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Artificial Neuronal Devices Based on Emerging Materials:

Neuronal Dynamics and Applications

Hefei Liu, Yuan Qin, Hung-Yu Chen, Jiangbin Wu, Jiahui Ma, Zhonghao Du, Nan Wang,
Jingyi Zou, Sen Lin, Xu Zhang,* Yuhao Zhang,* and Han Wang*

Artificial neuronal devices are critical building blocks of neuromorphic com-
puting systems and currently the subject of intense research motivated by
application needs from new computing technology and more realistic brain
emulation. Researchers have proposed a range of device concepts that can
mimic neuronal dynamics and functions. Although the switching physics and
device structures of these artificial neurons are largely different, their behav-
iors can be described by several neuron models in a more unified manner.

In this paper, the reports of artificial neuronal devices based on emerging
volatile switching materials are reviewed from the perspective of the demon-
strated neuron models, with a focus on the neuronal functions implemented
in these devices and the exploitation of these functions for computational
and sensing applications. Furthermore, the neuroscience inspirations and
engineering methods to enrich the neuronal dynamics that remain to be
implemented in artificial neuronal devices and networks toward realizing the

1. Introduction

Neuromorphic computing (NC) is a
promising  computational ~ framework
for overcoming the processing speed
and power efficiency bottlenecks of
the classical von Neumann computing
architecture in learning, recognition, opti-
mization, and classification applications.
In terms of hardware, the key concept is
to build a computing system that physi-
cally emulates the structure and working
mechanism of mammalian brains. The
fundamental building blocks for such
systems are artificial synaptic and neu-
ronal devices with sufficient biologically
plausible dynamics so that the physical
processes associated with perception and

full functionalities of biological neurons are discussed.
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learning can be reasonably replicated in

artificial neural network (ANN) hardware.

In such bio-inspired neural networks,
neurons play the role of information integrator and processor.
Synapses, which are the connection between neurons, transmit
and store the processed information. Early NC systems are
mainly based on conventional complementary metal-oxide-
semiconductor (CMOS) technology, such as the IBM TrueNorth
chip, the Loihi chip by Intel, and the Tensor Processing Unit
developed by Google.l However, CMOS-based artificial neu-
rons typically take tens of transistors to form a single spiking
neuron with limited neuronal dynamics, which makes CMOS
neuromorphic chips far from ideal in terms of scalability and
energy efficiency.”) Therefore, a number of emerging volatile
switching materials and technologies beyond silicon CMOS
were introduced to building more compact, efficient, and
biologically plausible artificial synapses and neurons.’! Non-
volatile memory devices such as resistive RAM (memristor),
phase change memory (PCM),P! and spin-transfer torque RAM
have been widely demonstrated as synaptic components in a
neural network.l®! Arrays of these devices can implement the
memory (storage and update of synaptic weight) and com-
puting (e.g., dot-product machine) functions of synapses, many
types of synaptic plasticity, and have demonstrated a diversity of
computing tasks ranging from multilayer perception networks,
differential equation solvers, to convolutional neural networks
for image recognition, etc.”) In these demonstrations, synapse
arrays typically serve as in-memory computing units and vector-
matrix-multiplication accelerators. The realization of the neu-
ronal functions, such as signal accumulation and activation
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function, largely relied on software or digital circuits. However,
CMOS-based neurons suffer from scalability issue, limited
neuronal dynamics, and unsatisfactory energy consumption
compared with biological nervous systems. The computing
resource and power budget required by software-based neu-
rons are even higher. To realize more practical application of
advanced computing architectures such as coupled oscillatory
neural networks (ONNs) and spiking neural networks (SNNs),
it is essential to incorporate artificial neuronal devices with
spatial-temporal integration, probabilistic activation function,
neuronal coupling, and hopefully more sophisticated neuronal
dynamics to appropriately regulate the information processing
in NC hardware.

A variety of devices based on emerging materials with vola-
tile threshold switching properties have been reported in the lit-
erature to demonstrate neuronal features, including insulator-
metal-transition (IMT) oscillators,® valence change mechanism
(VCM) and electrochemical metallization (ECM) memristors,!
PCM, magnetic tunnel junctions (MTJs),' magnetic skyr-
mion devices, 2 ferroelectric field effect transistors (FeFETg),["’]
and superconducting nanowire oscillators.! To be clear, the
artificial neurons or artificial neuronal devices in this paper,
except specially stated, refer to the devices which employ vola-
tile switching materials as the core functional part, instead of
those based on digital computers or CMOS technology. Despite
distinct switching physics and operation mechanisms,™ their
neuronal behaviors can be described by a few neuron models,
namely, the oscillatory neurons, leaky integrate-and-fire (LIF)
neurons, and Hodgkin-Huxley (HH) neurons.'® Some of
the demonstrated artificial neurons also exhibit stochastic
properties.'®] Figure 1 summarizes the research areas of
interest on artificial neurons, including the implemented
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neuron models, sensory neurons, architectures of neural net-
works, and their applications.[®]

In this paper, we review the physically demonstrated artificial
neuronal devices based on volatile switching materials from
the angle of implemented neuron models, neuronal dynamics,
and their applications in both computation and sensing. At the
individual device level, various switching mechanisms to imple-
ment a certain type of neuron are briefly introduced and com-
pared. The performance of the state-of-the-art neuronal oscil-
lators and LIF neurons are benchmarked. At the system level,
we discuss which aspects of neuronal dynamics are captured
by each type of neuronal devices and how the corresponding
ANN hardware is enabled for fulfilling computational tasks.
Besides, efforts of integrating these neuronal devices with sen-
sors to form various sensory neurons are also summarized.
Furthermore, we share our perspective on how to bridge the
gap between artificial and biological neurons toward developing
more advanced neural network applications.

This review article is structured as follows: Section 2 intro-
duces the biological inspirations of artificial neuronal devices
and provides a summary of previous reports on this topic.
Each of three demonstrated neuron models takes a subsec-
tion. Section 2.1 introduces and compares various switching
mechanisms for implementing neuronal oscillators, including
IMT, VCM, MT]J, and FeFET. Typical dynamics of neuronal
oscillators, including frequency coding, stochastic activation,
and coupling capability, as well as the enabled computing
architectures, such as Boltzmann machine (BM) and ONN,
are also reviewed. Section 2.2 summarizes the approaches to
building LIF neurons, including both capacitor-based circuits
and capacitor-free scenarios. The dynamics of LIF neuron,
including spatial-temporal integration, probabilistic firing,
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Figure 1. Summary of the research on artificial neurons, including the implemented neuron models, sensory neurons, architectures of neural networks,
and their applications. The three main implemented neuron models are neuronal oscillator, leaky integrate-and-fire (LIF) neuron, and Hodgkin—Huxley
(HH) neuron. Several types of neural networks can be constructed based on the features of these neuron models, such as oscillatory neural networks,
spiking neural networks, and stochastic samplers. Combining artificial neuronal devices with sensors forms various sensory neurons with the function
of visual sensation, tactile perception, and multisensory fusion. The development of artificial neurons enables a series of applications ranging from

NC, brain-machine interface, to artificial perceptual systems.
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along with frequency adaption and neuronal inhibition are dis-
cussed. The applications of these neuronal dynamics in SNNs
and probabilistic computing paradigms, such as probabilistic
population coding (PPC) and Bayesian networks (BNs), are
reviewed. Section 2.3 introduces the research progress of dem-
onstrating HH neurons with high-order neuronal dynamics,
and briefly discusses its potential toward more energy-efficient
neural networks. Section 3 reviews the research efforts of com-
bining neuronal devices with various sensors to form sensory
neurons. Their applications in visual sensation, tactile percep-
tion, and multisensory fusion, as well as the attempts to realize
sensation-storage-processing integrated perceptual systems
are reviewed. Finally, Section 4 provides a perspective on three
aspects of future research on artificial neurons: optimization of
individual devices, improvement of demonstrated ANN archi-
tectures, and exploitation of more advanced neuronal dynamics
in future neural networks.

2. Artificial Neurons for Computation

Compared to artificial synaptic devices, developing artificial
neurons is a more challenging task owing to their structural
and functional complexity. Figure 2 illustrates the structure
of a typical biological neuron which consists of several key
functional parts: the soma, the axon, and the dendrites.['>1"]
Synapses connect the axon of a (pre-synaptic) neuron to the
dendrites (or soma) of another (post-synaptic) neuron. The
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information in biological nervous systems is encoded by
neural spike trains, which are electrical impulse sequences
propagating along the cell membrane of neurons. The neural
spikes are generated by the axon hillock where the axon origi-
nates. The membrane potential (MP) of axon hillocks can be
elevated by an arriving input neural spike. If the MP exceeds a
certain threshold, the axon hillock fires a neural spike, passes
it to the axon, and resets the MP to the resting status. Through
this process, the axon hillock can integrate the inputs from the
synapses and transform the input spike trains into an output
signal, which would be sent to the next layer of neurons. The
processing results are stored in synapse connection strength
(synaptic weight) which are updated according to synaptic plas-
ticities, such as spike rate-dependent plasticity and spike time-
dependent plasticity (STDP).

Biological neurons have a few essential features which
set requirements for their information processing capability.
1) The firing activity follows all-or-nothing law. If the MP does
not reach the threshold, a neuron does not fire any spike,
while when the stimulation intensity reaches the threshold,
the neuron will fire a spike with the nearly fixed amplitude
and duration. It has two consequences. First, information is
encoded and processed by the frequency and pattern of neural
spike trains, regardless of the width or specific shape of single
spikes. Stronger stimulation should make a neuron fire more
often and vice versa. Second, subthreshold MP does not cause
a spiking event but spontaneously decays before being elevated
by the next input spike, due to the ion diffusion through the
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Figure 2. Schematics of a typical neuron. A typical neuron consists of the soma, the axon, and the dendrites. Some key neuronal features are high-
lighted, namely, the spatial-temporal integration of input spike trains, the short-term memory effect of membrane potential (the bottom left figure), the
probabilistic sigmoidal activation function of axon hillock (the top right figure), and the ion channels on the cell membrane (the bottom right figure).
These features enable neurons to collect information input from multiple synapses, analyze and encode the temporal correlation, process the informa-
tion in a fault-tolerating manner, and generate output neural spike (action potential) trains following a set of rules.
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membrane. Because the arrival of input spikes has different
time delay and strength attenuation depending on the traveling
distance, the axon hillock therefore serves as a signal integrator
with short-term memory, which enables the neuron to detect
and create the spatial-temporal correlation in neural spike
trains.% 2) The firing activity of neuron exhibits inherent sto-
chasticity.?”! Neurophysiology research shows that the firing
probability typically has a sigmoidal dependence on the MP
so that the activation function of neural networks is naturally
implemented by the probabilistic firing behavior of neurons.??!
The stochastic nature results in the random interspike interval
in the spike train generated by a neuron excited by a constant
stimulation level. As a result, biological nervous systems with
intrinsic stochasticity tend to be more fault-tolerating as com-
pared to deterministic digital computers.l??l 3) Biological neu-
rons possess sophisticated membrane structures, especially the
voltage-controlled ion channels that enable the energy-efficient
regeneration and transport of action potentials, that is, neural
spikes.?*] The complex membrane structure leads to high-order
neuronal dynamics, such as refractory period (absolute and rel-
ative), variable firing mode, frequency adaption, and coherence
resonance. They are related to the ultrahigh energy efficiency
of individual biological neurons. At certain level of abstraction,
the electrical characteristics of neuron membrane is described
by the HH model.'¥1 4) The interaction dynamics between mul-
tiple neurons and neuron groups also play a crucial role, such
as coupling and synchronization, lateral inhibition and inhibi-
tory neurons, and hierarchical control structures, which bring
the complexity of biological nervous system to an overwhelm-
ingly high level. Fortunately, the abovementioned features are
not absolute requirements for implementing artificial neuronal
devices and networks. Replicating a small fraction of them
can already provide considerable computational power, and
the selection of demonstrated neuronal dynamics depends on
the specific computing framework and application goal, as we
will show in the rest of the paper.

