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Neural networks based on memristive devices [1-3] have shown potential in substantially 17 
improving throughput and energy efficiency for machine learning [4, 5] and artificial 18 
intelligence [6], especially in edge applications. [7-21] Because training a neural network 19 
model from scratch is very costly in terms of hardware resources, time, and energy, it is 20 
impractical to do it individually on billions of memristive neural networks distributed at 21 
the edge. A practical approach would be to download the synaptic weights obtained from 22 
the cloud training and program them directly into memristors for the commercialization of 23 
edge applications (Fig. 1a). Some post-tuning in memristor conductance to adapt local 24 
situations may follow afterward or during applications. Therefore, a critical requirement 25 
on memristors for neural network applications is a high-precision programming ability to 26 
guarantee uniform and accurate performance across a massive number of memristive 27 
networks. [22-28] That translates into the requirement of many distinguishable 28 
conductance levels on each memristive device, not just lab-made devices but more 29 
importantly, devices fabricated in foundries. Analog memristors with many conductance 30 
states also benefit other applications, such as neural network training, scientific computing, 31 
and even mortal computing. [25, 29, 30] Here we report over 2048 conductance levels, the 32 
largest number among all types of memories ever reported, achieved with memristors in 33 
fully integrated chips with 256 × 256 memristor arrays monolithically integrated on CMOS 34 
circuits in a standard foundry. We have unearthed the underlying physics that previously 35 
limited the number of achievable conductance levels in memristors and developed 36 
electrical operation protocols to circumvent such limitations. These results reveal insights 37 
into the fundamental understanding of the microscopic picture of memristive switching and 38 
provide approaches to enable high-precision memristors for various applications.        39 

Memristive switching devices are known for their relatively large dynamical range 40 
of conductance, which can potentially lead to a large number of discrete conductance levels. 41 
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Different approaches have been developed to accurately program the devices. [31] 42 
However, the highest conductance number reported to date has been no more than two 43 
hundred.[22, 32] There are no forbidden conductance states within the dynamical range of 44 
the device since a memristor is typically analog and can, in principle, achieve an infinite 45 
number of conductance levels. However, the fluctuation commonly observed at each 46 
conductance level (Fig.1e) limits the number of distinguishable levels achievable within a 47 
specific conductance range. Interestingly, we found that such fluctuation can be 48 
substantially suppressed, as shown in Figs. 1e and 1f, by applying appropriate electrical 49 
stimuli (termed as ‘denoising’ processes). Importantly, such denoising process does not 50 
require any extra circuitry beyond the normal read and program circuits. We incorporated 51 
the denoising process into device tuning algorithms and successfully programmed a 52 
commercial-semiconductor-manufacturer-made memristor (Figs. 1b-d) into 2048 53 
conductance levels (Fig. 1g), corresponding to 11-bit resolution. Conductive atomic force 54 
microscopy (C-AFM) was employed to visualize the evolution of conduction channels 55 
during programming and denoising processes. We discovered that a normal switching 56 
operation (SET or RSET) always ends up with some incomplete conduction channels, 57 
which appear as islands or blurry edges along the main conduction channel and are less 58 
stable than the main conduction channel. First principle calculations suggest that these 59 
incomplete channels are unstable phase boundaries with dopant levels in a range that is 60 
sensitive to trapped charges, contributing to the large fluctuations of each conductance 61 
level. We revealed, experimentally and theoretically, that an appropriate voltage in the 62 
denoising process either annihilates (weakens) or completes (enhances) these incomplete 63 
channels, resulting in a great reduction in fluctuation and a significant increase in 64 
memristor precision. The observed phenomena generally exist in memristive switching 65 
process with localized conduction channels, and the insights can be applied to most 66 
memristive material systems for scientific understanding and technological applications.  67 

