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Thousands of conductance levels in memristors monolithically integrated on CMOS
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Neural networks based on memristive devices [1-3] have shown potential in substantially
improving throughput and energy efficiency for machine learning [4, 5] and artificial
intelligence [6], especially in edge applications. [7-21] Because training a neural network
model from scratch is very costly in terms of hardware resources, time, and energy, it is
impractical to do it individually on billions of memristive neural networks distributed at
the edge. A practical approach would be to download the synaptic weights obtained from
the cloud training and program them directly into memristors for the commercialization of
edge applications (Fig. 1a). Some post-tuning in memristor conductance to adapt local
situations may follow afterward or during applications. Therefore, a critical requirement
on memristors for neural network applications is a high-precision programming ability to
guarantee uniform and accurate performance across a massive number of memristive
networks. [22-28] That translates into the requirement of many distinguishable
conductance levels on each memristive device, not just lab-made devices but more
importantly, devices fabricated in foundries. Analog memristors with many conductance
states also benefit other applications, such as neural network training, scientific computing,
and even mortal computing. [25, 29, 30] Here we report over 2048 conductance levels, the
largest number among all types of memories ever reported, achieved with memristors in
fully integrated chips with 256 x 256 memristor arrays monolithically integrated on CMOS
circuits in a standard foundry. We have unearthed the underlying physics that previously
limited the number of achievable conductance levels in memristors and developed
electrical operation protocols to circumvent such limitations. These results reveal insights
into the fundamental understanding of the microscopic picture of memristive switching and
provide approaches to enable high-precision memristors for various applications.

Memristive switching devices are known for their relatively large dynamical range
of conductance, which can potentially lead to a large number of discrete conductance levels.
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Different approaches have been developed to accurately program the devices. [31]
However, the highest conductance number reported to date has been no more than two
hundred.[22, 32] There are no forbidden conductance states within the dynamical range of
the device since a memristor is typically analog and can, in principle, achieve an infinite
number of conductance levels. However, the fluctuation commonly observed at each
conductance level (Fig.1e) limits the number of distinguishable levels achievable within a
specific conductance range. Interestingly, we found that such fluctuation can be
substantially suppressed, as shown in Figs. le and 1f, by applying appropriate electrical
stimuli (termed as ‘denoising’ processes). Importantly, such denoising process does not
require any extra circuitry beyond the normal read and program circuits. We incorporated
the denoising process into device tuning algorithms and successfully programmed a
commercial-semiconductor-manufacturer-made memristor (Figs. 1b-d) into 2048
conductance levels (Fig. 1g), corresponding to 11-bit resolution. Conductive atomic force
microscopy (C-AFM) was employed to visualize the evolution of conduction channels
during programming and denoising processes. We discovered that a normal switching
operation (SET or RSET) always ends up with some incomplete conduction channels,
which appear as islands or blurry edges along the main conduction channel and are less
stable than the main conduction channel. First principle calculations suggest that these
incomplete channels are unstable phase boundaries with dopant levels in a range that is
sensitive to trapped charges, contributing to the large fluctuations of each conductance
level. We revealed, experimentally and theoretically, that an appropriate voltage in the
denoising process either annihilates (weakens) or completes (enhances) these incomplete
channels, resulting in a great reduction in fluctuation and a significant increase in
memristor precision. The observed phenomena generally exist in memristive switching
process with localized conduction channels, and the insights can be applied to most
memristive material systems for scientific understanding and technological applications.

