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1. Introduction
Neuromorphic computing (NC) is a 
promising computational framework 
for overcoming the processing speed 
and power efficiency bottlenecks of 
the classical von Neumann computing 
architecture in learning, recognition, opti-
mization, and classification applications. 
In terms of hardware, the key concept is 
to build a computing system that physi-
cally emulates the structure and working 
mechanism of mammalian brains. The 
fundamental building blocks for such 
systems are artificial synaptic and neu-
ronal devices with sufficient biologically 
plausible dynamics so that the physical 
processes associated with perception and 
learning can be reasonably replicated in 
artificial neural network (ANN) hardware. 
In such bio-inspired neural networks, 

neurons play the role of information integrator and processor. 
Synapses, which are the connection between neurons, transmit 
and store the processed information. Early NC systems are 
mainly based on conventional complementary metal-oxide-
semiconductor (CMOS) technology, such as the IBM TrueNorth 
chip, the Loihi chip by Intel, and the Tensor Processing Unit 
developed by Google.[1] However, CMOS-based artificial neu-
rons typically take tens of transistors to form a single spiking 
neuron with limited neuronal dynamics, which makes CMOS 
neuromorphic chips far from ideal in terms of scalability and 
energy efficiency.[2] Therefore, a number of emerging volatile 
switching materials and technologies beyond silicon CMOS 
were introduced to building more compact, efficient, and 
biologically plausible artificial synapses and neurons.[3] Non-
volatile memory devices such as resistive RAM (memristor),[4] 
phase change memory (PCM),[5] and spin-transfer torque RAM 
have been widely demonstrated as synaptic components in a 
neural network.[6] Arrays of these devices can implement the 
memory (storage and update of synaptic weight) and com-
puting (e.g., dot-product machine) functions of synapses, many 
types of synaptic plasticity, and have demonstrated a diversity of 
computing tasks ranging from multilayer perception networks, 
differential equation solvers, to convolutional neural networks 
for image recognition, etc.[7] In these demonstrations, synapse 
arrays typically serve as in-memory computing units and vector-
matrix-multiplication accelerators. The realization of the neu-
ronal functions, such as signal accumulation and activation 

Artificial neuronal devices are critical building blocks of neuromorphic com-
puting systems and currently the subject of intense research motivated by 
application needs from new computing technology and more realistic brain 
emulation. Researchers have proposed a range of device concepts that can 
mimic neuronal dynamics and functions. Although the switching physics and 
device structures of these artificial neurons are largely different, their behav-
iors can be described by several neuron models in a more unified manner. 
In this paper, the reports of artificial neuronal devices based on emerging 
volatile switching materials are reviewed from the perspective of the demon-
strated neuron models, with a focus on the neuronal functions implemented 
in these devices and the exploitation of these functions for computational 
and sensing applications. Furthermore, the neuroscience inspirations and 
engineering methods to enrich the neuronal dynamics that remain to be 
implemented in artificial neuronal devices and networks toward realizing the 
full functionalities of biological neurons are discussed.
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function, largely relied on software or digital circuits. However, 
CMOS-based neurons suffer from scalability issue, limited 
neuronal dynamics, and unsatisfactory energy consumption 
compared with biological nervous systems. The computing 
resource and power budget required by software-based neu-
rons are even higher. To realize more practical application of 
advanced computing architectures such as coupled oscillatory 
neural networks (ONNs) and spiking neural networks (SNNs), 
it is essential to incorporate artificial neuronal devices with 
spatial-temporal integration, probabilistic activation function, 
neuronal coupling, and hopefully more sophisticated neuronal 
dynamics to appropriately regulate the information processing 
in NC hardware.

A variety of devices based on emerging materials with vola-
tile threshold switching properties have been reported in the lit-
erature to demonstrate neuronal features, including insulator-
metal-transition (IMT) oscillators,[8] valence change mechanism 
(VCM) and electrochemical metallization (ECM) memristors,[9] 
PCM,[10] magnetic tunnel junctions (MTJs),[11] magnetic skyr-
mion devices,[12] ferroelectric field effect transistors (FeFETs),[13] 
and superconducting nanowire oscillators.[14] To be clear, the 
artificial neurons or artificial neuronal devices in this paper, 
except specially stated, refer to the devices which employ vola-
tile switching materials as the core functional part, instead of 
those based on digital computers or CMOS technology. Despite 
distinct switching physics and operation mechanisms,[15] their 
neuronal behaviors can be described by a few neuron models, 
namely, the oscillatory neurons, leaky integrate-and-fire (LIF) 
neurons, and Hodgkin–Huxley (HH) neurons.[16] Some of 
the demonstrated artificial neurons also exhibit stochastic 
properties.[10a,17] Figure  1  summarizes the research areas of 
interest on artificial neurons, including the implemented 

neuron models, sensory neurons, architectures of neural net-
works, and their applications.[18]

In this paper, we review the physically demonstrated artificial 
neuronal devices based on volatile switching materials from 
the angle of implemented neuron models, neuronal dynamics, 
and their applications in both computation and sensing. At the 
individual device level, various switching mechanisms to imple-
ment a certain type of neuron are briefly introduced and com-
pared. The performance of the state-of-the-art neuronal oscil-
lators and LIF neurons are benchmarked. At the system level, 
we discuss which aspects of neuronal dynamics are captured 
by each type of neuronal devices and how the corresponding 
ANN hardware is enabled for fulfilling computational tasks. 
Besides, efforts of integrating these neuronal devices with sen-
sors to form various sensory neurons are also summarized. 
Furthermore, we share our perspective on how to bridge the 
gap between artificial and biological neurons toward developing 
more advanced neural network applications.

This review article is structured as follows: Section  2  intro-
duces the biological inspirations of artificial neuronal devices 
and provides a summary of previous reports on this topic. 
Each of three demonstrated neuron models takes a subsec-
tion. Section  2.1  introduces and compares various switching 
mechanisms for implementing neuronal oscillators, including 
IMT, VCM, MTJ, and FeFET. Typical dynamics of neuronal 
oscillators, including frequency coding, stochastic activation, 
and coupling capability, as well as the enabled computing 
architectures, such as Boltzmann machine (BM) and ONN, 
are also reviewed. Section  2.2  summarizes the approaches to 
building LIF neurons, including both capacitor-based circuits 
and capacitor-free scenarios. The dynamics of LIF neuron, 
including spatial-temporal integration, probabilistic firing, 
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Figure 1.  Summary of the research on artificial neurons, including the implemented neuron models, sensory neurons, architectures of neural networks, 
and their applications. The three main implemented neuron models are neuronal oscillator, leaky integrate-and-fire (LIF) neuron, and Hodgkin–Huxley 
(HH) neuron. Several types of neural networks can be constructed based on the features of these neuron models, such as oscillatory neural networks, 
spiking neural networks, and stochastic samplers. Combining artificial neuronal devices with sensors forms various sensory neurons with the function 
of visual sensation, tactile perception, and multisensory fusion. The development of artificial neurons enables a series of applications ranging from 
NC, brain-machine interface, to artificial perceptual systems.
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along with frequency adaption and neuronal inhibition are dis-
cussed. The applications of these neuronal dynamics in SNNs 
and probabilistic computing paradigms, such as probabilistic 
population coding (PPC) and Bayesian networks (BNs), are 
reviewed. Section 2.3 introduces the research progress of dem-
onstrating HH neurons with high-order neuronal dynamics, 
and briefly discusses its potential toward more energy-efficient 
neural networks. Section 3 reviews the research efforts of com-
bining neuronal devices with various sensors to form sensory 
neurons. Their applications in visual sensation, tactile percep-
tion, and multisensory fusion, as well as the attempts to realize 
sensation-storage-processing integrated perceptual systems 
are reviewed. Finally, Section 4 provides a perspective on three 
aspects of future research on artificial neurons: optimization of 
individual devices, improvement of demonstrated ANN archi-
tectures, and exploitation of more advanced neuronal dynamics 
in future neural networks.

2. Artificial Neurons for Computation

Compared to artificial synaptic devices, developing artificial 
neurons is a more challenging task owing to their structural 
and functional complexity. Figure  2  illustrates the structure 
of a typical biological neuron which consists of several key 
functional parts: the soma, the axon, and the dendrites.[16,19] 
Synapses connect the axon of a (pre-synaptic) neuron to the 
dendrites (or soma) of another (post-synaptic) neuron. The 

information in biological nervous systems is encoded by 
neural spike trains, which are electrical impulse sequences 
propagating along the cell membrane of neurons. The neural 
spikes are generated by the axon hillock where the axon origi-
nates. The membrane potential (MP) of axon hillocks can be 
elevated by an arriving input neural spike. If the MP exceeds a 
certain threshold, the axon hillock fires a neural spike, passes 
it to the axon, and resets the MP to the resting status. Through 
this process, the axon hillock can integrate the inputs from the 
synapses and transform the input spike trains into an output 
signal, which would be sent to the next layer of neurons. The 
processing results are stored in synapse connection strength 
(synaptic weight) which are updated according to synaptic plas-
ticities, such as spike rate-dependent plasticity and spike time-
dependent plasticity (STDP).

Biological neurons have a few essential features which 
set requirements for their information processing capability.  
1) The firing activity follows all-or-nothing law. If the MP does 
not reach the threshold, a neuron does not fire any spike, 
while when the stimulation intensity reaches the threshold, 
the neuron will fire a spike with the nearly fixed amplitude 
and duration. It has two consequences. First, information is 
encoded and processed by the frequency and pattern of neural 
spike trains, regardless of the width or specific shape of single 
spikes. Stronger stimulation should make a neuron fire more 
often and vice versa. Second, subthreshold MP does not cause 
a spiking event but spontaneously decays before being elevated 
by the next input spike, due to the ion diffusion through the 
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Figure 2.  Schematics of a typical neuron. A typical neuron consists of the soma, the axon, and the dendrites. Some key neuronal features are high-
lighted, namely, the spatial-temporal integration of input spike trains, the short-term memory effect of membrane potential (the bottom left figure), the 
probabilistic sigmoidal activation function of axon hillock (the top right figure), and the ion channels on the cell membrane (the bottom right figure). 
These features enable neurons to collect information input from multiple synapses, analyze and encode the temporal correlation, process the informa-
tion in a fault-tolerating manner, and generate output neural spike (action potential) trains following a set of rules.
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membrane. Because the arrival of input spikes has different 
time delay and strength attenuation depending on the traveling 
distance, the axon hillock therefore serves as a signal integrator 
with short-term memory, which enables the neuron to detect 
and create the spatial-temporal correlation in neural spike 
trains.[16] 2) The firing activity of neuron exhibits inherent sto-
chasticity.[20] Neurophysiology research shows that the firing 
probability typically has a sigmoidal dependence on the MP 
so that the activation function of neural networks is naturally 
implemented by the probabilistic firing behavior of neurons.[21] 
The stochastic nature results in the random interspike interval 
in the spike train generated by a neuron excited by a constant 
stimulation level. As a result, biological nervous systems with 
intrinsic stochasticity tend to be more fault-tolerating as com-
pared to deterministic digital computers.[22] 3) Biological neu-
rons possess sophisticated membrane structures, especially the 
voltage-controlled ion channels that enable the energy-efficient 
regeneration and transport of action potentials, that is, neural 
spikes.[23] The complex membrane structure leads to high-order 
neuronal dynamics, such as refractory period (absolute and rel-
ative), variable firing mode, frequency adaption, and coherence 
resonance. They are related to the ultrahigh energy efficiency 
of individual biological neurons. At certain level of abstraction, 
the electrical characteristics of neuron membrane is described 
by the HH model.[16] 4) The interaction dynamics between mul-
tiple neurons and neuron groups also play a crucial role, such 
as coupling and synchronization, lateral inhibition and inhibi-
tory neurons, and hierarchical control structures, which bring 
the complexity of biological nervous system to an overwhelm-
ingly high level. Fortunately, the abovementioned features are 
not absolute requirements for implementing artificial neuronal 
devices and networks. Replicating a small fraction of them 
can already provide considerable computational power, and  
the selection of demonstrated neuronal dynamics depends on 
the specific computing framework and application goal, as we 
will show in the rest of the paper.