Memristors used in this study were fabricated on an 8-inch wafer by a commercial 68 
semiconductor manufacturer (Fig. 1b). The fabrication details are given in the Method 69 
section. Cross-section views of a memristor are shown in Fig. 1c, and the critical resistive 70 
switching layers are zoomed-in in Fig. 1d. The electron energy loss spectroscopy (EELS) 71 
elemental image is shown in Fig. S1. The device consisting of a Pt bottom electrode, a 72 
Ti/Ta top electrode, and a HfO2/Al2O3 bilayer, was fabricated in a 240 nm via above the 73 
CMOS peripheral circuitry. The Al2O3 and Ti layers are designed to be so thin (<1nm) that 74 
they appear as a mixed layer rather than two separate continuous layers. When the bottom 75 
electrode is grounded, the device can be switched by applying either a sufficiently positive 76 
voltage (for SET) or a negative voltage (for RESET) to the top electrode. The fluctuation 77 
level (characterized by the standard deviation of a measured current under a constant 78 
voltage) after a SET or a RESET operation is distributed in a wide range (Fig. S2). The 79 
result shows that an as-programmed state typically has a large fluctuation, which 80 
significantly limits the applications of memristors but unfortunately exists in memristive 81 
materials generally. [33-36] The data also reveals that a SET operation tends to induce a 82 
larger fluctuation in an as-programmed state than a RESET operation. The main 83 
contribution of such reading fluctuation is random telegraph noise (RTN) which features 84 
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step-like transitions between two or more current levels at random time points under a 85 
constant reading voltage. Such RTNs generally exist in memristors. Even fluctuations that 86 
are seemingly not step-like may in fact be made of RTN noise, [37] which can be revealed 87 
only when the measurement sampling rate is higher than the RTN frequency, as shown in 88 
Fig. S3. It has been demonstrated previously by simulations that memristor RTNs may be 89 
caused by charges occasionally trapping into certain defects and blocking conduction 90 
channels via coulomb screening. [34, 38] However, experiments that directly link trapped 91 
charges, conduction channel(s), and RTNs are missing, let alone how to remove RTNs. 92 
Although a critical issue for memristors in general, it has been unclear how to reduce RTNs 93 
in memristors. They are critical not only for understanding the physical origin of memristor 94 
RTNs but also for revealing the entire microscopic picture of memristive switching and 95 
providing possible solutions to high-precision memristors.  96 