The signal accumulation and firing activity of neurons are
typically abstracted as the weighted sum of inputs and acti-
vation function in ANNs implemented by traditional digital
computers. By contrast, artificial neuronal devices based on
volatile switching materials are a more faithful analog to bio-
logical neurons. As the resistive switching threshold acts as
the MP threshold for triggering a neural spike and the volatile

www.advmat.de

nature leads to a spontaneous relaxation process, these devices
can generate oscillation waveforms or pulse trains which are
comparable with neural spike trains. The neuronal dynamics
realized by a type of neurons make them good candidates for
implementing certain ANN architectures. For example, the
coupling capability of neuronal oscillators leads to ONNs, and
the spatial-temporal integration property of LIF neurons results
in SNNs. On the other hand, the complexity of the switching
physics provides the possibility of realizing more sophisticated
neuronal dynamics represented by stochastic firing activity.
Some probabilistic computing architectures, including BM, BN,
and PPC, have been demonstrated. Table 1 gives an overview of
the ANNs demonstrated based on artificial neuronal devices.
In the rest of this section, we will introduce the device mecha-
nisms, discuss which aspects of neuronal dynamics are realized
by each type of neuronal devices, and explain their roles in the
ANN architectures.

2.1. Simple Artificial Neuronal Oscillators

The research of artificial neuronal devices starts from the sim-
plest case, oscillators. Usually, neuronal oscillators can only
realize the function of generating oscillation waveforms which
are regarded as firing neural spike trains, without any other
components like the integrator, short-term memory, and other
sophisticated structures. A simple DC excitation (voltage or cur-
rent) as the predetermined MP is applied to oscillatory neurons
and converted into continuous oscillation.

2.1.1. Device Mechanisms

There are a large variety of physical/chemical/biological
processes that may produce oscillation. Among them, IMT
materials, volatile memristors, FeFETs, and MTJs have been
intensively investigated as neuronal oscillators. IMT oscillators
are based on the first-order phase transition (Mott or Peierls
transition) driven by external voltages in IMT materials like
NDO,,128! VO,,? and 1T-Ta$S,.% At room temperature, the IMT
materials are in their high resistance state (HRS). When the
applied electric field exceeds a certain threshold, an IMT tran-
sition occurs, and the materials switch to low resistance state

Table 1. Hardware implementation of ANNs enabled by artificial neuronal devices based on volatile switching materials.

Network architecture Spiking neural network

Oscillatory neural network

Boltzmann machine Bayesian network

Neuron type LIF

Featured neuronal dynamics Spatial-temporal integration

Learning type Deterministic

Learning algorithm Hebbian rules

or backpropagation

Cooperation with synaptic Yes
devices

Demonstrated applications Pattern classification

(supervised or unsupervised)

Oscillator
Neuronal coupling
Deterministic

Synchronization

Pattern recognition, image

Oscillator LIF or oscillator

Tunable stochastic activation Tunable stochastic activation
Probabilistic Probabilistic

Simulated annealing Bayesian inference
No No

Combinatorial optimization Genetic regulatory networks

processing, combinatorial

optimization

Reference [8¢,24]

[26] [27]

Adv. Mater. 2023, 2205047 2205047 (4 of 32)

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

:sdny) suonIpuo) pue swud [, 34 33 *[€207/90/61] uo Arerquy autuQ ASIA ‘L#0SOTTOT BWPE/ZO0T 0 1/10p/w0d A1 Areiqr[aur|uo//:sdny woxy papeojumod ‘0 ‘607125 1

|

o)/ wod" KoM KreIqr

2SUDOI'T SUOWIWO)) dARaI)) d[qeat[dde oY) Aq POUIOAOS dIe SI[IIE YO OsN JO ST 10§ AIeIqI] dUI[UQ) AJ[IA\ UO (SUOTIPUOD-P



ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

www.advmat.de

a - YR (— [,
5 5 8 .
AL 3 B R | oscilloscope :
—@®) CH1 44 ' '
R E g:‘ . - VS :JEpaus. Vour :
l = = $ E G—) Ta,0s, : Reny :
— .. ~ ' '
R . : EL .
G e . & 3 . 15 . ) :
Pt/NbO/Pt 8 g 7 o . ¥ W
= = |
Il s 1 o L=
= = 4 . 0 100 200 300 400 = " loor= Vou/Ray !
" v lour® Veo/Rea
0 10 20 30 time (us) Snenmmansas '
Time (us)
G d
V,, Ferroelectric FET 03r . ) Spin torque
* V,,=400 mV |
~V,_,=400 mV Vau=350 mv | g— 10 [\ ,\
C=8 nF 3 \ [ [
= he  BC. BC V300 mY | Ferromagnet £s 5 [ \ / \ \ \ /\
. 7 Normal >E ol /| / \ x | ,
Ferromagnet e 32 \ | / ‘ \
Y, . g >8 =5 \/ l\}!‘ \ / U \f \
g -0 : -
Current le) 1
e 0 10 20
! | Time (ns)
0 02 0.4 06 08 10-500 nm
t (ms)

Figure 3. Typical oscillatory circuits and waveforms of various neuronal oscillators. a) IMT oscillator. Reproduced with permission. Copyright 2017,

AIP Publishing. b) VCM memristor. Reproduced with permission.®®! Copyright 2015, IEEE. c) FeFET-based oscillator. Reproduced with permission.

135]

Copyright 2017, IEEE. d) MT) oscillator. Reproduced with permission."¥l Copyright 2017, Springer Nature.

(LRS). When the voltage is swept back, the reverse phase transi-
tion would occur at a lower threshold voltage. Therefore, a hys-
teresis window is formed, which plays a key role in generating
oscillation. Connecting the IMT material to a series resistor
and an optional parallel capacitor forms a Pearson—Anson oscil-
latory circuit (Figure 3a), which is a voltage divider. Careful
design of the series resistance and the DC bias can make the
load line of the resistor cross the hysteresis window. When the
device is operated in this regime, the voltage across the IMT
materials in HRS is over the higher threshold and the voltage
across the LRS is below the lower threshold. As a result, neither
the HRS nor the LRS is stable. The output voltage would go
back and forth between the two threshold voltages and forms
a continuous oscillation waveform. Volatile memristors, for
example, Ta0,,1! HfO, ] PCMO,’ Te/TiTe,,*® and GeSel*l
memristors, share a similar hysteretic switching characteristic
as IMT materials. Despite the switching physics is different,
same design of oscillatory circuits also applies to these devices
(Figure 3b). The only difference is that the switching behavior
of volatile memristors does not involve crystal phase transition,
but the formation-and-rupture of a temporary filament, >33
transient Joule heating,? or reversible ovonic threshold
switching.34

FeFETs also have hysteresis switching features resulting
from the polarization flip of ferroelectric materials.’% In a
typical ferroelectric oscillator circuit, the FeFET is connected
to a MOSFET (the discharge FET) whose channel is in par-
allel with a capacitor (Figure 3c). Given the fixed drain voltage
(Vpp) and gate voltage (V) of the FeFET, increasing the source
voltage (Vs) would decrease the gate-to-source voltage (Vgs) and
induce the ferroelectric transition. The reverse transition would
happen at a lower Vg (higher Vgs). Therefore, a hysteresis
window forms in the Ips—Vg curve, similar to the case of IMT

Adv. Mater. 2023, 2205047 2205047 (5 of 32)

oscillator. The oscillation can be induced by carefully tuning
the DC bias voltages in the oscillatory circuit. If the load line
of the discharge FET crosses the hysteresis window, a low Vg
will trigger the ferroelectric flip, increase the conductivity of the
FeFET, and pull up the Vs. Then, the elevated Vg induces the
reverse ferroelectric flip, decrease the conductivity of the FeFET,
and pull down the Vs. Such a cycle will be repeated and lead
to the oscillation of the output Vs.3%) However, most reported
FeFET-based artificial neurons are operated by pulse trains('l
instead of a DC source. Detailed investigation on the waveforms
of FeFET oscillators remains very limited in the literature.

Different from the hysteretic switching devices, MTJs con-
sist of a non-magnetic spacer sandwiched by two ferromagnetic
layers (one free layer and one fixed layer).[>723¢] The magnetic
multilayer structure converts the energy from a DC electrical
current into oscillating output voltage through the periodic
change of tunnel magnetoresistance via spin-transfer torque
(Figure 3d). The electrical characteristics of neuronal oscilla-
tors based on different device concepts are greatly different. For
comparison, the benchmarks of the reported neuronal oscilla-
tors are summarized in Table 2.

2.1.2. Neuronal Dynamics

The activation of neuronal oscillators typically follows a step
function. The firing probability features an “all-or-nothing”
manner defined by a threshold. Typical spike trains generated
by neuronal oscillators are shown in Figure 3. Each oscillation
peak is regarded as a neural spike. The refractory period, the
time interval between two neural spikes, is almost constant as
it is determined by the RC delay or the rotation speed of mag-
netic momentum. Such a continuous oscillation waveform in

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Table 2. Benchmarks of the various neuronal oscillators.
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Materials Physics Auxiliary circuit ~ Feature size Vi, [V] Operating Vose/Vin? Highest output  Ref.
F [um]? current [mA] frequency [MHz]
NbO, IMT 1R1CY) 10 4 1 0.2/4 (5%) =2 [8b]
NbO, IMT 1R 0.3 2.5 0.015 1.4/2.5 (56%) ~0.4 137]
NbO, IMT 1R 5 1.65 0.5 1.2/1.65 (73%) =35 38]
VO, IMT 1719 0.2 0.7 0.1 0.56/0.7 (80%) =0.05 [17b]
VO, IMT 1mc 0.2 2 0.05 1.5/2 (75%) =0.12 [25b]
1T-Tas, IMT, charge density wave mc 4 3.9 3 0.075/3.8 (2%) =2 [30]
1T-Tas, IMT, charge density wave 1R1C 0.6 2.2 1 0.05/2.2 (2.3%) =0.6 [39]
TaO, Filamentary 1R/T 0.7 7 10 4/7 (57%) =250 [9b]
TaO, Filamentary 1R1C 2 6.8 2 1.5/6.8 (22%) =1 [40]
Te/TiTe,/Pt Filamentary None 5 1.2 0.4 N/A =0.01 [33]
PCMO Joule heating 1R1C 5 2.5 10 0.7/2.5 (28%) =0.18 [32b]
GeSe Ovonic threshold 2R1C 4 5.4 3 2.7/4 (67.5%) =0.5 [34]
switching
CoFe/Ru/CoFeB/MgO/CoFeB/CoFe  MT], spin-transfer torque None 0.1 0.15 0.75 0.025/0.15 (17%) >100 000 [36b]
FeB/MgO/CoFeB MT], spin-transfer torque None 0.375 0.25 6.5 0.02/0.25 (8%) >10 000 Mmdj

Feature area = F X F um? PV, : the input voltage to the device, V,.: the output oscillation voltage amplitude; 9R: resistor, T: transistor, C: capacitor.

which each neural spike is closely followed by another involves
almost no memory effect. One important dynamic of neuronal
oscillators is the frequency dependence on the MP. For the hys-
teretic switching devices, higher DC bias would facilitate the
charge/discharge rate of the capacitor and enhance the firing
rate.®®l Zhang et al. demonstrated an afferent nerve based on
a NbO,, oscillator and used the frequency dependence to cap-
ture the pressure evolution of touching.’! For MTJs, larger
applied DC currents also accelerate the spin-torque transfer
and momentum rotation in the free layer, leading to higher
firing frequency."d

To implement more sophisticated neuronal dynamics,
engineering efforts are made to bring nonlinear properties
to these devices.*!l To enable the integration function, Cario
et al. employed a group of more insulative Mott insulators to
replace the common IMT materials in the oscillatory circuit.*!
The additional integration capability is attributed to the lower
relaxation rate from the metastable low-resistivity state to the
stable high-resistivity state. A more commonly used method for
introducing LIF behaviors to hysteretic switching oscillators is
adding a capacitor and a transistor (or a resistor) to the oscilla-
tory circuit.’>*l The capacitor serves as an integrator while the
accumulated charge can leak through the transistor or resistor.
We will discuss the mechanisms and applications of LIF neu-
rons later in Section 2.2.