The signal accumulation and firing activity of neurons are 
typically abstracted as the weighted sum of inputs and acti-
vation function in ANNs implemented by traditional digital 
computers. By contrast, artificial neuronal devices based on 
volatile switching materials are a more faithful analog to bio-
logical neurons. As the resistive switching threshold acts as 
the MP threshold for triggering a neural spike and the volatile 

nature leads to a spontaneous relaxation process, these devices 
can generate oscillation waveforms or pulse trains which are 
comparable with neural spike trains. The neuronal dynamics 
realized by a type of neurons make them good candidates for 
implementing certain ANN architectures. For example, the 
coupling capability of neuronal oscillators leads to ONNs, and 
the spatial-temporal integration property of LIF neurons results 
in SNNs. On the other hand, the complexity of the switching 
physics provides the possibility of realizing more sophisticated 
neuronal dynamics represented by stochastic firing activity. 
Some probabilistic computing architectures, including BM, BN, 
and PPC, have been demonstrated. Table 1 gives an overview of 
the ANNs demonstrated based on artificial neuronal devices. 
In the rest of this section, we will introduce the device mecha-
nisms, discuss which aspects of neuronal dynamics are realized 
by each type of neuronal devices, and explain their roles in the 
ANN architectures.

2.1. Simple Artificial Neuronal Oscillators

The research of artificial neuronal devices starts from the sim-
plest case, oscillators. Usually, neuronal oscillators can only 
realize the function of generating oscillation waveforms which 
are regarded as firing neural spike trains, without any other 
components like the integrator, short-term memory, and other 
sophisticated structures. A simple DC excitation (voltage or cur-
rent) as the predetermined MP is applied to oscillatory neurons 
and converted into continuous oscillation.

2.1.1. Device Mechanisms

There are a large variety of physical/chemical/biological 
processes that may produce oscillation. Among them, IMT 
materials, volatile memristors, FeFETs, and MTJs have been 
intensively investigated as neuronal oscillators. IMT oscillators 
are based on the first-order phase transition (Mott or Peierls 
transition) driven by external voltages in IMT materials like 
NbO2,[28] VO2,[29] and 1T-TaS2.[30] At room temperature, the IMT 
materials are in their high resistance state (HRS). When the 
applied electric field exceeds a certain threshold, an IMT tran-
sition occurs, and the materials switch to low resistance state 

Adv. Mater. 2023, 2205047

Table 1.  Hardware implementation of ANNs enabled by artificial neuronal devices based on volatile switching materials.

Network architecture Spiking neural network Oscillatory neural network Boltzmann machine Bayesian network

Neuron type LIF Oscillator Oscillator LIF or oscillator

Featured neuronal dynamics Spatial-temporal integration Neuronal coupling Tunable stochastic activation Tunable stochastic activation

Learning type Deterministic Deterministic Probabilistic Probabilistic

Learning algorithm Hebbian rules
or backpropagation

Synchronization Simulated annealing Bayesian inference

Cooperation with synaptic  
devices

Yes No No No

Demonstrated applications Pattern classification  
(supervised or unsupervised)

Pattern recognition, image 
processing, combinatorial 

optimization

Combinatorial optimization Genetic regulatory networks

Reference [8c,24] [25] [26] [27]
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(LRS). When the voltage is swept back, the reverse phase transi-
tion would occur at a lower threshold voltage. Therefore, a hys-
teresis window is formed, which plays a key role in generating 
oscillation. Connecting the IMT material to a series resistor 
and an optional parallel capacitor forms a Pearson–Anson oscil-
latory circuit (Figure 3a), which is a voltage divider. Careful 
design of the series resistance and the DC bias can make the 
load line of the resistor cross the hysteresis window. When the 
device is operated in this regime, the voltage across the IMT 
materials in HRS is over the higher threshold and the voltage 
across the LRS is below the lower threshold. As a result, neither 
the HRS nor the LRS is stable. The output voltage would go 
back and forth between the two threshold voltages and forms 
a continuous oscillation waveform. Volatile memristors, for 
example, TaOx,[9b] HfO2,[31] PCMO,[32] Te/TiTe2,[33] and GeSe[34] 
memristors, share a similar hysteretic switching characteristic 
as IMT materials. Despite the switching physics is different, 
same design of oscillatory circuits also applies to these devices 
(Figure 3b). The only difference is that the switching behavior 
of volatile memristors does not involve crystal phase transition, 
but the formation-and-rupture of a temporary filament,[9b,33] 
transient Joule heating,[32b] or reversible ovonic threshold 
switching.[34]

FeFETs also have hysteresis switching features resulting 
from the polarization flip of ferroelectric materials.[35] In a 
typical ferroelectric oscillator circuit, the FeFET is connected 
to a MOSFET (the discharge FET) whose channel is in par-
allel with a capacitor (Figure 3c). Given the fixed drain voltage 
(VDD) and gate voltage (VGF) of the FeFET, increasing the source 
voltage (VS) would decrease the gate-to-source voltage (VGS) and 
induce the ferroelectric transition. The reverse transition would 
happen at a lower VS (higher VGS). Therefore, a hysteresis 
window forms in the IDS–VS curve, similar to the case of IMT 

oscillator. The oscillation can be induced by carefully tuning 
the DC bias voltages in the oscillatory circuit. If the load line 
of the discharge FET crosses the hysteresis window, a low VS 
will trigger the ferroelectric flip, increase the conductivity of the 
FeFET, and pull up the VS. Then, the elevated VS induces the 
reverse ferroelectric flip, decrease the conductivity of the FeFET, 
and pull down the VS. Such a cycle will be repeated and lead 
to the oscillation of the output VS.[35] However, most reported 
FeFET-based artificial neurons are operated by pulse trains[13] 
instead of a DC source. Detailed investigation on the waveforms 
of FeFET oscillators remains very limited in the literature.

Different from the hysteretic switching devices, MTJs con-
sist of a non-magnetic spacer sandwiched by two ferromagnetic 
layers (one free layer and one fixed layer).[6,17a,36] The magnetic 
multilayer structure converts the energy from a DC electrical 
current into oscillating output voltage through the periodic 
change of tunnel magnetoresistance via spin-transfer torque 
(Figure  3d). The electrical characteristics of neuronal oscilla-
tors based on different device concepts are greatly different. For 
comparison, the benchmarks of the reported neuronal oscilla-
tors are summarized in Table 2.

2.1.2. Neuronal Dynamics

The activation of neuronal oscillators typically follows a step 
function. The firing probability features an “all-or-nothing” 
manner defined by a threshold. Typical spike trains generated 
by neuronal oscillators are shown in Figure 3. Each oscillation 
peak is regarded as a neural spike. The refractory period, the 
time interval between two neural spikes, is almost constant as 
it is determined by the RC delay or the rotation speed of mag-
netic momentum. Such a continuous oscillation waveform in 
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Figure 3.  Typical oscillatory circuits and waveforms of various neuronal oscillators. a) IMT oscillator. Reproduced with permission.[8b] Copyright 2017, 
AIP Publishing. b) VCM memristor. Reproduced with permission.[9b] Copyright 2015, IEEE. c) FeFET-based oscillator. Reproduced with permission.[35] 
Copyright 2017, IEEE. d) MTJ oscillator. Reproduced with permission.[11d] Copyright 2017, Springer Nature.
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which each neural spike is closely followed by another involves 
almost no memory effect. One important dynamic of neuronal 
oscillators is the frequency dependence on the MP. For the hys-
teretic switching devices, higher DC bias would facilitate the 
charge/discharge rate of the capacitor and enhance the firing 
rate.[8b] Zhang et al. demonstrated an afferent nerve based on 
a NbOx oscillator and used the frequency dependence to cap-
ture the pressure evolution of touching.[37] For MTJs, larger 
applied DC currents also accelerate the spin-torque transfer 
and momentum rotation in the free layer, leading to higher 
firing frequency.[11d]

To implement more sophisticated neuronal dynamics, 
engineering efforts are made to bring nonlinear properties 
to these devices.[41] To enable the integration function, Cario 
et al. employed a group of more insulative Mott insulators to 
replace the common IMT materials in the oscillatory circuit.[42] 
The additional integration capability is attributed to the lower 
relaxation rate from the metastable low-resistivity state to the 
stable high-resistivity state. A more commonly used method for 
introducing LIF behaviors to hysteretic switching oscillators is 
adding a capacitor and a transistor (or a resistor) to the oscilla-
tory circuit.[9c,43] The capacitor serves as an integrator while the 
accumulated charge can leak through the transistor or resistor. 
We will discuss the mechanisms and applications of LIF neu-
rons later in Section 2.2.

More detailed investigations reveal the firing activity of 
memristive and IMT neurons possessing intrinsic stochas-
ticity and chaotic dynamics.[17b,39,41,44] The stochasticity origi-
nates from the filament residue or the rearrangement of crystal 
domains.[17b,45] The threshold voltages of switching are not 
fixed but have cycle-to-cycle variations, as shown in Figure 4a.  
It has two consequences in the firing activity. First, if the load 
line of the resistor or transistor crosses the hysteresis window 
at boundaries (Figure 4a, VGS = 1.92 V), the threshold variation 

will make whether the load line can cross the hysteresis 
window or not a random event. The output oscillation wave-
form is not continuous anymore but has random interspike 
intervals (Figure  4b), which corresponds to relative refractory 
periods. The dependence of firing probability on excitation 
voltage typically follows a sigmoidal probabilistic activation 
function (Figure 4c).[17b,39] Second, even if the load line crosses 
the central part of the hysteresis window, the amplitude of the 
continuous oscillation defined by two threshold voltages will 
still randomly change from cycle to cycle, which introduces 
stochastic features to the refractory.[39] Researchers proposed a 
stochastic sampling machine (SSM) neural network based on 
the probabilistic activation function, and demonstrated that 
stochastic neurons can enhance the handwritten digit recogni-
tion accuracy of an SSM network by up to 25% compared to 
deterministic neurons.[17b] Later, Yan et al. experimentally dem-
onstrated simulated annealing using a BM based on six multi-
terminal stochastic memristive neuronal devices.[26a] The slope 
of the sigmoidal activation function can be tuned by applying 
an additional gate voltage, which can emulate a series of 
Fermi–Dirac distributions with different effective temperature 
parameters (Figure 4d,e). The researchers used the BM to solve 
a combinatorial optimization problem. The optimization result 
is represented by a Boolean vector. The system energy can be 
calculated given the current Boolean vector and the one with 
minimal energy represents the optimal solution. Over the opti-
mization process, the value of each vector element is controlled 
by the firing activity of a stochastic neuron. In each iteration 
step, an excitation pulse was applied to a neuron. If the neuron 
fires, its corresponding Boolean value will be flipped, or other-
wise remains the same. The stochastic neurons are sequentially 
updated until the system reaches the minimum energy. The 
performance of different temperature variation strategies is 
evaluated. The simulated annealing scenario, that is, changing 
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Table 2.  Benchmarks of the various neuronal oscillators.

Materials Physics Auxiliary circuit Feature size  
F [µm]a)

Vin [V] Operating  
current [mA]

Vosc/Vin
b) Highest output 

frequency [MHz]
Ref.