We discovered that the fluctuation level could be greatly reduced by applying small 97 
voltage pulses with optimized amplitude and width. One example is given in Fig. 1e, where 98 
an as-programmed state with a considerable fluctuation (blue) was stabilized into a low-99 
fluctuation state (red) by denoising pulses. Using a three-level feedback algorithm devised 100 
to denoise, as detailed in Fig. S4, a single memristor was tuned into 2,048 conductance 101 
states between 50 and 4,144 µS, with a 2 µS interval between every two neighboring states. 102 
All states were read by a voltage sweeping from 0 to 0.2V, as shown in Fig. 1g. The 103 
zoomed-in view of the current-voltage curves is given as the lower inset to Fig. 1g, showing 104 
well-distinguishable states and the superb linearity of each state. Three nearest neighboring 105 
states after denoising are shown in Fig. 1f, where a constant 0.2V voltage reads each state 106 
for 1,000 seconds. The current fluctuation of every state is within 0.4 µA, corresponding 107 
to 2 µS in conductance. No significant overlap was observed in the neighboring states. The 108 
zoom-in view of the measurement result at high conductance states is shown in Fig. S5. 109 
Memristors from multiple chips of an 8-inch wafer were measured, demonstrating a great 110 
programming uniformity across the entire wafer, as shown in Fig. S6. We further adopted 111 
the denoising process in the array-level programming of an entire 256 × 256 array using 112 
the on-chip circuitry. The experimentally programmed patterns are shown both in Fig. 1g 113 
as an upper inset and in Fig. S7. For these demonstrations using the on-chip circuitry, the 114 
programming precision was limited by the precision of the on-chip Analog/Digital 115 
conversion peripheral circuitry, which was 6-bit (64 levels) in this design. The testing setup 116 
and the schematic of the driving circuits are shown in Fig. S8. The extra system cost caused 117 
by the denoising process is estimated in SI-9, showing that due to a relatively smaller 118 
voltage needed for denoising than for a typical SET/RESET programming, the extra energy 119 
consumption is only a small fraction of the energy for programming. Further studies show 120 
that the denoising operation can also reduce RTNs in other material stacks, e.g., a TaOx-121 
based memristor, as shown in Fig. S10. Since reading noise has been observed in various 122 
resistive switching materials, the above results show that the denoising step is an important, 123 
or even essential, process for the training of memristive neural networks as unstable 124 
readings lead to incorrect outputs from the neural networks and cannot be compensated by 125 
adaptive in-situ training. 126 
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Fig. 1 High precision memristor for neuromorphic computing. a) The most likely 129 
scheme of the large-scale application of memristive neural networks for edge computing. 130 
Neural network training is performed in the cloud. The obtained weights are downloaded 131 
and accurately programmed into a massive number of memristor arrays distributed at the 132 
edge, which imposes high-precision requirements on memristive devices. b) The photo of 133 
an 8-inch wafer with memristors fabricated by a commercial semiconductor manufacturer. 134 
c) HR-TEM image of the cross-section view of a memristor. Pt and Ta serve as bottom and 135 
top electrodes, respectively. Scale bar (inset): 1 µm (100 nm). d) The zoomed-in image of 136 
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the memristor material stack. Scale bar: 5 nm. e) The as-programmed (blue) and after-137 
denoising (red) currents of a memristor are read by a constant 0.2V voltage. The denoising 138 
process eliminated the large amplitude random telegraph noise (RTN) observed in the as-139 
programmed state (see method). f) Zoomed-in view of three nearest neighboring states 140 
after denoising. The current of each state was read by a constant 0.2V voltage. No large-141 
amplitude RTN was observed, and all the states can be clearly distinguished. g) An 142 
individual memristor on the chip was tuned into 2048 resistance levels by a high-resolution 143 
off-chip driving circuitry, and each resistance level was read by a DC voltage sweeping 144 
from 0 to 0.2V. The target resistance was set from 50 µS to 4,144 µS with 2 µS interval 145 
between neighboring levels. All readings at 0.2V are less than 1 µS from the target 146 
conductance. The lower inset shows a zoomed-in view of the resistance levels. The upper 147 
inset shows experimental results of an entire 256 × 256 array programmed by its 6-bit on-148 
chip circuitry into sixty-four 32 × 32 blocks, and each block is programmed into one of the 149 
64 conductance levels. Each of the 256 × 256 memristors has been previously switched 150 
over million cycles, demonstrating the high endurance and robustness of the devices.  151 

 152 

Deciphering the underlying reason for the above discoveries is essential for offering 153 
a reliable solution to the critical technology problem and understanding the dynamic 154 
process of memristive switching. Visualizing the evolution of conduction channels during 155 
electrical operations is informative for this purpose. [39-42] We used C-AFM measurement 156 
to precisely locate the active conduction channel(s) and scan all the surrounding regions. 157 
The details of the measurement can be found in Method and Fig. S11. A customized device 158 
was fabricated for the C-AFM measurements. The schematic of its structure is shown in 159 
Fig. 2a. To use the Pt-coated C-AFM tip as the top electrode, the device was designed to 160 
have a reversed structure of the standard device shown in Fig. 1d. By grounding the bottom 161 
electrode and applying a voltage to the top electrode, the device can be operated as our 162 
standard device with opposite voltage polarities, i.e., a positive voltage tends to RESET 163 
the device, and a negative voltage tends to SET the device. Denoising operations were also 164 
successfully performed by C-AFM, as shown in Fig. 2b and Fig. 2c. The conductance 165 
scanning results before and after denoising corresponding to the reading results of Fig. 2b 166 
(2c) are shown in Fig. 2d (2f) and Fig. 2e (2g), respectively. Comparing the conductance 167 
maps in Fig. 2d and Fig. 2e, it is observed that the main part of the conduction channel (the 168 
‘complete’ channel) remains nearly the same while the positive denoising voltage 169 
annihilates an island-like channel (the ‘incomplete’ channel). In contrast, the negative 170 
denoising voltage (Fig. 2f and Fig. 2g) reduces the noise by removing the current dips in 171 
Fig. 2c. These results indicate that the conductance of an RTN-rich state can be divided 172 
into two parts: the base conductance provided by complete channels and the RTN part 173 
provided by incomplete channels. These incomplete channels were formed together with 174 
complete channels but are smaller in size. Such incomplete channels were also observed in 175 
SrTiO3-based resistive switching devices. [43] A memristor can be denoised by 176 
eliminating incomplete channels (either removing or completing them). Incomplete 177 
channels are more sensitive to voltage stimuli when compared to complete channels, which 178 
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makes it possible to tune the former without affecting the latter by using appropriate 179 
electrical stimuli. Further studies suggest that such a mechanism is general and can be 180 
performed in other material stacks (Fig. S12) as well. It should be noted that the seemingly 181 
isolated island(s) may or may not be electrically connected with the main conduction 182 
channel beneath the surface, which, however, does not change the denoising mechanisms 183 
or operation protocols. 184 