Memristors used in this study were fabricated on an 8-inch wafer by a commercial
semiconductor manufacturer (Fig. 1b). The fabrication details are given in the Method
section. Cross-section views of a memristor are shown in Fig. 1c, and the critical resistive
switching layers are zoomed-in in Fig. 1d. The electron energy loss spectroscopy (EELS)
elemental image is shown in Fig. S1. The device consisting of a Pt bottom electrode, a
Ti/Ta top electrode, and a HfO2/Al203 bilayer, was fabricated in a 240 nm via above the
CMOS peripheral circuitry. The Al203 and Ti layers are designed to be so thin (<1nm) that
they appear as a mixed layer rather than two separate continuous layers. When the bottom
electrode is grounded, the device can be switched by applying either a sufficiently positive
voltage (for SET) or a negative voltage (for RESET) to the top electrode. The fluctuation
level (characterized by the standard deviation of a measured current under a constant
voltage) after a SET or a RESET operation is distributed in a wide range (Fig. S2). The
result shows that an as-programmed state typically has a large fluctuation, which
significantly limits the applications of memristors but unfortunately exists in memristive
materials generally. [33-36] The data also reveals that a SET operation tends to induce a
larger fluctuation in an as-programmed state than a RESET operation. The main
contribution of such reading fluctuation is random telegraph noise (RTN) which features
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step-like transitions between two or more current levels at random time points under a
constant reading voltage. Such RTNs generally exist in memristors. Even fluctuations that
are seemingly not step-like may in fact be made of RTN noise, [37] which can be revealed
only when the measurement sampling rate is higher than the RTN frequency, as shown in
Fig. S3. It has been demonstrated previously by simulations that memristor RTNs may be
caused by charges occasionally trapping into certain defects and blocking conduction
channels via coulomb screening. [34, 38] However, experiments that directly link trapped
charges, conduction channel(s), and RTNs are missing, let alone how to remove RTNs.
Although a critical issue for memristors in general, it has been unclear how to reduce RTNs
in memristors. They are critical not only for understanding the physical origin of memristor
RTNs but also for revealing the entire microscopic picture of memristive switching and
providing possible solutions to high-precision memristors.

We discovered that the fluctuation level could be greatly reduced by applying small
voltage pulses with optimized amplitude and width. One example is given in Fig. le, where
an as-programmed state with a considerable fluctuation (blue) was stabilized into a low-
fluctuation state (red) by denoising pulses. Using a three-level feedback algorithm devised
to denoise, as detailed in Fig. S4, a single memristor was tuned into 2,048 conductance
states between 50 and 4,144 uS, with a 2 uS interval between every two neighboring states.
All states were read by a voltage sweeping from 0 to 0.2V, as shown in Fig. 1g. The
zoomed-in view of the current-voltage curves is given as the lower inset to Fig. 1g, showing
well-distinguishable states and the superb linearity of each state. Three nearest neighboring
states after denoising are shown in Fig. 1f, where a constant 0.2V voltage reads each state
for 1,000 seconds. The current fluctuation of every state is within 0.4 pA, corresponding
to 2 uS in conductance. No significant overlap was observed in the neighboring states. The
zoom-in view of the measurement result at high conductance states is shown in Fig. S5.
Memristors from multiple chips of an 8-inch wafer were measured, demonstrating a great
programming uniformity across the entire wafer, as shown in Fig. S6. We further adopted
the denoising process in the array-level programming of an entire 256 X 256 array using
the on-chip circuitry. The experimentally programmed patterns are shown both in Fig. 1g
as an upper inset and in Fig. S7. For these demonstrations using the on-chip circuitry, the
programming precision was limited by the precision of the on-chip Analog/Digital
conversion peripheral circuitry, which was 6-bit (64 levels) in this design. The testing setup
and the schematic of the driving circuits are shown in Fig. S8. The extra system cost caused
by the denoising process is estimated in SI-9, showing that due to a relatively smaller
voltage needed for denoising than for a typical SET/RESET programming, the extra energy
consumption is only a small fraction of the energy for programming. Further studies show
that the denoising operation can also reduce RTNs in other material stacks, e.g., a TaOx-
based memristor, as shown in Fig. S10. Since reading noise has been observed in various
resistive switching materials, the above results show that the denoising step is an important,
or even essential, process for the training of memristive neural networks as unstable
readings lead to incorrect outputs from the neural networks and cannot be compensated by
adaptive in-situ training.
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Fig. 1 High precision memristor for neuromorphic computing. a) The most likely
scheme of the large-scale application of memristive neural networks for edge computing.
Neural network training is performed in the cloud. The obtained weights are downloaded
and accurately programmed into a massive number of memristor arrays distributed at the
edge, which imposes high-precision requirements on memristive devices. b) The photo of
an 8-inch wafer with memristors fabricated by a commercial semiconductor manufacturer.
c) HR-TEM image of the cross-section view of a memristor. Pt and Ta serve as bottom and
top electrodes, respectively. Scale bar (inset): 1 pm (100 nm). d) The zoomed-in image of
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the memristor material stack. Scale bar: 5 nm. e¢) The as-programmed (blue) and after-
denoising (red) currents of a memristor are read by a constant 0.2V voltage. The denoising
process eliminated the large amplitude random telegraph noise (RTN) observed in the as-
programmed state (see method). f) Zoomed-in view of three nearest neighboring states
after denoising. The current of each state was read by a constant 0.2V voltage. No large-
amplitude RTN was observed, and all the states can be clearly distinguished. g) An
individual memristor on the chip was tuned into 2048 resistance levels by a high-resolution
off-chip driving circuitry, and each resistance level was read by a DC voltage sweeping
from 0 to 0.2V. The target resistance was set from 50 puS to 4,144 uS with 2 uS interval
between neighboring levels. All readings at 0.2V are less than 1 pS from the target
conductance. The lower inset shows a zoomed-in view of the resistance levels. The upper
inset shows experimental results of an entire 256 x 256 array programmed by its 6-bit on-
chip circuitry into sixty-four 32 x 32 blocks, and each block is programmed into one of the
64 conductance levels. Each of the 256 X 256 memristors has been previously switched
over million cycles, demonstrating the high endurance and robustness of the devices.

