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Distributed Consensus-Based Online Monitoring of
Robot Swarms With Temporal Logic Specifications

Ruixuan Yan

Abstract—In this letter, we develop a distributed consensus-
based online monitoring framework for a robot swarm with a
fixed graph structure. Each agent can monitor whether the swarm
satisfies specifications given in the form of Swarm Signal Tempo-
ral Logic (SwarmSTL) formulas. SwarmSTL formulas describe
temporal properties of swarm-level features represented by gener-
alized moments (GMs), e.g., centroid and variance. To deal with
measurement noise, we propose a generalized moment consensus
algorithm (GMCA) with Kalman filter (KF), allowing each agent
to estimate the GMs. Besides, we prove the convergence properties
of the GMCA and derive an upper bound for the error between
an agent’s estimate of the GMs and the actual GMs. This upper
bound is derived to be dependent on the maximal allowed velocity
but independent of the agents’ exact motion. A set of distributed
monitoring rules for SwarmSTL formulas are proposed based on
the estimation error bound. As a result, the agents can monitor the
satisfaction of SwarmSTL formulas over swarm features during
execution. The distributed monitoring framework is applied to a
supply transportation example, where the efficacy of KF in the
GMCA is also shown.

Index Terms—Agent-based systems, planning, scheduling and
coordination, sensor networks.

1. INTRODUCTION

ROBOT swarm is a multi-agent system composed of a

large number of robots that can accomplish complicated
tasks through cooperation and coordination [1]. With the in-
crease of complexity and functionality, ensuring the safety and
correctness of robotic systems is a challenging task. Nowadays,
real-time temporal logic formulas such as Metric Temporal
Logic (MTL) and Signal Temporal Logic (STL) are widely used
to express such safety and correctness properties [2], [3]. The
formal controller synthesis part of the safety/correctness issue
aims to construct control laws that result in executions satisfying
temporal logic formulas [4]-[8]. The formal verification part
of the safety/correctness issue aims to check whether all the
possible executions satisfy specified temporal logic formulas [9],
[10]. For instance, the formal verification of a robot swarm can
be accomplished via formal verification of individual agents’ ex-
ecutions [10]. Recently, temporal logic monitoring approaches,
which use a finite number of observation traces, have been
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proposed to assess whether the system fulfills formal require-
ments [11]-[13]. Offline monitoring and online monitoring are
two temporal logic monitoring techniques. Offline monitoring is
performed when complete execution traces have been gathered.
Studies have revealed the relationship between the efficiency of
offline monitoring and the length of the execution traces and the
size of the formula ¢, from both theoretical and experimental
perspectives [14], [15]. However, there are some situations
where the monitoring task needs to be performed during the
execution. For instance, consider the specification that “If the
temperature is higher than a threshold within the last minute,
the robot swarm must proceed to the fire source, spread over
the fire zone, and extinguish the fire within 10 minutes.” for a
robot swarm performing a fire monitoring task in a warehouse.
In many scenarios, the robot swarm needs to adapt the plan based
on its perception of the environment or itself. Online monitoring
is the appropriate approach for such applications.

Naturally, when we describe a swarm, we usually use abstract
features of the swarm, such as the centroid or the variance of the
swarm, whereas the behaviors of the individual agents are less
important. The objective of this letter is to design a distributed
online monitoring algorithm for abstract features, which allows
individual agents to monitor the satisfaction of abstract features
with respect to swarm-level specifications. Distributed monitor-
ing of abstract features can lead to a significant improvement
in the computational efficiency and robustness compared with
centralized monitoring. Moreover, distributed monitoring can
assist distributed control of robot swarms with temporal logic
specifications, especially for reactive missions. For example, if
a robot swarm performs a task of supplies transportation, and it
needs to drop the supplies only if its centroid reaches a target
region within 3 s. With distributed monitoring, the agents can
determine whether to drop the supplies by monitoring if the
centroid of the swarm reaches the target region within 3 s.

Extensive studies have developed centralized or decentralized
control algorithms for multi-agent systems subject to temporal
logic specifications [7], [16], [17], with the goal of synthesizing
controllers that can realize executions satisfying temporal logic
formulas. By contrast, the goal of this letter is to monitor if
the swarm executions satisfy a high-level specification in a
distributed manner. In [18], the authors proposed generalized
moments (GMs) to represent swarm features and SwarmSTL to
describe swarm-level behaviors. Following this idea, we develop
a distributed monitoring algorithm for robot swarms with a fixed
graph structure, with which the agents can monitor whether
the swarm features satisfy SwarmSTL specifications. We pro-
pose a generalized moment consensus algorithm (GMCA) with
Kalman filter (KF) so that the agents can estimate the GMs.
Distributed consensus problems have been addressed by many
distributed average consensus algorithms (DACAs) [19]-[21],
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TABLE I
COMPARISON OF PROBLEM SETTING WITH RELATED WORKS

Features DACA [19]- | DKCF [22], | GMCA (this
[21] [23] paper)
Estimated object Swarm aver- | Entire swarm | Swarm aver-
aged state state aged state
Addresses noisy measurements No Yes Yes
Assumes coupled measurements No Yes No

which require the agents’ estimates ((?) to track the average
of the signals from individual agents (67). Most of the existing
work assume a special initialization ¢/ (0) = 67(0) or the agents’
measurements are noiseless [19]-[21]. Without these assump-
tions, the DACA will have a steady-state error. We get rid of
these assumptions by incorporating KF into the GMCA so that
each agent can estimate its own state and use its state estimate
to perform the GMCA. We show the convergence properties
of the GMCA on static swarms, which are then generalized to
obtain an estimation error bound between agents’ estimates and
the actual GMs. Moreover, GMCA with KF is demonstrated
to be performed simultaneously with other motion planning
algorithms.