NbO2 IMT 1R1Cc) 10 4 1 0.2/4 (5%) ≈2 [8b]

NbO2 IMT 1R 0.3 2.5 0.015 1.4/2.5 (56%) ≈0.4 [37]

NbO2 IMT 1R 5 1.65 0.5 1.2/1.65 (73%) ≈3.5 [38]

VO2 IMT 1T1Cc) 0.2 0.7 0.1 0.56/0.7 (80%) ≈0.05 [17b]

VO2 IMT 1T1C 0.2 2 0.05 1.5/2 (75%) ≈0.12 [25b]

1T-TaS2 IMT, charge density wave 1T1C 4 3.9 3 0.075/3.8 (2%) ≈2 [30]

1T-TaS2 IMT, charge density wave 1R1C 0.6 2.2 1 0.05/2.2 (2.3%) ≈0.6 [39]

TaOx Filamentary 1R/1T 0.7 7 10 4/7 (57%) ≈250 [9b]

TaOx Filamentary 1R1C 2 6.8 2 1.5/6.8 (22%) ≈1 [40]

Te/TiTe2/Pt Filamentary None 5 1.2 0.4 N/A ≈0.01 [33]

PCMO Joule heating 1R1C 5 2.5 10 0.7/2.5 (28%) ≈0.18 [32b]

GeSe Ovonic threshold 
switching

2R1C 4 5.4 3 2.7/4 (67.5%) ≈0.5 [34]

CoFe/Ru/CoFeB/MgO/CoFeB/CoFe MTJ, spin-transfer torque None 0.1 0.15 0.75 0.025/0.15 (17%) >100 000 [36b]

FeB/MgO/CoFeB MTJ, spin-transfer torque None 0.375 0.25 6.5 0.02/0.25 (8%) >10 000 [11d]

a)Feature area = F × F µm2; b)Vin: the input voltage to the device, Vosc: the output oscillation voltage amplitude; c)R: resistor, T: transistor, C: capacitor.
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from high temperature to low temperature results in the most 
satisfactory energy evolution over the optimization process 
(Figure 4f).

MTJ devices with very small lateral dimensions are also 
reported to show stochasticity caused by thermal fluctuations, 
which can destabilize the magnetic configuration and generate 
stochastic oscillations between the parallel and anti-parallel 
states.[17a,46] MTJ devices have been proposed to build stochastic 
binary neurons for probabilistic computing frameworks such 
as PPC and BNs.[21c,27a,46,47] Figure 5a shows one of stochastic 
MTJ neuron circuits.[26b,48] The probability distribution for the 
MTJ to be in its parallel and anti-parallel states is controlled 
by the current passing through it, which is determined by 
the input voltage applied to the transistor gate terminal (VIN). 
As a result, the probability distribution and the time average 
of VOUT can be tuned by VIN (Figure  5b). Such a dependence 
can be regarded as the probabilistic activation function, which 
is well fitted by a sigmoidal curve. The oscillation waveforms 
at different VIN are shown in Figure 5c. Researchers intercon-
nected eight stochastic MTJ neurons (also called probabilistic 
bits) through a microcontroller and a digital–analog converter 
(DAC) to form a BM (Figure 5c). As a demonstration, integer 
factorization problems are reformulated to be experimentally 
solved by the BM. The firing behavior of p stochastic neurons 

forms a binary vector, with firing and no-firing corresponding 
to 1 and 0, respectively. This vector represents an odd integer P 
no larger than 2p+1. Other q neurons can represent another odd 
integer Q no larger than 2q+1. P and Q are the two possible fac-
tors for a big integer no larger than 2p+q+2. Owing to the proba-
bilistic switching property of the neurons, the firing state of the 
two groups of neurons can represent all possible factor pairs 
of the big integer simultaneously, with a probability distribu-
tion depending on the synaptic inputs. Over the searching pro-
cess, each neuron in the BM is driven by a synaptic input that 
is a function of all other neurons’ outputs. Details about how 
to calculate the synaptic inputs for the next iteration are also 
explained in the paper.[26b] The BM can visit different states in 
the phase space with probabilities given by the Boltzmann law. 
Therefore, the solution with minimum energy would appear 
with highest probability. Some example results are shown in 
Figure  5e–g. Other spintronic device architectures, such as a 
nanomagnet with perpendicular magnetic anisotropy on top of 
a Hall bar, also exhibit stochastic properties which can be tuned 
by magnetic field induced by a current passing through a metal 
ring.[27a]

Besides probabilistic computing, stochasticity can also 
be exploited to extend the dynamics of neuronal devices. 
A couple of more advanced HH dynamics, as well as the 

Adv. Mater. 2023, 2205047

Figure 4.  Stochastic properties of IMT and memristive neuronal oscillators. a) Stochastic spiking of a VO2  oscillator operating in the stochastic 
oscillation regime where the transistor load lines cross the lower boundary of the hysteresis window. b) The stochastic oscillation waveforms, and  
c) the sigmoidal probabilistic activation curve. Reproduced with permission.[17b] Copyright 2017, IEEE. d) Gate tunable stochastic activation curves of a 
multi-terminal memristive neuron. e) The relation between the gate voltage and effective temperature of fitted Fermi–Dirac distributions. f) The energy 
evolution in the optimization process for different temperature variation strategies applied to the BM. Reproduced with permission.[26a] Copyright 2021, 
Springer Nature.
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Figure 5.  Stochastic properties of MTJ neurons for integration factorization. a) The circuit diagram of a stochastic MTJ neuron. b) Time-averaged 
VOUT, as a function of the applied input (activation function), fitted to the sigmoidal function. c) Oscillation waveforms of VOUT for three different VIN, 
showing the different probability distribution of MTJ states. d) A photograph of a printed circuit board for eight stochastic MTJ neurons intercon-
nected through a microcontroller and a DAC. e–g) The initial (top) and final (bottom) state of the system when four, six, and eight neurons are used 
to factorize 35 = 5 × 7 = 7 × 5 (e), 161 = 23 × 7 (f), and 945 = 63 × 15 (g). Reproduced with permission.[26b] Copyright 2019, Springer Nature.
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frequency detection application, are implemented by a compact 
1T-TaS2  stochastic neuronal oscillator.[39] Stochastic properties 
are also expected to exist in FeFET oscillators, considering the 
similar hysteretic switching mechanism. Clues are captured by 
some reports;[13b,49] however, more solid evidence such as the 
detailed probabilistic activation curve and spike trains with 
random interspike intervals have not been experimentally 
investigated.

2.1.3. Oscillatory Neural Networks

Neuronal oscillators, even only with basic linear response prop-
erties, can be coupled with each other to form an ONN and 
execute data processing via the temporal correlation in the 
oscillating behaviors, more specifically, synchronization.[50] In 
ONNs, the information is encoded and processed by the phase 
and frequency in addition to the signal levels. Despite the fact 
that other types of artificial neuronal devices are also some-
what oscillatory, the phase and frequency of their spike trains 
are not well defined because they depend on the parameters of 
operating pulse trains. Here, we focus on the ONNs physically 
implemented using neuronal oscillators mentioned above. A 
comprehensive overview of coupled oscillator-based computing 
is presented in ref. [51].

In an ONN, the input to the network is encoded by a fre-
quency or phase pattern. Driven by the input signal, the inter-
connected oscillators interact with each other and their oscil-
lation behaviors reach synchronization, which is a stationary 
frequency or phase pattern that represents a minimum energy 

state.[52] The pattern can be extracted as the result of compu-
tation. Synchronization of interconnected neuronal oscil-
lators has been experimentally demonstrated using TaOx 
memristors,[9a,53] VO2  oscillators,[54] and MTJs.[55] Coupling 
between FeFET oscillators is also proposed via simulation.[56] 
Two types of passive coupling, resistive (in-phase) and capaci-
tive (antiphase), are realized (Figure 6a). Full interconnection 
between all oscillators can become overwhelming as the system 
size increases. To address this issue, some virtual connection 
strategies are proposed and physically realized. One solution 
is to employ a feedback mechanism to couple a single MTJ 
oscillator to the “time-delayed” copies of itself, like in reservoir 
computing.[11d,57] Another approach is to apply an external mag-
netic field to synchronize multiple MTJ oscillators (Figure 6b), 
or to couple many individual MTJ oscillators with an input 
microwave current (Figure 6c).[58]

Many computing applications have been demonstrated using 
ONNs. First, the degree of mutual synchronization between 
oscillators can act as a good measure of the Euclidean distance 
between two different input vectors.[59] Calculating Euclidean-
distance of image patches and substituting the original pixel 
values with the distance values is equivalent to applying a 
Gabor filter to the image. This can be used for power efficient 
image processing.[56,60] Second, the neuronal oscillators can be 
synchronized with external signals whose frequency is close to 
the oscillators’ intrinsic frequency. Single or multiple MJT neu-
rons were employed to extract the frequency information of a 
preprocessed voice signal for spoken-digit and vowel recogni-
tion (Figure 6d), or to distinguish temporal sequences.[11d,55b,58] 
Third, the capacitive and resistive coupling between a few 

Adv. Mater. 2023, 2205047

Figure 6.  Different approaches to couple neuronal oscillators. a) From top to bottom: uncoupled, resistive (in-phase) coupled, and capacitive 
(antiphase) coupled VCM memristive oscillators. Reproduced with permission.[53b] Copyright 2015, IEEE. b) Synchronized MTJ oscillators via an external 
RF magnetic field. Reproduced with permission.[55a] Copyright 2015, IEEE. c) Synchronization between four MTJ oscillators and the input microwave 
signal and d) its application in vowel recognition. Each color in the map correspond to a synchronization state between four MTJ oscillators and two 
input signals. Reproduced with permission.[58] Copyright 2018, Springer Nature.
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oscillators can generate a wide range of waveform patterns, 
which can be associated with another set of patterns, for 
example, horse gaits. The modulation of the synchronization 
has the potential to facilitate the motion control of a horse-like 
four-footed micro-robot.[25c,54b]

The abovementioned working mechanism of ONNs is 
highly consistent with Hopfield networks.[21a] The coupling 
type (in-phase or antiphase) between neurons corresponds to 
the positive or negative synaptic weight; the nonlinearity of 
the synchronization process brings the sigmoidal activation 
function; and the phase pattern of synchronization acts as the 
output state with the minimum energy. Such similarity makes 
ONNs suitable for solving optimization problems. Moreover, a 
level-based Hopfield network typically needs a number of itera-
tions to reach the minimum energy. In each iteration, we need 
to calculate the system energy and the input for the next step. 
However, this optimization process can be naturally finished 
by an ONN over the course of relaxation to the equilibrium 
state. Parihar et al. built ONNs based on VO2 oscillators to solve 
graph coloring problems, as shown in Figure 7.[25a] The nodes 
of an undirected unweighted graph are represented by neu-
rons, and the edges connecting these nodes are represented by 
capacitive coupling between the neurons. Figure 7a shows the 
circuit schematic of four coupled neurons with capacitive con-

nections. By controlling the transistors, this circuit can emulate 
four-node undirected graphs defined by arbitrary adjacency 
matrices. Note that the adjacency matrix can also be used to cal-
culate the energy of a level-based Hopfield network. Capacitive 
coupling tends to generate a maximum phase difference. Due 
to the interconnection between multiple neurons, the phase 
difference between neurons would coordinate with each other 
to reach a steady global maximum. Figure  7b shows a four-
node fully interconnected graph and the final oscillation wave-
forms of the neurons in the corresponding ONN. Calculating 
the average XOR values of the output waveforms of neurons 
can divide them into different groups, which gives the solution 
to the graph coloring problem. Using this method, ONNs cor-
responding to various graph configurations are experimentally 
demonstrated and the results are shown in Figure 7c.