More detailed investigations reveal the firing activity of
memristive and IMT neurons possessing intrinsic stochas-
ticity and chaotic dynamics.[7>3*#4 The stochasticity origi-
nates from the filament residue or the rearrangement of crystal
domains.7>#] The threshold voltages of switching are not
fixed but have cycle-to-cycle variations, as shown in Figure 4a.
It has two consequences in the firing activity. First, if the load
line of the resistor or transistor crosses the hysteresis window
at boundaries (Figure 4a, Vg = 1.92 V), the threshold variation

Adv. Mater. 2023, 2205047 2205047 (6 of 32)

will make whether the load line can cross the hysteresis
window or not a random event. The output oscillation wave-
form is not continuous anymore but has random interspike
intervals (Figure 4b), which corresponds to relative refractory
periods. The dependence of firing probability on excitation
voltage typically follows a sigmoidal probabilistic activation
function (Figure 4c).l”*3 Second, even if the load line crosses
the central part of the hysteresis window, the amplitude of the
continuous oscillation defined by two threshold voltages will
still randomly change from cycle to cycle, which introduces
stochastic features to the refractory.3%) Researchers proposed a
stochastic sampling machine (SSM) neural network based on
the probabilistic activation function, and demonstrated that
stochastic neurons can enhance the handwritten digit recogni-
tion accuracy of an SSM network by up to 25% compared to
deterministic neurons.['”! Later, Yan et al. experimentally dem-
onstrated simulated annealing using a BM based on six multi-
terminal stochastic memristive neuronal devices.?%3 The slope
of the sigmoidal activation function can be tuned by applying
an additional gate voltage, which can emulate a series of
Fermi-Dirac distributions with different effective temperature
parameters (Figure 4d,e). The researchers used the BM to solve
a combinatorial optimization problem. The optimization result
is represented by a Boolean vector. The system energy can be
calculated given the current Boolean vector and the one with
minimal energy represents the optimal solution. Over the opti-
mization process, the value of each vector element is controlled
by the firing activity of a stochastic neuron. In each iteration
step, an excitation pulse was applied to a neuron. If the neuron
fires, its corresponding Boolean value will be flipped, or other-
wise remains the same. The stochastic neurons are sequentially
updated until the system reaches the minimum energy. The
performance of different temperature variation strategies is
evaluated. The simulated annealing scenario, that is, changing

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 4. Stochastic properties of IMT and memristive neuronal oscillators. a) Stochastic spiking of a VO, oscillator operating in the stochastic
oscillation regime where the transistor load lines cross the lower boundary of the hysteresis window. b) The stochastic oscillation waveforms, and
c) the sigmoidal probabilistic activation curve. Reproduced with permission.[7®l Copyright 2017, IEEE. d) Gate tunable stochastic activation curves of a
multi-terminal memristive neuron. e) The relation between the gate voltage and effective temperature of fitted Fermi-Dirac distributions. f) The energy
evolution in the optimization process for different temperature variation strategies applied to the BM. Reproduced with permission.[? Copyright 2021,

Springer Nature.

from high temperature to low temperature results in the most
satisfactory energy evolution over the optimization process
(Figure 4f).

MT] devices with very small lateral dimensions are also
reported to show stochasticity caused by thermal fluctuations,
which can destabilize the magnetic configuration and generate
stochastic oscillations between the parallel and anti-parallel
states.[7246] MT] devices have been proposed to build stochastic
binary neurons for probabilistic computing frameworks such
as PPC and BNs.[21¢2724647] Figure 5a shows one of stochastic
MT] neuron circuits.[?®*] The probability distribution for the
MT]J to be in its parallel and anti-parallel states is controlled
by the current passing through it, which is determined by
the input voltage applied to the transistor gate terminal (Viy).
As a result, the probability distribution and the time average
of Vour can be tuned by Viy (Figure 5b). Such a dependence
can be regarded as the probabilistic activation function, which
is well fitted by a sigmoidal curve. The oscillation waveforms
at different Vjy are shown in Figure 5c. Researchers intercon-
nected eight stochastic MT] neurons (also called probabilistic
bits) through a microcontroller and a digital-analog converter
(DAC) to form a BM (Figure 5c). As a demonstration, integer
factorization problems are reformulated to be experimentally
solved by the BM. The firing behavior of p stochastic neurons

Adv. Mater. 2023, 2205047 2205047 (7 of 32)

forms a binary vector, with firing and no-firing corresponding
to 1 and 0, respectively. This vector represents an odd integer P
no larger than 271 Other ¢ neurons can represent another odd
integer Q no larger than 29*!. P and Q are the two possible fac-
tors for a big integer no larger than 27*%*2. Owing to the proba-
bilistic switching property of the neurons, the firing state of the
two groups of neurons can represent all possible factor pairs
of the big integer simultaneously, with a probability distribu-
tion depending on the synaptic inputs. Over the searching pro-
cess, each neuron in the BM is driven by a synaptic input that
is a function of all other neurons’ outputs. Details about how
to calculate the synaptic inputs for the next iteration are also
explained in the paper.?® The BM can visit different states in
the phase space with probabilities given by the Boltzmann law.
Therefore, the solution with minimum energy would appear
with highest probability. Some example results are shown in
Figure 5e-g. Other spintronic device architectures, such as a
nanomagnet with perpendicular magnetic anisotropy on top of
a Hall bar, also exhibit stochastic properties which can be tuned
by magnetic field induced by a current passing through a metal
ring [#72

Besides probabilistic computing, stochasticity can also
be exploited to extend the dynamics of neuronal devices.
A couple of more advanced HH dynamics, as well as the

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 5. Stochastic properties of MT) neurons for integration factorization. a) The circuit diagram of a stochastic MT) neuron. b) Time-averaged
Vour as a function of the applied input (activation function), fitted to the sigmoidal function. c) Oscillation waveforms of Vo for three different V/y,
showing the different probability distribution of MT] states. d) A photograph of a printed circuit board for eight stochastic MT) neurons intercon-
nected through a microcontroller and a DAC. e—g) The initial (top) and final (bottom) state of the system when four, six, and eight neurons are used
to factorize 35=5x7=7x5 (e), 161 =23 x 7 (f), and 945 = 63 x 15 (g). Reproduced with permission.?®l Copyright 2019, Springer Nature.
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frequency detection application, are implemented by a compact
1T-TaS, stochastic neuronal oscillator.??! Stochastic properties
are also expected to exist in FeFET oscillators, considering the
similar hysteretic switching mechanism. Clues are captured by
some reports;**#] however, more solid evidence such as the
detailed probabilistic activation curve and spike trains with
random interspike intervals have not been experimentally
investigated.

2.1.3. Oscillatory Neural Networks

Neuronal oscillators, even only with basic linear response prop-
erties, can be coupled with each other to form an ONN and
execute data processing via the temporal correlation in the
oscillating behaviors, more specifically, synchronization.”” In
ONNs, the information is encoded and processed by the phase
and frequency in addition to the signal levels. Despite the fact
that other types of artificial neuronal devices are also some-
what oscillatory, the phase and frequency of their spike trains
are not well defined because they depend on the parameters of
operating pulse trains. Here, we focus on the ONNs physically
implemented using neuronal oscillators mentioned above. A
comprehensive overview of coupled oscillator-based computing
is presented in ref. [51].

In an ONN, the input to the network is encoded by a fre-
quency or phase pattern. Driven by the input signal, the inter-
connected oscillators interact with each other and their oscil-
lation behaviors reach synchronization, which is a stationary
frequency or phase pattern that represents a minimum energy

a " b

www.advmat.de

state.’?] The pattern can be extracted as the result of compu-

tation. Synchronization of interconnected neuronal oscil-
lators has been experimentally demonstrated using TaO,
memristors,’**3 VO, oscillators, and MTJs.>® Coupling
between FeFET oscillators is also proposed via simulation.>®
Two types of passive coupling, resistive (in-phase) and capaci-
tive (antiphase), are realized (Figure 6a). Full interconnection
between all oscillators can become overwhelming as the system
size increases. To address this issue, some virtual connection
strategies are proposed and physically realized. One solution
is to employ a feedback mechanism to couple a single MT]
oscillator to the “time-delayed” copies of itself, like in reservoir
computing."%%7] Another approach is to apply an external mag-
netic field to synchronize multiple MT] oscillators (Figure 6b),
or to couple many individual MTJ oscillators with an input
microwave current (Figure 6c).>®!

Many computing applications have been demonstrated using
ONNs. First, the degree of mutual synchronization between
oscillators can act as a good measure of the Euclidean distance
between two different input vectors.>! Calculating Euclidean-
distance of image patches and substituting the original pixel
values with the distance values is equivalent to applying a
Gabor filter to the image. This can be used for power efficient
image processing.*®® Second, the neuronal oscillators can be
synchronized with external signals whose frequency is close to
the oscillators’ intrinsic frequency. Single or multiple MJT neu-
rons were employed to extract the frequency information of a
preprocessed voice signal for spoken-digit and vowel recogni-
tion (Figure 6d), or to distinguish temporal sequences.[114-55>:58]
Third, the capacitive and resistive coupling between a few

d
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Figure 6. Different approaches to couple neuronal oscillators. a) From top to bottom: uncoupled, resistive (in-phase) coupled, and capacitive
(antiphase) coupled VCM memristive oscillators. Reproduced with permission.l*3®! Copyright 2015, IEEE. b) Synchronized MT] oscillators via an external
RF magnetic field. Reproduced with permission.5% Copyright 2015, IEEE. c) Synchronization between four MTJ oscillators and the input microwave
signal and d) its application in vowel recognition. Each color in the map correspond to a synchronization state between four MT] oscillators and two
input signals. Reproduced with permission.*® Copyright 2018, Springer Nature.
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oscillators can generate a wide range of waveform patterns,
which can be associated with another set of patterns, for
example, horse gaits. The modulation of the synchronization
has the potential to facilitate the motion control of a horse-like
four-footed micro-robot.[2>54]

The abovementioned working mechanism of ONNs is
highly consistent with Hopfield networks.”' The coupling
type (in-phase or antiphase) between neurons corresponds to
the positive or negative synaptic weight; the nonlinearity of
the synchronization process brings the sigmoidal activation
function; and the phase pattern of synchronization acts as the
output state with the minimum energy. Such similarity makes
ONNSs suitable for solving optimization problems. Moreover, a
level-based Hopfield network typically needs a number of itera-
tions to reach the minimum energy. In each iteration, we need
to calculate the system energy and the input for the next step.
However, this optimization process can be naturally finished
by an ONN over the course of relaxation to the equilibrium
state. Parihar et al. built ONNs based on VO, oscillators to solve
graph coloring problems, as shown in Figure 7.1%% The nodes
of an undirected unweighted graph are represented by neu-
rons, and the edges connecting these nodes are represented by
capacitive coupling between the neurons. Figure 7a shows the
circuit schematic of four coupled neurons with capacitive con-
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nections. By controlling the transistors, this circuit can emulate
four-node undirected graphs defined by arbitrary adjacency
matrices. Note that the adjacency matrix can also be used to cal-
culate the energy of a level-based Hopfield network. Capacitive
coupling tends to generate a maximum phase difference. Due
to the interconnection between multiple neurons, the phase
difference between neurons would coordinate with each other
to reach a steady global maximum. Figure 7b shows a four-
node fully interconnected graph and the final oscillation wave-
forms of the neurons in the corresponding ONN. Calculating
the average XOR values of the output waveforms of neurons
can divide them into different groups, which gives the solution
to the graph coloring problem. Using this method, ONNs cor-
responding to various graph configurations are experimentally
demonstrated and the results are shown in Figure 7c.