Distributed Kalman consensus filter (DKCF), which incorpo-
rates consensus procedures into the design of distributed KF, has
been developed for sensor fusion and tracking in multi-agent sys-
tems [22], [23]. A major feature of the DKCF is that the agents’
measurements are coupled. By contrast, in this letter, each agent
only has a noisy measurement of its own state and uses the KF to
estimate its own state, i.e., the measurements are decoupled. For
clarity, we present the comparison of problem settings in Table I.
The contributions of this letter are summarized as follows:

® We propose a novel distributed GMCA with KF for robot

swarms with a fixed graph structure, where the KF is used
to track the agents’ own states;

® We derive an upper bound of the estimation error between

the agents’ estimates and the actual GMs and show the
convergence properties of GMCA on static swarms;

® We propose distributed monitoring rules for SwarmSTL

formulas based on the GMCA so that the agents can
monitor whether the swarm satisfies SwarmSTL formulas.

II. PRELIMINARIES

A. Dynamic Model and Features of a Robot Swarm

The robot swarm works in a planar environment S C R?. The
discrete-time kinematic model of an agent is defined as

sk +1) = s(k) +u(k), (M
where s € S'is an agent’s state, k € 7'is the time slot, T' = Z,
uw € U is the control input that directly controls the velocity,
and U = {u|||u]|oc < Umax}. Equivalently, we can write s as
s = [sz,8,)7 and u as u = [u,,uy]”. Let N denote the size of
the swarm, and s € S = S denote the swarm state, i.e. s =

[(sH)T,...,(sM)"]T, where s7 = s, sJ]T is Agent j’s state.
The dynamic model of a swarm becomes

s(k+1) = s(k) + u(k), )
where we U =U", u=[u")",w?)",. ., @")"]T, and

w/ = [uf,,u]|" is the control input of Agent j.

A swarm is commonly described by a collection of abstract
features such as the swarm’s centroid or variance, whereas the
agent-level features are less significant. Agents’ states can be
considered as samples from a certain distribution, which can be
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recovered using an infinite number of moments [24]. Hence we
define generalized moments to represent swarm features.

Definition 1: Let P (s7) denote a polynomial function of ele-
ments in s/. We define generalized moment (GM) " : § — R
to represent a swarm feature, which is expressed as [18]

1o
:N;P(sj).

For instance, if P;(s’) = sJ, the mean of the agents’ z
positions is defined as 5, £ T (s) = Zjvzl sJ. Similarly,

3)

for Py (sj) = s, the mean of the y positions is §, = TF2(s) =

. Due to space limitation, the readers are referred
to [187] for more details about the efficacy of GMs. This letter
focuses on ¢ € Z~ (positive integer set) generalized moments,
which are denoted as = TP(s) = [n1,...,14]"

B. Swarm Signal Temporal Logic (SwarmSTL)
The syntax of SwarmSTL is expressed as follows [18]:
¢ = T|m|=¢|p1 A pa|d1 V G| 01l k) P2|D1S[ky ko) P2, (D)

where T is Boolean True, 7 is an atomic proposition defined
as m:=a’n < c, -, A,V are Boolean operators representing
“negation,” “conjunction” and “disjunction,” respectively, U
reads as “Until,” S reads as “Since,” ki,ko € T, a € R? and
llal] = 1, ¢ € R. Additionally, we define two useful temporal
operators from S: Q[ x,)? := TSk, k)@ (reads “eventually ¢
in the past”) and [jg, 1,1¢ 1= = [k, k) ¢ (reads “always ¢ in
the past”). We define “=-" as an implication operator, which
means ¢; = ¢ 1= @1 V ¢2. Due to space limitation, we refer
the readers to [18] for more details on the expressiveness of
SwarmSTL. Note that SwarmSTL is a special case of STL where
the predicates are defined over generalized moments to express
specifications of collective behaviors of robot swarms.

The Boolean semantics of SwarmSTL can qualitatively mea-
sure the satisfaction of ¢ over iy at k, and (1, k) = ¢ means n
satisfies ¢ at k. The robustness degree of satisfaction of ¢ over
at k is denoted as r(n, ¢, k), which can quantitatively measure
the satisfaction of ¢ over ) at k.