From Figure  7a, we can see that the coupling of neurons 
in an ONN can be described by a binary symmetrical matrix. 
Such a matrix serves as a convenient analog to the Ising model 
which consists of binary variables to represent magnetic dipole 
moments or atomic spins.[61] Dutta et al.[25b] implemented an 
Ising Hamiltonian solver using eight coupled neuronal oscil-
lators. The non-zero matrix elements of an 8 ×  8  Ising Ham-
iltonian (Figure 8a) which depicts the interaction between 
eight  atoms can be emulated by the capacitive coupling 

Adv. Mater. 2023, 2205047

Figure 7.  An ONN to solve graph coloring problems. a) The circuit schematic of four coupled oscillators for representing four-node undirected graphs 
defined by arbitrary adjacency matrices. Note that Aij = Aji, Aii = 0 and Aij = 0 or 1. b) The waveforms of four fully coupled oscillators after reaching 
synchronization. Time averaged XOR values of oscillation outputs give the solution to the problem. c) Experimental results of graph coloring using 
ONNs corresponding to various graph configurations. Reproduced with permission.[25a] Copyright 2017, Springer Nature.
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Figure 8.  An Ising Hamiltonian solver based on coupled VO2 neuronal oscillators. a) An eight-node Ising model and b) the hardware setup of cor-
responding ONN. Each non-zero matrix elements of the 8 × 8  Ising Hamiltonian corresponds to a capacitive connection between two neurons in 
the ONN. c) Measured oscillation waveforms and d) the phase distribution of three different injection-locking scenarios, (i) no synchronization, (ii) 
first-harmonic injection-locking, and (iii) second-harmonic injection-locking. e) Schematic of the annealing schedule used in the experiment. f) Phase 
evolution of the eight neurons, settling to either the in-phase or out-of-phase configuration after synchronization. Two neuron groups (1, 3, 4, 5) and 
(2, 6, 7, 8) represent the optimal solution of the MaxCut problem. g) Comparison of the energy evolution and optimization result obtained without or 
with the annealing schedule. Reproduced with permission.[25b] Copyright 2021, Springer Nature.
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between the corresponding neurons in the ONN (Figure  8b). 
The bound state of the system with minimum energy can be 
derived from the phase of neurons after synchronization. To 
equip each neuron with a binary degree of freedom to encode 
spin-up and spin-down states, a sinusoidal injection locking 
signal (Sinj in Figure  8b) at twice the oscillator intrinsic fre-
quency is applied to the neurons. As shown in Figures 8c[iii] 
and d[iii], due to the second-harmonic injection-locking (SNIL) 
phenomenon, the oscillator waveforms after synchroniza-
tion show both in-phase (40°) and antiphase (220°) injection-
locking configuration, corresponding to up-spin and down-
spin, respectively. Using SNIL, both ferromagnetic and anti-
ferromagnetic interactions are replicated by the ONN. The 
researchers also investigated the performance of the ONN on 
a NP-hard problem of MaxCut for an eight-node undirected 
and unweighted graph, that is, to cut the graph into two sub-
sets, such that the number of edges connecting the two sub-
sets is maximized. This problem can be solved by the ONN 
because, for a given connection matrix, maximizing cut size is 
mathematically equivalent to minimizing Ising Hamiltonian. 
To enhance the success rate of converging to the optimal solu-
tion, a simulated annealing process is applied by gradually 
increasing the amplitude of Sinj (Figure 8e) so that the intrinsic 
stochasticity of the neuronal oscillator can help the optimi-
zation result escape from local minima. Figure  8f shows the 
phase evolution of the eight neurons over the optimization pro-
cess. After synchronization, eight neurons will settle to either 
the in-phase or antiphase state and naturally form two groups, 
which represent the optimal graph cut. Figure  8g compares 
the energy evolution and optimization result obtained without 
or with the annealing schedule. Annealing over 250 oscillation 
cycles allows the network to converge to the optimal solution 
with higher probability.

2.2. Leaky Integrate-and-Fire Artificial Neurons

The LIF neuron model captures the general procedures of 
neural spike train transformation. The MP is not predeter-
mined but evolves with input currents. Any arriving input 
spikes push up the MP until it reaches the threshold, at which 
point an output spike is generated, and the MP is reset to its 
resting potential. The increased MP would spontaneously decay 
if it does not reach the threshold, which can be represented as 
the “leak” term in addition to the derivative form of the law of 
capacitance:

( ) ( ) ( )= −C
dV t

dt
I t V t Gm

m
m m� (1)

Cm and Gm are the capacitance and conductance of the neuron 
membrane. Vm(t) and I(t) are the MP and the total input cur-
rent at time t.[62] To accurately mimic the LIF behavior, the 

time constant of the spontaneous decay τ = C

G
m

m

 and the mean 

arrival time of input pulses Δt0 should be comparable. If τ ≪ 
Δt0, the elevated MP will be discharged so fast that the neuron 
can hardly fire. If τ ≫ Δt0, the leak effect will be too weak to 
eliminate the impact of long-past input spikes, and the neuron 
becomes an integrate-and-fire (IF) neuron.[63]

2.2.1. Device Mechanisms

The LIF behavior is typically demonstrated by applying a pulse 
train to threshold switching devices. An inherent relaxation 
process of the employed switching device is required. As dis-
cussed before, the working frequency range depends on the 

characteristic frequency 
π

=f
G

C2
0

0

0

, which is determined by the 

parasitic capacitance (C0) and conductance (G0) of the switching 
device. Considering C0 is usually very small, an auxiliary cir-
cuit consisting of a capacitor and an optional transistor (or 
resistor) is usually added to regulate the operating frequency, 
as shown in Figure 9a. More circuit designs can be used to fur-
ther tune the LIF behavior (Figure 9b–d). Assisted by the leaky 
integrator circuit, the MP evolution of LIF neurons based on 
IMT oscillators,[24b] ovonic threshold switching devices,[34,64] 
volatile memristors,[43a,65] van der Waals (vdW) material-based 
volatile memristors,[66] and HZO or PZT FeFETs[13a,c] have been 
captured. The LIF dynamic is also demonstrated using MTJ 
oscillators with a more complicated peripheral circuit which 
involves a reference MTJ.[67]

The MP is not necessarily represented by a voltage level, but 
can also refer to the progress of a physical or chemical process 
that leads to an electrical switching, such as phase transition, ion 
migration, and conductive filament growth (Figure 10). In these 
cases, the auxiliary capacitor is not required anymore, which can 
largely enhance the area efficiency of neuronal devices. As men-
tioned in Section  2.1.2, a single spike input to a Mott insulator 
converts a small part of it to a metastable correlated metal state. 
The effect gets accumulated as more pulses arrive and finally 
leads to the threshold switching. The spontaneous relaxation 
from the metastable intermediate state to the stable state accounts 
for the leaky mechanism.[42a] Similar scenario also applies to the 
LIF neurons based on VCM[68] and ECM memristors,[31,33,65d,69] 
and electrolyte-gated transistors.[70] In order to obtain a robust 
switching and relaxation process, engineering methods such as 
incorporating silver nanoparticle[9c] or nitrogen doping[71] to the 
switching media of memristors have been developed to modify the 
switching process. In magnetic devices, the LIF dynamics can be 
emulated by manipulating the partial volatile magnetization of fer-
romagnetic films,[17a,72] the domain walls in MTJs,[73] or the motion 
of a magnetic skyrmion.[12a–c] Some reported devices are IF neu-
rons without a leak mechanism. For example, the intermediate 
states of PCM neurons have a very long lifetime;[10a,b] the memris-
tive neurons based on SiOx nanorods or single layer MoS2 exhibit 
very noisy fluctuation of MP during accumulation.[27b,69b]

Table  3  summarizes the characteristics of representative 
physical implementations of IF and LIF neurons. For a fair 
comparison, some reported artificial neuronal devices that 
are based on non-volatile switching are not listed in the table, 
because they require additional reset operations to switch back 
to the resting potential and therefore are not regarded as com-
plete neuronal devices.[12c,68a,69a,75]

2.2.2. Neuronal Dynamics

The LIF model involves the integration capability and the 
short-term memory. Therefore, it can cover more dynamics 

Adv. Mater. 2023, 2205047
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of biological neurons. Spatial-temporal integration and refrac-
tory period are two features shared by most LIF neurons. Input 
spikes from different synapses are integrated to a LIF neuron 
and the temporal correlation between them can be processed 
by the leaky mechanism. Once the MP reaches the threshold, 
the hillock membrane of a LIF neuron will not respond to the 
input spikes over the course of firing and relaxation, which  
corresponds to the absolute refractory period of biological neur
ons.[64a,65c,66b,71]

Besides, two more advanced neuronal dynamics, neuronal 
inhibition and frequency adaption, are realized via circuit and 
operation design of FeFET neurons. As shown in Figure  9c, 
the neuron circuit has both excitatory and inhibitory input ter-
minals which are the gate of the regular MOSFET and that of 
the FeFET, respectively. Pulses applied to the excitatory input 
increase the conductivity of the MOSFET and gradually pull 
down the VS (the output voltage). Therefore, the VGS of the 
FeFET will be elevated until it exceeds the threshold of ferro-
electric polarization flip. The FeFET will be turned on, pull up 
the VS, and induce the reverse ferroelectric transition. More 
input excitatory pulses will pull down the VS again. Repeating 
this cycle will form a continuous neural spike train. However, 
if pulses are applied to the inhibitory input, the FeFET will stay 
in its on-state and hold the VS at a relatively high level. There-
fore, the excitatory pulses will only slightly pull down the VS 
so that the VGS of the FeFET is not large enough to trigger the 
ferroelectric switching. In other words, the neuron circuit gets 
inhibited.[13a] A leaky-FeFET-CMOS hybrid neuron as shown 

in Figure  9d was reported to experimentally demonstrate the 
spike frequency adaption.[13c] The key design for realizing spike 
frequency adaption is a leaky-FeFET with pulse accumulation 
effect and spontaneous polarization degradation as the dis-
charge channel. During the neuron firing a spike, the ferroelec-
tric switches and the current passing through the channel of the 
FeFET becomes larger. After switching back, the conductivity of 
the leaky-FeFET will be increased slightly due to the accumula-
tion effect, and the Vmem in Figure 9d will be discharged faster. 
Therefore, it will take more input pulses to generate the next 
spike. The interspike interval continues to increase during the 
first few spikes. In the end, spontaneous ferroelectric polari-
zation degradation will offset the accumulation effect and the 
interspike interval will settle to a constant value, leading to 
the spike frequency adaption. Simulation shows that another 
neuron design of a FeFET, together with six MOSFETs, can also 
realize the spike frequency adaption.[49]

Stochasticity is universally observed in LIF neurons with all 
kinds of device mechanisms. Though the differential Equa-
tion  (1) seems linear, random variation exists in the I(t) term 
even for LIF neurons driven by a very uniform pulse train. 
The response of MP to input pulses is intrinsically stochastic. 
The nonlinearity is even more significant for the LIF neu-
rons whose MP evolution is associated with physicochemical 
processes.[66c,69b,71] Detailed statistical studies on some types 
of LIF neurons show that the number of spikes to trigger 
the firing approximately follows a Poisson distribution, and 
the probability of firing has a sigmoidal dependence on the 

Adv. Mater. 2023, 2205047

Figure 9.  LIF neuron circuits with an auxiliary capacitor. a) A typical capacitor-based “leaky integrator” circuit for general threshold switching (TS) 
devices and its working mechanism. Reproduced with permission.[64a] Copyright 2019, Wiley-VCH GmbH. b) An alternative circuit design to enable LIF 
behaviors. The MP is the gate voltage of a transistor. Reproduced with permission.[3a] Copyriht 2020, AIP Publishing. c,d) Circuit designs for FeFET-
based LIF neurons. Neuronal inhibition and frequency adaption are demonstrated using the two circuits, respectively. Reproduced with permission.[13a,c] 
Copyright 2018, IEEE, and 2019, IEEE.
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input pulse voltage.[31,65b] LIF neurons based on PCM or SiOx 
nanorods are reported to show a Gaussian distribution of inter-
spike intervals.[10a,27b] These results imply that the firing activity 
is approximately described by a Poisson point process, which 
agrees with the assumptions in mathematical theories for the 
neural spike train analysis.[76]

The stochastic properties and relatively low circuit com-
plexity of LIF neurons enable the demonstration of novel 
probabilistic NC frameworks. The activity level distribution of 
a neuron population to the same stimulus can constitute PPC, 
which has been realized by PCM neurons.[10a,77] The thickness 
of the amorphous region and the internal atomic configura-

tion vary from device to device. These features of a single 
device may also be changed after a switching cycle. Thus, the 
number of pulses (interspike interval) needed to generate a 
neural spike is random for individual devices. However, the 
interspike intervals of a group of phase change neurons have 
a relatively stationary distribution for a certain operation pulse 
width (Figure 11a), which is the PPC. Reversely, this statistical 
distribution of firing frequency of the neuron group serves 
as a good index of the underlying operating pulse width, and 
the representation error can be suppressed by a larger popula-
tion size (Figure  11b). As a demonstration of frequency detec-
tion, the researchers varied the operating pulse width (tens 