 185 

 186 

 187 

Fig. 2 Direct observation of the evolution of conduction channels in the denoising 188 
process through conductive atomic force microscope (C-AFM). a) A schematic of the 189 
customized memristor structure and C-AFM testing setup. C-AFM probe played the role 190 
of the top electrode in the customized device. Since Ta is easily oxidized in air and not 191 
practical to be used as the probe material, a Pt probe was adopted, which served the same 192 
role as that of the bottom Pt electrode of a standard memristor we used. To maintain the 193 
material stack of a standard memristor, the customized memristor has a reversed structure. 194 
b) The current readings by 0.1V voltage before (red) and after (blue) a denoising process 195 
by a sub-threshold RESET voltage. c) The current readings by 0.1V voltage before (red) 196 
and after (blue) a denoising process by a sub-threshold SET voltage. d) Conductance map 197 
measured by C-AFM scanning corresponding to the before-denoising state (red) in b).  e) 198 
Conductance map corresponding to the after-denoising state (blue) in b). f) Conductance 199 
map measured by C-AFM scanning corresponding to the before-denoising state (red) in c). 200 
g) Conductance map corresponding to the after-denoising state (blue) in c). All scale bar: 201 
10 nm. 202 

 203 
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 To understand the mechanism of denoising, we studied the microscopic origin of 204 
RTNs in memristors. A critical question is whether RTN is induced by an ‘atomic effect’ 205 
or ‘electronic effect’. As shown in Fig. S13, incomplete channels are consistently 206 
observed in a C-AFM scanning whenever RTN is observed. Once incomplete channels 207 
are eliminated, RTN disappears. Such result indicates that RTN is a phenomenon in 208 
company with incomplete channels rather than being induced by the transition process 209 
(via atomic motion) between incomplete and complete channels. Previously, an insightful 210 
theoretical framework on the electronic RTN mechanism is established in ref. [33, 34, 44-211 
46], where the electrical conduction of the incomplete conduction channels is frequently 212 
blocked by Coulomb repulsion when nearby defects trap electrons and become negatively 213 
charged. RTNs based on atomic motion induced by external voltage stimuli are random 214 
and irregular in amplitude even driven by regular voltage pulses. [47] 215 

To identify the type of defect that traps/detraps charges, we measured memristor RTN at 216 
different voltages and performed theoretical analysis as shown in SI-14. First principle 217 
calculations suggest that the defects might be oxygen interstitials which feature large 218 
relaxation energies and thus long trapping/detrapping times, consistent with measurement 219 
results shown in SI-14 and Fig. S15. It was also reported in [44] that charge 220 
trapping/detrapping at oxygen interstitials may be responsible for RTN in oxide 221 
memristors. The strongly non-equilibrium condition during device programming likely  222 
drives oxygen ions from conduction channels into their surrounding regions (see in ref. 223 
[48] and Fig. S16), leading to oxygen interstitial defects and providing a type of 224 
trapping/detrapping source among other possibilities. By further analyzing the 225 
relationship between RTN characteristic time and the reading voltage amplitude, we 226 
propose that ‘electronic effect’ rather than ‘atomic effect’ induced RTN dominates in our 227 
device, as shown in SI-17.  228 

