
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022 9413

Distributed Consensus-Based Online Monitoring of

Robot Swarms With Temporal Logic Specifications
Ruixuan Yan , Graduate Student Member, IEEE, and Agung Julius , Senior Member, IEEE

Abstract—In this letter, we develop a distributed consensus-
based online monitoring framework for a robot swarm with a
fixed graph structure. Each agent can monitor whether the swarm
satisfies specifications given in the form of Swarm Signal Tempo-
ral Logic (SwarmSTL) formulas. SwarmSTL formulas describe
temporal properties of swarm-level features represented by gener-
alized moments (GMs), e.g., centroid and variance. To deal with
measurement noise, we propose a generalized moment consensus
algorithm (GMCA) with Kalman filter (KF), allowing each agent
to estimate the GMs. Besides, we prove the convergence properties
of the GMCA and derive an upper bound for the error between
an agent’s estimate of the GMs and the actual GMs. This upper
bound is derived to be dependent on the maximal allowed velocity
but independent of the agents’ exact motion. A set of distributed
monitoring rules for SwarmSTL formulas are proposed based on
the estimation error bound. As a result, the agents can monitor the
satisfaction of SwarmSTL formulas over swarm features during
execution. The distributed monitoring framework is applied to a
supply transportation example, where the efficacy of KF in the
GMCA is also shown.

Index Terms—Agent-based systems, planning, scheduling and
coordination, sensor networks.

I. INTRODUCTION

A
ROBOT swarm is a multi-agent system composed of a
large number of robots that can accomplish complicated

tasks through cooperation and coordination [1]. With the in-
crease of complexity and functionality, ensuring the safety and
correctness of robotic systems is a challenging task. Nowadays,
real-time temporal logic formulas such as Metric Temporal
Logic (MTL) and Signal Temporal Logic (STL) are widely used
to express such safety and correctness properties [2], [3]. The
formal controller synthesis part of the safety/correctness issue
aims to construct control laws that result in executions satisfying
temporal logic formulas [4]–[8]. The formal verification part
of the safety/correctness issue aims to check whether all the
possible executions satisfy specified temporal logic formulas [9],
[10]. For instance, the formal verification of a robot swarm can
be accomplished via formal verification of individual agents’ ex-
ecutions [10]. Recently, temporal logic monitoring approaches,
which use a finite number of observation traces, have been

Manuscript received 1 March 2022; accepted 20 June 2022. Date of pub-
lication 15 July 2022; date of current version 26 July 2022. This letter was
recommended for publication by Associate Editor P. Ogren and Editor M.
Vincze upon evaluation of the reviewers’ comments. This work was supported by
NSF under Grants CNS-1618369 and CMMI-1936578. (Corresponding author:

Ruixuan Yan.)

The authors are with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
yanr5@rpi.edu; juliua2@rpi.edu).

Digital Object Identifier 10.1109/LRA.2022.3191236

proposed to assess whether the system fulfills formal require-
ments [11]–[13]. Offline monitoring and online monitoring are
two temporal logic monitoring techniques. Offline monitoring is
performed when complete execution traces have been gathered.
Studies have revealed the relationship between the efficiency of
offline monitoring and the length of the execution traces and the
size of the formula φ, from both theoretical and experimental
perspectives [14], [15]. However, there are some situations
where the monitoring task needs to be performed during the
execution. For instance, consider the specification that “If the
temperature is higher than a threshold within the last minute,
the robot swarm must proceed to the fire source, spread over
the fire zone, and extinguish the fire within 10 minutes.” for a
robot swarm performing a fire monitoring task in a warehouse.
In many scenarios, the robot swarm needs to adapt the plan based
on its perception of the environment or itself. Online monitoring
is the appropriate approach for such applications.

Naturally, when we describe a swarm, we usually use abstract
features of the swarm, such as the centroid or the variance of the
swarm, whereas the behaviors of the individual agents are less
important. The objective of this letter is to design a distributed
online monitoring algorithm for abstract features, which allows
individual agents to monitor the satisfaction of abstract features
with respect to swarm-level specifications. Distributed monitor-
ing of abstract features can lead to a significant improvement
in the computational efficiency and robustness compared with
centralized monitoring. Moreover, distributed monitoring can
assist distributed control of robot swarms with temporal logic
specifications, especially for reactive missions. For example, if
a robot swarm performs a task of supplies transportation, and it
needs to drop the supplies only if its centroid reaches a target
region within 3 s. With distributed monitoring, the agents can
determine whether to drop the supplies by monitoring if the
centroid of the swarm reaches the target region within 3 s.

Extensive studies have developed centralized or decentralized
control algorithms for multi-agent systems subject to temporal
logic specifications [7], [16], [17], with the goal of synthesizing
controllers that can realize executions satisfying temporal logic
formulas. By contrast, the goal of this letter is to monitor if
the swarm executions satisfy a high-level specification in a
distributed manner. In [18], the authors proposed generalized
moments (GMs) to represent swarm features and SwarmSTL to
describe swarm-level behaviors. Following this idea, we develop
a distributed monitoring algorithm for robot swarms with a fixed
graph structure, with which the agents can monitor whether
the swarm features satisfy SwarmSTL specifications. We pro-
pose a generalized moment consensus algorithm (GMCA) with
Kalman filter (KF) so that the agents can estimate the GMs.
Distributed consensus problems have been addressed by many
distributed average consensus algorithms (DACAs) [19]–[21],

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

9414 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

TABLE I
COMPARISON OF PROBLEM SETTING WITH RELATED WORKS

which require the agents’ estimates (ζj) to track the average
of the signals from individual agents (θj). Most of the existing
work assume a special initialization ζj(0) = θj(0) or the agents’
measurements are noiseless [19]–[21]. Without these assump-
tions, the DACA will have a steady-state error. We get rid of
these assumptions by incorporating KF into the GMCA so that
each agent can estimate its own state and use its state estimate
to perform the GMCA. We show the convergence properties
of the GMCA on static swarms, which are then generalized to
obtain an estimation error bound between agents’ estimates and
the actual GMs. Moreover, GMCA with KF is demonstrated
to be performed simultaneously with other motion planning
algorithms.