Adv. Mater. 2023, 2205047

Figure 10.  Device mechanisms of capacitor-free LIF neurons. a) Schematics of a Mott insulator that partially transitions to a metastable metal state 
while receiving a pulse train and finally forms a volatile conductive pathway. Reproduced with permission.[42a] Copyright 2017, Wiley-VCH GmbH.  
b) In situ transmission electron microscopy (TEM) images of the formation and spontaneous rupture of a silver conductive bridge in a FeOx ECM mem-
ristor. Reproduced with permission.[65d] Copyright 2018, Wiley-VCH GmbH. c) The schematic evolution of the amorphous region of a PCM cell while 
receiving a pulse train and its LIF behavior. Reproduced with permission.[10a] Copyright 2016, Springer Nature. d) The scanning electron microscopy 
(SEM) images of the Au nanowires and nanogaps in a SiOx nanorod memristive neuron. Reproduced with permission.[27b] Copyright 2021, Wiley-VCH 
GmbH. e) Schematics of a caloritronics-based Mott neuristor and its LIF behavior. Joule heating is employed to trigger the IMT transition of VO2. 
Reproduced with permission.[74] Copyright 2020, Springer Nature, and 2021 Springer Nature. f) The schematic structure of an MTJ-based LIF neuron 
by manipulating the ferromagnetic domain walls. Reproduced with permission.[73a] Copyright 2021, IEEE. g) Schematics of a magnetic-skyrmion-based 
LIF neuron. The position of the skyrmion represents the MP. Reproduced with permission.[12c] Copyright 2020, AIP Publishing.
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of nanoseconds) periodically and the number of neurons that 
fire at a certain frequency shows a synchronized evolution pat-
tern (Figure  11c), which means the pulse width at MHz level 
can be represented by neuronal firing behaviors at kHz level. 
Therefore, the Nyquist–Shannon theorem which defines the 
theoretical frequency detection limit was bypassed.[10a] In addi-
tion to this work, it is worthwhile to note that PPC can also be 
demonstrated using a group of synaptic devices, for example, 
MoS2 synapses.[78]

Besides, psychophysical experiments indicate that human 
brains perform Bayesian inference in perception and decision 
making tasks.[79] In Bayesian inference, the information is 
encoded by probability distribution. Prior probability that rep-
resents existing knowledge is updated by new evidence to form 
posterior probability. Bayes’ theorem defines the updating rule. 
Debashis et al. reported a two-node BN based on spintronic 
devices, and proposed the potential to scale up the network.[27a] 
Choi et al. built a BN based on SiOx nanorod memristive neu-
rons with tunable probabilistic activation functions.[27b] Pulse 
trains with different widths can control the probability distribu-
tion of the resistive state of the SiOx neurons. In the demon-
stration of a genetic regulatory network as shown in Figure 11d, 
pulses with widths of 100 and 270 µs are applied to the neuron 
to represent the prior probability of G1  expression, which are 
set to Pprior(G1 = T) = 0.2 and Pprior(G1 = F) = 0.8 (Figure 11e). A 
pulse train with 20% occupied by pulses and 80% by no pulse 
is used to represent Pprior(G1 = T), and its complementary pulse 

train represents Pprior(G1 =  F). If another gene expression, for 
example, G2 occurs, Bayesian inference can be done using the 
BN consisting of an edge circuit and a peripheral circuit, as 
proposed by the researchers. The two pulse trains related to the 
prior of G1 are applied to the edge circuit of G2 to obtain pulse 
trains corresponding to P(G2 = T) and P(G2 = F). Then, pulse 
trains of Pprior(G1 = T) and P(G2 = T) are input to a peripheral 
circuit to obtain a pulse train for Ppost(G1 =  T|G2 =  T), which 
is the posterior probability derived from Bayesian inference. 
Following this method, the researchers demonstrated the 
probabilistic inferences for four selected cases via simulation 
(Figure  11f).[27b] This work provides some reference about the 
operation framework and circuit design of BNs based on sto-
chastic neuronal devices.

2.2.3. Spiking Neural Networks

SNNs are ANNs that closely follow the principles of biological 
nervous systems.[21b] In an SNN, neural spike trains are generated 
and transformed by the spiking neurons connected by synapses. 
During this process, the connection strength (synaptic weight) is 
updated according to synaptic plasticity. The processing results 
are stored in the updated weight of synapses.[19a] The LIF neuron 
is the most prominent neuron model to implement SNNs. Some 
reports show even a single LIF neuron can fulfill computing tasks 
like correlation detection with the help from software.[10a,80]

Adv. Mater. 2023, 2205047

Table 3.  Comparison of LIF neurons based on different device mechanisms.

Materials Physics Auxiliary circuit Feature size F 
[µm]a)

Vin [V]b) Operating current 
[mA]

Operating 
frequency

Neuron model Reference

NbO2 Mott transition 1R1Cc) 4 1.3 0.8 ≈1 MHz LIF [24b]

VO2 Mott transition, Joule 
heating

1R (heater) 2 0.75 20 ≈10 MHz LIF [74]

GaTa4Se4 Mott transition 1R 40 40 15 ≈20 kHz LIF [42a]

Ag/HfO2/Ag ECM 1R1C 100 0.7 0.01 ≈1 kHz IF [71]

SiOx:Ag Diffusive memristor 1R 2.5 0.8 1 ≈10 kHz IF [43a]

Cu-Ta/IGZO/TiN ECM 1R 50 4 10 ≈1 kHz LIF [69f ]

Ag/FeOx/Pt ECM None or 1R 2 3.3 10 ≈5 kHz LIF [65d]

SiOx nanorod/Au ECM 2R, 1 comparator 200 4 0.01 ≈10 kHz IF [27b]

TiN/Ti/HfO2/TiN VCM 1T1Cc) 10 3 0.01 ≈100 kHz IF [68b]

B0.25Te0.75 Ovonic threshold switching 1R1C 0.03 0.3 0.025 ≈0.45 MHz LIF [64a]

Ge2Sb2Te5 PCM 1R 0.5 1.5 0.15 ≈10 MHz IF [10a]

HZO FeFET 1T1R /d) 2 / ≈20 Hz LIF [13c]

PZT FeFET 2R1C / 3.3 0.001 ≈30 kHz LIF [13a]

FeB/MgO/CoFeB MTJ 2T, 1 MTJ 0.1 1 0.5 ≈1 GHz LIF [17a]

MoS2 Electrolyte-gated FET 3R1C >2 5 0.0001 ≈5 Hz IF [66c]

MoS2/Graphene VCM 3R1C 10 8 0.1 to 1 ≈5 kHz LIF [66b]

Ag/MoS2/TiW ECM (lateral) None 10 2 0.001 ≈2 kHz LIF [69b]

Ag/MoS2/Au ECM 2R1C 5 1.2 0.1 ≈10 kHz LIF [66d]

Te/TiTe2/Pt ECM None 5 1.1 0.2 ≈0.4 MHz LIF [33]

Ag/Nafion/Au ECM 2R1C 6 2 0.001 ≈80 Hz LIF [69d]

a)Feature area = F × F µm2; b)Vin: the input voltage to the device; c)R: resistor, T: transistor, C: capacitor; d)Not specified.
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In 2018, Wang et al. demonstrated the hardware implementa-
tion of a fully memristive SNN based on Pt/Ag/SiOx:Ag/Ag/Pt 
diffusive memristor neurons and non-volatile Pd/HfOx/Ta drift 
memristor synapses.[24a] The SNN consists of an 8 × 8 memris-
tive synapse crossbar array and eight artificial neurons inte-
grated to each column of the array. Figure 12a shows the optical 
micrograph of the SNN, and the scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) images of 
the synaptic and neuronal devices. Pattern classification of four 
letters was demonstrated using the SNN with pre-programmed 
synaptic weights which can be derived from an offline training 
process. Each column of synapses serves as a convolutional 
filter corresponding to a certain subimage pattern. The diffu-
sive memristor neurons play the role of information integra-
tors with a rectified linear unit (ReLU) activation function. 
The features of the input subimages can be revealed by the 
firing activity of their corresponding neurons. On top of that, 
an unsupervised learning process was demonstrated using a 
simple STDP rule using an 8 × 3 network (Figure 12b). In each 
iteration, one of the outputs of neurons in the abovementioned 
pattern recognition job were input to the untrained network, 
and the synaptic weights were updated using a lateral inhibi-
tion manner if any of the three neurons fires. Figure 12c shows 
the input voltage vector, the integrated neuron current, and the 

evolution of synaptic weights of each iteration. After the unsu-
pervised learning, the network can classify the images of four 
letters into three groups. This work provides a valuable tutorial 
about the peripheral circuit design and algorithm realization 
for hardware implementation of SNNs.

Duan et al. reported a 4 ×  4 SNN consisting of NbOx-based 
neurons and non-volatile TaOx memristor-based synapses.[24b] 
Figure  12d shows the SEM and TEM images of Pt/Ti/NbOx/
Pt neurons and Pt/Ta/TaOx/Pt synapses. The SNN was also 
applied to pattern classification of four-pixel black-and-white 
images. The weights of synapses are programmed to desired 
values through offline training. Besides the information integra-
tion and activation function, the NbOx neurons show frequency 
response to different excitation inputs, owing to the frequency 
dependence feature of IMT neurons. Furthermore, supervised 
online learning was performed on the SNN. Figure 12e shows 
the schematic of supervised learning. The synaptic weights 
were updated by the feedback circuit based on simplified δ-
rule, a type of gradient descent method for spiking neurons. 
Figure  12f shows the weight evolution of four synapses con-
nected to a single neuron over the learning process. Similarly, 
Hao et al. reported a 4 ×  2  SNN based on MoS2 neurons and 
Cu/GeTe synapses with the capability of classifying even sim-
pler images.[69b] Simulation and some initial experimental 

Adv. Mater. 2023, 2205047

Figure 11.  Experimental demonstration of probabilistic neuromorphic computing. a–c) Probabilistic population coding (PPC) demonstrated using 
stochastic PCM neurons. Reproduced with permission.[10a] Copyright 2016, Springer Nature. a) The distribution of interspike intervals in a single neuron 
excited by pulses of different widths. b) Error in the representation of the input stimulus using the population code. The stimulus is a triangular signal 
with a period of 0.1 ms and pulse width changes in the range of 50–100 ns periodically. Inset: For 500 neurons, the distribution of the actual spiking 
frequency across the neuron population when the input stimulus is applied. c) The time evolution of input pulse width (black) and population code 
for 500 neurons (blue). d,e) Probabilistic Bayesian inference demonstrated using SiOx nanorod memristive neurons. Reproduced with permission.[27b] 
Copyright 2021, Wiley-VCH GmbH. d) A genetic regulatory network where the genes and regulatory directions are represented as the nodes and edges. 
The conditional probability boxes (red, blue, and green boxes) show the preset prior probability (Pprior) for Genes 1–3 (G1–3). The inset graph shows 
the plot of the activation probability of the artificial neuron, which can be utilized as each node of the BN. e) Plots of the Pprior(G1 = T) = 0.2 and 
Pprior(G1 = F) = 0.8 based on the activation probability of the neuronal device operated with pulses of 100 and 270 µs widths, respectively. f) Probabil-
istic inference results, posterior probability (Ppost) for four selective cases, 1) Ppost(G3 = T|G1 = T), 2) Ppost(G1 = T|G3 = T), 3) Ppost(G2 = T|G3 = T), and 
4) Ppost(G3 = T|G2 = T) based on the BN consisting of the fabricated SiOx memristive neurons.
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results indicate that other LIF neuronal devices also have the 
potential, but more engineering efforts are still needed for their 
hardware implementation.[17a,49,64a,65b,c,66c]

Li et al. reported an SNN based on artificial neurons with 
multiple dendrites (Figure 13).[24c] A few of memristors with a 
Pt/TaOx/AlOδ/Al structure as artificial dendrites are connected 
to a NbOx artificial soma. The AlOδ layer serves as a reservoir 
to induce oxygen ion diffusion in the dendrite device. Applying 
electrical bias can control the oxygen ion distribution and 
thus tune the Schottky-like barrier between Pt and TaOx. The 
dendrite devices can filter out small input signals in the off-
state and nonlinearly integrate input signals in their on-state. 
The dendrite and soma devices were integrated to an array of  
TiN/HfOx/TaOx/TiN synapses to form a single-layer SNN. The 
network was trained in software using a back-propagation algo-
rithm for fulfilling digit recognition. The dendrite layer not 
only filtered the background noise in the input picture, but 
also highlighted the critical signals in the images, as shown in 
Figure  13e. The neuron firing rate caused by incorrect image 
inputs was suppressed by the additional dendrites (Figure 13f) 
so that the recognition accuracy was enhanced. Compared to 
systems without dendrites, the power consumption of soma 

was reduced by over 30  times in this SNN. However, because 
the dendritic unit itself consumed more than 50% of the total 
power, the overall energy cost was actually even higher.