Deciphering the underlying reason for the above discoveries is essential for offering
a reliable solution to the critical technology problem and understanding the dynamic
process of memristive switching. Visualizing the evolution of conduction channels during
electrical operations is informative for this purpose. [39-42] We used C-AFM measurement
to precisely locate the active conduction channel(s) and scan all the surrounding regions.
The details of the measurement can be found in Method and Fig. S11. A customized device
was fabricated for the C-AFM measurements. The schematic of its structure is shown in
Fig. 2a. To use the Pt-coated C-AFM tip as the top electrode, the device was designed to
have a reversed structure of the standard device shown in Fig. 1d. By grounding the bottom
electrode and applying a voltage to the top electrode, the device can be operated as our
standard device with opposite voltage polarities, i.e., a positive voltage tends to RESET
the device, and a negative voltage tends to SET the device. Denoising operations were also
successfully performed by C-AFM, as shown in Fig. 2b and Fig. 2c. The conductance
scanning results before and after denoising corresponding to the reading results of Fig. 2b
(2¢) are shown in Fig. 2d (2f) and Fig. 2e (2g), respectively. Comparing the conductance
maps in Fig. 2d and Fig. 2e, it is observed that the main part of the conduction channel (the
‘complete’ channel) remains nearly the same while the positive denoising voltage
annihilates an island-like channel (the ‘incomplete’ channel). In contrast, the negative
denoising voltage (Fig. 2f and Fig. 2g) reduces the noise by removing the current dips in
Fig. 2c. These results indicate that the conductance of an RTN-rich state can be divided
into two parts: the base conductance provided by complete channels and the RTN part
provided by incomplete channels. These incomplete channels were formed together with
complete channels but are smaller in size. Such incomplete channels were also observed in
SrTiO3-based resistive switching devices. [43] A memristor can be denoised by
eliminating incomplete channels (either removing or completing them). Incomplete
channels are more sensitive to voltage stimuli when compared to complete channels, which
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makes it possible to tune the former without affecting the latter by using appropriate
electrical stimuli. Further studies suggest that such a mechanism is general and can be
performed in other material stacks (Fig. S12) as well. It should be noted that the seemingly
isolated island(s) may or may not be electrically connected with the main conduction
channel beneath the surface, which, however, does not change the denoising mechanisms
or operation protocols.
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Fig. 2 Direct observation of the evolution of conduction channels in the denoising
process through conductive atomic force microscope (C-AFM). a) A schematic of the
customized memristor structure and C-AFM testing setup. C-AFM probe played the role
of the top electrode in the customized device. Since Ta is easily oxidized in air and not
practical to be used as the probe material, a Pt probe was adopted, which served the same
role as that of the bottom Pt electrode of a standard memristor we used. To maintain the
material stack of a standard memristor, the customized memristor has a reversed structure.
b) The current readings by 0.1V voltage before (red) and after (blue) a denoising process
by a sub-threshold RESET voltage. c) The current readings by 0.1V voltage before (red)
and after (blue) a denoising process by a sub-threshold SET voltage. d) Conductance map
measured by C-AFM scanning corresponding to the before-denoising state (red) in b). e)
Conductance map corresponding to the after-denoising state (blue) in b). f) Conductance
map measured by C-AFM scanning corresponding to the before-denoising state (red) in c).
g) Conductance map corresponding to the after-denoising state (blue) in c¢). All scale bar:
10 nm.
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To understand the mechanism of denoising, we studied the microscopic origin of
RTNs in memristors. A critical question is whether RTN is induced by an ‘atomic effect’
or ‘electronic effect’. As shown in Fig. S13, incomplete channels are consistently
observed in a C-AFM scanning whenever RTN is observed. Once incomplete channels
are eliminated, RTN disappears. Such result indicates that RTN is a phenomenon in
company with incomplete channels rather than being induced by the transition process
(via atomic motion) between incomplete and complete channels. Previously, an insightful
theoretical framework on the electronic RTN mechanism is established in ref. [33, 34, 44-
46], where the electrical conduction of the incomplete conduction channels is frequently
blocked by Coulomb repulsion when nearby defects trap electrons and become negatively
charged. RTNs based on atomic motion induced by external voltage stimuli are random
and irregular in amplitude even driven by regular voltage pulses. [47]