Distributed Kalman consensus filter (DKCF), which incorpo-
rates consensus procedures into the design of distributed KF, has
been developed for sensor fusion and tracking in multi-agent sys-
tems [22], [23]. A major feature of the DKCF is that the agents’
measurements are coupled. By contrast, in this letter, each agent
only has a noisy measurement of its own state and uses the KF to
estimate its own state, i.e., the measurements are decoupled. For
clarity, we present the comparison of problem settings in Table I.
The contributions of this letter are summarized as follows:
� We propose a novel distributed GMCA with KF for robot

swarms with a fixed graph structure, where the KF is used
to track the agents’ own states;

� We derive an upper bound of the estimation error between
the agents’ estimates and the actual GMs and show the
convergence properties of GMCA on static swarms;

� We propose distributed monitoring rules for SwarmSTL
formulas based on the GMCA so that the agents can
monitor whether the swarm satisfies SwarmSTL formulas.

II. PRELIMINARIES

A. Dynamic Model and Features of a Robot Swarm

The robot swarm works in a planar environment S ⊆ R
2. The

discrete-time kinematic model of an agent is defined as

s(k + 1) = s(k) + u(k), (1)

where s ∈ S is an agent’s state, k ∈ T is the time slot, T = Z≥0,
u ∈ U is the control input that directly controls the velocity,
and U = {u|‖u‖∞ ≤ umax}. Equivalently, we can write s as
s = [sx, sy]

T and u as u = [ux, uy]
T . Let N denote the size of

the swarm, and s ∈ S = SN denote the swarm state, i.e. s =

[(s1)
T
, . . ., (sN)

T
]T , where sj = [sjx, s

j
y]

T is Agent j’s state.
The dynamic model of a swarm becomes

s(k + 1) = s(k) + u(k), (2)

where u ∈ U = UN , u = [(u1)
T
, (u2)

T
, . . ., (uN)

T
]T , and

uj = [uj
x, u

j
y]

T is the control input of Agent j.
A swarm is commonly described by a collection of abstract

features such as the swarm’s centroid or variance, whereas the
agent-level features are less significant. Agents’ states can be
considered as samples from a certain distribution, which can be

recovered using an infinite number of moments [24]. Hence we
define generalized moments to represent swarm features.

Definition 1: Let P (sj) denote a polynomial function of ele-
ments in sj . We define generalized moment (GM) TP : S → R

to represent a swarm feature, which is expressed as [18]

TP (s) =
1

N

N
∑

j=1

P (sj). (3)

For instance, if P1(s
j) = sjx, the mean of the agents’ x

positions is defined as s̄x � TP1(s) = 1
N

∑N
j=1 s

j
x. Similarly,

for P2(s
j) = sjy , the mean of the y positions is s̄y � TP2(s) =

1
N

∑N
j=1 s

j
y. Due to space limitation, the readers are referred

to [18] for more details about the efficacy of GMs. This letter
focuses on q ∈ Z>0 (positive integer set) generalized moments,
which are denoted as η = T p(s) = [η1, . . . , ηq]

T .

B. Swarm Signal Temporal Logic (SwarmSTL)

The syntax of SwarmSTL is expressed as follows [18]:

φ := ⊤|π|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1U[k1,k2]φ2|φ1S[k1,k2]φ2, (4)

where ⊤ is Boolean True, π is an atomic proposition defined
as π := aTη < c, ¬,∧,∨ are Boolean operators representing
“negation,” “conjunction” and “disjunction,” respectively, U
reads as “Until,” S reads as “Since,” k1, k2 ∈ T , a ∈ R

q and
‖a‖ = 1, c ∈ R. Additionally, we define two useful temporal
operators from S: ♦· [k1,k2]φ := ⊤S[k1,k2]φ (reads “eventually φ
in the past”) and �[k1,k2]φ := ¬♦· [k1,k2]¬φ (reads “always φ in
the past”). We define “⇒” as an implication operator, which
means φ1 ⇒ φ2 := ¬φ1 ∨ φ2. Due to space limitation, we refer
the readers to [18] for more details on the expressiveness of
SwarmSTL. Note that SwarmSTL is a special case of STL where
the predicates are defined over generalized moments to express
specifications of collective behaviors of robot swarms.

The Boolean semantics of SwarmSTL can qualitatively mea-
sure the satisfaction of φ over η at k, and (η, k) |= φ means η
satisfies φ at k. The robustness degree of satisfaction of φ over η
at k is denoted as r(η, φ, k), which can quantitatively measure
the satisfaction of φ over η at k.

Definition 2: The robustness degree of satisfaction, r(η,
φ, k), can be calculated through the quantitative semantics [2]:

r(η, π, k) = c− aTη(k),

r(η,¬φ, k) = −r(η, φ, k),

r(η, φ1 ∧ φ2, k) = min(r(η, φ1, k), r(η, φ2, k)),

r(η, φ1 ∨ φ2, k) = max(r(η, φ1, k), r(η, φ2, k)),

r(η, φ1U[k1,k2]φ2, k) = sup
k′∈[k+k1,k+k2]

(min(r(η, φ2, k
′),

inf
k′′∈[k+k1,k′]

r(η, φ1, k
′′))),

r(η, φ1S[k1,k2]φ2, k) = sup
k′∈[k−k2,k−k1]

(min(r(η, φ2, k
′),

inf
k′′∈[k,′k−k1]

r(η, φ1, k
′′))). (5)

III. PROBLEM STATEMENT AND APPROACH

We consider an agent as a node and the communication links
between agents as edges. Hence a robot swarm can be viewed
as a graph G = {D,E}, where D denotes the set of nodes,

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

YAN AND JULIUS: DISTRIBUTED CONSENSUS-BASED ONLINE MONITORING OF ROBOT SWARMS WITH TEMPORAL LOGIC SPECIFICATIONS 9415

Fig. 1. The overall workflow for the distributed online monitoring algorithm.

and E denotes the set of edges. For instance, if Agent i can
communicate with Agent j, then (i, j) ∈ E.

Assumption 1: Assume the communication between agents is
asynchronous, i.e., at any k, only one agent is activate (initiates
communication with another agent) and the probability of each
agent being active is the same [19]. Also, each agent knows the
fixed graph structure.

If the agents wish to monitor the satisfaction of SwarmSTL
formulas, they need to first estimate the GMs and know the
distance between their estimates and the actual GMs. Each agent
can subsequently compute the satisfaction using the estimates,
the distance, and the quantitative semantics. Essentially, we need
to solve the following problems.

Problem 1: Design a distributed consensus algorithm for
estimating the GMs with a guaranteed estimation error bound.