 229 

Fig. 3 Trapped-charge-induced conductance change in incomplete conduction 230 
channels. (a) The schematic where the RTN-responsible defect (orange) is 1 nm away from 231 
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an island-like conduction channel (blue). The channel is formed by a conductive phase 232 
region (phase Ⅱ) and the phase boundary region (PB). (b) Transport electron wave function 233 
corresponding to (a). z denotes the position of the channel along the electron transport 234 
direction (from -3nm to 3nm), and n(z) shows the normalized integration of the transport 235 
electron wave function on the plane perpendicular to the z direction, which indicates the 236 
electrical conduction at each z position. The black and red curves are ݊ሺݖሻ when the carrier 237 
density in the channel is 5 × 10ଵ଼  or 10ଵଽ cm-3 with one electron trapped at the defect, 238 
respectively, and the blue line is ݊ሺݖሻ with no electron trapped. (c) The schematic where 239 
two defects (orange) are away from a channel that is attached to the main conduction 240 
channel. The PB region is 3 nm in width in this case. (d) Transport electron wave function 241 
corresponding to (c). The red/blue lines represent ݊ሺݖሻ when one electron is trapped in the 242 
defect 0.8/1 nm away from the channel, respectively, and the green/black lines are ݊ሺݖሻ 243 
when both/none defects trap electrons. The carrier density in the channel for the simulation 244 
is 5 × 10ଵ଼ cm-3. 245 

 246 

The incomplete channel blocking process was modeled as shown in Fig. 3. 247 
According to C-AFM experiments, the device region can be classified into three phases: 248 
the non-conductive phase (phase Ⅰ), the conductive phase (phase Ⅱ), and the region 249 
between them, which features an intermediate conductance (phase boundary, PB). During 250 
the programming or denoising operations, these PB regions form or disappear, 251 
accompanying the observation of RTN and its annihilation, indicating that some RTN-252 
inducing incomplete channels are located in these PB regions. Fig. 3a shows the schematic 253 
of the case where a defect is trapping/detrapping an electron 1 nm away from an island-254 
like incomplete channel whose width is 1 nm. The transport electron wave functions 255 ߰(ݔ, ,ݕ  with / without a trapped charge are plotted in Fig. 3b by the probability density 256 (ݖ
at each cross-section of the channel ݊(ݖ) = ∫ ,ݕ,ݔ)߰|  z is the axis along the 257) ݕ݀ݔଶ݀|(ݖ
channel). This reflects what proportion of the injected electron propagates through the 258 
channel. To mimic the case where there are different percentages of phase Ⅱ, two charge 259 
carrier densities (averaged over Phase Ⅰ  and Phase Ⅱ  regions) were used for the 260 
simulations. The results suggest that the incomplete channel is fully blocked at a lower 261 
charge carrier density (lightly doped with oxygen vacancies, corresponding to less phase 262 
Ⅱ) and partially blocked at a higher charge carrier density (heavily doped, corresponding 263 
to more phase Ⅱ). Fig. 3c corresponds to another common case as observed in C-AFM, 264 
where the incomplete channel is attached to the main channel with multiple charge traps 265 
around. Fig. 3d shows that the trapped charge close to the incomplete channel tends to have 266 
a bigger impact on conductance than the one far away. It is also observed that the impact 267 
of multiple charge traps can enhance each other and lead to a multiplied change of 268 
conductance as the thick PB region is completely blocked in this case. Compared to 269 
previous models using classical carrier drift-diffusion equations, we employ quantum 270 
transport formalism to simulate the influence of charged defects on channel conductivity, 271 
confirming that the Coulomb blockade mechanism applies to nanoscale channels in our 272 
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case. It can be further inferred that two or more (N) charge trapping defects can lead to 273 
complex RTN patterns with a maximum of 2N levels, which is consistent with previous 274 
reports. [45, 46]       275 