To identify the type of defect that traps/detraps charges, we measured memristor RTN at
different voltages and performed theoretical analysis as shown in SI-14. First principle
calculations suggest that the defects might be oxygen interstitials which feature large
relaxation energies and thus long trapping/detrapping times, consistent with measurement
results shown in SI-14 and Fig. S15. It was also reported in [44] that charge
trapping/detrapping at oxygen interstitials may be responsible for RTN in oxide
memristors. The strongly non-equilibrium condition during device programming likely
drives oxygen ions from conduction channels into their surrounding regions (see in ref.
[48] and Fig. S16), leading to oxygen interstitial defects and providing a type of
trapping/detrapping source among other possibilities. By further analyzing the
relationship between RTN characteristic time and the reading voltage amplitude, we
propose that ‘electronic effect’ rather than ‘atomic effect’ induced RTN dominates in our
device, as shown in SI-17.
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Fig. 3 Trapped-charge-induced conductance change in incomplete conduction
channels. (a) The schematic where the RTN-responsible defect (orange) is 1 nm away from
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an island-like conduction channel (blue). The channel is formed by a conductive phase
region (phase II) and the phase boundary region (PB). (b) Transport electron wave function
corresponding to (a). z denotes the position of the channel along the electron transport
direction (from -3nm to 3nm), and n(z) shows the normalized integration of the transport
electron wave function on the plane perpendicular to the z direction, which indicates the
electrical conduction at each z position. The black and red curves are n(z) when the carrier
density in the channel is 5 x 108 or 10!° cm™ with one electron trapped at the defect,
respectively, and the blue line is n(z) with no electron trapped. (c¢) The schematic where
two defects (orange) are away from a channel that is attached to the main conduction
channel. The PB region is 3 nm in width in this case. (d) Transport electron wave function
corresponding to (c). The red/blue lines represent n(z) when one electron is trapped in the
defect 0.8/1 nm away from the channel, respectively, and the green/black lines are n(z)
when both/none defects trap electrons. The carrier density in the channel for the simulation
is 5 x 108 cm?,