Problem 2: Design a set of distributed monitoring rules for
SwarmSTL formulas based on the above algorithm such that
each agent can compute the satisfaction of SwarmSTL formulas
over its swarm features.

Eq. (3) indicates that a GM is the mean of P (sj). Hence
Problem 1 can be posed as a distributed average consensus
(DAC) problem. Previous works on DAC [19]–[21] will generate
a steady-state error with the presence of measurement noise.
Instead, we incorporate KF into the distributed GM consensus
process. Each agent can estimate its own state using the KF and
use its state estimate to perform the distributed GM consensus.
We call this algorithm the GM consensus algorithm (GMCA)
with KF. More details are presented in Section IV.

For Problem 2, we can use the estimation error bound from
GMCA and the robustness degree of an agent’s estimate with
respect to π to compute an agent’s confidence level of η satis-
fying π. By De Morgan’s law and formula structure induction,
we can derive the agent’s confidence levels of satisfying other
SwarmSTL formulas. More details are presented in Section V.
The overall workflow for the distributed consensus-based online
monitoring framework is shown in Fig. 1.

For clarity, we briefly review the KF. The measurement model
of an agent is defined as

y(k) = s(k) + v(k), (6)

where y(k) is the measurement, v(k) is the sensor noise. The
trace of a matrix is denoted as tr(·), and the m-th largest
eigenvalue of a matrix is denoted as λm(·).

Assumption 2: Assume v(k) follows a Gaussian distribution
with 0 mean and covariance matrix Kva

that is time-invariant,
and each agent knows that E(‖v‖2) is upper bounded by vmax.

The state estimate of a swarm is denoted as ŝ =
[(ŝ1)T , . . ., (ŝN)T]T , where ŝj = [ŝjx, ŝ

j
y]

T is the state estimate
of the Agent j. The swarm measurement model is thus

y(k) = s(k) + v(k), (7)

where y = [(y1)T , . . ., (yN)T]T ,v = [(v1)T , . . ., (vN)T]T , yj

and vj are the measurement and the noise of Agent j, respec-
tively. The covariance matrix of the state estimation error is
Σ = E[(ŝ− s)(ŝ− s)T], and the covariance matrix of v is
denoted as Kv = E(vvT), which is time-invariant. With As-
sumption 2, each agent knows that E(‖v‖2) ≤ Nvmax.

Remark 1: In practice, we can use noise variance estimation
techniques for KF such as [25] to obtain vmax without using
Assumption 2.

Assumption 3: Assume each agent knows that E(‖ŝj(0)−
sj(0)‖2) ≤ smax.

The update of ŝ(k) and Σ(k) is expressed as follows [26]:

K(k) = Σ(k − 1)(Σ(k − 1) +Kv)
−1,

ŝ(k) = ŝ(k − 1) + u(k − 1) +K(k)(y(k)

− ŝ(k − 1)− u(k − 1)),

Σ(k) = (IN −K(k)) Σ(k − 1), (8)

where ŝ(k)=E[s(k)|Y (k)], Y (k)=[(y(0))T , . . ., (y(k))T]T ,
and IN is the N ×N identity matrix.

IV. DISTRIBUTED GENERALIZED MOMENTS CONSENSUS WITH

KALMAN FILTER

This section presents how the agents use their state estimates
from KF to update their estimates of GMs. For simplicity, we
only discuss the consensus algorithm on one GM, and the same
analysis can be applied to any GM. First, we derive some
convergence properties and estimation error bounds, assuming
that the swarm is stationary. These results are then generalized
to obtain error bounds for our proposed GMCA.

A. Convergence Properties of GMCA on Static Swarms

In this section, we simplify Problem 1 by assuming that
u(k) ≡ 0, i.e.,

s(k + 1) = s(k). (9)

Hence the updates of ŝ(k) and Σ(k) are described as

ŝ(k) = ŝ(k − 1) +K(k) (y(k)− ŝ(k − 1)) ,

Σ(k) =
(

IN − Σ(k − 1)(Σ(k − 1) +Kv)
−1
)

Σ(k − 1).
(10)

In contrast to the special initialization ζj(0) = P (sj(0))
adopted in [19]–[21], each agent initializes its estimate of the
GM as ζj(0) = P (ŝj(0)). Asynchronous communication indi-
cates that at each following k, there are two agents communicat-
ing with each other. The probability of each agent being active at
k is 1

N
, where active means an agent can initiate communication

with another agent. Let W be an N ×N matrix associated with
the robot swarm, where entry Wij denotes the probability of
Agent i communicating with Agent j.

Before proceeding into the details of the GM consensus
process, we introduce some necessary notations. Let θj(k) =
P (sj(k)) denote the polynomial function P applied to sj(k)
and θ(k) = P (s(k)) = [θ1(k), . . ., θN (k)]T denote the poly-
nomial function P applied to s. Similarly, if we apply
P to the agents’ state estimates ŝj(k) and ŝ(k), we have

the following notations: θ̂j(k) = P (ŝj(k)), θ̂(k) = P (ŝ(k)) =

[θ̂1(k), . . ., θ̂N (k)]T . The swarm’s GM estimate at k is de-
noted as ζ(k) = [ζ1(k), . . ., ζN (k)]T , from which we know

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

9416 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

TABLE II
THE VARIABLE NOTATIONS USED IN THE GMCA

ζ(0) = θ̂(0). The update of θ̂(k) is denoted as ∆θ̂(k) =

θ̂(k)− θ̂(k − 1). The mean of ζ(0), ∆θ̂(k) and θ(k) are de-

noted as ζ̄(0) = 1
T

N
ζ(0),∆

¯̂
θ(k) = 1

T

N
∆θ̂(k), η̄(k) = θ̄(k) =

1
T

N
θ(k), respectively. Table II shows a complete list of notations

used in the GM consensus process.
The update scheme is that at k + 1, if Agent i communicates

with Agent j, then they update their estimates with

ζi(k + 1) =
1

2

(

ζi(k) + ζj(k)
)

+ θ̂i(k + 1)− θ̂i(k),

ζj(k + 1) =
1

2

(

ζi(k) + ζj(k)
)

+ θ̂j(k + 1)− θ̂j(k),(11)

and the other agents update their estimates with

ζp(k + 1) = ζp(k) + θ̂p(k + 1)− θ̂p(k), (p �= i, j). (12)