 276 

 277 

Fig 4. Mechanism of denoising using sub-threshold voltage, identified through C-278 
AFM measurement and phase-field theory simulation. From left to right, the 279 
conduction channel is first denoised by a 0.2 V voltage and then RESET with a 0.5 V 280 
voltage twice. The dynamics of conductive and insulating phase fields are simulated based 281 
on the phase transition energy pathway from the first principle calculation. We hypothesize 282 
that the conductive and insulating phases are the orthorhombic phase with a high 283 
concentration of oxygen vacancy and the monoclinic phase without oxygen vacancy, 284 
respectively. The denoising process is captured by the phase-field relaxation, where the 285 
island of the incomplete channel disappears, and the phase boundary sharpens. 286 

 287 

 As the RTN originates from the incomplete conduction channels, the denoising 288 
process is associated with the disappearance of both the island and the blurry boundary of 289 
the main channel. The reason why a ‘sub-threshold’ voltage that is much smaller than the 290 
SET or RSET voltages, can decrease the RTN is explained by the phase-field relaxation, 291 
as shown in Fig. 4. For this specific material system, the relatively conductive and 292 
insulating phases ( phase Ⅱ  and phase Ⅰ  in Fig. 3) are the orthorhombic (o) and 293 
monoclinic (m) phases of HfO2, as the o phase is stabilized through a high concentration 294 
of oxygen vacancy.[49] The denoising voltage provides a driven force for the phase 295 
relaxation by both the temperature effects and the current-induced force, enabling the 296 
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system to relax towards an equilibrium state. The free energy F and equation of motion of 297 
the system are as follows: 298 Δܨ = න൤Δ ଴݂(ߟ) + ଶ൨(ߟ∇)ܭ12 ߙ1 299 ܸ݀ ݐ߲(ݎ)ߟ߲ = ߙ− (ݎ)ߟሿ߲ߟሾܨΔߜ = −߲Δ ଴݂߲ߟ +  300 ߟଶ∇ܭ

Where ߟ is the order parameter (here use the monoclinic angle) describing the transition 301 
from m to o phase, Δ ଴݂ is the free energy density for a system with a certain order parameter, 302 
and K is the gradient energy parameter. The energy density Δ ଴݂ is derived from the first 303 
principle calculations. Using the phase-field simulation, we derive a similar behavior as 304 
observed by the C-AFM: after denoising, the island disappears, and the boundary of the 305 
main channel sharpens. The disappearance and sharpening of the boundary are driven by 306 
the energy barrier between the two phases, where the high-energy boundary region is 307 
reduced. During the RESET process, the conduction channel shrinks in size, and its 308 
conductivity also decreases, as oxygen vacancy is drifted away from the switching-active 309 
region by the strong voltage. Intuitively, the incomplete conduction channels, namely the 310 
islands and boundary regions in a freshly switched state, are ‘frozen’ in a highly non-311 
equilibrium state because they are always formed at the end of the SET or RESET voltage 312 
pulse and do not have a chance (sufficient time) to reach the same stable state as the more 313 
‘mature’ complete channel region formed earlier. Therefore, they are prone to change 314 
(either being completed or annihilated), which can be activated by a sub-threshold voltage. 315 
On the other hand, different from the complete main conduction channel, electron transport 316 
of incomplete channels can be readily blocked by trapped charges as shown in Fig. 3, 317 
making them the main source of RTN noises. The situation is more severe for a 318 
conductance state obtained by a SET switching process as conduction channel creation and 319 
growth are a positive feedback process, which happens faster and faster and leaves no time 320 
for maturation of the newly formed conduction channels before the end of each switching 321 
pulse. In the denoising process, there is no need of migration, annihilation or creation of 322 
trap sites (e.g., interstitial oxygen defects). Although the specific phases involved may be 323 
different for different oxide systems, the approach used here and the conclusions drawn are 324 
generally applicable.   325 