It is worth noting that there are also hardware implemen-
tations of ANNs based on non-spiking neurons. Joule heating, 
instead of voltage bias, was employed to trigger the IMT 
switching of VO2 neurons, which are also called caloritronics-
based neuristors.[74a] Such a neuronal device features a ReLU 
activation function. A couple of this type of neurons is inte-
grated with a crossbar of conductive bridge synapses to perform 
large-scale image edge detection.[74b]

2.3. Hodgkin–Huxley Artificial Neurons

Although LIF neurons capture a key aspect of neuronal func-
tionality, the simplification prevents them from covering more 
details, such as the multiple stages of an action potential, and 
advanced neuron dynamics like subthreshold oscillation and 
inhibition-induced spiking. Emulating these behaviors requires 
a more accurate replication of the sophisticated structure and 
biophysical characteristics of neuronal membranes, especially 

Figure 13.  a) Optical image of a single-layer SNN circuit with artificial dendrites. b) Optical image of the synapse array. c) SEM image of a neuron 
with eight dendrites and one soma. d) Schematic structure of the SNN. e) Comparison between input images and processed images after dendrites 
in the neural network. f) Comparison of the neuron firing rates with and without the artificial dendrites. Reproduced with permission.[24c] Copyright 
2020 Springer Nature.

Figure 12.  Hardware implementation of SNNs based on artificial neuronal devices integrated with synapse arrays. a) Optical micrograph, SEM, and 
TEM images of an 8 × 8 network consisting of Pt/Ag/SiOx:Ag/Ag/Pt diffusive memristor neurons and Pd/HfOx/Ta drift memristor synapses. b) The 
schematic of an 8 × 3 network for unsupervised learning. c) The input voltage vector, the integrated neuron current, and the evolution of synaptic 
weights of each cycle in the unsupervised learning process. Reproduced with permission.[24a] Copyright 2018, Springer Nature. d) SEM and TEM images 
of an SNN consisting of Pt/Ti/NbOx/Pt neurons and Pt/Ta/TaOx/Pt synapses. e) The schematic illustration of the supervised online learning based 
on simplified δ-rule in this SNN. f) The weight evolution of four synapses connected to a single neuron over the learning process. Reproduced with 
permission.[24b] Copyright 2020, Springer Naure.
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the voltage-controlled ion channels.[81] HH neuron model is a 
mathematical model with better biological plausibility, which 
can be written as:

( ) ( ) ( )( ) ( ) ( ) ( ) ( )= + − + − + −I t C
dV t

dt
G V t V G V t V G V t Vm

m
K m K Na m Na L m L �(2)

where GK, GNa, and GL are the conductance of potassium ions, 
sodium ions, and natural leakage, respectively, and VK, VNa, 
and VL are the reverse potentials of potassium, sodium, and 
leakage, respectively.[82] The equivalent electrical circuit of HH 
model is shown in the middle part of Figure 1.

Theoretical research proposed that the HH dynamics can 
be implemented by memristive systems.[83] In 2013, Pickett et 
al. exploited the voltage-controlled phase transition of NbO2 to 
emulate the opening and closing of potassium and sodium ion 
channels, as well as two DC voltage sources to generate the 
reverse potentials VK and VNa (Figure 14a).[8a] Careful design of 
the auxiliary passive components makes the switching of two 
equivalent ion channels follow the sequence of their biological 
counterparts. As a result, a biologically plausible action potential 
with different stages, namely, hyperpolarization, depolarization, 
and a refractory period, is simulated (Figure  14b). The capa-
bility of generating neural spike trains with different interspike 
intervals is also demonstrated (Figure 14c). Following this track, 
Yi et al. used another IMT material, VO2, to experimentally 

demonstrate 23  biological spiking behaviors (Figure  14d,e), as 
well as characterizing capacitance-dependent operating regimes 
and stochastically phase-locked firing properties.[84] Some 
advanced behaviors such as burst firing mode, frequency adap-
tion, and neuronal inhibition are expected play important roles 
in enabling energy-efficient neural processing,[7a,85] but the 
hardware demonstration of these dynamics remains rudimen-
tary and relatively limited. The explicit function of other high-
order behaviors, such as subthreshold oscillation and mixed 
firing mode, in neural signal processing remains largely uncov-
ered. Some investigations have partially revealed the impor-
tant role of HH neurons in enabling hierarchical learning and 
energy-efficient computing.[86]

To date, the hardware demonstration of HH neurons remains 
very rare. Although a quasi-HH neuron that uses a non-HH 
circuit is proposed to have the capability of generating spikes 
with similar MP evolution as a real action potential, its firing 
activity relies on the addition of a 555 timer integrated circuit, 
which severely increases the circuit complexity.[87] Furthermore, 
the application of HH neurons is mostly restricted to biological 
neuron emulation. Simulation shows that the HH-neuron-
based circuits are capable of performing general Boolean logic 
operations, which proves the computational universality of HH 
neural networks.[88] A neuromorphic analog computing solu-
tion to a computationally hard graph-partitioning problem is 

Figure 14.  Demonstration of HH neurons and neuronal behaviors. a) Circuit diagram of the HH neuron. The channels consist of two NbO2 Mott 
memristors (M1 and M2), each with a characteristic parallel capacitance (C1 and C2, respectively) and are biased with opposite polarity DC voltage 
sources. b) All-or-nothing response to super-threshold and sub-threshold input pulses. A super-threshold 0.3 V input pulse and its corresponding spike 
output (action potential). The magnified spiking region (inset) highlights the time sequence of events for channels one and two. A sub-threshold 0.2 V 
input to the same device yields an attenuated output. c) Experimental and simulated neural spike trains generated by the HH neuron. Reproduced 
with permission.[8a] Copyright 2012, Springer Nature. d) Circuit topology of a two-channel VO2 active memristive neuron to emulate the HH neuronal 
dynamics, the schematic structure, and a SEM image of a typical VO2 active memristor. e) A fraction of the 23 biological neuron spiking behaviors 
experimentally demonstrated in the VO2 active memristor neurons. Reproduced with permission.[84] Copyright 2018, Springer Nature.
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proposed based on NbO2 neurons with three dynamical electro-
physical processes, which partially resemble the working mech-
anism of HH neurons.[89] However, computational applications 
that take full advantages of HH neuronal dynamics remain 
missing, which is largely attributed to people’s limited knowl-
edge about their role in the functionality of biological neurons.

3. Artificial Sensory Neurons

Besides implementing computational tasks, artificial neu-
ronal devices can also be integrated with sensors to work as 
sensory neurons. In biological systems, sensory neurons are 
regarded as the first stage of data input in the interaction with 
the surrounding environment.[90] The massively collected data 
are filtered, integrated, and refined for dynamically training 
the neural network, which shapes our perception and under-
standing of the world around us.[91] Hence, the hardware imple-
mentation of sensory neurons is an important cornerstone of 
building artificial intelligent systems. Artificial sensory neurons 
that resemble the function of human eyes or skin have received 
much research interest in the past few years.

3.1. Visual Neurons

Mammalian visual system is capable of perceiving visual infor-
mation and recognizing different targets in a complex environ-
ment.[92] Artificial visual perception systems are now gaining 
more research attention for they can potentially realize real-time 
pattern recognition with faster speed and higher efficiency.[93]

Various materials and device structure designs are deployed 
to achieve artificial visual perception. Most of the research 
focuses on photo-synaptic devices; however, these devices 
lack the complex function of mammalian retinal neurons.[94] 
Among the previously reported works on visual neurons, 
hybrid integration of a photoreceptor and a neuromorphic 
component, which functions as an optical signal sensor and a 
signal processor, respectively, is usually employed to construct 
the artificial visual system. Bao et al. reported a one-transistor-
one-memristor structure to mimic the functions of photore-
ceptor cell and ganglion cell in human eyes. The changes in 
MP and neuronal spiking caused by photo-illumination can be 
mimicked by the voltage changes between the two terminals of 
the transistor and memristor. In their demonstration, the shape 
information of input images can be extracted and encoded as 
neural spikes for further processing.[95] To extend human vision 
to the ultraviolet (UV) band, oxide semiconductor IGZO is uti-
lized as a UV sensor. By combining with a NbOx memristor as 
the oscillation neuron, the IGZO/NbOx system can detect the 
UV image information and convert it into neural spikes. The 
neural spike trains are then processed by a neural network. 
Image segmentation in a complex background was successfully 
implemented.[96] Similarly, by integrating organic near-infrared 
(NIR) photo synapses with Ag/SiO2/Ag-based LIF neurons, Mu 
et al. constructed a vision sensory neuron.[97] Fundamental syn-
aptic behaviors, like short-term plasticity, long-term plasticity, 
and paired pulse facilitation/depression, are mimicked by the 
NIR artificial synapse. The output of the NIR artificial neuron 

system is sent to a two-layer SNN and a test accuracy rate of 
63.21% in the handwritten digit classification is achieved. How-
ever, the accuracy still has much room for improvement and 
the energy budget is still relatively high.

Recently, a photoelectric spiking neuron for visual 
depth perception was implemented based on a photoresistor 
and a TaOx memristor-based spiking encoder, as shown in 
Figure 15a.[98] Figure 15b shows that the light stimulation pulse 
can be encoded into neural spikes by the LIF neuron with four 
critical neuronal behaviors: all-or-nothing spiking, threshold-
driven spiking, a refractory period, and strength-modulated 
frequency response. The firing frequency is similar to that of 
biological neuron in the range of 1−200  Hz, with low energy 
consumption. Figure  15c exhibits the emulation of binocular 
vision based on the photoelectric spiking neuron system. This 
system demonstrates a recognition improvement by refocusing 
on sights with different distances, which resembles biological 
visual systems.

For the works stated above, the information perception 
units and data processing components are physically separate, 
which will inevitably cause data latency, high power consump-
tion, as well as system complexity. To address this challenge, 
near-sensor and in-sensor computing paradigms are proposed 
to perform signal sensing, collection, and computing near or 
within the sensory device. A single phototransistor was recently 
proposed to mimic the retinal neuron with typical IF behav-
iors.[99] Neuronal firing is activated by electric stimuli and fire 
characteristics can be dynamically modulated by light stimuli. 
Image recognition is proved to be feasible based on the single 
phototransistor neuron, which exempts the extra conversion 
components and circuits. After that, the same research group 
reported 3D monolithically integrated photoresponsive InGaAs 
biristor neurons over a synapse array for artificial visual percep-
tion, as presented in Figure 16a.[100] Such neuron can execute 
optical signal sensing, data collection, and conversion, as well 

Figure 15.  A photoelectric spiking neuron based on a photoresistor and 
a TaOx memristive neuron. a) The circuit scheme of the photoelectric 
spiking neuron with near and distant light illumination. b) The encoded 
spikes of light stimuli based on the LIF model. c) A schematic image of 
the binocular positioning process in the human brain. Reproduced with 
permission.[98] Copyright 2022, Wiley-VCH GmbH.
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as spiking signal transmission to a SNN simultaneously, ena-
bling high efficiency and low energy budget. The 3D mono-
lithic integration strategy shows promising potentials for future 
large-scale visual perception system with lower power con-
sumption and higher integration density.