Suppose ej = [0, . . ., 1, . . ., 0]T ∈ R
N with the j-th entry being

1 and all the other entries being 0, we can reformulate (11) and
(12) in the vector form as

ζ(k + 1) = V (k) · ζ(k) + ∆θ̂(k), (13)

where ζ(0) is initialized as ζ(0) = [ζ1(0), . . ., ζN (0)], and
ζj(0) = P (ŝj(0)), and V (k) has probability 1

N
Wij being

Vij = IN − (ei − ej)(ei − ej)T

2
, (14)

which is a symmetric doubly stochastic matrix. We denote the
expectation of V (k) as V , and the estimation error at k as
E(‖ζ(k)− η̄(k)1‖∞), which can be decomposed as

E(‖ζ(k)− η̄(k)1‖∞) = E(‖ζ(k)− ¯̂
θ(k)1 +

¯̂
θ(k)1−

η̄(k)1‖∞) ≤ E(‖ζ(k)− ¯̂
θ(k)1‖∞) + E(‖ ¯̂θ(k)1− η̄(k)1‖∞),

(15)

where
¯̂
θ(k) = 1

T

N
θ̂(k), and 1 ∈ R

N denotes the vector of all
ones. Hence we can prove the convergence of E(‖ζ(k)−
η̄(k)1‖∞) via proving the convergence ofE(‖ζ(k)− ¯̂

θ(k)1‖∞)

and E(‖ ¯̂θ(k)1− η̄(k)1‖∞). Let’s first analyze E(‖ ¯̂θ(k)1−
η̄(k)1‖∞). Using the fact that P (sj) is locally Lipschitz on S
[27], it can be shown that TP (s) is locally Lipschitz on S. This
implies there is a constant L1 ≥ 0 that

E(‖ ¯̂θ(k)1− η̄(k)1‖∞) = E(‖TP (ŝ(k))− TP (s(k)) ‖∞),

≤ L1E(‖ŝ(k)− s(k)‖∞), (16)

where E(‖ŝ(k)− s(k)‖∞) ≤ E(‖ŝ(k)− s(k)‖) =
√

tr(Σ(k)). Hence we can obtain an upper bound of

E(‖ ¯̂θ(k)1− η̄(k)1‖∞) by computing an upper bound
of tr(Σ(k)). Σ(k) can be reformulated as Σ(k) =

Kv(Σ(k − 1) +Kv)
−1Σ(k − 1), which leads to the following

lemma.
Lemma 1: Σ(k) follows the expression that

Σ(k) = Kv[Kv + kΣ(0)]−1Σ(0), (17)

and the state estimation error satisfies

E(‖ŝ(k)− s(k)‖∞) ≤
√

N2smaxvmax

(vmax + ksmax)
, (18)

which converges to 0 asymptotically.
Proof 1: We can prove Lemma 1 by induction. At

k = 1, we have Σ(1) = Kv(Kv +Σ(0))−1Σ(0) = ((Kv +
Σ(0))K−1

v)−1Σ(0) = (I +Σ(0)K−1
v)−1Σ(0). Moreover, if

Σ(k) = Kv[Kv + kΣ(0)]−1Σ(0) = (I + kΣ(0)K−1
v)−1Σ(0)

holds, we need to show Σ(k + 1) = Kv[Kv + (k +
1)Σ(0)]−1Σ(0) holds. This can be proved by

Σ(k + 1)

= Kv(Σ(k) +Kv)
−1(I + kΣ(0)K−1

v)−1Σ(0),

= Kv[(I + kΣ(0)K−1
v)Σ(k) + (Kv + kΣ(0))]−1Σ(0),

= Kv[(Kv + kΣ(0))K−1
v Σ(k) + (Kv + kΣ(0))]−1Σ(0),

= Kv[(Kv + kΣ(0))((Kv + kΣ(0))−1Σ(0) + I)]−1Σ(0),

= Kv [Kv + (k + 1)Σ(0)]−1 Σ(0),

=
[

Σ(0)−1 + (k + 1)K−1
v

]−1
. (19)

Therefore, Σ(k) = Kv[Kv + kΣ(0)]−1Σ(0), and we have

λ1(Σ(k)) =
1

λN (Σ(0)−1 + k ×K−1
v)

≤ 1

1/λ1(Σ(0)) + k/λ1(Kv)
,

≤ 1

1/(Nsmax) + k/(Nvmax)
, (20)

which implies

tr(Σ(k)) ≤ Nλ1(Σ(k)) ≤
N2smaxvmax

vmax + ksmax
. (21)

The above results signify that E(‖ŝ(k)− s(k)‖∞) ≤
√

N2smaxvmax/(vmax + ksmax) and E(‖ŝ(k)− s(k)‖∞)
converges to 0 when k → ∞.

Corollary 1: A direct result of Lemma 1 and (16) is that

E(‖ ¯̂θ(k)1− η̄(k)1‖∞) ≤ L1

√

N2smaxvmax

(vmax + ksmax)
, (22)

and E(‖ ¯̂θ(k)1− η̄(k)1‖∞) converges to 0 asymptotically.
For brevity, let δmax(k) = (N2smaxvmax)/(vmax + ksmax).

The next task is to prove E(‖ζ(k)− ¯̂
θ(k)1‖∞) converges to 0.

To prove this, we need the following proposition:
Proposition 1 [19]: The initial estimation error sat-

isfies E(‖ζ(0)− ζ̄(0)1‖2) ≤ E(‖ζ(0)‖2) with ζ(0) de-
fined in (13). Also, the one-step estimation error of
ζ̄(0) satisfies E(‖V (0)ζ(0)− ζ̄(0)1‖2) = E(‖V (0)(ζ(0)−
ζ̄(0)1)‖2) ≤ λ

2
2(V)‖ζ(0)‖2, and the k-step estimation error of

ζ̄(0) satisfies

E(‖V (k − 1). . .V (0)ζ(0)− ζ̄(0)1‖2) ≤ λ
2˜k
2 (V)‖ζ(0)‖2.