From Figure 7a, we can see that the coupling of neurons
in an ONN can be described by a binary symmetrical matrix.
Such a matrix serves as a convenient analog to the Ising model
which consists of binary variables to represent magnetic dipole
moments or atomic spins.[!) Dutta et al. > implemented an
Ising Hamiltonian solver using eight coupled neuronal oscil-
lators. The non-zero matrix elements of an 8 x 8 Ising Ham-
iltonian (Figure 8a) which depicts the interaction between
eight atoms can be emulated by the capacitive coupling

b
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Figure 7. An ONN to solve graph coloring problems. a) The circuit schematic of four coupled oscillators for representing four-node undirected graphs

defined by arbitrary adjacency matrices. Note that A; = Aj;

Aj;=0and A; =0 or 1. b) The waveforms of four fully coupled oscillators after reaching

synchronization. Time averaged XOR values of oscillation outputs give the solution to the problem. c) Experimental results of graph coloring using
ONNs corresponding to various graph configurations. Reproduced with permission.[23 Copyright 2017, Springer Nature.
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Figure 8. An Ising Hamiltonian solver based on coupled VO, neuronal oscillators. a) An eight-node Ising model and b) the hardware setup of cor-
responding ONN. Each non-zero matrix elements of the 8 x 8 Ising Hamiltonian corresponds to a capacitive connection between two neurons in
the ONN. ¢) Measured oscillation waveforms and d) the phase distribution of three different injection-locking scenarios, (i) no synchronization, (ii)
first-harmonic injection-locking, and (iii) second-harmonic injection-locking. e) Schematic of the annealing schedule used in the experiment. f) Phase
evolution of the eight neurons, settling to either the in-phase or out-of-phase configuration after synchronization. Two neuron groups (1, 3, 4, 5) and
(2, 6,7, 8) represent the optimal solution of the MaxCut problem. g) Comparison of the energy evolution and optimization result obtained without or
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between the corresponding neurons in the ONN (Figure 8b).
The bound state of the system with minimum energy can be
derived from the phase of neurons after synchronization. To
equip each neuron with a binary degree of freedom to encode
spin-up and spin-down states, a sinusoidal injection locking
signal (Si,; in Figure 8b) at twice the oscillator intrinsic fre-
quency is applied to the neurons. As shown in Figures 8cliii]
and d[iii], due to the second-harmonic injection-locking (SNIL)
phenomenon, the oscillator waveforms after synchroniza-
tion show both in-phase (40°) and antiphase (220°) injection-
locking configuration, corresponding to up-spin and down-
spin, respectively. Using SNIL, both ferromagnetic and anti-
ferromagnetic interactions are replicated by the ONN. The
researchers also investigated the performance of the ONN on
a NP-hard problem of MaxCut for an eight-node undirected
and unweighted graph, that is, to cut the graph into two sub-
sets, such that the number of edges connecting the two sub-
sets is maximized. This problem can be solved by the ONN
because, for a given connection matrix, maximizing cut size is
mathematically equivalent to minimizing Ising Hamiltonian.
To enhance the success rate of converging to the optimal solu-
tion, a simulated annealing process is applied by gradually
increasing the amplitude of Sy (Figure 8e) so that the intrinsic
stochasticity of the neuronal oscillator can help the optimi-
zation result escape from local minima. Figure 8f shows the
phase evolution of the eight neurons over the optimization pro-
cess. After synchronization, eight neurons will settle to either
the in-phase or antiphase state and naturally form two groups,
which represent the optimal graph cut. Figure 8g compares
the energy evolution and optimization result obtained without
or with the annealing schedule. Annealing over 250 oscillation
cycles allows the network to converge to the optimal solution
with higher probability.

2.2. Leaky Integrate-and-Fire Artificial Neurons

The LIF neuron model captures the general procedures of
neural spike train transformation. The MP is not predeter-
mined but evolves with input currents. Any arriving input
spikes push up the MP until it reaches the threshold, at which
point an output spike is generated, and the MP is reset to its
resting potential. The increased MP would spontaneously decay
if it does not reach the threshold, which can be represented as
the “leak” term in addition to the derivative form of the law of
capacitance:

Cn M=1(t)—Vm ()G (1)

dat

Cy, and G, are the capacitance and conductance of the neuron
membrane. V,,(t) and I(t) are the MP and the total input cur-
rent at time £.° To accurately mimic the LIF behavior, the

time constant of the spontaneous decay 7=—= and the mean

arrival time of input pulses At, should be conrrnlparable. If 1<
At, the elevated MP will be discharged so fast that the neuron
can hardly fire. If 7> Ay, the leak effect will be too weak to
eliminate the impact of long-past input spikes, and the neuron
becomes an integrate-and-fire (IF) neuron.[3]
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2.2.1. Device Mechanisms

The LIF behavior is typically demonstrated by applying a pulse
train to threshold switching devices. An inherent relaxation
process of the employed switching device is required. As dis-
cussed before, the working frequency range depends on the

Gy
characteristic frequenc =
q v o 21 C

, which is determined by the
0
parasitic capacitance (Cy) and conductance (G) of the switching
device. Considering C; is usually very small, an auxiliary cir-
cuit consisting of a capacitor and an optional transistor (or
resistor) is usually added to regulate the operating frequency,
as shown in Figure 9a. More circuit designs can be used to fur-
ther tune the LIF behavior (Figure 9b-d). Assisted by the leaky
integrator circuit, the MP evolution of LIF neurons based on
IMT oscillators,***! ovonic threshold switching devices,??#4l
volatile memristors,#3*% van der Waals (vdW) material-based
volatile memristors,® and HZO or PZT FeFETs[*4 have been
captured. The LIF dynamic is also demonstrated using MT]
oscillators with a more complicated peripheral circuit which
involves a reference MT].[%]

The MP is not necessarily represented by a voltage level, but
can also refer to the progress of a physical or chemical process
that leads to an electrical switching, such as phase transition, ion
migration, and conductive filament growth (Figure 10). In these
cases, the auxiliary capacitor is not required anymore, which can
largely enhance the area efficiency of neuronal devices. As men-
tioned in Section 2.1.2, a single spike input to a Mott insulator
converts a small part of it to a metastable correlated metal state.
The effect gets accumulated as more pulses arrive and finally
leads to the threshold switching. The spontaneous relaxation
from the metastable intermediate state to the stable state accounts
for the leaky mechanism.*?3 Similar scenario also applies to the
LIF neurons based on VCMI®®l and ECM memristors,3%:33654.6%]
and electrolyte-gated transistors.’”) In order to obtain a robust
switching and relaxation process, engineering methods such as
incorporating silver nanoparticlel® or nitrogen doping” to the
switching media of memristors have been developed to modify the
switching process. In magnetic devices, the LIF dynamics can be
emulated by manipulating the partial volatile magnetization of fer-
romagnetic films,[7372 the domain walls in MT]Js,”3! or the motion
of a magnetic skyrmion.”*< Some reported devices are IF neu-
rons without a leak mechanism. For example, the intermediate
states of PCM neurons have a very long lifetime;[°*b! the memris-
tive neurons based on SiO,, nanorods or single layer MoS, exhibit
very noisy fluctuation of MP during accumulation 27>}

Table 3 summarizes the characteristics of representative
physical implementations of IF and LIF neurons. For a fair
comparison, some reported artificial neuronal devices that
are based on non-volatile switching are not listed in the table,
because they require additional reset operations to switch back
to the resting potential and therefore are not regarded as com-
plete neuronal devices.[12¢:682.69275]

2.2.2. Neuronal Dynamics

The LIF model involves the integration capability and the
short-term memory. Therefore, it can cover more dynamics
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Figure 9. LIF neuron circuits with an auxiliary capacitor. a) A typical capacitor-based “leaky integrator” circuit for general threshold switching (TS)
devices and its working mechanism. Reproduced with permission.®* Copyright 2019, Wiley-VCH GmbH. b) An alternative circuit design to enable LIF
behaviors. The MP is the gate voltage of a transistor. Reproduced with permission.2l Copyriht 2020, AIP Publishing. c,d) Circuit designs for FeFET-
based LIF neurons. Neuronal inhibition and frequency adaption are demonstrated using the two circuits, respectively. Reproduced with permission.[3<l

Copyright 2018, IEEE, and 2019, IEEE.

of biological neurons. Spatial-temporal integration and refrac-
tory period are two features shared by most LIF neurons. Input
spikes from different synapses are integrated to a LIF neuron
and the temporal correlation between them can be processed
by the leaky mechanism. Once the MP reaches the threshold,
the hillock membrane of a LIF neuron will not respond to the
input spikes over the course of firing and relaxation, which
corresponds to the absolute refractory period of biological neur
ons, [643,65¢,66b,71]

Besides, two more advanced neuronal dynamics, neuronal
inhibition and frequency adaption, are realized via circuit and
operation design of FeFET neurons. As shown in Figure 9c,
the neuron circuit has both excitatory and inhibitory input ter-
minals which are the gate of the regular MOSFET and that of
the FeFET, respectively. Pulses applied to the excitatory input
increase the conductivity of the MOSFET and gradually pull
down the Vg (the output voltage). Therefore, the Vg of the
FeFET will be elevated until it exceeds the threshold of ferro-
electric polarization flip. The FeFET will be turned on, pull up
the Vs, and induce the reverse ferroelectric transition. More
input excitatory pulses will pull down the Vg again. Repeating
this cycle will form a continuous neural spike train. However,
if pulses are applied to the inhibitory input, the FeFET will stay
in its on-state and hold the Vg at a relatively high level. There-
fore, the excitatory pulses will only slightly pull down the Vg
so that the Vg of the FeFET is not large enough to trigger the
ferroelectric switching. In other words, the neuron circuit gets
inhibited.!3¥ A leaky-FeFET-CMOS hybrid neuron as shown

Adv. Mater. 2023, 2205047 2205047 (13 of 32)

in Figure 9d was reported to experimentally demonstrate the
spike frequency adaption.[* The key design for realizing spike
frequency adaption is a leaky-FeFET with pulse accumulation
effect and spontaneous polarization degradation as the dis-
charge channel. During the neuron firing a spike, the ferroelec-
tric switches and the current passing through the channel of the
FeFET becomes larger. After switching back, the conductivity of
the leaky-FeFET will be increased slightly due to the accumula-
tion effect, and the V., in Figure 9d will be discharged faster.
Therefore, it will take more input pulses to generate the next
spike. The interspike interval continues to increase during the
first few spikes. In the end, spontaneous ferroelectric polari-
zation degradation will offset the accumulation effect and the
interspike interval will settle to a constant value, leading to
the spike frequency adaption. Simulation shows that another
neuron design of a FeFET, together with six MOSFETS, can also
realize the spike frequency adaption.*’!