 In summary, we have achieved 2,048 conductance levels in a memristor, over an 326 
order of magnitude higher than previous demonstrations and the highest among all known 327 
memories. Importantly, these were obtained in memristors of a fully integrated chip 328 
fabricated in a commercial foundry. We have revealed the root cause of conductance 329 
fluctuations in memristors through experimental and theoretical studies and devised an 330 
electrical operation protocol to denoise the memristors for high precision operations. The 331 
denoising process has been successfully operated on the entire 256 × 256 crossbar using 332 
the on-chip driving circuitry designed for regular reading and programming without any 333 
extra hardware overhead. These results not only provide critical insights into the 334 
microscopic picture of the memristive switching process but also represent a leap forward 335 
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in commercializing memristor technology as hardware accelerators of machine learning 336 
and artificial intelligence for edge applications. In addition, such analog memristors may 337 
also enable electronic circuits capable of growing for the recently proposed mortal 338 
computation in the future [30].     339 
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1. Memristor fabrication: 499 

Standard memristor integrated with CMOS driving circuits: 500 

The CMOS part was fabricated in a standard 180 nm process line in a commercial 501 
semiconductor manufacturer with exposed tungsten via at the top. Memristors were 502 
processed in the same process line with customized materials / recipes. After tungsten via 503 
surface oxide cleaning, Pt bottom electrodes were sputtered and patterned on the vias. 504 
Memristor holes were defined by etching through a patterned SiO2 isolation layer (~ 505 
100nm) and stops at the surface of Pt. Resistive switching layer (HfO2/Al2O3) and top 506 
electrode (Ti/Ta) were filled into the etched holes sequentially, where the resistive 507 
switching layers were fabricated by atomic layer deposition and the top electrode was 508 
fabricated by sputter. Finally, standard aluminum interconnect was made to connect the 509 
top electrode to bond pads for electrical testing.  510 

Customized memristor for C-AFM measurement 511 

The customized device was fabricated in a university cleanroom on a Si wafer covered by 512 
thermally oxidized SiO2 (~100nm). The bottom electrode (Ta/Ti) and resistive switching 513 
layers (Al2O3/HfO2) were deposited by an AJA sputtering system. The four layers were 514 
fabricated continuously in the high-vacuum chamber to avoid oxidation of Ta and Ti. The 515 
chip was then patterned and etched to expose part of the bottom electrode. After surface 516 
oxide cleaning, Pt was deposited onto the exposed bottom electrode to prevent the 517 
exposed bottom electrode from oxidation and serve as the ground contact during C-AFM 518 
measurement. 519 

 520 

2. Electrical measurements:  521 

Single device measurement  522 

Electrical measurement of the standard memristor (foundry made complete memristor 523 
with top electrode) was performed on a Keysight B1500A semiconductor device analyzer 524 
equipped with a B1530A waveform generator/fast measurement unit (WGFMU). To 525 
realize the algorithm as shown in Fig. S4, we built a program using C# to control the 526 
electrical operations of B1500A.  527 

Array measurement 528 

The schematic of 1-transistor-1-memristor array with on-chip driving circuits and the 529 
testing setup is shown in Supplementary information Fig. S7 and Fig. S8. 530 

