ € SO(k) and 1 in the last diagonal

entry.
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We claim that for h € Cy(SF) we have
(6.5) / (Tuo P o) h(Qdmla) = c(PIR(C). €S
H

Since T,(Cy(S¥)) C Cy(S*) for all a € H, the formula (6.5) holds trivially for ¢ = 1%, —1*.
Otherwise, any ¢ € S*\ {1*, —1*} can be identified with (¢,£) € (0,7) x S¥~! through
diffeomorphism ®;. Hence, for any (¢,£) € (0,7) x S¥~! we have

/H <Ta oPo Ta—l) h(t,&)duy(a) = / P<(Ta‘1h>t)((@/)_lf)duk(a)

H

- / P(Tiy-1 ) (@) €)dpus ()
SO(k)

= /So(k) (Ta/ oPo T(a/)_1) ht(f)duk(a’) _ C(P)h(tjg)

The last equality is a consequence of the assumption (6.2). Hence, (6.5) holds.
Let f € C(S*) and ¢ € S*. By (6.4) we have

Se(Po L*)f(C) = /S k /H Tyao P o L# 0 Ty,m 1 f(C)dpue(a)doy ()

= / / Ty, Too PoT, 1T, 0 L¥ 0T, b1 [ (O dpn(a)dog(z).
sk JH

By (5.5) the above equals
/ / T, <Ta oPo Tafl) L*T, - £(C)dpn(a)do(z)
sk JH ‘

- / / (Ta oPo Ta_l) LAT, 1 f (b5 ) dpui(a) oy ().
Sk JH
Hence, by (6.5)

Su(P o LA =) [ (LT, 1) (8¢ o)

S
—(P) /S T, 0 ¥ o Ty f(Q)don().

Applying again (5.5) and (6.4) yields
Se(P o L*)f(¢) = ¢(P) /Sk /HszTa o L# o T,-i Ty f(()doy(x) = ¢(P)Sp(LF) f(¢). O

By the lifting lemma on the sphere [4, Lemma 4.1}, or its generalization on Riemannian
manifolds [5, Lemma 5.3], we have the following result.

Lemma 6.3. Let k > 2. Let 9,6 be such that 0 < 9 — 6 < 9+ < 7/2. Let U be a
latitudinal orthogonal projection as in Theorem 5.7. Let Pg be a Hestens operator on SF=1,
which is localized on an open subset Q C S¥=1, such that it induces an orthogonal projection
on L*(S*¥=1). Then
PQ:pQOU:UOpQ
17



is a Hestens operator on S¥, which is localized on Q = ®p((¥ — 5,7 — 9 + ) x Q), and it
induces an orthogonal projection on L?(SF).

Let
Ty, - [0,7]" x [0,27] — SF
be the standard spherical coordinates given by the recurrence formula
U, (t) = (sint, cost), t €0, 2m],

\I]kJrl(tv I‘) = (g Siﬂt, COS t)v (tv I‘) = [07 W] X ([07 ﬂ—]kil X [07 271—])7
where U, (x) = £ € Sk,

To construct a Hestenes operator satisfying Theorem 1.1 we will use two symmetric interior
patches

(6.6)

Q = \Ilkfl([ﬁlfilvﬁgil] X X [19%7193] X [19%719%])7
Q= \Ijk(wllcﬂ%c] XKoo X [79%’193] X [79%’79%])7

where 0 < ) <0}, < 2rfor j=1,and 0 < ¥ < ), <7, 0}, =7 — 9 for j =2,... k. For
sufficiently small § > 0 define §-neighborhoods of €2 and () by

Q6 = \Ilk—l([ﬁllﬂil _5719]2671 +5] Xoee X [19% _67193—1_6] X [19% _5719%+6])7
Q5 = Wu([0F — 8,05 + 8] > - x [02 — 8,02 + 6] x [0} — 6,0 + 6)).

Theorem 6.4. Let Q) be a symmetric interior patch in S¥, k > 2. Then there exist § > 0
and Hestenes operator Po,, which is an orthogonal projection localized on s, such that for

all f € C(SH),
(6.7) / Ty o Pay o Tyt (f)dpisss (b) = o(Poy) .
SO(k+1)

where ¢(Pgy) is a constant depending on Pq,.