Stochasticity is universally observed in LIF neurons with all
kinds of device mechanisms. Though the differential Equa-
tion (1) seems linear, random variation exists in the I(t) term
even for LIF neurons driven by a very uniform pulse train.
The response of MP to input pulses is intrinsically stochastic.
The nonlinearity is even more significant for the LIF neu-
rons whose MP evolution is associated with physicochemical
processes. 05671 Detailed statistical studies on some types
of LIF neurons show that the number of spikes to trigger
the firing approximately follows a Poisson distribution, and
the probability of firing has a sigmoidal dependence on the
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Figure 10. Device mechanisms of capacitor-free LIF neurons. a) Schematics of a Mott insulator that partially transitions to a metastable metal state
while receiving a pulse train and finally forms a volatile conductive pathway. Reproduced with permission.l*?3 Copyright 2017, Wiley-VCH GmbH.
b) In situ transmission electron microscopy (TEM) images of the formation and spontaneous rupture of a silver conductive bridge in a FeO, ECM mem-
ristor. Reproduced with permission.[®>d Copyright 2018, Wiley-VCH GmbH. c) The schematic evolution of the amorphous region of a PCM cell while
receiving a pulse train and its LIF behavior. Reproduced with permission.l% Copyright 2016, Springer Nature. d) The scanning electron microscopy
(SEM) images of the Au nanowires and nanogaps in a SiO, nanorod memristive neuron. Reproduced with permission.[?’?! Copyright 2021, Wiley-VCH
GmbH. e) Schematics of a caloritronics-based Mott neuristor and its LIF behavior. Joule heating is employed to trigger the IMT transition of VO,.
Reproduced with permission.’ Copyright 2020, Springer Nature, and 2021 Springer Nature. f) The schematic structure of an MT)-based LIF neuron
by manipulating the ferromagnetic domain walls. Reproduced with permission.33 Copyright 2021, IEEE. g) Schematics of a magnetic-skyrmion-based
LIF neuron. The position of the skyrmion represents the MP. Reproduced with permission.l'?d Copyright 2020, AIP Publishing.

input pulse voltage.?"95"! LTF neurons based on PCM or SiO,  tion vary from device to device. These features of a single
nanorods are reported to show a Gaussian distribution of inter-  device may also be changed after a switching cycle. Thus, the
spike intervals.[9427"] These results imply that the firing activity ~ number of pulses (interspike interval) needed to generate a
is approximately described by a Poisson point process, which  neural spike is random for individual devices. However, the
agrees with the assumptions in mathematical theories for the interspike intervals of a group of phase change neurons have
neural spike train analysis."®! a relatively stationary distribution for a certain operation pulse

The stochastic properties and relatively low circuit com-  width (Figure 11a), which is the PPC. Reversely, this statistical
plexity of LIF neurons enable the demonstration of novel  distribution of firing frequency of the neuron group serves
probabilistic NC frameworks. The activity level distribution of  as a good index of the underlying operating pulse width, and
a neuron population to the same stimulus can constitute PPC,  the representation error can be suppressed by a larger popula-
which has been realized by PCM neurons.%7] The thickness  tion size (Figure 11b). As a demonstration of frequency detec-
of the amorphous region and the internal atomic configura- tion, the researchers varied the operating pulse width (tens
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Table 3. Comparison of LIF neurons based on different device mechanisms.

www.advmat.de

Materials Physics Auxiliary circuit ~ Feature size F Vi [VI?) Operating current Operating Neuron model Reference
[um]? [mA] frequency
NbO, Mott transition 1R1CY 4 13 0.8 =1 MHz LIF [24b]
VO, Mott transition, Joule 1R (heater) 2 0.75 20 =10 MHz LIF [74]
heating

GaTaySey Mott transition 1R 40 40 15 ~20 kHz LIF [42a]
Ag/HfO,/Ag ECM 1RIC 100 07 0.01 ~1 kHz IF )
SiO Ag Diffusive memristor 1R 2.5 0.8 1 =10 kHz IF [43a]
Cu-Ta/IGZO/TiN ECM R 50 4 10 =1 kHz LIF [69f]
Ag/FeO,/Pt ECM None or TR 2 33 10 =5 kHz LIF [65d]
SiO, nanorod/Au ECM 2R, 1 comparator 200 4 0.01 =10 kHz IF [27b]
TiN/Ti/HfO,/TiN VCM 1TICY 10 3 0.01 =100 kHz IF [68b]
Bo.2sTe 75 Ovonic threshold switching 1R1C 0.03 0.3 0.025 =~0.45 MHz LIF [64a]
Ge,Sb,Tes PCM 1R 0.5 1.5 0.15 =10 MHz IF [10a]
HZO FeFET IR /9 2 / =20 Hz LIF [13q]
PZT FeFET 2R1C / 33 0.001 ~30 kHz LIF [13a]
FeB/MgO/CoFeB MT) 2T, 1 MT) 01 1 0.5 =1 GHz LIF [17a]
MoS, Electrolyte-gated FET 3R1C >2 5 0.0001 =5 Hz IF [66c]
MoS,/Graphene VM 3RIC 10 8 01to1 =5 kHz LIF [66b]
Ag/MoS,/Tiw ECM (lateral) None 10 2 0.001 =2 kHz LIF [69b]
Ag/MoS,/Au ECM 2R1C 5 1.2 0.1 =10 kHz LIF 66
Te/TiTe,/Pt ECM None 5 1 02 ~0.4 MHz LIF 33]
Ag/Nafion/Au ECM 2R1C 6 2 0.001 ~80 Hz LIF [69d]

AFeature area = F x F um? PV, : the input voltage to the device; 9R: resistor, T: transistor, C: capacitor; 9Not specified.

of nanoseconds) periodically and the number of neurons that
fire at a certain frequency shows a synchronized evolution pat-
tern (Figure 11c), which means the pulse width at MHz level
can be represented by neuronal firing behaviors at kHz level.
Therefore, the Nyquist-Shannon theorem which defines the
theoretical frequency detection limit was bypassed.'% In addi-
tion to this work, it is worthwhile to note that PPC can also be
demonstrated using a group of synaptic devices, for example,
MoS, synapses.”®!

Besides, psychophysical experiments indicate that human
brains perform Bayesian inference in perception and decision
making tasks.””) In Bayesian inference, the information is
encoded by probability distribution. Prior probability that rep-
resents existing knowledge is updated by new evidence to form
posterior probability. Bayes’ theorem defines the updating rule.
Debashis et al. reported a two-node BN based on spintronic
devices, and proposed the potential to scale up the network.[*’2
Choi et al. built a BN based on SiO,, nanorod memristive neu-
rons with tunable probabilistic activation functions.?”! Pulse
trains with different widths can control the probability distribu-
tion of the resistive state of the SiO, neurons. In the demon-
stration of a genetic regulatory network as shown in Figure 11d,
pulses with widths of 100 and 270 us are applied to the neuron
to represent the prior probability of G, expression, which are
set to Ppior(G1=T) = 0.2 and Porior(G1 = F) = 0.8 (Figure 1le). A
pulse train with 20% occupied by pulses and 80% by no pulse
is used to represent Pyor(Gy = T), and its complementary pulse

Adv. Mater. 2023, 2205047 2205047 (15 of 32)

train represents Pp,(G; = F). If another gene expression, for
example, G, occurs, Bayesian inference can be done using the
BN consisting of an edge circuit and a peripheral circuit, as
proposed by the researchers. The two pulse trains related to the
prior of G, are applied to the edge circuit of G, to obtain pulse
trains corresponding to P(G, = T) and P(G, = F). Then, pulse
trains of Ppio(Gy = T) and P(G, = T) are input to a peripheral
circuit to obtain a pulse train for Py.(G; = T|G; = T), which
is the posterior probability derived from Bayesian inference.
Following this method, the researchers demonstrated the
probabilistic inferences for four selected cases via simulation
(Figure 11f).7"l This work provides some reference about the
operation framework and circuit design of BNs based on sto-
chastic neuronal devices.

2.2.3. Spiking Neural Networks

SNNs are ANNs that closely follow the principles of biological
nervous systems.?'" In an SNN, neural spike trains are generated
and transformed by the spiking neurons connected by synapses.
During this process, the connection strength (synaptic weight) is
updated according to synaptic plasticity. The processing results
are stored in the updated weight of synapses.'*l The LIF neuron
is the most prominent neuron model to implement SNNs. Some
reports show even a single LIF neuron can fulfill computing tasks
like correlation detection with the help from software.[10280]
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Figure 11. Experimental demonstration of probabilistic neuromorphic computing. a—c) Probabilistic population coding (PPC) demonstrated using
stochastic PCM neurons. Reproduced with permission.['2l Copyright 2016, Springer Nature. a) The distribution of interspike intervals in a single neuron
excited by pulses of different widths. b) Error in the representation of the input stimulus using the population code. The stimulus is a triangular signal
with a period of 0.1 ms and pulse width changes in the range of 50-100 ns periodically. Inset: For 500 neurons, the distribution of the actual spiking
frequency across the neuron population when the input stimulus is applied. c) The time evolution of input pulse width (black) and population code
for 500 neurons (blue). d,e) Probabilistic Bayesian inference demonstrated using SiO, nanorod memristive neurons. Reproduced with permission.[”"!
Copyright 2021, Wiley-VCH GmbH. d) A genetic regulatory network where the genes and regulatory directions are represented as the nodes and edges.
The conditional probability boxes (red, blue, and green boxes) show the preset prior probability (Ppior) for Genes 1-3 (Gy_3). The inset graph shows
the plot of the activation probability of the artificial neuron, which can be utilized as each node of the BN. ) Plots of the Ppo (G = T) = 0.2 and

Porior(G1 = F) = 0.8 based on the activation probability of the neuronal device operated with pulses of 100 and 270 us widths respectively. f) Probabil

istic inference results, posterior probability (Py.s;) for four selective cases, 1) Pyos:(G3 = T|Gy =

)s 2) Ppost(Gy=T|G3 =T), 3) Ppost(G, = T|G3 =T), and

4) Ppost(G3 = T|G, = T) based on the BN consisting of the fabricated SiO, memristive neurons.

In 2018, Wang et al. demonstrated the hardware implementa-
tion of a fully memristive SNN based on Pt/Ag/SiO,:Ag/Ag/Pt
diffusive memristor neurons and non-volatile Pd/HfO,/Ta drift
memristor synapses.?*l The SNN consists of an 8 x 8 memris-
tive synapse crossbar array and eight artificial neurons inte-
grated to each column of the array. Figure 12a shows the optical
micrograph of the SNN, and the scanning electron microscopy
(SEM) and transmission electron microscopy (TEM) images of
the synaptic and neuronal devices. Pattern classification of four
letters was demonstrated using the SNN with pre-programmed
synaptic weights which can be derived from an offline training
process. Each column of synapses serves as a convolutional
filter corresponding to a certain subimage pattern. The diffu-
sive memristor neurons play the role of information integra-
tors with a rectified linear unit (ReLU) activation function.
The features of the input subimages can be revealed by the
firing activity of their corresponding neurons. On top of that,
an unsupervised learning process was demonstrated using a
simple STDP rule using an 8 x 3 network (Figure 12b). In each
iteration, one of the outputs of neurons in the abovementioned
pattern recognition job were input to the untrained network,
and the synaptic weights were updated using a lateral inhibi-
tion manner if any of the three neurons fires. Figure 12c shows
the input voltage vector, the integrated neuron current, and the

Adv. Mater. 2023, 2205047 2205047 (16 of 32)

evolution of synaptic weights of each iteration. After the unsu-
pervised learning, the network can classify the images of four
letters into three groups. This work provides a valuable tutorial
about the peripheral circuit design and algorithm realization
for hardware implementation of SNNs.