(23)
Hereafter, we assume each agent knows that the initial es-

timation error is bounded, i.e. E(‖ζ(0)− ζ̄(0)1‖∞) ≤ ζmax.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

YAN AND JULIUS: DISTRIBUTED CONSENSUS-BASED ONLINE MONITORING OF ROBOT SWARMS WITH TEMPORAL LOGIC SPECIFICATIONS 9417

Using Cauchy-Schwarz inequality and the fact that E(‖ζ(k)−
¯̂
θ(k)1‖∞) ≤ E(‖ζ(k)− ¯̂

θ(k)1‖), we have

E(‖ζ(k)− ¯̂
θ(k)1‖∞) ≤ E(‖V (k − 1). . .V (0)ζ(0)+

V (k − 1). . .V (1)∆θ̂(1) + · · ·+∆θ̂(k)− [
¯̂
θ(k)− ¯̂

θ(k − 1)

+
¯̂
θ(k − 1)− ¯̂

θ(k − 2). . .+
¯̂
θ(1)− ζ̄(0) + ζ̄(0)]1‖),

= E(‖V (k−1). . .V (0)ζ(0)−ζ̄(0)1+V (k−1). . .V (1)∆θ̂(1)

−∆
¯̂
θ(1)1+ · · ·+∆θ̂(k)−∆

¯̂
θ(k)1‖),

≤ E(‖V (k − 1). . .V (0)ζ(0)− ζ̄(0)1‖) + E(‖V (k − 1). . .

V (1)∆θ̂(1)−∆
¯̂
θ(1)1‖) + · · ·+ E(‖∆θ̂(k)−∆

¯̂
θ(k)1‖).

(24)

In order to prove E(‖ζ(k)− ¯̂
θ(k)1‖∞) converges to 0, we need

to compute an upper bound of the one-step GM estimation error

E(‖V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1‖).

Lemma 2: If the agents update their estimates using (13), then
the one-step GM estimation error satisfies

E(‖V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1‖)

≤ λ2(V)L2

√

δmax(k − 1) + δmax(k − 2), L2 ≥ 0. (25)

Proof 2: Let ek−1 = V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1.

Using Jensen’s inequality, we have the following result:

E(‖ek−1‖) ≤
√

E(‖ek−1‖2),

=

√

√

√

√

∞
∑

δv=−∞

N
∑

i,j=1

δTv VT
ijVijδv

1

N
Wij ·

√

p[(∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1) = δv],

=

√

√

√

√

∞
∑

δv=−∞
δTv V

TV δvp[(∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1) = δv].

(26)

If we apply Proposition 1 to δTv V
TV δv , we can write (26) as

E(‖V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1‖)

≤ λ2(V)

√

E(‖∆θ̂(k − 1)‖2), (27)

where p[(∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1) = δv] denotes the prob-

ability of ∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1 = δv. As P(s) is locally

Lipschitz on S, ∃L2 ≥ 0 such that
√

E(‖∆θ̂(k)‖2) =
√

E(‖P(ŝ(k))−P(ŝ(k − 1))‖2),

≤ L2

√

E(‖ŝ(k)− ŝ(k − 1)‖2). (28)

Corollary 2: With Lemma 2 and Proposition 1, (24) becomes

E(‖ζ(k)− ¯̂
θ(k)1‖∞) ≤ λ

k
2(V)

√
Nζmax + λ

k−1
2 (V)L2

√

δmax(1) + δmax(0) + · · ·+ L2

√

δmax(k) + δmax(k − 1),

≤λ
k
2(V)

√
Nζmax+L2

k
∑

kt=1

λ
k−kt

2 (V)
√

δmax(kt)+δmax(kt−1).

Also, E(‖ζ(k)− ¯̂
θ(k)1‖∞) converges to 0 asymptotically.

This is because when k → ∞, δmax(k) and δmax(k − 1)
converge to 0. Also, V is a symmetric doubly stochastic matrix,
thus λ2(V) < 1 and λ

k
2(V) → 0 when k → ∞.

Theorem 3: If a robot swarm follows the dynamics in (9)
and adopts (13) to update the GM estimates, then the agents’
estimates of the GMs converge to the actual GMs asymptotically.

Proof 3: Straightforward from Corollary 1 and Corollary 2.
The estimation error bound for GMCA on a static swarm is

E(‖ζ(k)− η̄(k)1‖∞) ≤ λ
k
2(V)

√
Nζmax+

L2

k
∑

kt=1

λ
k−kt

2 (V)
√

δmax(kt)+δmax(kt − 1) + L1

√

δmax(k).

(29)

B. Estimation Error Bound for GMCA on Dynamic Swarms

This section generalizes the estimation error bound for static
swarms to obtain the estimation error bound for dynamically
moving swarms. The swarm follows the dynamic model in (2),
and the updates of ŝ(k) and Σ(k) are expressed as (8). Our
goal is to obtain an upper bound of E(‖ζ(k)− η̄(k)1‖∞) with
u(k) �= 0. With (8), we could write ŝ(k) as

ŝ(k) = ŝ(k − 1) + u(k − 1)

+K(k)(s(k − 1)− ŝ(k − 1) + v(k)),

which leads to the following lemma.
Lemma 4: For GMCA on dynamic swarms, the one-step

estimation error satisfies

E(‖V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1‖) ≤ λ2(V)L2

√

δmax(k − 1) + δmax(k − 2) + 2Nu2
max. (30)

Proof 4: For GMCA on dynamic swarms, (27) and (28) still

hold. The upper bound for
√

E(‖ŝ(k)− ŝ(k − 1)‖2) is
√

E(‖ŝ(k)− s(k) + s(k − 1) + u(k − 1)− ŝ(k − 1)‖2)

≤
√

tr(Σ(k)) + tr(Σ(k − 1)) + ‖u(k − 1)‖2,

≤
√

δmax(k) + δmax(k − 1) + 2Nu2
max, (31)

hence we have E(‖V (k − 1)∆θ̂(k − 1)−∆
¯̂
θ(k − 1)1‖) ≤

λ2(V)L2

√

δmax(k − 1) + δmax(k − 2) + 2Nu2
max.

Corollary 3: Using Lemma 4, we could derive the dynamic
estimation error bound with KF (DBKF) as below:

E(‖ζ(k)− η̄(k)1‖∞) ≤ λ
k
2(V)

√
Nζmax + L2

k
∑

kt=1

λ
k−kt

2 (V)

√

δmax(kt) + δmax(kt − 1) + 2Nu2
max + L1

√

δmax(k).

For brevity, we denote

ρ(k) = λ
k
2(V)

√
Nζmax + L2

k
∑

kt=1

λ
k−kt

2 (V)

√

δmax(kt) + δmax(kt − 1) + 2Nu2
max + L1

√

δmax(k),
(32)

which implies ρ(k) depends on the maximal allowed velocity of
the agents but is independent of the agents’ exact motion. The
above results imply that the GMCA with KF can be run in paral-
lel with other motion planning algorithms. For q GMs denoted by

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

9418 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Algorithm 1: Generalized Moments Consensus Algorithm

with Kalman Filter (GMCAKF).