Proof. Let
Q = ([0, 9] > -+ x [0, 93] x 01, 9y))

be a symmetric interior patch. For j = 2,...,k, let U = E::éj — Ej:? be the latitudinal
1 2

projection corresponding to the interval [, ] and acting on the space C(S7) as in Theorem
5.7.
Suppose that k = 2. Let Q = {¥y(t) = e € C: t € [9¥],04]} be an arc in S'* € C. We

choose 6 > 0 such that 2§ < 9} — 91, 26 < 27 — (9 — 1), and 92 —§ > 0. Then by Theorem
91—t

21

4.3 the operator P satisfies assumption (6.2) of Lemma 6.2 with constant ¢(Pp) =
Applying Lemma 6.2 and Lemma 6.3 the operator

P(Q) = U2 9 Pb
satisfies conditions of Theorem 6.4 with constant ¢(Pg)) = ¢(U?)c(Pyp).

For k > 3, we can assume by induction that we have an operator F;,_) satisfying conclu-
sions of Theorem 6.4. Applying Lemma 6.2 and Lemma 6.3 for sufficiently small § > 0, the
operator

Po, = Py =U" 0 Py_y)

satisfies conclusions of Theorem 6.4 with constant ¢(P)) = c¢(U*)e(Py-1))- O
18

s =



We finish this section by showing a preliminary variant of Theorem 1.1.

Theorem 6.5. Let B be a ball in S*t. Let u be a normalized Haar measure on SO(d).
There exist Hestenes operator Pg localized on B and a constant ¢ = ¢(Pg) such that Pg :
L2(S* 1) — L2(S%71) is an orthogonal projection and for all f € C(S471),

(6.8) / Tyo Py o Ty (f)du(b) = cf.
50(d)

Proof. Take any geodesic ball B with radius » > 0. For ¢ > 0, we choose 19{ < 19% and
0 > 0, such that 19% — 29{ +2) <eforall j =1,...,k. Choose ¢ > 0 small enough such
that symmetric interior patch €25 has diameter less than r. Let a € SO(d) be such that
a(2s) € B. Define Pg = T,Po,T,-1, where Py, is as in Theorem 6.4. Then Pg is both
Hestenes operator and orthogonal projection and moreover Py is localized in B. Indeed, for
any f € C(S%1), supp Psf = a(supp(Po, 0 Ty-1f)) C a(Qs). Likewise, if supp f N B = 0,
then Pgf = 0. Hence, the localization of Pg follows from [5, Lemma 2.1]. Since Py, satisfies
(6.8) for f € C(S*), so does Pg. O

7. PROOF OF THEOREM 1.1

In this section we give a proof of Theorem 1.1, which is a consequence of Theorem 6.5 and
the following two propositions. Let D be the test space of C* functions on S?1. Let D’ be
the dual space of distributions on S%!.

Proposition 7.1. Let P be Hestenes operator such that there is a constant ¢ = ¢(P) such
that for all f € C(S¥1) and for all € € S*t the following reproducing formula holds

(7.1) / Tyo P o Ty (f)(€)du(b) = cf(€).
50(d)

Let X be a quasi Banach space on which X' separates points such that:

(1) we have continuous embeddings D — X — D’ and D dense in X,
(2) there is a constant C' > 0 such that for all b € SO(d)

1Ty |x—x < C,
(3) the operator P : X — X is bounded.

Then the integral reproducing formula
(7.2) / Tyo Po Ty (F)du(b) = cf.
S0(d)

holds for all f € X in the sense of Pettis integral. In the case X is Banach space the integral
1s Bochner integral.

Proof. Observe that the mapping SO(d) x D > (b, f) — T, f € D is continuous. This follows
from

(7.3) IVET,f(z)| = [V*F(b )] where z € S, b€ SO(d), k>0,
which can be seen from explicit formulas for covariant derivative V on the sphere [10, (1.4.6)
and (1.4.7)].

By [4, Lemma 3.2] or [5, Theorem 2.6], the operator P : D — D is continuous. By an

argument as in the proof of [25, Theorem 5.18], the Pettis integral on the left hand side of
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(7.2) exists and defines a continuous operator in the Fréchet space D. By the assumption
(7.1), this operator is a multiple of the identity operator by a constant ¢ = ¢(P). Hence,
(7.2) holds for f € D.

Note that conditions (1) and (2) imply that

(7.4) SO(d) x X o (b, f) — T, f € X is continuous.

Since D C X is dense, for any fo € X and £ > 0, there exists g € D such that || fo—g||x < e.
Since D — X is a continuous embedding, for sufficiently close by,by € SO(d), we have
| To,9 — Thygllx < e. By the triangle inequality for a quasi Banach space there exists a
constant K > 1 such that

Ty, fo — To, follx < K([|To, fo — Ty, 9llx + K(|To,9 — To,gllx + 1| Th,9 — Tb, follx))
< K(Ce+ K(C+1)e).