Definition 2: The robustness degree of satisfaction, r(n,
¢, k), can be calculated through the quantitative semantics [2]:

r(n,m k) = c — a’n(k),
r(n, ¢, k) = —r(n, ¢, k),
r(n, ¢1 A ¢2, k) = min(r(n, 1, k), 7(n, g2, k)),
r(n, @1V ¢2,k) = max(r(n, ¢1, k), 7(n, ¢2, k)),
(0, P1Uky ko) P2, k) = sup  (min(r(n, g2, &),

Kelk+ky,ktka)

7"(777 (blv k//)))v

(min(r(n7 ¢27 k/)a

inf
k'e[k-+ky k)

(1, P18k, ka) P2, k) =

sup
Kelk—ko k—k]

r(n, ¢1,k"))). (5)

inf
krelk, k—ki]

III. PROBLEM STATEMENT AND APPROACH

We consider an agent as a node and the communication links
between agents as edges. Hence a robot swarm can be viewed
as a graph G = {D, E}, where D denotes the set of nodes,
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Fig. 1.  The overall workflow for the distributed online monitoring algorithm.
and E denotes the set of edges. For instance, if Agent ¢ can
communicate with Agent j, then (¢, j) € E.

Assumption 1: Assume the communication between agents is
asynchronous, i.e., at any &, only one agent is activate (initiates
communication with another agent) and the probability of each
agent being active is the same [19]. Also, each agent knows the
fixed graph structure.

If the agents wish to monitor the satisfaction of SwarmSTL
formulas, they need to first estimate the GMs and know the
distance between their estimates and the actual GMs. Each agent
can subsequently compute the satisfaction using the estimates,
the distance, and the quantitative semantics. Essentially, we need
to solve the following problems.

Problem 1: Design a distributed consensus algorithm for
estimating the GMs with a guaranteed estimation error bound.

Problem 2: Design a set of distributed monitoring rules for
SwarmSTL formulas based on the above algorithm such that
each agent can compute the satisfaction of SwarmSTL formulas
over its swarm features.

Eq. (3) indicates that a GM is the mean of P(s?). Hence
Problem 1 can be posed as a distributed average consensus
(DAC) problem. Previous works on DAC [19]-[21] will generate
a steady-state error with the presence of measurement noise.
Instead, we incorporate KF into the distributed GM consensus
process. Each agent can estimate its own state using the KF and
use its state estimate to perform the distributed GM consensus.
We call this algorithm the GM consensus algorithm (GMCA)
with KF. More details are presented in Section I'V.

For Problem 2, we can use the estimation error bound from
GMCA and the robustness degree of an agent’s estimate with
respect to 7 to compute an agent’s confidence level of n satis-
fying 7. By De Morgan’s law and formula structure induction,
we can derive the agent’s confidence levels of satisfying other
SwarmSTL formulas. More details are presented in Section V.
The overall workflow for the distributed consensus-based online
monitoring framework is shown in Fig. 1.

For clarity, we briefly review the KF. The measurement model
of an agent is defined as

y(k) = s(k) + v(k), (6)
where y(k) is the measurement, v(k) is the sensor noise. The
trace of a matrix is denoted as tr(-), and the m-th largest
eigenvalue of a matrix is denoted as A, (-).

Assumption 2: Assume v (k) follows a Gaussian distribution
with 0 mean and covariance matrix K, that is time-invariant,
and each agent knows that E(||v||?) is upper bounded by vyax.

The state estimate of a swarm is denoted as § =

(81T, ..., (8™)T]T, where 87 = [3], 57" is the state estimate
of the Agent j. The swarm measurement model is thus

y(k) = s(k) +v(k), (7)
where y = [(y")7, ..., (™))", v = [(")T, ..., (@M)T]", o

and v’ are the measurement and the noise of Agent j, respec-
tively. The covariance matrix of the state estimation error is
¥ = E[(3 - s)(8 — s)T], and the covariance matrix of v is
denoted as K, = E(vv!), which is time-invariant. With As-
sumption 2, each agent knows that E(||v[|?) < Nvpax.

Agents’
GM
estimates
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Distributed ! Agents’ satisfaction ‘i
SwarmSTL of SwarmSTL

monitoring rules formulas

i
>
i

Remark 1: In practice, we can use noise variance estimation
techniques for KF such as [25] to obtain vy, Without using
Assumption 2.

Assumption 3: Assume each agent knows that E(||37(0) —
s (0)[?) < Smax-

The update of §(k) and X(k) is expressed as follows [26]:

K (k) =3k = 1)(3(k — 1) + K,) 7,
s(k) = 8(k — 1) +u(k — 1) + K (k) (y(k)
—3(k —1) —u(k - 1)),
B(k) = (In = K (k) B(k = 1), ®)

where 8(k) = E[s(k)[Y ()], Y (k) =[(y(0))",. .., (y(k))"]",
and Iy is the V x N identity matrix.

IV. DISTRIBUTED GENERALIZED MOMENTS CONSENSUS WITH
KALMAN FILTER

This section presents how the agents use their state estimates
from KF to update their estimates of GMs. For simplicity, we
only discuss the consensus algorithm on one GM, and the same
analysis can be applied to any GM. First, we derive some
convergence properties and estimation error bounds, assuming
that the swarm is stationary. These results are then generalized
to obtain error bounds for our proposed GMCA.