The incomplete channel blocking process was modeled as shown in Fig. 3.
According to C-AFM experiments, the device region can be classified into three phases:
the non-conductive phase (phase I ), the conductive phase (phase II), and the region
between them, which features an intermediate conductance (phase boundary, PB). During
the programming or denoising operations, these PB regions form or disappear,
accompanying the observation of RTN and its annihilation, indicating that some RTN-
inducing incomplete channels are located in these PB regions. Fig. 3a shows the schematic
of the case where a defect is trapping/detrapping an electron 1 nm away from an island-
like incomplete channel whose width is 1 nm. The transport electron wave functions
Y(x,y,z) with / without a trapped charge are plotted in Fig. 3b by the probability density
at each cross-section of the channel n(z) = [ | (x,y, z)|?dxdy (z is the axis along the
channel). This reflects what proportion of the injected electron propagates through the
channel. To mimic the case where there are different percentages of phase II, two charge
carrier densities (averaged over Phase [ and Phase II regions) were used for the
simulations. The results suggest that the incomplete channel is fully blocked at a lower
charge carrier density (lightly doped with oxygen vacancies, corresponding to less phase
II') and partially blocked at a higher charge carrier density (heavily doped, corresponding
to more phase II). Fig. 3¢ corresponds to another common case as observed in C-AFM,
where the incomplete channel is attached to the main channel with multiple charge traps
around. Fig. 3d shows that the trapped charge close to the incomplete channel tends to have
a bigger impact on conductance than the one far away. It is also observed that the impact
of multiple charge traps can enhance each other and lead to a multiplied change of
conductance as the thick PB region is completely blocked in this case. Compared to
previous models using classical carrier drift-diffusion equations, we employ quantum
transport formalism to simulate the influence of charged defects on channel conductivity,
confirming that the Coulomb blockade mechanism applies to nanoscale channels in our
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case. It can be further inferred that two or more (N) charge trapping defects can lead to
complex RTN patterns with a maximum of 2N levels, which is consistent with previous
reports. [45, 46]
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Fig 4. Mechanism of denoising using sub-threshold voltage, identified through C-
AFM measurement and phase-field theory simulation. From left to right, the
conduction channel is first denoised by a 0.2 V voltage and then RESET with a 0.5 V
voltage twice. The dynamics of conductive and insulating phase fields are simulated based
on the phase transition energy pathway from the first principle calculation. We hypothesize
that the conductive and insulating phases are the orthorhombic phase with a high
concentration of oxygen vacancy and the monoclinic phase without oxygen vacancy,

respectively. The denoising process is captured by the phase-field relaxation, where the
island of the incomplete channel disappears, and the phase boundary sharpens.

C-AFM scanning

1]

Phase-field simulation

As the RTN originates from the incomplete conduction channels, the denoising
process is associated with the disappearance of both the island and the blurry boundary of
the main channel. The reason why a ‘sub-threshold’ voltage that is much smaller than the
SET or RSET voltages, can decrease the RTN is explained by the phase-field relaxation,
as shown in Fig. 4. For this specific material system, the relatively conductive and
insulating phases ( phase II and phase 1 in Fig. 3) are the orthorhombic (o) and
monoclinic (m) phases of HfO2, as the o phase is stabilized through a high concentration
of oxygen vacancy.[49] The denoising voltage provides a driven force for the phase
relaxation by both the temperature effects and the current-induced force, enabling the
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system to relax towards an equilibrium state. The free energy F and equation of motion of
the system are as follows:

AF = j [Afo(n) +%K(Vn)2] v

1on(r) _ SAF[n] _ 9Af,

a ot a(’)n(r)  0n

+ KV?n

Where 7 is the order parameter (here use the monoclinic angle) describing the transition
from m to o phase, Af, is the free energy density for a system with a certain order parameter,
and K is the gradient energy parameter. The energy density Af; is derived from the first
principle calculations. Using the phase-field simulation, we derive a similar behavior as
observed by the C-AFM: after denoising, the island disappears, and the boundary of the
main channel sharpens. The disappearance and sharpening of the boundary are driven by
the energy barrier between the two phases, where the high-energy boundary region is
reduced. During the RESET process, the conduction channel shrinks in size, and its
conductivity also decreases, as oxygen vacancy is drifted away from the switching-active
region by the strong voltage. Intuitively, the incomplete conduction channels, namely the
islands and boundary regions in a freshly switched state, are ‘frozen’ in a highly non-
equilibrium state because they are always formed at the end of the SET or RESET voltage
pulse and do not have a chance (sufficient time) to reach the same stable state as the more
‘mature’ complete channel region formed earlier. Therefore, they are prone to change
(either being completed or annihilated), which can be activated by a sub-threshold voltage.
On the other hand, different from the complete main conduction channel, electron transport
of incomplete channels can be readily blocked by trapped charges as shown in Fig. 3,
making them the main source of RTN noises. The situation is more severe for a
conductance state obtained by a SET switching process as conduction channel creation and
growth are a positive feedback process, which happens faster and faster and leaves no time
for maturation of the newly formed conduction channels before the end of each switching
pulse. In the denoising process, there is no need of migration, annihilation or creation of
trap sites (e.g., interstitial oxygen defects). Although the specific phases involved may be
different for different oxide systems, the approach used here and the conclusions drawn are
generally applicable.

In summary, we have achieved 2,048 conductance levels in a memristor, over an
order of magnitude higher than previous demonstrations and the highest among all known
memories. Importantly, these were obtained in memristors of a fully integrated chip
fabricated in a commercial foundry. We have revealed the root cause of conductance
fluctuations in memristors through experimental and theoretical studies and devised an
electrical operation protocol to denoise the memristors for high precision operations. The
denoising process has been successfully operated on the entire 256 X 256 crossbar using
the on-chip driving circuitry designed for regular reading and programming without any
extra hardware overhead. These results not only provide critical insights into the
microscopic picture of the memristive switching process but also represent a leap forward

10
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in commercializing memristor technology as hardware accelerators of machine learning
and artificial intelligence for edge applications. In addition, such analog memristors may
also enable electronic circuits capable of growing for the recently proposed mortal
computation in the future [30].

Data availability

The data that support the findings of this study are available from the corresponding

authors upon reasonable request.

Code availability

The algorithm for memristor high precision programming has been presented in the
supplementary information. The code for physical modeling/simulations are available at

https://github.com/htang113/HfO2-memristor-denoise/tree/main.
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1. Memristor fabrication:
Standard memristor integrated with CMOS driving circuits:

The CMOS part was fabricated in a standard 180 nm process line in a commercial
semiconductor manufacturer with exposed tungsten via at the top. Memristors were
processed in the same process line with customized materials / recipes. After tungsten via
surface oxide cleaning, Pt bottom electrodes were sputtered and patterned on the vias.
Memristor holes were defined by etching through a patterned SiO: isolation layer (~
100nm) and stops at the surface of Pt. Resistive switching layer (HfO2/Al203) and top
electrode (Ti/Ta) were filled into the etched holes sequentially, where the resistive
switching layers were fabricated by atomic layer deposition and the top electrode was
fabricated by sputter. Finally, standard aluminum interconnect was made to connect the
top electrode to bond pads for electrical testing.

Customized memristor for C-AFM measurement

The customized device was fabricated in a university cleanroom on a Si wafer covered by
thermally oxidized SiO2 (~100nm). The bottom electrode (Ta/Ti) and resistive switching
layers (Al203/HfO2) were deposited by an AJA sputtering system. The four layers were
fabricated continuously in the high-vacuum chamber to avoid oxidation of Ta and Ti. The
chip was then patterned and etched to expose part of the bottom electrode. After surface
oxide cleaning, Pt was deposited onto the exposed bottom electrode to prevent the
exposed bottom electrode from oxidation and serve as the ground contact during C-AFM
measurement.

2. Electrical measurements:
Single device measurement

Electrical measurement of the standard memristor (foundry made complete memristor
with top electrode) was performed on a Keysight BIS00A semiconductor device analyzer
equipped with a BI530A waveform generator/fast measurement unit (WGFMU). To
realize the algorithm as shown in Fig. S4, we built a program using C# to control the
electrical operations of BIS00A.