C-AFM measurement 531 

The C-AFM was performed by the Bruker Dimension Icon system with a conductive 532 
probe (SCM-PIT-V2, 0.01-0.025 Ohm-cm of resistivity) under the contact mode. When 533 
performing electrical operations including SET, RESET and read, C-AFM probe was at a 534 
fixed position. The conduction channel was first formed with a voltage of 4V. During the 535 
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in-situ SET/RESET and reading operations for the chosen conduction channel, the 536 
setpoint was set at a relatively large number (~80 nm) to increase the strength of the 537 
pressing force to make a large contact area between tip and sample surface. The setpoint 538 
is a measure of the force applied by the tip to the sample. In contact mode, it is a certain 539 
deflection of the cantilever. This deflection is maintained by the feedback electronics, so 540 
that the force between the tip and sample is kept constant. When performing the 541 
conduction channel morphology mapping, the probe scanned a 150 nm by 150 nm region 542 
surrounding the conductive channel. During this measurement, the set point was set to a 543 
small value (~10 nm) for high resolution. The relationship between the contact radius and 544 
set point can be found in Fig. S11. 545 

 546 

3. First principle calculation 547 

The oxygen interstitial defects’ atomic and electronic structure are calculated by the 548 
density functional theory (DFT) with the projector augmented wave (PAW) method [1] 549 
implemented in Vienna ab initio simulation package (VASP) [2]. The generalized 550 
gradient approximation (GGA) is employed with the Perdew–Burke–Ernzerhof (PBE) 551 
exchange-correlation function [3]. The cut-off energy is set as 400 eV, and the k-point 552 
mesh is sampled by the Monkhorst-Pack method [4] with a separation of 0.2 rad/Å. The 553 
atomic structure of the oxygen interstitial defect is constructed by including one oxygen 554 
atom in the 2 × 2 × 2 supercell of the m-phase HfO2 crystal. The initial position of the 555 
included oxygen atom is set according to ref. [5], and the atomic configuration is fully 556 
relaxed. The force on each atom converges to 0.01 eV/Å, and the electronic energy 557 
converges to 10-6 eV. The atomic structure, charge distribution of the trap-state, and 558 
electronic band structure in Fig. 3, Fig. S14, and Fig. S15 are then extracted from DFT 559 
calculation results. 560 

 561 

Simulation the impact of trapped charge to conductive channel: 562 

We simulate the Coulomb blockade effect through the quantum transport of conduction 563 
electron in a cuboid conduction channel, as shown in Fig. 3. The length of the conductive 564 
channel is set as L = 6 nm to match the channel length in device. The motion of carriers 565 
in the conductive channel is calculated through the effective mass approximation, and the 566 
Coulomb blockade effect of the RTN-responsible defect is simulated by a screened 567 
Coulomb potential ܸ(ݎԦ) acting on the carriers. Assuming the electric conductance outside 568 
the channel is negligible, the quantum transport of electron in the channel can be 569 
described by the following equations:  570 
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 571 

Where ݉∗ is the effective mass of the conductive band of HfO2, set as 0.11݉௘ according 572 
to [6]. ܧ is the eigen energy of the transport electron, set as 0.2 eV above the conduction 573 
band minimum ܧ௖ estimated by the magnitude of bias voltage of about 0.2 V. The 574 
Coulomb potential is the summation of the RTN-responsible defect located at  ݎԦ௜, where 575 ߳௥ is the relative dielectric constant (set as 16 according to [7]) and ߣ஽ is the Debye 576 

screening length evaluated as ߣ஽ = ටఢబఢೝ௞ಳ்௡௘మ  (the temperature T is set as 300 K). 577 

The transport wavefunction with electrons injected from ݔ = 0 with unitary amplitude is 578 
then calculated with the following boundary conditions: 579 

ەۖۖ
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 580 

The electron transport is then shown by the probability density function of the electron 581 
wave function at each cross section of the channel ݊(ݖ) = ,ݕ,ݔ)߰|∫  reflecting 582 ,ݕ݀ݔଶ݀|(ݖ
what proportion of the injected electron propagates through the channel. If n(L) ≃ 0, the 583 
electron transport is completely blocked; if n(L) ≃ 1, the electron goes through the 584 
channel with negligible barrier. Three parameters control the Coulomb blockade: the size 585 
of channel d, the carrier density n, and the distance of the RTN-responsible defect to the 586 
channel. These factors lead to the different degrees of Coulomb blockade to the isolated 587 
island and main channel, as discussed in the results part.  588 

 589 
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