A. Convergence Properties of GMCA on Static Swarms

In this section, we simplify Problem 1 by assuming that
u(k) =0,1ie.,

s(k+1) = s(k). )
Hence the updates of §(k) and X(k) are described as
(k) = 8(k —1) + K(k) (y(k) = 3(k - 1)),

N(k)=(In —S(k—1)(2(k— 1)+ K,) ") S(k - 1).
10)

In contrast to the special initialization (7(0) = P(s7(0))
adopted in [19]-[21], each agent initializes its estimate of the
GM as ¢7(0) = P(87(0)). Asynchronous communication indi-
cates that at each following k, there are two agents communicat-
ing with each other. The probability of each agent being active at
kis % , where active means an agent can initiate communication
with another agent. Let W be an N x N matrix associated with
the robot swarm, where entry W;; denotes the probability of
Agent ¢ communicating with Agent j.

Before proceeding into the details of the GM consensus
process, we introduce some necessary notations. Let 67 (k) =
P(s7(k)) denote the polynomial function P applied to s’ (k)
and 0(k) = P(s(k)) = [0*(k),...,0" (k)]T denote the poly-
nomial function P applied to s. Similarly, if we apply
P to the agents’ state estimates 3/(k) and &(k), we have

the following notations: 67 (k) = P(37(k)), (k) = P(5(k)) =
[01(Kk),...,0N (k)]T. The swarm’s GM estimate at k is de-
noted as (k) = [CL(k),..., (N (k)]T, from which we know
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TABLE IT
THE VARIABLE NOTATIONS USED IN THE GMCA
Variable notation Representation

sls State of an agent / a swarm
ulu Input of an agent / a swarm

n Generalized moments
yly Measurement of an agent / a swarm
v/ Sensor noise of an agent / a swarm
§/8 State estimate of an agent / a swarm

3 Covariance matrix of state estimation
K, Covariance matrix of noise

¢ GM estimate of a swarm
0/0 Polynomial function P applied to s / §
7/6 Actual GM

0 GM computed by swarm’s state estimates

¢(0) = A(0). The update of A(k) is denoted as AB(k) =
(k) — 0(k — 1). The mean of ¢(0), AG(k) and O(k) are de-
noted as C(0) = 1-¢(0), Ad(k) = 3-Ad(k),7(k) = O(k) =

WTQ(k'), respectively. Table II shows a complete list of notations
used in the GM consensus process.

The update scheme is that at k£ + 1, if Agent ¢ communicates
with Agent j, then they update their estimates with

Clk+1) = 5 (OB + (k) + 8k + 1) — 01 (),

G+ 1) = 5 () + F(R) + 0 (k+ 1) — 09 (R), ()
and the other agents update their estimates with

CPll+1) = CP(k) + 0P (k+1) — 67(k), (p#i,5). (12)

Suppose e/ = [0,...,1,...,0]7 € RN with the j-th entry being

1 and all the other entries being 0, we can reformulate (11) and
(12) in the vector form as

Ck+1) = V(K) - (k) + AD(K), (13)
where ((0) is initialized as ¢(0) = [¢*(0),...,¢N(0)], and
¢7(0) = P(8%(0)), and V (k) has probability + W;; being

P M Gl Gl (14)

2 )
which is a symmetric doubly stochastic matrix. We denote the
expectation of V (k) as V, and the estimation error at k as

E(||¢(k) — 1n(k)1||o), which can be decomposed as

B(¢(k) — (k) 1]|se) = E(IC(k) — 0(k)1 + (k)1

MR L) < BAICE) =60 L) + E(IOK)L = (k)] ).
15)

where 5(k) = %9(16), and 1 € RY denotes the vector of all
ones. Hence we can prove the convergence of E(||¢(k) —
7(k)1||s) viaproving the convergence of E(||( (k) — é(]c)l lloo)
and E(||0(k)1 — 77(k)1]). Let’s first analyze E(||6(k)1 —
7(k)1]|o). Using the fact that P(s?) is locally Lipschitz on S
[27], it can be shown that T'7'(s) is locally Lipschitz on S. This
implies there is a constant £1 > 0 that

E(|0()1 = 1(k)1]lxc) = B(ITT (3(k)) = T* (s(k)) |l=),
< LLE(]|8(R) — s(k)l), (16)
where E(||8(k) — s(k)ll«) < E([|3(k) — s(k)|]) =

\/tr(3(k)). Hence we can obtain an upper bound of
E(||0(k)1 - n(k)1]|)
of tr(X(k)). X(k)

by computing an upper bound
can be reformulated as X (k)=

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Ku(z(k - 1) + Kv)
lemma.
Lemma 1: (k) follows the expression that

~1%(k — 1), which leads to the following

S(k) = K, [K, + k2(0)]71(0), (17)
and the state estimation error satisfies
N stmaxvmax
E(||8(k) — s(k)[lec) < (18)