In the last step we used the assumption that operators T} are uniformly bounded. On other
hand, for any f € X such that ||f — fo|| < & we have

1Ty, fo — To, fllx < K(||Th, fo — To, follx + | Tv,fo — To, £ x)-

Combing the above estimates yields (7.4).
Take any f € X and A € X'. Then, the function

(7.5) SO(d) 2 b+ AT,PTy-1 f € X is continuous.

Hence, we can define a linear functional
F(f) = / ATbPTb—lf dﬂd(b)
50(d)
Moreover,

NGl /So(d) ATy PTy-1(f)| dpa(b) < C*IA] 1| Pllxx]1£|Lx-

Thus, I' € X'. Since I'(f) = ¢A(f) holds for f € D, it follows that the same holds for
f € X, and the conclusion follows by the definition of Pettis integral. Finally, if X is a
Banach space, then the integrand in (7.2) is continuous, and hence, the integral exists in the
Bochner sense. 0]

Proposition 7.2. The following spaces satisfy conditions (1)-(3) of Proposition 7.1:
Triebel-Lizorkin space F;q(Sd_l), 0<p<oo,0<qg<oo,seER,

Besov space B} (S71), 0 < p < 00,0 < ¢ <00, s €R,

the Lebesgue space LP(SY') and Sobolev space W;(Sd_l), 1<p<oo, k>1,
the space C*(S*1), k > 0.

Proof. The condition (1) is a standard fact in function spaces, whereas (3) follows from [5,
Theorem 2.6] and [6, Theorem 3.1 and Corollary 3.6]. The condition (2) is immediate for the
spaces L?, W, and C* from (7.3). The condition (2) is a consequence of a general result on
smooth atomic decomposition for 7 and By, spaces due to Skrzypczak [26]. Indeed, if a is
a smooth (s, p)-atom on S! centered in B(z,r), then its rotation Tya is also a smooth atom
centered in B(b~'z,r), see [26, Definition 6]. Hence, the atomic decomposition of f € F:,
(or f € B; ) of the form f = 7% 3" s;;a;; as in [26, Theorem 3] yields the atomic
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decomposition T, f = Z;io Yo 8iilva;;. While the centers of the family of atoms {a;;}
have changed after the rotation, they correspond to another uniformly finite sequence of
coverings of $*°! with the same parameters. Then, the equivalence of the norm || f|[gs = (or
||fI|Bs,,) with its atomic decomposition norm is independent of the choice of such uniformly
finite sequence of coverings. This can be seen by analyzing the proof of [26, Theorem 3] to see
that equivalence constants depends only on the parameters of a uniformly finite sequence of
coverings. Alternatively, any such sequence of coverings can be mapped to a fixed uniformly
finite sequence of coverings (albeit with enlarged parameters). U

Combining Theorem 6.5 with Propositions 7.1 and 7.2 yields Theorem 1.1.

8. CONTINUOUS PARSEVAL FRAME ON SPHERE

In this section we construct a continuous wavelet frame on S¢~!. Unlike earlier construc-
tions [1, 9, 14, 22, 23|, our continuous wavelet frames have arbitrarily small support. We
start by recalling the definition of continuous frame.

Definition 8.1. Let #H be a separable Hilbert spaces and let (X, ) be a measure space. A
family of vectors {¢:}, t € X is a continuous frame over X for H if:

e for each f € H, the function X >t — (f, ¢;)y € C is measurable, and
e there are constants 0 < A < B < oo, called frame bounds, such that

(8.1) AllfIE, < /X (F, éiyalPdv < BIIf|E, forall f € H

When A = B, the frame is called tight, and when A = B = 1, it is a continuous Parseval
frame. More generally, if only the upper bound holds in (8.1), that is even if A = 0, we say
that {¢:}, t € X is a continuous Bessel family with bound B.

The following elementary lemma shows the existence of a local continuous Parseval frame
in L2(R*). For an alternative construction of a local Parseval frame, see [5, Theorem 4.1].

Lemma 8.2. Let ¢y > 0. There is a collection iy, t € X, of functions in L*(R¥) such that:
o forallte X
supp ¥y C [—1 — €, 1 + €o)",
o for all f € L*(R*) with supp f C [—1,1]* we have

J 168 b Pl6) = 1

Proof. Take any system which is continuous Parseval frames in L?(R¥), i.e. for all f € L?(RF)
we have

J K8 s o) = 1
Next take a smooth function ¢ on R* such that
1 zel-1,1*
8.2 =
( ) SO(SC> {0 T ¢ [_1 . 60, 1 +€0]k.