Duan et al. reported a 4 x 4 SNN consisting of NbO,-based
neurons and non-volatile TaO, memristor-based synapses.!>*’l
Figure 12d shows the SEM and TEM images of Pt/Ti/NbO,/
Pt neurons and Pt/Ta/TaO,/Pt synapses. The SNN was also
applied to pattern classification of four-pixel black-and-white
images. The weights of synapses are programmed to desired
values through offline training. Besides the information integra-
tion and activation function, the NbO, neurons show frequency
response to different excitation inputs, owing to the frequency
dependence feature of IMT neurons. Furthermore, supervised
online learning was performed on the SNN. Figure 12e shows
the schematic of supervised learning. The synaptic weights
were updated by the feedback circuit based on simplified &
rule, a type of gradient descent method for spiking neurons.
Figure 12f shows the weight evolution of four synapses con-
nected to a single neuron over the learning process. Similarly,
Hao et al. reported a 4 x 2 SNN based on MoS, neurons and
Cu/GeTe synapses with the capability of classifying even sim-
pler images.’® Simulation and some initial experimental

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 13. a) Optical image of a single-layer SNN circuit with artificial dendrites. b) Optical image of the synapse array. c) SEM image of a neuron
with eight dendrites and one soma. d) Schematic structure of the SNN. e) Comparison between input images and processed images after dendrites
in the neural network. f) Comparison of the neuron firing rates with and without the artificial dendrites. Reproduced with permission.[?*d Copyright

2020 Springer Nature.

results indicate that other LIF neuronal devices also have the
potential, but more engineering efforts are still needed for their
hardware implementation.[7249,642.65b.c.66¢]

Li et al. reported an SNN based on artificial neurons with
multiple dendrites (Figure 13).12*! A few of memristors with a
Pt/Ta0,/AlOgs/Al structure as artificial dendrites are connected
to a NbO, artificial soma. The AlOg layer serves as a reservoir
to induce oxygen ion diffusion in the dendrite device. Applying
electrical bias can control the oxygen ion distribution and
thus tune the Schottky-like barrier between Pt and TaO,. The
dendrite devices can filter out small input signals in the off-
state and nonlinearly integrate input signals in their on-state.
The dendrite and soma devices were integrated to an array of
TiN/HfO,/TaO,/TiN synapses to form a single-layer SNN. The
network was trained in software using a back-propagation algo-
rithm for fulfilling digit recognition. The dendrite layer not
only filtered the background noise in the input picture, but
also highlighted the critical signals in the images, as shown in
Figure 13e. The neuron firing rate caused by incorrect image
inputs was suppressed by the additional dendrites (Figure 13f)
so that the recognition accuracy was enhanced. Compared to
systems without dendrites, the power consumption of soma

was reduced by over 30 times in this SNN. However, because
the dendritic unit itself consumed more than 50% of the total
power, the overall energy cost was actually even higher.

It is worth noting that there are also hardware implemen-
tations of ANNs based on non-spiking neurons. Joule heating,
instead of voltage bias, was employed to trigger the IMT
switching of VO, neurons, which are also called caloritronics-
based neuristors."* Such a neuronal device features a ReLU
activation function. A couple of this type of neurons is inte-
grated with a crossbar of conductive bridge synapses to perform
large-scale image edge detection.#"

2.3. Hodgkin-Huxley Artificial Neurons

Although LIF neurons capture a key aspect of neuronal func-
tionality, the simplification prevents them from covering more
details, such as the multiple stages of an action potential, and
advanced neuron dynamics like subthreshold oscillation and
inhibition-induced spiking. Emulating these behaviors requires
a more accurate replication of the sophisticated structure and
biophysical characteristics of neuronal membranes, especially

Figure 12. Hardware implementation of SNNs based on artificial neuronal devices integrated with synapse arrays. a) Optical micrograph, SEM, and
TEM images of an 8 x & network consisting of Pt/Ag/SiO,:Ag/Ag/Pt diffusive memristor neurons and Pd/HfO,/Ta drift memristor synapses. b) The
schematic of an 8 x 3 network for unsupervised learning. c) The input voltage vector, the integrated neuron current, and the evolution of synaptic
weights of each cycle in the unsupervised learning process. Reproduced with permission.?*l Copyright 2018, Springer Nature. d) SEM and TEM images
of an SNN consisting of Pt/Ti/NbO,/Pt neurons and Pt/Ta/TaO,/Pt synapses. e) The schematic illustration of the supervised online learning based
on simplified &rule in this SNN. f) The weight evolution of four synapses connected to a single neuron over the learning process. Reproduced with
permission.?!l Copyright 2020, Springer Naure.
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the voltage-controlled ion channels.B! HH neuron model is a
mathematical model with better biological plausibility, which
can be written as:

1(t)=C,

dvﬁt(t) +Gx (Vin ()= Vi) +Gxa (Vin (1) = Viva )+ G (Vi (1)) - W) (2)
where Gy, Gy, and Gy are the conductance of potassium ions,
sodium ions, and natural leakage, respectively, and Vi, Vy,,
and V| are the reverse potentials of potassium, sodium, and
leakage, respectively.®?l The equivalent electrical circuit of HH
model is shown in the middle part of Figure 1.

Theoretical research proposed that the HH dynamics can
be implemented by memristive systems.®3l In 2013, Pickett et
al. exploited the voltage-controlled phase transition of NbO, to
emulate the opening and closing of potassium and sodium ion
channels, as well as two DC voltage sources to generate the
reverse potentials Vi and Vy, (Figure 14a).l%4 Careful design of
the auxiliary passive components makes the switching of two
equivalent ion channels follow the sequence of their biological
counterparts. As a result, a biologically plausible action potential
with different stages, namely, hyperpolarization, depolarization,
and a refractory period, is simulated (Figure 14b). The capa-
bility of generating neural spike trains with different interspike
intervals is also demonstrated (Figure 14c). Following this track,
Yi et al. used another IMT material, VO,, to experimentally

a b
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demonstrate 23 biological spiking behaviors (Figure 14d,e), as
well as characterizing capacitance-dependent operating regimes
and stochastically phase-locked firing properties.® Some
advanced behaviors such as burst firing mode, frequency adap-
tion, and neuronal inhibition are expected play important roles
in enabling energy-efficient neural processing,’*%% but the
hardware demonstration of these dynamics remains rudimen-
tary and relatively limited. The explicit function of other high-
order behaviors, such as subthreshold oscillation and mixed
firing mode, in neural signal processing remains largely uncov-
ered. Some investigations have partially revealed the impor-
tant role of HH neurons in enabling hierarchical learning and
energy-efficient computing.l

To date, the hardware demonstration of HH neurons remains
very rare. Although a quasi-HH neuron that uses a non-HH
circuit is proposed to have the capability of generating spikes
with similar MP evolution as a real action potential, its firing
activity relies on the addition of a 555 timer integrated circuit,
which severely increases the circuit complexity.®”] Furthermore,
the application of HH neurons is mostly restricted to biological
neuron emulation. Simulation shows that the HH-neuron-
based circuits are capable of performing general Boolean logic
operations, which proves the computational universality of HH
neural networks.® A neuromorphic analog computing solu-
tion to a computationally hard graph-partitioning problem is

c
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Figure 14. Demonstration of HH neurons and neuronal behaviors. a) Circuit diagram of the HH neuron. The channels consist of two NbO, Mott
memristors (M; and M,), each with a characteristic parallel capacitance (C; and C,, respectively) and are biased with opposite polarity DC voltage
sources. b) All-or-nothing response to super-threshold and sub-threshold input pulses. A super-threshold 0.3 V input pulse and its corresponding spike
output (action potential). The magnified spiking region (inset) highlights the time sequence of events for channels one and two. A sub-threshold 0.2V
input to the same device yields an attenuated output. c) Experimental and simulated neural spike trains generated by the HH neuron. Reproduced
with permission.®l Copyright 2012, Springer Nature. d) Circuit topology of a two-channel VO, active memristive neuron to emulate the HH neuronal
dynamics, the schematic structure, and a SEM image of a typical VO, active memristor. e) A fraction of the 23 biological neuron spiking behaviors
experimentally demonstrated in the VO, active memristor neurons. Reproduced with permission.[® Copyright 2018, Springer Nature.
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proposed based on NbO, neurons with three dynamical electro-
physical processes, which partially resemble the working mech-
anism of HH neurons.®”) However, computational applications
that take full advantages of HH neuronal dynamics remain
missing, which is largely attributed to people’s limited knowl-
edge about their role in the functionality of biological neurons.

3. Artificial Sensory Neurons

Besides implementing computational tasks, artificial neu-
ronal devices can also be integrated with sensors to work as
sensory neurons. In biological systems, sensory neurons are
regarded as the first stage of data input in the interaction with
the surrounding environment.’") The massively collected data
are filtered, integrated, and refined for dynamically training
the neural network, which shapes our perception and under-
standing of the world around us.® Hence, the hardware imple-
mentation of sensory neurons is an important cornerstone of
building artificial intelligent systems. Artificial sensory neurons
that resemble the function of human eyes or skin have received
much research interest in the past few years.

3.1. Visual Neurons

Mammalian visual system is capable of perceiving visual infor-
mation and recognizing different targets in a complex environ-
ment.*?! Artificial visual perception systems are now gaining
more research attention for they can potentially realize real-time
pattern recognition with faster speed and higher efficiency.P’!
Various materials and device structure designs are deployed
to achieve artificial visual perception. Most of the research
focuses on photo-synaptic devices; however, these devices
lack the complex function of mammalian retinal neurons.[*¥
Among the previously reported works on visual neurons,
hybrid integration of a photoreceptor and a neuromorphic
component, which functions as an optical signal sensor and a
signal processor, respectively, is usually employed to construct
the artificial visual system. Bao et al. reported a one-transistor-
one-memristor structure to mimic the functions of photore-
ceptor cell and ganglion cell in human eyes. The changes in
MP and neuronal spiking caused by photo-illumination can be
mimicked by the voltage changes between the two terminals of
the transistor and memristor. In their demonstration, the shape
information of input images can be extracted and encoded as
neural spikes for further processing.””! To extend human vision
to the ultraviolet (UV) band, oxide semiconductor IGZO is uti-
lized as a UV sensor. By combining with a NbO,, memristor as
the oscillation neuron, the IGZO/NDO, system can detect the
UV image information and convert it into neural spikes. The
neural spike trains are then processed by a neural network.
Image segmentation in a complex background was successfully
implemented.’® Similarly, by integrating organic near-infrared
(NIR) photo synapses with Ag/SiO,/Ag-based LIF neurons, Mu
et al. constructed a vision sensory neuron.l”’l Fundamental syn-
aptic behaviors, like short-term plasticity, long-term plasticity,
and paired pulse facilitation/depression, are mimicked by the
NIR artificial synapse. The output of the NIR artificial neuron
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system is sent to a two-layer SNN and a test accuracy rate of
63.21% in the handwritten digit classification is achieved. How-
ever, the accuracy still has much room for improvement and
the energy budget is still relatively high.

Recently, a photoelectric spiking neuron for visual
depth perception was implemented based on a photoresistor
and a TaO, memristor-based spiking encoder, as shown in
Figure 15a.% Figure 15b shows that the light stimulation pulse
can be encoded into neural spikes by the LIF neuron with four
critical neuronal behaviors: all-or-nothing spiking, threshold-
driven spiking, a refractory period, and strength-modulated
frequency response. The firing frequency is similar to that of
biological neuron in the range of 1-200 Hz, with low energy
consumption. Figure 15c¢ exhibits the emulation of binocular
vision based on the photoelectric spiking neuron system. This
system demonstrates a recognition improvement by refocusing
on sights with different distances, which resembles biological
visual systems.

For the works stated above, the information perception
units and data processing components are physically separate,
which will inevitably cause data latency, high power consump-
tion, as well as system complexity. To address this challenge,
near-sensor and in-sensor computing paradigms are proposed
to perform signal sensing, collection, and computing near or
within the sensory device. A single phototransistor was recently
proposed to mimic the retinal neuron with typical IF behav-
iors.l””) Neuronal firing is activated by electric stimuli and fire
characteristics can be dynamically modulated by light stimuli.
Image recognition is proved to be feasible based on the single
phototransistor neuron, which exempts the extra conversion
components and circuits. After that, the same research group
reported 3D monolithically integrated photoresponsive InGaAs
biristor neurons over a synapse array for artificial visual percep-
tion, as presented in Figure 16a.%! Such neuron can execute
optical signal sensing, data collection, and conversion, as well
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Figure 15. A photoelectric spiking neuron based on a photoresistor and
a TaO, memristive neuron. a) The circuit scheme of the photoelectric
spiking neuron with near and distant light illumination. b) The encoded
spikes of light stimuli based on the LIF model. c¢) A schematic image of
the binocular positioning process in the human brain. Reproduced with
permission.[® Copyright 2022, Wiley-VCH GmbH.
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Figure 16. 2D-material-based visual neural networks and their applications. a) A schematic diagram of the 3D stackable neuromorphic visual system.
Reproduced with permission.%l Copyright 2021, IEEE. b) Schematics of the ANN imaging sensor array, classifier, and autoencoder. Reproduced with
permission.l'?l Copyright 2020, Springer Nature. c) The illustration of motion detection based on the 2D h-BN/WSe, retinomorphic hardware. d) The
original image and its pixel brightness distribution; the pixel brightness distribution after motion detection with and without moving objects. €) Motion
separation of red, green, and blue trolleys with various time intervals. f) The statistical distribution of the spent epoch number with trolley recognition
accuracy above 90% for varying noise levels. Reproduced with permission."2 Copyright 2020, Springer Nature.

as spiking signal transmission to a SNN simultaneously, ena-
bling high efficiency and low energy budget. The 3D mono-
lithic integration strategy shows promising potentials for future
large-scale visual perception system with lower power con-
sumption and higher integration density.