(Umax + ksmax) ’

which converges to 0 asymptotically.
Proof 1: We can prove Lemma 1 by induction. At

k=1, we have X(1) = K,(K, + X(0))"'3(0) = (K, +
Y(0)K, 1) t2(0) = (I +2(0)K, 1) 1X(0). Moreover, if
S(k) = KoKy + kX(0)]712(0) = (I + kX(0) K, 1)71%(0)
holds, we need to show X(k+1)=K,[K,+ (k+
1)%(0)]713(0) holds. This can be proved by
S(k+1)
Ko(S(k) + Ko) ™ (I + kS(0) K, ) 71E(0),
= Ku[(I + kX(0)K; ) B(k) + (K, + k2(0))] 7' 2(0),
= Ku[(Ky + k%(0)) K 8(k) + (K, + £5(0))] 7 5(0),
= K[, + kS(0) (K, + k(0) 7' 8(0) + 1)] ' 2(0),
= K, [K, + (k+1)%(0)] ' £(0),
= [B(0) '+ (k+ DK (19)
Therefore, £(k) = K, [K, + kX(0)] '£(0), and we have
1
MER) = O T Ex KD
1
= T/ (50) + b/ (Ko
1
(N ) + 5 Vom) 20
which implies
N28max0
(S(K) < Naa(S(h) < o o)
The above results signify that E(||$(k) —s(k)|w) <
\/stmaxvma)c/(”max + ksmax) and  E(||8(k) —s(k)|l~)

converges to 0 when k — co.
Corollary 1: A direct result of Lemma 1 and (16) is that

N2 Smaxvmax

E(]|6(k)1 — (Vo + FSmax)

(k)1|o) < L1 (22)

and E(]|0(k)1 — 7j(k)1]|») converges to 0 asymptotically.

For breVity, let 5rnax(k) - (N2Smaxvmax)/(vmax + ksmax)-
The next task is to prove E(||¢(k) — 6(k)1||~) converges to 0.
To prove this, we need the following proposition:

Proposition 1 [19]: The initial estimation error sat-
isfies  E(]|¢(0) — ¢(0)1]|*) < E([¢(0)]]) with ¢(0) de-
fined in (13). Also, the one-step estimation error of
¢(0) satisfies E(|[V(0)¢(0) = ¢(0)1]%) = E(|[V(0)(¢(0) —

C(0)1)]1*) < 23(V)][[¢(0)]|?, and the k-step estimation error of
¢(0) satisfies

E(|[V(k —1)...V(0)¢(0) = C(0)1[*) < &3 *(V)[[C(0)]I*.
(23)

Hereafter, we assume each agent knows that the initial es-
timation error is bounded, i.e. E(]|¢(0) — ((0)1]|o) < Cmax-
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Using Cauchy-Schwarz inequality and the fact that E'(||¢(k) —
B 1l) < E(IC(k) — B(k)1]), we have

E(¢(k) — B(k)1]lx) < E(|V(k —1)...V(0)¢(0)+

V(k—1)... V()AIL) + -+ Ad(k) — [B(k) — 0(k — 1)
+0(k = 1) = 0(k — 2)... +0(1) — (0) + C(O)]1]),

= B(|[V (k—1)...V(0)¢(0) ~C(0)1+V (k—1)...V (1) Ab(1)
— AG(D)L + -+ AB(k) — AB(k)L])),

< B(|V(k —1)...V(0)¢(0) = C(O)1]]) + E(|V(k — 1)..

V(1)AG(L) — AB)L]) + -+ E(|Ad(k) — Ad(K)1]).

(24)

In order to prove E(||((k) — 5(k)1 |lo) converges to 0, we need
to compute an upper bound of the one-step GM estimation error

E(||V (k- 1)A0(k — 1) — Ab(k — 1)1])).
Lemma 2: 1f the agents update their estimates using (13), then
the one-step GM estimation error satisfies

E([V(k - 1)AO(k — 1) — Ad(k — 1)1]))
VLo Omax (k — 1) + Omax (k — 2), Lo > 0. (25)

Proof 2: Let ¢j_1 =V (k—1)A0(k —1) — Ad(k — 1)1.
Using Jensen’s inequality, we have the following result:

E(llex-11) < v E(lex—l?),
00 N 1
= > Z551/3;14-]-51}NWz
[

< Ao (V

Vpl(Ad(k — 1) — AB(k — 1)1) = 5.,
J Z STVTVS,p[(AO(k — 1) — Ab(k — 1)1) = 4,].
e (26)

If we apply Proposition 1 to X VTV §,, we can write (26) as
B(|V(k—1)AO(k — 1) — Ad(k — 1)1]))

< (V) (860 — 1)|2),
where p[(A(k — 1) — AQ(k —1)1) = 4, denotes the prob-

ability of AG(k —1) — A(k — 1)1 = 6,. As P(s) is locally
Lipschitz on S, 3£5 > 0 such that

VEIA6(R)I12) = VE(IP((K) — Pk —1))[2),

< LoV E([|s(k) —8(k = 1)[12).  (28)
Corollary 2: With Lemma 2 and Proposition 1, (24) becomes

B(G(k) = 0(k) L) < 25(V)VN G+ 2571 (V) L2
\/5max(]-) + 6max( ) -+ »CQ \/5max + 5max( - ]-)7

27)

S)‘k( )\/7<max+£2z)¥k k'

k=1

)\/5max(kt)+5max(kt - ].)
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Also, E(||¢(k) — O(k)1]|s) converges to 0 asymptotically.