It is easy to check that ;¢ satisfies both conclusions of the lemma. 0]
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We present three examples of Parseval frames in L*(R¥) for which Lemma 8.2 can be
applied.
(1) Let E = {0,1}* \ {0} be the non-zero vertices of the unit cube [0,1]*. Let {¢$, :
e € E,j € Z,k € Z¥} be a multivariate wavelet basis of L?(R¥), see [27, Proposition
5.2]. Then, the wavelet basis is a continuous Parseval frame parameterized by X =
E x 7 x 7ZF equpped with counting measure.
(2) Let v € L*(R*) has norm one |[¢||; = 1. Then a continuous Gabor system

Ps () = ™ P(x — ), (t,s) € X =R xR

is a continuous Parseval frame parameterized by X equipped with the Lebesgue
measure [7, Corollary 11.1.4].

(3) Let ¢z, (z,t) € X = RF x ((0,1) U {oo}), be an admissible continuous wavelet
introduced by Rauhut and Ullrich [24, Definition 2.1]. Then for any f € L?(R*) we
have

! dt
/]Rk (|<f7 w(m,oo)>L2(Rk)|2d«T +/0 ’<f7 w(x,t)>L2(Rk)|2W>dx = Hf”%Z(Rk)

The concept of a local Parseval frame can be transferred to the sphere. Let
Wy 100,772 x [0,27] — S*!

be the standard spherical coordinates given by the recurrence formula (6.6). Fix a symmetric
interior patch ) of the form

Q= \I}d—l(@) where © = ([19611_17?95_1] X X [19%7193} X [19%7195)7
where 0 < ¥ < 9, < 2rfor j=1,and 0 <} <0 <7, ¥ =n -] for j =2,...,d— 1.
For sufficiently small 6 > 0, define enlargement of €2 by
(8.3) Qs =V, 1(0s),  where Oy :=[997F — 5,95+ 6] x - x [U} — 8,95+ 4)).

Lemma 8.3. There is a collection ¢y, t € X, of functions in L*(S*') such that:
o forallte X
supp ¢¢ C {25,
o for all f € L*(S* ) with supp f C Q we have

/X [, 1) 2oy [P (t) = || F|2aqgan,

Proof. We use approach from [4], where the localized wavelet system is transferred to the
sphere via the spherical coordinates. Consider the change of variables operator [4, Section
6.2]

T : L*([0, 7] % x [0, 27]) — L*(S*™1)
given by
(Tar " ()

Ve (7 (w)

, uwe S

T(¥)(u) =

where J;_q is the Jacobian of ¥, _;

i d—2 :d—3 :
del(edfla ed,Q, ce ,(91) = | S ed,1 S 9d72 + - - SIn 92‘
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Since the set where U,_; is not 1-1 has measure zero, by the change of variables formula, T
is an isometric isomorphism.
Let Y : R — R4 ! be an affine transformation such that for sufficient small e

Y([-L,1% Y =0, Y(-1-e,1+e]"") COs
In a similar way we define the change of variables operator Ty which is an isometry
L*([~1 — €0, 1+ €)™ 255 L*(6y)

We transfer a local Parseval frame ;, t € X from Lemma 8.2 to the sphere by isometric
isomorphisms Ty and T

L2([=1 — €0, 14 €0)*™) 25 L2(05) € LA([0, 7] 2 x [0, 27]) 5 LA(S™ ).

Namely, we let ¢, = T'Ty1;. Then the conclusion follows from Lemma 8.2 since any f &€
L2(S%1) with supp f C Q is of the form f = TTyg for some g € L*(R4!) with suppg C
[—1,1]4 L O

Theorem 8.4. Let {¢;}iex be a local continuous Parseval frame as in Lemma 8.53. Then,
there exists a Hestenes operator P, which is an orthogonal projection localized on §2, such that
the family {T,-1 Pdi}preso@xx 5 a continuous Parseval frame over (SO(d) x X, jig X v)
for L2(S471).

Proof. We apply Theorem 6.4 for k = d — 1 and for a shrunk symmetric patch
O_s =W 40,9971 — 6] x - x [0 4 6,95 — 0]

for sufficiently small 6 > 0. This yields a Hestenes operator P, which is an orthogonal
projection localized on 2. Moreover, by Proposition 7.1 applied for P, for any f € L*(S%!)
we have

(P £ = / e POTA (), fdft) = / o PT(),PTys i)

— [ o PoTa(DIFdu)
SO(d)
By Lemma 8.3
J 1 TaPo)Pa(t) = [ (PTf. 0 Pdv®) = |PTSIF = T PRSI
X X

Integrating the above over SO(d) yields
[ 15T Pon) Pav®dua(t) = PP 0
S0(d) J X
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