Array measurement

The schematic of 1-transistor-1-memristor array with on-chip driving circuits and the
testing setup is shown in Supplementary information Fig. S7 and Fig. S8.

C-AFM measurement

The C-AFM was performed by the Bruker Dimension Icon system with a conductive
probe (SCM-PIT-V2, 0.01-0.025 Ohm-cm of resistivity) under the contact mode. When
performing electrical operations including SET, RESET and read, C-AFM probe was at a
fixed position. The conduction channel was first formed with a voltage of 4V. During the
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in-situ SET/RESET and reading operations for the chosen conduction channel, the
setpoint was set at a relatively large number (~80 nm) to increase the strength of the
pressing force to make a large contact area between tip and sample surface. The setpoint
is a measure of the force applied by the tip to the sample. In contact mode, it is a certain
deflection of the cantilever. This deflection is maintained by the feedback electronics, so
that the force between the tip and sample is kept constant. When performing the
conduction channel morphology mapping, the probe scanned a 150 nm by 150 nm region
surrounding the conductive channel. During this measurement, the set point was set to a
small value (~10 nm) for high resolution. The relationship between the contact radius and
set point can be found in Fig. S11.

3. First principle calculation

The oxygen interstitial defects’ atomic and electronic structure are calculated by the
density functional theory (DFT) with the projector augmented wave (PAW) method [1]
implemented in Vienna ab initio simulation package (VASP) [2]. The generalized
gradient approximation (GGA) is employed with the Perdew—Burke—Ernzerhof (PBE)
exchange-correlation function [3]. The cut-off energy is set as 400 eV, and the k-point
mesh is sampled by the Monkhorst-Pack method [4] with a separation of 0.2 rad/A. The
atomic structure of the oxygen interstitial defect is constructed by including one oxygen
atom in the 2 X 2 X 2 supercell of the m-phase HfO: crystal. The initial position of the
included oxygen atom is set according to ref. [5], and the atomic configuration is fully
relaxed. The force on each atom converges to 0.01 eV/A, and the electronic energy
converges to 107 eV. The atomic structure, charge distribution of the trap-state, and
electronic band structure in Fig. 3, Fig. S14, and Fig. S15 are then extracted from DFT
calculation results.

Simulation the impact of trapped charge to conductive channel:

We simulate the Coulomb blockade effect through the quantum transport of conduction
electron in a cuboid conduction channel, as shown in Fig. 3. The length of the conductive
channel is set as L = 6 nm to match the channel length in device. The motion of carriers
in the conductive channel is calculated through the effective mass approximation, and the
Coulomb blockade effect of the RTN-responsible defect is simulated by a screened
Coulomb potential V (7) acting on the carriers. Assuming the electric conductance outside
the channel is negligible, the quantum transport of electron in the channel can be
described by the following equations:
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Where m* is the effective mass of the conductive band of HfOz, set as 0.11m,, according
to [6]. E is the eigen energy of the transport electron, set as 0.2 eV above the conduction
band minimum E, estimated by the magnitude of bias voltage of about 0.2 V. The
Coulomb potential is the summation of the RTN-responsible defect located at 7;, where
€, 1s the relative dielectric constant (set as 16 according to [7]) and A is the Debye

screening length evaluated as Ap = ’% (the temperature 7 is set as 300 K).

The transport wavefunction with electrons injected from x = 0 with unitary amplitude is
then calculated with the following boundary conditions:
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The electron transport is then shown by the probability density function of the electron
wave function at each cross section of the channel n(z) = [|(x,y, z)|?dxdy, reflecting
what proportion of the injected electron propagates through the channel. If n(L) = 0, the
electron transport is completely blocked; if n(L) = 1, the electron goes through the
channel with negligible barrier. Three parameters control the Coulomb blockade: the size
of channel d, the carrier density #, and the distance of the RTN-responsible defect to the
channel. These factors lead to the different degrees of Coulomb blockade to the isolated
island and main channel, as discussed in the results part.
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