This is because when k — 00, dmax(k) and Omax(k — 1)
converge to 0. Also, V' is a symmetric doubly stochastic matrix,
thus A2(V) < 1 and A5(V) — 0 when k — oo.

Theorem 3: If a robot swarm follows the dynamics in (9)
and adopts (13) to update the GM estimates, then the agents’
estimates of the GMs converge to the actual GMs asymptotically.

Proof 3: Straightforward from Corollary I and Corollary 2.

The estimation error bound for GMCA on a static swarm is

k
‘62 Z )"gikt (V) \/6Ir1ax(kt)+5rrlax(kt - 1) + £1 6Inax(k)-
k=1

(29)

B. Estimation Error Bound for GMCA on Dynamic Swarms

This section generalizes the estimation error bound for static
swarms to obtain the estimation error bound for dynamically
moving swarms. The swarm follows the dynamic model in (2),
and the updates of §(k) and X(k) are expressed as (8). Our
goal is to obtain an upper bound of E(||¢(k) — 7j(k)1]|o) with
u(k) # 0. With (8), we could write 3(k) as

s(k)y=5Fk—-1)+u(k—1)
+ K(k)(s(k—1)—s(k —
which leads to the following lemma.

Lemma 4: For GMCA on dynamic swarms, the one-step
estimation error satisfies

E([V(k - 1)A0(k — 1) — A0k — 1)1])) < 2a(V) Lo

\/6max(k - 1) + 6max(k ) + 2Nu12nax (30)
Proof 4: For GMCA on dynamic swarms, (27) and (28) still
hold. The upper bound for \/E([|s(k) — 8(k — 1)||2) is

VE([8(k) = s(k) +s(k — 1) +u(k — 1) = 8(k - ]]?)

1) + v (k)),

< Vtr(E(k)) + tr(S(k — 1)) + [Ju(k — 1),
< Vomax (k) + Omax(k — 1) + 2Nu, ., 3D
hence we have E(||V(k—1)A0(k—1)— Aé( E—1)1) <

V) Lo/ Omax(k — 1) + Smax(k — 2) + 2Nu2 ..
Corollary 3: Using Lemma 4, we could derive the dynamic

estimation error bound with KF (DBKF) as below

E([[C(k) = (k) 1loo) < A5(V)VNGinax + Lo Z s R
k=1
\/6max(kt) + §max<kt - ) + QNUmaX ﬁl 5max(k)-

For brevity, we denote

o) = AV R e + L2 3 254 (V
ke=1
\/5n1ax(kt) + 5max(kt - 1) + QNU?IHX + L Jmax(k)a
(32)

which implies p(k) depends on the maximal allowed velocity of
the agents but is independent of the agents’ exact motion. The
above results imply that the GMCA with KF can be run in paral-
lel with other motion planning algorithms. For ¢ GMs denoted by
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Algorithm 1: Generalized Moments Consensus Algorithm
with Kalman Filter (GMCAKF).

1: fork=1,.,Kdo

2: Suppose Agent 7 is active. Agent 7 selects a neighbor
J using the probability distribution defined by W
Agents ¢ and j update the estimates of GMs with (11)
Other agents update their estimates of GMs with (12)
Each agent updates the DBKF with (32)

end for

A

n,welet¢/ = [¢{,...,¢J]" denote Agent j’s estimate of 17, and
pi(1 < i < q) denote the estimation error bound of 7;, then the
estimation error bound of ) is denoted as p = [p1, . . ., p,|T. The
description of GMCA with KF is presented in Algorithm 1. In
Section V, we will explain how to compute an agent’s confidence
level of swarm features satisfying SwarmSTL formulas using the
DBKF.

Remark 2: The GMCA with KF still works for robot swarms
with dynamically changing graph structures if a less-than-one
upper bound of A2(V') is known.

C. Optimizing the Convergence Rate

From (29) we know the convergence rate of the estimation
error is controlled by A2 (V). The fastest convergence rate can
be achieved by solving the following Semidefinite Programming
(SDP) problem [19]:

minimize €,

Wij >0, Wi; = 0if(i. j) & E,

Z Wi;Vij, ZW” =1,Vi,

1,j=1

subject to

1
V—NllTjGIN,GER, (33)

where V — 1117 =<ely means (eIy — V + +117) is positive
semidefinite. With Assumption 1, the agents can know the
graph structure information contained in W and optimize A2 (V)
independently. Here we use the SDP mode in the cvx! toolbox
to solve (33).