2D photosensitive materials are also employed to build visual
neural networks. Mennel et al. demonstrated an ANN directly
in an image sensor array.'" Figure 16b shows the schematic
diagram of the ANN. The image sensor consists of a photo-

Adv. Mater. 2023, 2205047 2205047 (210f32)

diode array based on WSe,. The photosensitivity of the diode,
which represents the connection strength, can be modulated
by the applied voltage, and thus the sensor array also functions
as a neural network. Two neuromorphic functions, the classifi-
cation and autoencoding, are successfully demonstrated. This
computing in-sensor array can achieve image recognition in
nanoseconds, learn the key features of an image, and recon-
struct it with good fidelity. Zhou et al. reported a BP/Al,03/
WSe,/h-BN heterostructure to implement all-in-one perception,
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memory, and computing for motion detection and recognition
(MDR).12 Figure 16c—f illustrates the retinomorphic hard-
ware and corresponding MDR results. The photoresponse can
be modulated either positively or negatively by optical stimuli,
stored and differentially computed by the single device. The
moving trichromatic trolleys are 100% successfully separated
without ghosting. The detected image is then fed into a con-
volution neural network for further training. Fast and accurate
(90%) trolley recognition is achieved in as few as four training
epochs at 10% noise level. There are also a few other reports on
the in-sensor computing systems based on 2D heterostructures
for pattern recognition, classification, and so forth, suggesting
that vdW materials may provide a promising platform for the
neural network vision sensor.[*103]

Nevertheless, there are still some barriers impeding prac-
tical applications. First, the light absorption in thin 2D semi-
conductors is limited, which would make it difficult for low
intensity light detection and pattern recognition. Second, the
proposed design requires operation at a relatively large bias
voltage, resulting in high power consumption. In addition, 2D
materials often suffer from non-uniformity issues in large area
growth, which adds to the challenges for large-scale integra-
tion. Besides, it would be beneficial if the photosensitive band
of the sensing unit can be expanded to UV and IR spectrum to
capture more information beyond human vision.

3.2. Skin Perceptual Neurons

Skin, as the largest organ, has many functionalities, for
example, protection, sensing, and perception.!™ The critical
demand on the emulation of human skin to endow the elec-
tronic skin system with higher intelligence has made the
artificial tactile perception a popular research topic in recent
years.[3® Integration of sensing and processing units is a gen-
eral methodology to emulate the behaviors of haptic sensory
neuron. Haptic memory can easily be realized by combining
pressure sensors and memristive devices. However, such a
system cannot directly process the tactile patterns.” A spiking
neuron that can encode and transmit the perceptual informa-
tion is missing from simple sensor-memory systems.l%l In
spite of their capability to differentiate tactile patterns, they lack
the learning capabilities that are necessary for identification
and recognition tasks.

To address this challenge, tactile perception learning process
was successfully implemented by Zhang et al. using a haptic
neuron system which comprises a piezoresistive sensor and a
Nafion-based memristive neuron.'"””? In the neuromorphic tac-
tile processing system as illustrated in Figure 17a,b, spatiotem-
porally correlated stimuli can be integrated and modulated to
enable parallel processing, and pattern recognition with high
accuracy is achieved via repeated training.l%®! Kim et al. dem-
onstrated a tactile neuron and a perceptual neural network
based on a semi-volatile carbon nanotube (CNT) transistor.l%
Figure 17c illustrates the design of the tactile sensor system.
The system consists of a tactile sensor, a voltage-controlled
oscillator circuit, one neuronal CNT transistor, and a synaptic
CNT array, with the capability of identifying the temporally
correlated stimuli and differentiating the features of tactile
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patterns. The recognition accuracy can be effectively improved
with increased learning iterations.

In human skin, mechanonociceptors and thermal nocicep-
tors are two major types of nociceptors. Yu et al. proposed a tac-
tile perceptual neuron with both pressure decoding ability and
nociceptive function, as illustrated in Figure 17d."% With a low
power consumption, this tactile perceptual system can emu-
late acute and chronic pain, and nociceptive characteristics of
allodynia and hyperalgesia in biological nociceptors. However,
this artificial nociceptor is based on discrete sensors and not
capable of producing spiking signals. To address this challenge,
Zhu et al. recently reported an artificial mechanonociceptor
array by integrating CNT-based pressure sensors with NbO,
memristors.'! Key features of nociceptors under normal state
and different levels of injuries are successfully demonstrated
in the output neural spikes. There is also a study on thermal
nociceptors based on diffusive memristors.33l The key func-
tions of a nociceptor, such as no-adaptation and sensitization,
have been demonstrated in a single device. Figure 17e,f shows
bio-inspired artificial afferent nerves for tactile perceptual
learning."?l The two proposed artificial afferent nerves can
achieve motion detection as well as handwriting recognition
and classification. Notably, a hybrid bioelectronic reflex arc was
constructed by combining the proposed artificial afferent nerve
in Figure 17e with a biological efferent nerve to realize muscle
motion control.?!l These works show good promise for poten-
tial applications in neurorobotics and neuroprosthetics, and
demonstrate promising strategies to realize an artificial tactile
perceptual system.

3.3. Multisensory Neurons

Most of the previous research focused on the single-mode sen-
sory perceptual system, which has not yet reached a level com-
parable to the integrated, multi-functional, and more efficient
sensory perception in biological systems. Hence, it is of great
significance to achieve the integration of multisensory informa-
tion input or multisensory perception fusion in one hardware
architecture. Wan et al. demonstrated a bimodal artificial sen-
sory neuron with both visual and haptic perception.3! Such a
fused sensory perceptual system can collect optical and pres-
sure information through photodetector and pressure sensor,
respectively. Figure 18a shows the schematic illustration of
the visual-haptic fused bimodal artificial sensory neuron. The
motion control and recognition of multi-transparency alpha-
betic patterns are successfully demonstrated by such bimodal
sensory neurons, as shown in Figure 18b,c. The good percep-
tual capability of this device can be attributed to the synergistic
effect of visual and tactile feedback during the task. Recently, an
artificial multisensory neuron with haptic-temperature fusion
was reported based on a piezoresistive sensor and a VO, vola-
tile memristor with intrinsic thermal sensitivity.'"] The sche-
matic diagram of such multisensory perceptual system is
shown in Figure 18d. By taking advantage of the coordination
between haptic and temperature sensory inputs, the bimodal
haptic-temperature fused sensory neuron can well achieve the
recognition and classification of haptic/temperature patterns.
This multisensory system is further developed by employing a
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Figure 17. Artificial tactile perceptual neurons. a) An illustration of the CNT-based tactile perceptual neuron. b) A schematic diagram of the
machine learning method for perceptual learning emulation. Reproduced with permission.['%®l Copyright 2018, Wiley-VCH GmbH. c) Conceptual
design of the proposed tactile neural system consisting of a tactile sensor device, a voltage-controlled oscillator, and a CNT transistor. Repro-
duced with permission.[ Copyright 2020, Springer Nature. d) A schematic diagram of the human tactile afferent nerve and the proposed arti-
ficial tactile neural perceptual system. Reproduced with permission.l""% Copyright 2020, American Chemical Society. e) A schematic illustration
of the flexible organic artificial afferent nerve. Reproduced with permission."?3l Copyright 2018, the American Association for the Advancement
of Science. f) A schematic diagram of the artificial optoelectronic spiking afferent nerves. Reproduced with permission.["2bl Copyright 2020,
Springer Nature.
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Figure 18. Multisensory neurons. a) A schematic illustration of the visual-haptic fused bimodal artificial sensory neuron. The illustration of b) motion
control and c) multi-transparency pattern recognition task based on the bimodal artificial sensory neuron. Reproduced with permission."3l Copyright
2020, Springer Nature. d) A schematic diagram of a multisensory perceptual system with haptic-temperature fusion. e) The confusion matrix of the clas-
sification testing results. Reproduced under the terms of the CC-BY license.™ Copyright 2022, the Authors. Published by Wiley-VCH GmbH. f) A sche-
matic diagram of the multimode-fused spiking neuron array and the SNN classifier. Reproduced with permission.["®! Copyright 2022, Wiley-VCH GmbH.

scaling resistor to adapt the high quality epitaxial VO, neuron  onstrated a pressure and temperature multimode-fused spiking
to sensors with different resistance level.™™ The sensation and  neuron system by heterogeneously integrating pressure sensors
encoding of illuminance, temperature, pressure, and curvature  and NbO,, memristors into an array, as shown in Figure 18£.1'°l
signals are demonstrated using this multisensory neuron. The pressure and temperature information can be not only

Most of the abovementioned works are at single-device level ~ fused into one spike train, but also distinguished by decou-
and their function of multi-modal perception fusion is often  pling the spike frequency and amplitude. This ensures that the
achieved at the expense of each individual sensing mode per-  system has a strong capability to distinguish and perceive dif-
formance. As a system-level implementation, Zhu et al. dem-  ferent external stimuli while having good data compression and
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conversion capabilities. Such multisensory neuron systems can
mimic the human perception system toward more compact,
more functional, and more efficient intelligent systems. There
are also critical demands on artificial auditory, olfactory, and
other sensory neurons emulation to achieve the full hardware
implementation of human sensory perceptual system. An arti-
ficial gustatory neuron has been reported recently.'"’V! However,
relevant reports remain rare so far.

4. Challenges and Perspectives

In the past a few years, artificial neuronal devices based on
diverse volatile switching materials have captured a broad range
of neuronal dynamics which are further exploited to implement
various ANN architectures. However, there is still a significant
gap between the demonstrated NC systems and those needed
for practical large scale computing applications. A series of bar-
riers remain to be overcome toward approaching the level of
sophistication of their biological counterparts. The challenges
for further research in this field mainly exist in three aspects,
individual device performance, system-level computing capa-
bility, and ANN architecture innovation.