2D photosensitive materials are also employed to build visual 
neural networks. Mennel et al. demonstrated an ANN directly 
in an image sensor array.[101] Figure  16b shows the schematic 
diagram of the ANN. The image sensor consists of a photo-

diode array based on WSe2. The photosensitivity of the diode, 
which represents the connection strength, can be modulated 
by the applied voltage, and thus the sensor array also functions 
as a neural network. Two neuromorphic functions, the classifi-
cation and autoencoding, are successfully demonstrated. This 
computing in-sensor array can achieve image recognition in 
nanoseconds, learn the key features of an image, and recon-
struct it with good fidelity. Zhou et  al. reported a BP/Al2O3/
WSe2/h-BN heterostructure to implement all-in-one perception, 

Figure 16.  2D-material-based visual neural networks and their applications. a) A schematic diagram of the 3D stackable neuromorphic visual system. 
Reproduced with permission.[100] Copyright 2021, IEEE. b) Schematics of the ANN imaging sensor array, classifier, and autoencoder. Reproduced with 
permission.[101] Copyright 2020, Springer Nature. c) The illustration of motion detection based on the 2D h-BN/WSe2 retinomorphic hardware. d) The 
original image and its pixel brightness distribution; the pixel brightness distribution after motion detection with and without moving objects. e) Motion 
separation of red, green, and blue trolleys with various time intervals. f) The statistical distribution of the spent epoch number with trolley recognition 
accuracy above 90% for varying noise levels. Reproduced with permission.[102] Copyright 2020, Springer Nature.
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memory, and computing for motion detection and recognition 
(MDR).[102] Figure  16c–f illustrates the retinomorphic hard-
ware and corresponding MDR results. The photoresponse can 
be modulated either positively or negatively by optical stimuli, 
stored and differentially computed by the single device. The 
moving trichromatic trolleys are 100% successfully separated 
without ghosting. The detected image is then fed into a con-
volution neural network for further training. Fast and accurate 
(90%) trolley recognition is achieved in as few as four training 
epochs at 10% noise level. There are also a few other reports on 
the in-sensor computing systems based on 2D heterostructures 
for pattern recognition, classification, and so forth, suggesting 
that vdW materials may provide a promising platform for the 
neural network vision sensor.[94b,103]

Nevertheless, there are still some barriers impeding prac-
tical applications. First, the light absorption in thin 2D semi-
conductors is limited, which would make it difficult for low 
intensity light detection and pattern recognition. Second, the 
proposed design requires operation at a relatively large bias 
voltage, resulting in high power consumption. In addition, 2D 
materials often suffer from non-uniformity issues in large area 
growth, which adds to the challenges for large-scale integra-
tion. Besides, it would be beneficial if the photosensitive band 
of the sensing unit can be expanded to UV and IR spectrum to 
capture more information beyond human vision.

3.2. Skin Perceptual Neurons

Skin, as the largest organ, has many functionalities, for 
example, protection, sensing, and perception.[104] The critical 
demand on the emulation of human skin to endow the elec-
tronic skin system with higher intelligence has made the 
artificial tactile perception a popular research topic in recent 
years.[93b] Integration of sensing and processing units is a gen-
eral methodology to emulate the behaviors of haptic sensory 
neuron. Haptic memory can easily be realized by combining 
pressure sensors and memristive devices. However, such a 
system cannot directly process the tactile patterns.[105] A spiking 
neuron that can encode and transmit the perceptual informa-
tion is missing from simple sensor-memory systems.[106] In 
spite of their capability to differentiate tactile patterns, they lack 
the learning capabilities that are necessary for identification 
and recognition tasks.

To address this challenge, tactile perception learning process 
was successfully implemented by Zhang et  al. using a haptic 
neuron system which comprises a piezoresistive sensor and a 
Nafion-based memristive neuron.[107] In the neuromorphic tac-
tile processing system as illustrated in Figure 17a,b, spatiotem-
porally correlated stimuli can be integrated and modulated to 
enable parallel processing, and pattern recognition with high 
accuracy is achieved via repeated training.[108] Kim et  al. dem-
onstrated a tactile neuron and a perceptual neural network 
based on a semi-volatile carbon nanotube (CNT) transistor.[109] 
Figure  17c illustrates the design of the tactile sensor system. 
The system consists of a tactile sensor, a voltage-controlled 
oscillator circuit, one neuronal CNT transistor, and a synaptic 
CNT array, with the capability of identifying the temporally 
correlated stimuli and differentiating the features of tactile 

patterns. The recognition accuracy can be effectively improved 
with increased learning iterations.

In human skin, mechanonociceptors and thermal nocicep-
tors are two major types of nociceptors. Yu et al. proposed a tac-
tile perceptual neuron with both pressure decoding ability and 
nociceptive function, as illustrated in Figure 17d.[110] With a low 
power consumption, this tactile perceptual system can emu-
late acute and chronic pain, and nociceptive characteristics of 
allodynia and hyperalgesia in biological nociceptors. However, 
this artificial nociceptor is based on discrete sensors and not 
capable of producing spiking signals. To address this challenge, 
Zhu et  al. recently reported an artificial mechanonociceptor 
array by integrating CNT-based pressure sensors with NbOx 
memristors.[111] Key features of nociceptors under normal state 
and different levels of injuries are successfully demonstrated 
in the output neural spikes. There is also a study on thermal 
nociceptors based on diffusive memristors.[43a] The key func-
tions of a nociceptor, such as no-adaptation and sensitization, 
have been demonstrated in a single device. Figure 17e,f shows 
bio-inspired artificial afferent nerves for tactile perceptual 
learning.[112] The two proposed artificial afferent nerves can 
achieve motion detection as well as handwriting recognition 
and classification. Notably, a hybrid bioelectronic reflex arc was 
constructed by combining the proposed artificial afferent nerve 
in Figure 17e with a biological efferent nerve to realize muscle 
motion control.[112a] These works show good promise for poten-
tial applications in neurorobotics and neuroprosthetics, and 
demonstrate promising strategies to realize an artificial tactile 
perceptual system.

3.3. Multisensory Neurons

Most of the previous research focused on the single-mode sen-
sory perceptual system, which has not yet reached a level com-
parable to the integrated, multi-functional, and more efficient 
sensory perception in biological systems. Hence, it is of great 
significance to achieve the integration of multisensory informa-
tion input or multisensory perception fusion in one hardware 
architecture. Wan et  al. demonstrated a bimodal artificial sen-
sory neuron with both visual and haptic perception.[113] Such a 
fused sensory perceptual system can collect optical and pres-
sure information through photodetector and pressure sensor, 
respectively. Figure 18a shows the schematic illustration of 
the visual-haptic fused bimodal artificial sensory neuron. The 
motion control and recognition of multi-transparency alpha-
betic patterns are successfully demonstrated by such bimodal 
sensory neurons, as shown in Figure  18b,c. The good percep-
tual capability of this device can be attributed to the synergistic 
effect of visual and tactile feedback during the task. Recently, an 
artificial multisensory neuron with haptic-temperature fusion 
was reported based on a piezoresistive sensor and a VO2 vola-
tile memristor with intrinsic thermal sensitivity.[114] The sche-
matic diagram of such multisensory perceptual system is 
shown in Figure  18d. By taking advantage of the coordination 
between haptic and temperature sensory inputs, the bimodal 
haptic-temperature fused sensory neuron can well achieve the 
recognition and classification of haptic/temperature patterns. 
This multisensory system is further developed by employing a 
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Figure 17.  Artificial tactile perceptual neurons. a) An illustration of the CNT-based tactile perceptual neuron. b) A schematic diagram of the 
machine learning method for perceptual learning emulation. Reproduced with permission.[108] Copyright 2018, Wiley-VCH GmbH. c) Conceptual 
design of the proposed tactile neural system consisting of a tactile sensor device, a voltage-controlled oscillator, and a CNT transistor. Repro-
duced with permission.[109] Copyright 2020, Springer Nature. d) A schematic diagram of the human tactile afferent nerve and the proposed arti-
ficial tactile neural perceptual system. Reproduced with permission.[110] Copyright 2020, American Chemical Society. e) A schematic illustration 
of the flexible organic artificial afferent nerve. Reproduced with permission.[112a] Copyright 2018, the American Association for the Advancement 
of Science. f ) A schematic diagram of the artificial optoelectronic spiking afferent nerves. Reproduced with permission.[112b] Copyright 2020, 
Springer Nature.
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scaling resistor to adapt the high quality epitaxial VO2 neuron 
to sensors with different resistance level.[115] The sensation and 
encoding of illuminance, temperature, pressure, and curvature 
signals are demonstrated using this multisensory neuron.

Most of the abovementioned works are at single-device level 
and their function of multi-modal perception fusion is often 
achieved at the expense of each individual sensing mode per-
formance. As a system-level implementation, Zhu et al. dem-

onstrated a pressure and temperature multimode-fused spiking 
neuron system by heterogeneously integrating pressure sensors 
and NbOx memristors into an array, as shown in Figure 18f.[116] 
The pressure and temperature information can be not only 
fused into one spike train, but also distinguished by decou-
pling the spike frequency and amplitude. This ensures that the 
system has a strong capability to distinguish and perceive dif-
ferent external stimuli while having good data compression and 

Figure 18.  Multisensory neurons. a) A schematic illustration of the visual-haptic fused bimodal artificial sensory neuron. The illustration of b) motion 
control and c) multi-transparency pattern recognition task based on the bimodal artificial sensory neuron. Reproduced with permission.[113] Copyright 
2020, Springer Nature. d) A schematic diagram of a multisensory perceptual system with haptic-temperature fusion. e) The confusion matrix of the clas-
sification testing results. Reproduced under the terms of the CC-BY license.[114] Copyright 2022, the Authors. Published by Wiley-VCH GmbH. f) A sche-
matic diagram of the multimode-fused spiking neuron array and the SNN classifier. Reproduced with permission.[116] Copyright 2022, Wiley-VCH GmbH.
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conversion capabilities. Such multisensory neuron systems can 
mimic the human perception system toward more compact, 
more functional, and more efficient intelligent systems. There 
are also critical demands on artificial auditory, olfactory, and 
other sensory neurons emulation to achieve the full hardware 
implementation of human sensory perceptual system. An arti-
ficial gustatory neuron has been reported recently.[117] However, 
relevant reports remain rare so far.

4. Challenges and Perspectives

In the past a few years, artificial neuronal devices based on 
diverse volatile switching materials have captured a broad range 
of neuronal dynamics which are further exploited to implement 
various ANN architectures. However, there is still a significant 
gap between the demonstrated NC systems and those needed 
for practical large scale computing applications. A series of bar-
riers remain to be overcome toward approaching the level of 
sophistication of their biological counterparts. The challenges 
for further research in this field mainly exist in three aspects, 
individual device performance, system-level computing capa-
bility, and ANN architecture innovation.