V. DISTRIBUTED MONITORING WITH GMCA

In this work, we consider the problem of distributed online
monitoring as the agents move dynamically in the environment.
The goal is to compute the confidence level of satisfying
¢ by using the past trajectories until the current time slot
k.. For a future time slot k > k., p(k) can be computed
by (32). At k., Agent j knows _Cj(k;c) and p(k.), hence we
have n(k.) € [¢7 (k) — p(k.), ¢ (ko) + p(kc)]. The Lipschitz
continuity of 7%(s) implies that n(k) € [n(k.) — L1(k —
ke)umax, (ke) + L1(k — ke)umax).  As  p(k) is known
from (32), we have ¢ (k) € [n(k) — p(k),n(k) + p(k)]. By
combining the above ranges for n(k.),n(k), and {7 (k),
we h_ave Cj(k) € [C](kc) - p(kc) - ‘Cl (k - kc)umax -
p(k), ¢ (ke) + p(ke) + L1(k — ke)umax + p(k)]. Corre-
spondingly, we can compute the range of robustness of

![Online]. Available: http://cvxr.com/cvx/doc/sdp.html
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¢i(k) with respect to m as r(¢’,m k) = M (k), where
MI (k) = {c — al ¢ (R)|¢ () € ¢ (ke) — plhe) — La(k —
kc)umax - P(k)7 C] (kc) + p(kc)+ El(k - kc)umax + P(k)]}
The robustness of ¢7 for 7 at k, depending on whether k£ < k.,
is expressed as

o (k) if k< ke,
w )= {350

With (34), Agent j’s confidence level of the swarm features
satisfying SwarmSTL formulas, i.e., the distributed monitoring
rules, are presented in Lemma 5.

Lemma 5: Agent j’s confidence level of n satisfying ¢ at k
is expressed as follows:

4
otherwise. (34

gl
— =gy i ml(k)>pi(k)
Vi, and k < k.,
max {p; (k
Pry(tn,k) =m=q1- liiif{p(w);w)a if  min
md (k)EM (1) m (k)eMJ (k)
m? (k) > p;(k) Vi, and k > k.,
0, otherwise,

Pri((n.k) | 61 A d2) = Pri((n. k) = é1)

+ Prj((mk) = ¢2) — 1,

Pri((n,k) F ¢1V ¢2) = 1 —min{l — Pr((n, k) = ¢1),
1- PTj((??» k) ¢2)},

Prj ((n,k) F 618k, ko ¢2) > 1 - k,e[kfl}é{lkikll{l—
k—k1
Pri((m k) = d2)+ Y 1= Pri(n, k") = ¢1)},
k=K
Prj ((n,k) = o1k, 5y 02) > 1 — k/e[kﬁiﬁh@]{l_
.
Pri((n,K) o)+ Y, 1—Pri((n¥) E¢1)}, (35)
k'=k+kq

where Pr;((n,k) = ¢) denotes Agent j’s confidence level of

1) satisfying ¢ at k.
Proof 5: Let 0;=[0},...,0N]1(1<i < q) and n;= T0i,

where 6] = P;(s7), and ¢; = [¢}, ..., ¢N]T denote the agents’
estimates of 7);. Using Markov’s inequality, we know the estima-
tion error of n; satisfies Pr;(|[¢;(k) — ni(k)1|. < m?(k)) >

— B(|Gi(k) — ni(k)L]lx) /m? (k) = 1~ pi (k) /m (k). For g
GMs, we take the maximum of p; as the estimation error
bound for 1. Hence for an atomic proposition 7, Agent j’s
confidence level of n satisfying = at k < k. is Pr;(n,k) =
m) > 1 — maxy<;<q{pi(k)}/m? (k) if m? (k) > p;(k), Vi. Oth-
erwise, it is 0. The confidence level of 7 over ) at k > k. can
be proved analogously. With the confidence level of m, Agent
j’s confidence levels of 7 satisfying other operators at k are
straightforward to show using formula structure induction.

Remark 3: There is a trade-off between the motion planning
and the GMCA. Increasing the maximal allowed velocity w,ax
would increase p(k) and the time to reach the desired confidence
level, which can be observed in (32) and (35).

Remark 4: There are two potential sources of conservatism
in the agents’ estimates: the estimation error bound in (32) and
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Fig. 2. A snapshot of simulation for the transportation task.

the confidence level of satisfaction in (35), which is based on
the Markov’s inequality.

VI. CASE STUDY

We now use a swarm transporting supplies example to demon-
strate how the distributed monitoring algorithm works. Suppose
a virus outbreak happens in four regions A, B, C, F, the swarm
needs to transport medical supplies from the warehouse W,
to these regions back and forth. Specifically, the swarm first
transports the supplies from W), to A. Next, it returns to W,
to take another supply and transports it to B. It subsequently
follows the same idea to transport the supplies to C' and F.
The swarm follows a trajectory in the sequence of W, — A —
W, —= B — W, — C — Wy — F — Wj. A snapshot of the
simulation is shown in Fig. 2. In the simulation, we set N = 10,
Umax = 0.01, and adopt a flocking model [28] and a potential
field approach to accomplish the motion planning. The motion
planning of the swarm is based on the following rules:

1) cohesion: wl(k)=u](k—1)+ Z?f:l)i#j (si(k) —

s7(k));

2) separation: ul(k) = uj(k — 1) — as ZZN:M#

st (k)—s? (k) .
[[s*(k)—s7 (K)[I> 4
3) al)ignment: uh(k) = ug(k — 1) + 597 Doy iy u' (B —
1);

4) attraction: u} (k) = au(G — s/ (k));
where a; to a4 are positive tuning parameters, u](k) =
0,vk=1,...,4 when k <0, G € S is the goal position. Ag-
gregating the above rules gives @/ (k) = [a](k), 4 (k)]" =
SO/, ul (k). Agent j’s velocity is then calculated as u/ (k) =
@7 (k) * umax/ max{a (k), @/ (k)}. A video of the simulation
process is uploaded to https://tinyurl.com/swarmstlmonitor.