1: for k = 1,...,K do
2: Suppose Agent i is active. Agent i selects a neighbor

j using the probability distribution defined by W
3: Agents i and j update the estimates of GMs with (11)
4: Other agents update their estimates of GMs with (12)
5: Each agent updates the DBKF with (32)
6: end for

η, we let ζj = [ζj1 , . . ., ζ
j
q]

T denote Agent j’s estimate of η, and

ρi(1 ≤ i ≤ q) denote the estimation error bound of ηi, then the
estimation error bound ofη is denoted asρ = [ρ1, . . ., ρq]

T . The
description of GMCA with KF is presented in Algorithm 1. In
Section V, we will explain how to compute an agent’s confidence
level of swarm features satisfying SwarmSTL formulas using the
DBKF.

Remark 2: The GMCA with KF still works for robot swarms
with dynamically changing graph structures if a less-than-one
upper bound of λ2(V) is known.

C. Optimizing the Convergence Rate

From (29) we know the convergence rate of the estimation
error is controlled by λ2(V). The fastest convergence rate can
be achieved by solving the following Semidefinite Programming
(SDP) problem [19]:

minimize ǫ,

subject to Wij ≥ 0, Wij = 0 if(i, j) �∈ E,

V =
1

N

N
∑

i,j=1

WijVij ,
∑

j

Wij = 1, ∀i,

V − 1

N
11T � ǫIN , ǫ ∈ R, (33)

where V − 1
N
11T�ǫIN means (ǫIN − V + 1

N
11T) is positive

semidefinite. With Assumption 1, the agents can know the
graph structure information contained inW and optimize λ2(V)
independently. Here we use the SDP mode in the cvx1 toolbox
to solve (33).

V. DISTRIBUTED MONITORING WITH GMCA

In this work, we consider the problem of distributed online
monitoring as the agents move dynamically in the environment.
The goal is to compute the confidence level of satisfying
φ by using the past trajectories until the current time slot
kc. For a future time slot k > kc, ρ(k) can be computed
by (32). At kc, Agent j knows ζj(kc) and ρ(kc), hence we
have η(kc) ∈ [ζj(kc)− ρ(kc), ζ

j(kc) + ρ(kc)]. The Lipschitz
continuity of T p(s) implies that η(k) ∈ [η(kc)− L1(k −
kc)umax,η(kc) + L1(k − kc)umax]. As ρ(k) is known
from (32), we have ζj(k) ∈ [η(k)− ρ(k),η(k) + ρ(k)]. By
combining the above ranges for η(kc),η(k), and ζj(k),
we have ζj(k) ∈ [ζj(kc)− ρ(kc)− L1(k − kc)umax −
ρ(k), ζj(kc) + ρ(kc) + L1(k − kc)umax + ρ(k)]. Corre-
spondingly, we can compute the range of robustness of

1[Online]. Available: http://cvxr.com/cvx/doc/sdp.html

ζj(k) with respect to π as r(ζj , π, k) = M j(k), where
M j(k) = {c− aT ζj(k)|ζj(k) ∈ [ζj(kc)− ρ(kc)− L1(k −
kc)umax − ρ(k), ζj(kc) + ρ(kc)+ L1(k − kc)umax + ρ(k)]}.
The robustness of ζj for π at k, depending on whether k ≤ kc,
is expressed as

mj(k) =

{

r(ζj , π, k) if k ≤ kc,

M j(k), otherwise.
(34)

With (34), Agent j’s confidence level of the swarm features
satisfying SwarmSTL formulas, i.e., the distributed monitoring
rules, are presented in Lemma 5.

Lemma 5: Agent j’s confidence level of η satisfying φ at k
is expressed as follows:

Prj((η, k) |= π)≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1−
max
1≤i≤q

{ρi(k)}
mj(k) , if mj(k)>ρi(k)

∀i, and k ≤ kc,

1−
max
1≤i≤q

{ρi(k)}
min

mj(k)∈Mj(k)
mj(k) , if min

mj(k)∈Mj(k)

mj(k)>ρi(k) ∀i, and k > kc,

0, otherwise,

P rj ((η, k) |= φ1 ∧ φ2) ≥ Prj((η, k) |= φ1)

+ Prj((η, k) |= φ2)− 1,

P rj ((η, k) |= φ1 ∨ φ2) ≥ 1−min{1− Prj((η, k) |= φ1),

1− Prj((η, k) |= φ2)},

P rj
(

(η, k) |= φ1S[k1,k2]φ2

)

≥ 1− min
k′∈[k−k2,k−k1]

{1−

Prj((η, k
′) |= φ2) +

k−k1
∑

k′′=k′

1− Prj((η, k
′′) |= φ1)},

P rj
(

(η, k) |= φ1U[k1,k2]φ2

)

≥ 1− min
k′∈[k+k1,k+k2]

{1−

Prj((η, k
′) |= φ2) +

k′
∑

k′′=k+k1

1− Prj((η, k
′′) |= φ1)}, (35)

where Prj((η, k) |= φ) denotes Agent j’s confidence level of
η satisfying φ at k.

Proof 5: Let θi=[θ1i , . . ., θ
N
i]T(1≤ i ≤ q) and ηi=

1
T

N
θi,

where θji = Pi(s
j), and ζi = [ζ1i , . . ., ζ

N
i]T denote the agents’

estimates of ηi. Using Markov’s inequality, we know the estima-
tion error of ηi satisfies Prj(‖ζi(k)− ηi(k)1‖∞ ≤ mj(k)) ≥
1− E(‖ζi(k)− ηi(k)1‖∞)/mj(k) ≥ 1− ρi(k)/m

j(k). For q
GMs, we take the maximum of ρi as the estimation error
bound for η. Hence for an atomic proposition π, Agent j’s
confidence level of η satisfying π at k ≤ kc is Prj(η, k) |=
π) ≥ 1−max1≤i≤q{ρi(k)}/mj(k) if mj(k) > ρi(k), ∀i. Oth-
erwise, it is 0. The confidence level of π over η at k > kc can
be proved analogously. With the confidence level of π, Agent
j’s confidence levels of η satisfying other operators at k are
straightforward to show using formula structure induction.