Further improvements of individual neuronal device param-
eters are required by more powerful and energy efficient NC 
systems. Neuroscience research shows that the total energy 
cost of biological neurons generating a single action potential 
and passing it though the axon is around tens to hundreds of 
femtojoule, and the power consumption of a neuron in the 
resting state is at picowatt level.[16,86b,118] By contrast, the power 
consumption of neuronal oscillators input voltage can exceed 
microwatt even when they are driven by a subthreshold input 
and do not fire neural spikes at all.[8a,11d,119] The energy cost 
is even higher when resistive switching occurs, as shown in 
Table 2. Depending on the switching mechanism, some pos-
sible strategies can be used to address this problem. Changing 
the geometric parameters of the IMT oscillators, for example, 
employing nanowires[17b,25b,120] or atomically thin films[39] as 
the channel, can effectively reduce the device conductance. 
Similarly, minimizing the area of switching media in vertical 
non-filamentary memristors can also reduce the operating 
current. Topological insulators that can generate spin-transfer 
torque may have the potential to replace the ferromagnetic 
layers in MTJ devices and improve the energy efficiency.[121] 
As to LIF neurons, the energy consumption in the resting 
state can be suppressed by employing switching materials 
with a high on/off ratio. In this case, the resistive switching 
and relaxation process dominates the energy consumption. 
Similar to the situation of non-volatile memory, the switching 
energy can be decreased by reducing the effective thickness 
of switching media in memristors,[122] or the volume of active 
phase transition region in PCM neurons.[10c,123] Meanwhile, 
attempts to reduce energy consumption should also take the 
working frequency into consideration, since the lower oper-
ating current tends to slow down the switching speed. Some 
LIF neurons based on ECM or electrolyte-gated FET are 
reported to work at low frequency. Introducing mobile ions 
to these devices via doping or oxidation may help address the 
problem.[124]

In terms of reliability and reproducibility, the cycle-to-cycle 
variation in individual device operation and device-to-device 
variation in batch fabrication are commonly regarded as prob-
lems of memory devices; however, as we mentioned, they can 
be employed to mimic neuronal functions such as probabilistic 
firing and PPC in a NC system.[10a] The key point is how to obtain 
a robust stochastic activation function for individual devices and 
a more reproducible distribution of neuronal response among a 
device group. Inspired by the report of controlling grain bounda-
ries in MoS2 synthesis,[125] one possible solution is to intentionally 
create active sites that favor filament formation or phase transi-
tion during device fabrication, so that the switching would prefer 
to occur at these sites in a more consistent manner. Another 
problem in exploiting the stochasticity of neuronal oscillators is 
the small voltage range of their stochastic oscillation regime, typi-
cally within tens to hundreds of millivolt, which makes the device 
operation vulnerable to noise.[17b,39] Increasing the series resist-
ance in the oscillatory circuit can broaden the operation regime 
but it would also require a higher operating voltage. A reconfigur-
able stochastic neuron with dynamically tunable series resistance 
may provide a possible solution to this problem.[26a] MTJ neurons 
also have the noise tolerance issue because they suffer from low 
on/off ratio, which makes recognizing and counting their neural 
spikes difficult in a noisy context. Novel designs of MTJ memory 
cells with more auxiliary components can enhance the on/off 
ratio at the expense of compactness. For example, Patel et al. 
showed that a 2T1R cell possesses over five  times higher on/off 
ratio than a traditional 1T1R cell.[126]

The system-level hardware implementation of NC systems 
centered with artificial neuronal devices focuses on utilizing 
certain neuronal dynamics, such as neuronal coupling, LIF 
behavior, or stochastic activation, to demonstrate novel ANN 
architectures and solve computational problems that are par-
ticularly suitable for these ANNs, as we summarize in Table 1. 
These works, on one side, are very encouraging since they 
confirm that even only mimicking a small fraction of biolog-
ical neuronal dynamics can provide considerable computing 
capability. On the other side, these demonstrations remain 
rudimentary. Each demonstrated ANN is typically dedicated 
to solving a specific type of problems with a small input size. 
Some theoretical and engineering challenges need to be over-
come before fully realizing the computing power of these ANN 
architectures. ONNs were originally proposed to be able to 
solve general computational problems since they permit the 
realization of Boolean logic operations.[127] However, the refor-
mulation of general problems that are conventionally solved by 
level-based circuits using the frequency or phase state of neu-
ronal oscillators remains challenging. The demonstrations we 
described in Section 2.1.3 serve as good reference in this regard. 
On top of them, some simulation works may provide useful 
guide. For example, Hoppensteadt and Izhikevich set the math-
ematical basis about applying Hebbian learning rules to an 
ONN by imposing dynamic connectivity via external input.[128] 
Follmann et al.,[129] Yogen et al.,[55a] and Popescu et al.[130] con-
ceive different coupling schemes of MTJ neurons for executing 
pattern recognition. Shukla et al.[60] and Csaba et al.[51,52] show 
how to use IMT oscillators to perform image processing and 
pattern recognition, respectively. A recent simulation work 
provides a detailed tutorial about how to control the coupling  
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state of IMT neuronal oscillators via subharmonic injection 
locking.[131] Furthermore, one major bottleneck that prevents 
ONN hardware from practical application is the difficulty of real-
izing full coupling between neurons.[51] The number of required 
interconnects increases quadratically as the number of neurons 
increases, and would become overwhelming quickly as the 
problem size goes big. Therefore, a vertical integrated structure 
that arranges neuronal oscillators and interconnection wires in 
different planes is needed. Strategies to realize partial intercon-
nection via a global microwave current or magnetic field have 
been introduced in Section  2.1.3. As for the coupling mode, 
besides the two extremes, resistive and capacitive, Raychowdhury 
et al.[54a] proposed that a bistable mode, which means both the 
in-phase and antiphase locking modes are stable, can be realized 
by properly tuning the coupling conductance and capacitance. 
Assisted by the stochasticity of neuronal oscillators, the bistable 
mode may act as an intermediate state between two extremes 
and potentially provides a binary degree of freedom in ONNs, 
but its applicability needs further experimental confirmation.

Different from ONNs, SNNs are dedicated to applications 
like pattern recognition and classification.[132] As mentioned 
before, existing SNN hardware has managed to demonstrate 
both supervised[24a] and unsupervised learning[24b,c] for image 
recognition using simplified Hebbian rules and gradient 
descent methods. However, all these SNNs have only a single 
layer of fewer than ten neurons. Therefore, they can only pro-
cess very small pixel images and execute simple classification 
jobs. SNNs that consist of over hundreds of neurons should be 
implemented to reach the computing power required by more 
practical applications. Moreover, the hardware implementation 
of multilayer SNNs based on volatile switching devices has not 
been realized. One engineering challenge is the coordination 
between neuronal and synaptic devices in terms of fabrica-
tion compatibility, operating voltage (current) level, and avail-
able dynamics (plasticity). Memristive neural networks have 
shown advantages in this term since memristors can serve as 
both neurons and synapses without complicated auxiliary circu
its.[7d,18c,24a,68b] Other devices with both volatile and non-volatile 
features like PCM, FeFETs, and spintronic devices are also 
good candidates, given their relatively mature fabrication tech-
niques.[133] Another critical problem comes from the heteroge-
neity of input and output neural spikes of neuronal devices. 
Both the amplitude and morphology of output neural spike 
trains are usually very different from those of input ones for 
single neurons.[13c,42a,69b,73c,87] Therefore, the output of a neuron 
cannot be directly fed to the next one, which severely obstructs 
the operation of multilayer SNNs. Besides, synaptic devices and 
wires may also induce significant input voltage loss over the 
course of signal transport.[15a] Therefore, auxiliary circuits that 
compensate voltage loss and rectify pulse morphology should 
be added to the synaptic nodes in multilayer SNNs. In terms 
of learning rules, given that the discontinuous nature of SNNs 
prevents the application of traditional gradient-based methods, 
other learning rules such as SpikeProp algorithm,[134] Theta-
learning rules,[135] backpropagation through time,[136] and three 
factor learning rules[137] may be applied to multilayer SNNs.[138]

The reports of BMs[26] and BNs[27] are good initial attempts to 
take advantage of neuronal stochasticity in ANNs. However, the 
functionality of BNs is only demonstrated via simulation, with the 

device parameters extracted from experiments. The physical con-
struction of such BNs should be the next step. As we mentioned 
before, a hardware scheme of BN based on stochastic neurons 
and peripheral circuitries have been proposed.[27b] Though BM 
has been experimentally realized using a few neurons controlled 
by a field programmable gate array board or a microcontroller, 
the demonstrated optimization problem in this work is either 
so simple that in most cases the system energy drops monotoni-
cally after every iteration,[26a] or too small in size compared with 
practical needs.[26b] More efforts toward solving a more general 
problem with a larger size are expected in the future demonstra-
tion of stochastic ANNs to better show their computing efficacy.

To bridge the gap between ANNs and biological neural net-
works, one possible strategy is to develop innovative archi-
tectures that exploit more advanced neuronal dynamics. The 
interaction between neurons plays a critical role in the operation 
of biological neural networks. A neuronal assembly, defined as 
a group of neurons with strong mutual excitatory connections, 
is the biological basis of short term and long term memory.[132] 
Synchronization of firing times can be easily realized by cou-
pling groups of neuron oscillators in ONNs; however, it remains 
challenging to realize synchronization among spiking neurons 
and construct assembly code in SNNs.[139] The research on neu-
ronal interaction can start from realizing self-coupling of a single 
neuron or the coupling between a few neurons. For example, 
Zhang et al. designed a memristive autapse connected to a 
neuron to enhance neuronal firing rate and spiking modulation 
capability.[140] Moujahid et al. indicate that HH neurons coupled 
by electrical synapses show the best information transmission 
performance at a low energy cost.[86a] Advances have been made 
toward realizing the synchronization of the firing activity of mul-
tiple neurons to form temporal correlation between events and 
local self-clocking,[24b,38] including mimicking neural synchrony 
using stochastic plasticity[141] and the hardware demonstration of 
spatial-temporal code.[142] Besides, neuroscience and computer 
science research on this topic may provide some inspirations. 
For example, Hopfield and Brody proposed transient synchrony 
as a collective mechanism for spatiotemporal integration and 
indicated that the event of collective synchronization of specific 
groups of neurons in response to a given stimulus may consti-
tute a basic network-level building block.[143] Furthermore, the 
incorporation of inhibitory neurons to current ANNs is supposed 
to be necessary because they perform many important functions 
in biological nervous system such as mediating lateral compe-
tition, forming negative feedback loops as distributed clocks, 
and enabling spatiotemporal coordination.[7a] Lateral inhibition 
has been deployed in many fully connected feedforward net-
works to enhance the input discrimination and improve energy 
efficiency.[24a,144] However, the inhibition operation in these works 
are fulfilled by software or CMOS components instead of inhibi-
tory neurons. Neuronal inhibition has been captured by neuronal 
devices based on a single MOSFET[145] or a FeFET circuit,[13a] but 
the reports on inhibitory neurons remain very rare. The research 
on involving inhibition dynamics and modeling their function-
ality in ANNs is not only an interesting challenge for the NC 
community, but also beneficial to computer science and neuro-
science research.[146] In addition, considering that a great diver-
sity of neurons collaborate together for the function of biological 
nervous systems,[147] hierarchical control structures dedicated to 
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regulating the information flow in biological neural networks, 
such as neurons in spinal cord and thalamus should have their 
counterparts in more advanced ANNs.[148]

Despite the significant progress, the artificial sensory neuron 
system is still in its infancy. For more inspiration toward the next 
development stage, a more comprehensive and in-depth under-
standing of the biological behaviors and patterns of sensory neu-
rons would be beneficial for the construction of artificial sensory 
neuron systems.[149] At the individual device level, flexible sensory 
neurons with multidimensional perceptual fusion and processing 
capability are highly desired.[150] Emerging materials, for example, 
organic semiconductors, which are flexible and applicable to 
large-area manufacturing, hold great potential for future intelli-
gent sensory neuron applications.[151] More neuronal dynamics, 
such as stochastic resonance and coherence resonance, can be 
employed to enhance signal detection.[152] Additionally, device/
algorithm co-design may provide new opportunities to optimize 
the operating speed and power efficiency. Furthermore, minia-
turization of neuronal devices and their related periphery circuits 
without the loss of multi-functionality is essential for integrated 
artificial perceptual neuron systems with higher complexity. 
System-level integration is challenging for such systems with 
many functional components and modules, including sensors, 
memory, and processing units, as well as peripheral circuits.[93b] 
The compatibility of different components in terms of electric and 
mechanical properties, as well as performance-power consump-
tion trade-off, needs to be taken into consideration. A standard or 
optimized fabrication workflow is extremely desirable to not only 
overcome the compatibility problem but also enable higher scal-
ability and reliability.[93a] Besides, artificial nervous systems that 
resemble the biological nervous system hierarchy, which involves 
the communication and collaboration between peripheral and 
central nervous systems, have yet to be implemented. An initial 
demonstration that combines the function of artificial sensory 
and cortical neurons can be a good starting point.

To sum up, many challenges exist in building more powerful 
artificial neuronal devices and neural networks. They origi-
nate from the challenges in material selection, device fabrica-
tion, circuit operation, and more importantly, the diversity of 
neuron types and the remaining knowledge gaps regarding the 
organization of computations in biological nervous systems.[153] 
Despite these difficulties, implementing the key aspects of typ-
ical neurons and neural circuits would yield a deeper under-
standing of biological systems and shed light on developing 
more practical artificial intelligent systems.
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