Further improvements of individual neuronal device param-
eters are required by more powerful and energy efficient NC
systems. Neuroscience research shows that the total energy
cost of biological neurons generating a single action potential
and passing it though the axon is around tens to hundreds of
femtojoule, and the power consumption of a neuron in the
resting state is at picowatt level.'636118] By contrast, the power
consumption of neuronal oscillators input voltage can exceed
microwatt even when they are driven by a subthreshold input
and do not fire neural spikes at all.B#11411) The energy cost
is even higher when resistive switching occurs, as shown in
Table 2. Depending on the switching mechanism, some pos-
sible strategies can be used to address this problem. Changing
the geometric parameters of the IMT oscillators, for example,
employing nanowires!7>2*120 or atomically thin filmsP? as
the channel, can effectively reduce the device conductance.
Similarly, minimizing the area of switching media in vertical
non-filamentary memristors can also reduce the operating
current. Topological insulators that can generate spin-transfer
torque may have the potential to replace the ferromagnetic
layers in MT] devices and improve the energy efficiency.l'?!
As to LIF neurons, the energy consumption in the resting
state can be suppressed by employing switching materials
with a high on/off ratio. In this case, the resistive switching
and relaxation process dominates the energy consumption.
Similar to the situation of non-volatile memory, the switching
energy can be decreased by reducing the effective thickness
of switching media in memristors,??! or the volume of active
phase transition region in PCM neurons.[0¢123] Meanwhile,
attempts to reduce energy consumption should also take the
working frequency into consideration, since the lower oper-
ating current tends to slow down the switching speed. Some
LIF neurons based on ECM or electrolyte-gated FET are
reported to work at low frequency. Introducing mobile ions
to these devices via doping or oxidation may help address the
problem.[124]
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In terms of reliability and reproducibility, the cycle-to-cycle
variation in individual device operation and device-to-device
variation in batch fabrication are commonly regarded as prob-
lems of memory devices; however, as we mentioned, they can
be employed to mimic neuronal functions such as probabilistic
firing and PPC in a NC system.[% The key point is how to obtain
a robust stochastic activation function for individual devices and
a more reproducible distribution of neuronal response among a
device group. Inspired by the report of controlling grain bounda-
ries in MoS, synthesis, %l one possible solution is to intentionally
create active sites that favor filament formation or phase transi-
tion during device fabrication, so that the switching would prefer
to occur at these sites in a more consistent manner. Another
problem in exploiting the stochasticity of neuronal oscillators is
the small voltage range of their stochastic oscillation regime, typi-
cally within tens to hundreds of millivolt, which makes the device
operation vulnerable to noise."”> Increasing the series resist-
ance in the oscillatory circuit can broaden the operation regime
but it would also require a higher operating voltage. A reconfigur-
able stochastic neuron with dynamically tunable series resistance
may provide a possible solution to this problem.?% MT] neurons
also have the noise tolerance issue because they suffer from low
on/off ratio, which makes recognizing and counting their neural
spikes difficult in a noisy context. Novel designs of MT] memory
cells with more auxiliary components can enhance the on/off
ratio at the expense of compactness. For example, Patel et al.
showed that a 2T1R cell possesses over five times higher on/off
ratio than a traditional 1T1R cell.2¢]

The system-level hardware implementation of NC systems
centered with artificial neuronal devices focuses on utilizing
certain neuronal dynamics, such as neuronal coupling, LIF
behavior, or stochastic activation, to demonstrate novel ANN
architectures and solve computational problems that are par-
ticularly suitable for these ANNs, as we summarize in Table 1.
These works, on one side, are very encouraging since they
confirm that even only mimicking a small fraction of biolog-
ical neuronal dynamics can provide considerable computing
capability. On the other side, these demonstrations remain
rudimentary. Each demonstrated ANN is typically dedicated
to solving a specific type of problems with a small input size.
Some theoretical and engineering challenges need to be over-
come before fully realizing the computing power of these ANN
architectures. ONNs were originally proposed to be able to
solve general computational problems since they permit the
realization of Boolean logic operations.l'””) However, the refor-
mulation of general problems that are conventionally solved by
level-based circuits using the frequency or phase state of neu-
ronal oscillators remains challenging. The demonstrations we
described in Section 2.1.3 serve as good reference in this regard.
On top of them, some simulation works may provide useful
guide. For example, Hoppensteadt and Izhikevich set the math-
ematical basis about applying Hebbian learning rules to an
ONN by imposing dynamic connectivity via external input.['2l
Follmann et al.,"*! Yogen et al.,’>¥ and Popescu et al.*% con-
ceive different coupling schemes of MT] neurons for executing
pattern recognition. Shukla et al.l®¥ and Csaba et al.’*52] show
how to use IMT oscillators to perform image processing and
pattern recognition, respectively. A recent simulation work
provides a detailed tutorial about how to control the coupling
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state of IMT neuronal oscillators via subharmonic injection
locking.®!' Furthermore, one major bottleneck that prevents
ONN hardware from practical application is the difficulty of real-
izing full coupling between neurons.’!! The number of required
interconnects increases quadratically as the number of neurons
increases, and would become overwhelming quickly as the
problem size goes big. Therefore, a vertical integrated structure
that arranges neuronal oscillators and interconnection wires in
different planes is needed. Strategies to realize partial intercon-
nection via a global microwave current or magnetic field have
been introduced in Section 2.1.3. As for the coupling mode,
besides the two extremes, resistive and capacitive, Raychowdhury
et al.>® proposed that a bistable mode, which means both the
in-phase and antiphase locking modes are stable, can be realized
by properly tuning the coupling conductance and capacitance.
Assisted by the stochasticity of neuronal oscillators, the bistable
mode may act as an intermediate state between two extremes
and potentially provides a binary degree of freedom in ONN,
but its applicability needs further experimental confirmation.
Different from ONNs, SNNs are dedicated to applications
like pattern recognition and classification.¥” As mentioned
before, existing SNN hardware has managed to demonstrate
both supervised?® and unsupervised learning!? for image
recognition using simplified Hebbian rules and gradient
descent methods. However, all these SNNs have only a single
layer of fewer than ten neurons. Therefore, they can only pro-
cess very small pixel images and execute simple classification
jobs. SNNs that consist of over hundreds of neurons should be
implemented to reach the computing power required by more
practical applications. Moreover, the hardware implementation
of multilayer SNNs based on volatile switching devices has not
been realized. One engineering challenge is the coordination
between neuronal and synaptic devices in terms of fabrica-
tion compatibility, operating voltage (current) level, and avail-
able dynamics (plasticity). Memristive neural networks have
shown advantages in this term since memristors can serve as
both neurons and synapses without complicated auxiliary circu
its.[7418243.680] Other devices with both volatile and non-volatile
features like PCM, FeFETs, and spintronic devices are also
good candidates, given their relatively mature fabrication tech-
niques.33 Another critical problem comes from the heteroge-
neity of input and output neural spikes of neuronal devices.
Both the amplitude and morphology of output neural spike
trains are usually very different from those of input ones for
single neurons.[13¢422.69573¢87] Therefore, the output of a neuron
cannot be directly fed to the next one, which severely obstructs
the operation of multilayer SNNs. Besides, synaptic devices and
wires may also induce significant input voltage loss over the
course of signal transport.'>! Therefore, auxiliary circuits that
compensate voltage loss and rectify pulse morphology should
be added to the synaptic nodes in multilayer SNNs. In terms
of learning rules, given that the discontinuous nature of SNNs
prevents the application of traditional gradient-based methods,
other learning rules such as SpikeProp algorithm,!*¥ Theta-
learning rules,*! backpropagation through time,*%l and three
factor learning rules('*”) may be applied to multilayer SNNs.[138]
The reports of BMs?®l and BNs/¥] are good initial attempts to
take advantage of neuronal stochasticity in ANNs. However, the
functionality of BNs is only demonstrated via simulation, with the
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device parameters extracted from experiments. The physical con-
struction of such BNs should be the next step. As we mentioned
before, a hardware scheme of BN based on stochastic neurons
and peripheral circuitries have been proposed.”””! Though BM
has been experimentally realized using a few neurons controlled
by a field programmable gate array board or a microcontroller,
the demonstrated optimization problem in this work is either
so simple that in most cases the system energy drops monotoni-
cally after every iteration,?%¥ or too small in size compared with
practical needs.?"! More efforts toward solving a more general
problem with a larger size are expected in the future demonstra-
tion of stochastic ANNSs to better show their computing efficacy.
To bridge the gap between ANNs and biological neural net-
works, one possible strategy is to develop innovative archi-
tectures that exploit more advanced neuronal dynamics. The
interaction between neurons plays a critical role in the operation
of biological neural networks. A neuronal assembly, defined as
a group of neurons with strong mutual excitatory connections,
is the biological basis of short term and long term memory.*2
Synchronization of firing times can be easily realized by cou-
pling groups of neuron oscillators in ONNs; however, it remains
challenging to realize synchronization among spiking neurons
and construct assembly code in SNNs.*l The research on neu-
ronal interaction can start from realizing self-coupling of a single
neuron or the coupling between a few neurons. For example,
Zhang et al. designed a memristive autapse connected to a
neuron to enhance neuronal firing rate and spiking modulation
capability."% Moujahid et al. indicate that HH neurons coupled
by electrical synapses show the best information transmission
performance at a low energy cost.®% Advances have been made
toward realizing the synchronization of the firing activity of mul-
tiple neurons to form temporal correlation between events and
local self-clocking, 38 including mimicking neural synchrony
using stochastic plasticity™! and the hardware demonstration of
spatial-temporal code.'*?l Besides, neuroscience and computer
science research on this topic may provide some inspirations.
For example, Hopfield and Brody proposed transient synchrony
as a collective mechanism for spatiotemporal integration and
indicated that the event of collective synchronization of specific
groups of neurons in response to a given stimulus may consti-
tute a basic network-level building block.3] Furthermore, the
incorporation of inhibitory neurons to current ANNs is supposed
to be necessary because they perform many important functions
in biological nervous system such as mediating lateral compe-
tition, forming negative feedback loops as distributed clocks,
and enabling spatiotemporal coordination.” Lateral inhibition
has been deployed in many fully connected feedforward net-
works to enhance the input discrimination and improve energy
efficiency.* However, the inhibition operation in these works
are fulfilled by software or CMOS components instead of inhibi-
tory neurons. Neuronal inhibition has been captured by neuronal
devices based on a single MOSFET!™ or a FeFET circuit, but
the reports on inhibitory neurons remain very rare. The research
on involving inhibition dynamics and modeling their function-
ality in ANNs is not only an interesting challenge for the NC
community, but also beneficial to computer science and neuro-
science research.% In addition, considering that a great diver-
sity of neurons collaborate together for the function of biological
nervous systems, ] hierarchical control structures dedicated to
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regulating the information flow in biological neural networks,
such as neurons in spinal cord and thalamus should have their
counterparts in more advanced ANNs.[148]

Despite the significant progress, the artificial sensory neuron
system is still in its infancy. For more inspiration toward the next
development stage, a more comprehensive and in-depth under-
standing of the biological behaviors and patterns of sensory neu-
rons would be beneficial for the construction of artificial sensory
neuron systems.®! At the individual device level, flexible sensory
neurons with multidimensional perceptual fusion and processing
capability are highly desired.” Emerging materials, for example,
organic semiconductors, which are flexible and applicable to
large-area manufacturing, hold great potential for future intelli-
gent sensory neuron applications.> More neuronal dynamics,
such as stochastic resonance and coherence resonance, can be
employed to enhance signal detection.®? Additionally, device/
algorithm co-design may provide new opportunities to optimize
the operating speed and power efficiency. Furthermore, minia-
turization of neuronal devices and their related periphery circuits
without the loss of multi-functionality is essential for integrated
artificial perceptual neuron systems with higher complexity.
System-level integration is challenging for such systems with
many functional components and modules, including sensors,
memory, and processing units, as well as peripheral circuits.**"
The compatibility of different components in terms of electric and
mechanical properties, as well as performance-power consump-
tion trade-off, needs to be taken into consideration. A standard or
optimized fabrication workflow is extremely desirable to not only
overcome the compatibility problem but also enable higher scal-
ability and reliability.®>¥ Besides, artificial nervous systems that
resemble the biological nervous system hierarchy, which involves
the communication and collaboration between peripheral and
central nervous systems, have yet to be implemented. An initial
demonstration that combines the function of artificial sensory
and cortical neurons can be a good starting point.

To sum up, many challenges exist in building more powerful
artificial neuronal devices and neural networks. They origi-
nate from the challenges in material selection, device fabrica-
tion, circuit operation, and more importantly, the diversity of
neuron types and the remaining knowledge gaps regarding the
organization of computations in biological nervous systems.>3]
Despite these difficulties, implementing the key aspects of typ-
ical neurons and neural circuits would yield a deeper under-
standing of biological systems and shed light on developing
more practical artificial intelligent systems.
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