As the robot swarm needs to transport the supplies from
Wy, to the four regions back and forth, it cannot stay in
W, for too long. Hence we propose a SwarmSTL formula
PR = ©[1000,2000/PW;, = 9 [0,800]"Pw,,, Which specifies the
robot swarm to stay in W}, for at most 1000 time slots, where
dw, = 8z > —50AN 5, <50A 5, > =50 A5, < 50. This in-
terpretation can be obtained using the rule that ¢1 = ¢o 1=
—p1 V ¢a. ¢p reads as “If Ik’ € [1000,2000] such that ¢y,
is satisfied at k — &/, then J&” € [0,800] such that =gy, is
satisfied at (k — k”)”. The agents need to perform the consen-
sus on the centroid 5 = [5,,5,]7. At k =0, each agent sets
¢7(0) = [¢2(0), ¢ (0)]" = [52.(0), 8 (0)]", and computes the
optimal A5 (V") by solving the SDP problem in (33).

The polynomial function P applied to the agents’ state es-
timates is denoted as 8, = [3},...,5)]", 5, = [5},..., 801",
and the swarm’s estimate of the centroid is denoted as (, =
[Chso e GGy = [Chs -, ¢)]T . Atk + 1, the agents use the
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KF update in (8) to update 5, and &,, and then update their
estimates of the centroid using

Ca(y) (b + 1) =V (k) Cayy (k) + 8z (k + 1) — gac(y)(k)(-%)
Simultaneously, the agents compute the estimation error bound
Pmax = max{p,, p,} and the confidence level of § satisfying
¢r using the monitoring rules in (35), where p,, p, are the
estimation error bounds of 5;, 5,, respectively. The purpose
of using the flocking model and the potential field method is
to show the agents can perform the distributed monitoring and
the flocking and motion planning tasks simultaneously because
Pmax 15 independent of the agents’ exact motion.

To show the efficacy of the KF in the GM consensus process,
we also perform a centroid consensus algorithm without KF,
i.e. using y to update (, and (,. The actual mean estimation

error is defined as e, = & Zjvzl ¢ — 5||. Fig. 3 shows the
progression of py,.x and e, of the distributed centroid consensus
algorithm with and without KF, from which we can observe
es of the consensus algorithm with KF is smaller than e, of
the consensus algorithm without KF, and p,,.x decreases as k
increases. The satisfaction of 5 with respect to ¢y, is shown in
Fig. 4 (top). Along the y axis, 1 represents that 5 satisfies ¢y, ,
and O represents that 5 violates ¢yy, . To be more informative,
we only show the satisfaction for k£ € [1000, 25000]. Using the
satisfaction of ¢y, over 5, we can compute the satisfaction of
¢r over 5. The agents’ confidence levels of s satisfying ¢z and
the actual satisfaction of s over ¢ are shown in Fig. 4 (bottom),
where the dashed lines represent the agents’ confidence levels
that may have overlap. When & € [8000, 17120], the swarm is
outside of W}, so § satisfies ¢ z. The agents’ confidence levels
of satisfaction are also higher than 95%. In the simulation, the
swarm actually stays in W}, longer than 1000 time slots. Hence
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we can observe that § satisfies ¢y, for k € [17120,24000] and
violates ¢ for k € [18120,25000], where the agents’ confi-
dence levels of satisfaction are also 0. These results show that
the agents can monitor the satisfaction of swarm features with
respect to SwarmSTL formulas using the GMCA with KF and
the distributed monitoring rules.

Furthermore, we investigate the influence of the network
topology and the swarm size on the estimation error bound.
The estimation error bounds for a fully connected network and a
two-neighbors network where each agent can communicate with
its two nearest neighbors are shown in Fig. 5(a). Apparently, as
an agent has more neighbors to share information, the estimation
error bound will decrease faster. The estimation error bounds for
aswarm with 10, 20, or 50 agents are shown in Fig. 5(b), in which
we observe that at the same k, increasing the swarm size would
increase the estimation error bound, which matches the pattern
in (32).

VII. CONCLUSION

This letter investigates the challenge of distributed monitoring
of satisfaction of SwarmSTL formulas over swarm features. A
GMCA with KF is developed to allow each agent to estimate the
GMs. The convergence properties of GMCA on static swarms
are presented and an upper bound of the estimation error between
agents’ estimates and the actual GMs is derived. Additionally,
the GMCA with KF can be performed in conjunction with
other motion planning and control algorithms. The monitoring
rules for SwarmSTL formulas are also proposed based on the
estimation error bounds. The outcome of this work is that the
agents can monitor whether the swarm satisfies a SwarmSTL
formula in a distributed manner. The proposed method is applied
to a swarm transporting supplies example, where the efficacy of
the KF is also shown.
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