Remark 3: There is a trade-off between the motion planning
and the GMCA. Increasing the maximal allowed velocity umax

would increase ρ(k) and the time to reach the desired confidence
level, which can be observed in (32) and (35).

Remark 4: There are two potential sources of conservatism
in the agents’ estimates: the estimation error bound in (32) and

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

YAN AND JULIUS: DISTRIBUTED CONSENSUS-BASED ONLINE MONITORING OF ROBOT SWARMS WITH TEMPORAL LOGIC SPECIFICATIONS 9419

Fig. 2. A snapshot of simulation for the transportation task.

the confidence level of satisfaction in (35), which is based on
the Markov’s inequality.

VI. CASE STUDY

We now use a swarm transporting supplies example to demon-
strate how the distributed monitoring algorithm works. Suppose
a virus outbreak happens in four regions A,B,C, F , the swarm
needs to transport medical supplies from the warehouse Wh

to these regions back and forth. Specifically, the swarm first
transports the supplies from Wh to A. Next, it returns to Wh

to take another supply and transports it to B. It subsequently
follows the same idea to transport the supplies to C and F .
The swarm follows a trajectory in the sequence of Wh → A →
Wh → B → Wh → C → Wh → F → Wh. A snapshot of the
simulation is shown in Fig. 2. In the simulation, we set N = 10,
umax = 0.01, and adopt a flocking model [28] and a potential
field approach to accomplish the motion planning. The motion
planning of the swarm is based on the following rules:

1) cohesion: uj
1(k)=uj

1(k − 1) + α1

∑N
i=1,i �=j(s

i(k)−
sj(k));

2) separation: uj
2(k) = uj

2(k − 1)− α2

∑N
i=1,i �=j

si(k)−sj(k)
‖si(k)−sj(k)‖ ;

3) alignment: uj
3(k) = uj

3(k − 1) + α3

N−1

∑

i=1,i �=j u
i(k −

1);

4) attraction: uj
4(k) = α4(G − sj(k));

where α1 to α4 are positive tuning parameters, uj
t (k) =

0, ∀k = 1, . . ., 4 when k < 0, G ∈ S is the goal position. Ag-
gregating the above rules gives ûj(k) = [ûj

x(k), û
j
y(k)]

T =
∑4

t=1 u
j
t (k). Agent j’s velocity is then calculated as uj(k) =

ûj(k) ∗ umax/max{ûj
x(k), û

j
y(k)}. A video of the simulation

process is uploaded to https://tinyurl.com/swarmstlmonitor.
As the robot swarm needs to transport the supplies from

Wh to the four regions back and forth, it cannot stay in
Wh for too long. Hence we propose a SwarmSTL formula
φR := ♦· [1000,2000]φWh

⇒ ♦· [0,800]¬φWh
, which specifies the

robot swarm to stay in Wh for at most 1000 time slots, where
φWh

:= s̄x ≥ −50 ∧ s̄x ≤ 50 ∧ s̄y ≥ −50 ∧ s̄y ≤ 50. This in-
terpretation can be obtained using the rule that φ1 ⇒ φ2 :=
¬φ1 ∨ φ2. φR reads as “If ∃k′ ∈ [1000, 2000] such that φWh

is satisfied at k − k′, then ∃k′′ ∈ [0, 800] such that ¬φWh
is

satisfied at (k − k′′)”. The agents need to perform the consen-
sus on the centroid s̄ = [s̄x, s̄y]

T . At k = 0, each agent sets

ζj(0) = [ζjx(0), ζ
j
y(0)]

T = [ŝjx(0), ŝ
j
y(0)]

T , and computes the

optimal λ2(V) by solving the SDP problem in (33).
The polynomial function P applied to the agents’ state es-

timates is denoted as ŝx = [ŝ1x, . . ., ŝ
N
x]T , ŝy = [ŝ1y, . . ., ŝ

N
y]T ,

and the swarm’s estimate of the centroid is denoted as ζx =
[ζ1x, . . ., ζ

N
x]T , ζy = [ζ1y , . . ., ζ

N
y]T . At k + 1, the agents use the

Fig. 3. Progression of ρmax and es of the algorithms with and without KF.

Fig. 4. Progression of agents’ confidence levels of satisfaction of φR, and the
actual satisfaction ofφWh

, φR on s̄. The solid green line is the actual satisfaction
of φR, and the dashed lines represent agents’ confidence levels of satisfaction
of φR.

KF update in (8) to update ŝx and ŝy , and then update their
estimates of the centroid using

ζx(y)(k + 1)=V (k)ζx(y)(k) + ŝx(y)(k + 1)− ŝx(y)(k).
(36)

Simultaneously, the agents compute the estimation error bound
ρmax = max{ρx, ρy} and the confidence level of s̄ satisfying
φR using the monitoring rules in (35), where ρx, ρy are the
estimation error bounds of s̄x, s̄y , respectively. The purpose
of using the flocking model and the potential field method is
to show the agents can perform the distributed monitoring and
the flocking and motion planning tasks simultaneously because
ρmax is independent of the agents’ exact motion.

To show the efficacy of the KF in the GM consensus process,
we also perform a centroid consensus algorithm without KF,
i.e. using y to update ζx and ζy . The actual mean estimation

error is defined as es =
1
N

∑N
j=1 ‖ζj − s̄‖. Fig. 3 shows the

progression of ρmax and es of the distributed centroid consensus
algorithm with and without KF, from which we can observe
es of the consensus algorithm with KF is smaller than es of
the consensus algorithm without KF, and ρmax decreases as k
increases. The satisfaction of s̄ with respect to φWh

is shown in
Fig. 4 (top). Along the y axis, 1 represents that s̄ satisfies φWh

,
and 0 represents that s̄ violates φWh

. To be more informative,
we only show the satisfaction for k ∈ [1000, 25000]. Using the
satisfaction of φWh

over s̄, we can compute the satisfaction of
φR over s̄. The agents’ confidence levels of s̄ satisfying φR and
the actual satisfaction of s̄ over φR are shown in Fig. 4 (bottom),
where the dashed lines represent the agents’ confidence levels
that may have overlap. When k ∈ [8000, 17120], the swarm is
outside of Wh, so s̄ satisfies φR. The agents’ confidence levels
of satisfaction are also higher than 95%. In the simulation, the
swarm actually stays in Wh longer than 1000 time slots. Hence

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

9420 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 5. Effect of network topology and swarm size on the estimation error
bound.

we can observe that s̄ satisfies φWh
for k ∈ [17120, 24000] and

violates φR for k ∈ [18120, 25000], where the agents’ confi-
dence levels of satisfaction are also 0. These results show that
the agents can monitor the satisfaction of swarm features with
respect to SwarmSTL formulas using the GMCA with KF and
the distributed monitoring rules.

Furthermore, we investigate the influence of the network
topology and the swarm size on the estimation error bound.
The estimation error bounds for a fully connected network and a
two-neighbors network where each agent can communicate with
its two nearest neighbors are shown in Fig. 5(a). Apparently, as
an agent has more neighbors to share information, the estimation
error bound will decrease faster. The estimation error bounds for
a swarm with 10, 20, or 50 agents are shown in Fig. 5(b), in which
we observe that at the same k, increasing the swarm size would
increase the estimation error bound, which matches the pattern
in (32).

VII. CONCLUSION

This letter investigates the challenge of distributed monitoring
of satisfaction of SwarmSTL formulas over swarm features. A
GMCA with KF is developed to allow each agent to estimate the
GMs. The convergence properties of GMCA on static swarms
are presented and an upper bound of the estimation error between
agents’ estimates and the actual GMs is derived. Additionally,
the GMCA with KF can be performed in conjunction with
other motion planning and control algorithms. The monitoring
rules for SwarmSTL formulas are also proposed based on the
estimation error bounds. The outcome of this work is that the
agents can monitor whether the swarm satisfies a SwarmSTL
formula in a distributed manner. The proposed method is applied
to a swarm transporting supplies example, where the efficacy of
the KF is also shown.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics:
A review from the swarm engineering perspective,” Swarm Intell., vol. 7,
no. 1, pp. 1–41, 2013.

[2] A. Donze and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2010,
pp. 92–106.

[3] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric tempo-
ral logic specifications,” in Proc. IEEE 47th Conf. Decis. Control, 2008,
pp. 3953–3958.

[4] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path planning
with temporal logic specifications,” Int. J. Robot. Res., vol. 39, no. 8,
pp. 1002–1028, 2020.

[5] L. Lindemann, G. J. Pappas, and D. V. Dimarogonas, “Reactive and risk-
aware control for signal temporal logic,” in IEEE Trans. Autom. Control,
early access, Oct. 15, 2021, doi: 10.1109/TAC.2021.3120681.

[6] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with count-
ing temporal logics,” IEEE Trans. Robot., vol. 36, no. 4, pp. 1189–1206,
Aug. 2020.

[7] Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int. J.

Robot. Res., vol. 39, no. 7, pp. 812–836, 2020.
[8] T. Zheng, Z. Liu, and H. Lin, “Complex pattern generation for swarm

robotic systems using spatial-temporal logic and density feedback control,”
in Proc. IEEE Amer. Control Conf., 2020, pp. 5301–5306.

[9] C. Dixon, A. F. Winfield, M. Fisher, and C. Zeng, “Towards temporal
verification of swarm robotic systems,” Robot. Auton. Syst., vol. 60, no. 11,
pp. 1429–1441, 2012.

[10] A. F. Winfield, J. Sa, M.-C. Fernandez-Gago, C. Dixon, and M. Fisher, “On
formal specification of emergent behaviours in swarm robotic systems,”
Int. J. Adv. Robotic Syst., vol. 2, no. 4, 2005, Art. no. 39.

[11] A. Donze, T. Ferrere, and O. Maler, “Efficient robust monitoring for STL,”
in Proc. Int. Conf. Comput. Aided Verification, 2013, pp. 264–279.

[12] J. V. Deshmukh, A. Donze, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia,
“Robust online monitoring of signal temporal logic,” Formal Methods Syst.

Des., vol. 51, no. 1, pp. 5–30, 2017.
[13] P. Thati and G. Roşu, “Monitoring algorithms for metric temporal

logic specifications,” Electron. Notes Theor. Comput. Sci., vol. 113,
pp. 145–162, 2005.

[14] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifica-
tions for continuous-time signals,” Theor. Comput. Sci., vol. 410, no. 42,
pp. 4262–4291, 2009.

[15] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems. Berlin, Germany: Springer, 2004,
pp. 152–166.

[16] S. Moarref and H. Kress-Gazit, “Automated synthesis of decentralized con-
trollers for robot swarms from high-level temporal logic specifications,”
Auton. Robots, vol. 44, no. 3, pp. 585–600, 2020.

[17] R. Yan and A. Julius, “A decentralized B&B algorithm for motion planning
of robot swarms with temporal logic specifications,” IEEE Robot. Automat.

Lett., vol. 6, no. 4, pp. 7389–7396, Oct. 2021.
[18] R. Yan, Z. Xu, and A. Julius, “Swarm signal temporal logic inference

for swarm behavior analysis,” IEEE Robot. Automat. Lett., vol. 4, no. 3,
pp. 3021–3028, Jul. 2019.

[19] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[20] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus on
mobile networks,” in Proc. IFAC World Congr., 2005, pp. 1–6.

[21] M. Zhu and S. Martínez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[22] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proc. IEEE 46th Conf. Decis. Control, 2007, pp. 5492–5498.

[23] X. He, C. Hu, Y. Hong, L. Shi, and H.-T. Fang, “Distributed Kalman
filters with state equality constraints: Time-based and event-triggered
communications,” IEEE Trans. Autom. Control, vol. 65, no. 1, pp. 28–43,
Jan. 2020.

[24] V. John, I. Angelov, A. Oncul, and D. Thevenin, “Techniques for the
reconstruction of a distribution from a finite number of its moments,”
Chem. Eng. Sci., vol. 62, no. 11, pp. 2890–2904, 2007.

[25] S. Park, M.-S. Gil, H. Im, and Y.-S. Moon, “Measurement noise recom-
mendation for efficient Kalman filtering over a large amount of sensor
data,” Sensors, vol. 19, no. 5, 2019, Art. no. 1168.

[26] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Eng., vol. 82, pp. 35–45, 1960.

[27] H. K. Khalil, Nonlinear Systems, vol. 3. Englewood Cliffs, NJ, USA:
Prentice Hall, 2002.

[28] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” Comput. Graph., vol. 21, no. 4, pp. 25–34, 1987.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 28,2023 at 20:56:19 UTC from IEEE Xplore. Restrictions apply.

