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We study the properties of output distributions of noisy random circuits. We obtain upper and lower
bounds on the expected distance of the output distribution from the “useless” uniform distribution. These
bounds are tight with respect to the dependence on circuit depth. Our proof techniques also allow us to
make statements about the presence or absence of anticoncentration for both noisy and noiseless circuits.
We uncover a number of interesting consequences for hardness proofs of sampling schemes that aim
to show a quantum computational advantage over classical computation. Specifically, we discuss recent
barrier results for depth-agnostic and/or noise-agnostic proof techniques. We show that in certain depth
regimes, noise-agnostic proof techniques might still work in order to prove an often-conjectured claim in
the literature on quantum computational advantage, contrary to what has been thought prior to this work.
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I. INTRODUCTION

Noise is an unavoidable part of any quantum computing
experiment today. The importance of considering the limi-
tations of noisy quantum computers is most palpable in the
coinage and the popularity of the term noisy intermediate-
scale quantum (NISQ) computers [1]. Because of these
limitations, the study of quantum algorithms and of their
robustness to noise is a problem at the forefront of quantum
information science today. With regard to the aim of out-
performing classical computers at solving computational
problems, two obstacles are noise and limited system size.
There is a trade-off between the two, since it is generally
challenging to realize a quantum computation with both a
large enough number of qubits and low enough error rates.
This is the reason why recent demonstrations of “quan-
tum computational advantage” [2—5] have been rightly
hailed as exciting developments. It is of prime importance
in the field of quantum information today to study the
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trade-off between system size and noise from the viewpoint
of whether or not a given experiment is indeed efficiently
simulable on a classical computer.

Separately, in recent years, the study of random quantum
circuits has seen renewed vigor, because of their ability to
model chaotic [6,7] and complex [8,9] quantum dynamics
and the ability to study certain universal properties of sub-
classes of random circuits using methods from statistical
physics [10]. Indeed, random circuits and random ans’atze
sometimes inform the modeling of near-term variational
quantum algorithms, an example being the barren-plateau
problem [11,12].

In this work, we study various properties of noisy ran-
dom circuits relating to their rate of convergence to the
uniform distribution. Specifically, we study circuits of
depth d on n qubits with Haar-random two-qubit gates
and local Pauli noise, with measurements in the compu-
tational basis at the output. The precise rate of conver-
gence of the resulting output distribution to the uniform
distribution is a question of much significance in the com-
plexity of random circuit sampling [13,14], the theory of
benchmarking noisy circuits [15-20], and the investiga-
tion of near-term algorithms [12,21,22]. We prove upper
and lower bounds on the expected total variation distance
8 of the output distribution (when measuring in the compu-
tational basis) to the uniform distribution, which take the

form § ~ exp[—é)(d)] [23]. These bounds are tight with
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respect to the scaling with d, in the sense that the exponent
scales linearly with d. We also study a property known as
anticoncentration in noisy and noiseless random circuits.
Anticoncentration is a measure of the “flatness” of the out-
put distribution, which is why our results on the closeness
to the uniform distribution inform anticoncentration prop-
erties. In the literature on quantum advantage via sampling
tasks, anticoncentration has been cited as being crucial
for output distributions to be classically hard to sample
from [24-26].

We first briefly describe our main results and their
consequences:

(a) We prove a lower bound on the expected total vari-
ation distance of the output distribution from the
uniform distribution for local Pauli noise, denoted
Ez[8] (Theorem 1) [27]. This takes the form
Eg[8] = exp[-O(d)].

(b) We prove an upper bound on the above quantity
for the case of a stochastic Pauli-noise channel that
we call heralded dephasing (Theorem 2). The upper
bound takes the form Ez[8] < poly(n) exp[—2 (d)].

(c) We also study anticoncentration properties of noisy
and noiseless random circuits. We show that at
sublogarithmic depth, there is a severe lack of anti-
concentration, strengthening the results of Dalzell
et al. [28] (Theorem 3).

(d) We complement the above result by showing that
noisy random circuits with local Pauli noise do
anticoncentrate at higher depth, since they anticon-
centrate at least as fast as noiseless random circuits
(Theorem 4).

(e) As a result of independent interest, we develop a
mapping between noisy random circuits and a model
in statistical mechanics in the context of proving our
results in Appendix A. This model builds upon tools
invented in the study of random circuits [28—32].

Our results have important consequences for the tightness
of proof techniques in the field of quantum computational
advantage, which we discuss below. Finally, we comment
on the relation of our work to recently obtained results by
Dalzell et al. [33], where bounds on the rate of conver-
gence to the uniform distribution for noisy random circuits
have been obtained. That work considers a low-noise limit
where the local probability of error in each circuit loca-
tion (denoted as €) satisfies the scaling e(n)n — 0 as the
number of qubits # tends to infinity. Under these condi-
tions, the authors are able to recover the scaling Ez[8] ~

exp[—@(nd)] observed in small-scale numerics [18,19].

In contrast, we consider a more physically natural scal-
ing limit where the noise rate stays constant in the large-n
limit. In this case, the analysis of Ref. [33] breaks down.
On the other hand, our bounds on the convergence rate
to uniformity apply in the limit of vanishing noise rates

but the upper bound becomes uninformative. Thus, the
two sets of results provide complementary and, apparently,
largely nonoverlapping insights into the behavior of noisy
quantum circuits on finite systems.

II. CONSEQUENCES

A. Barriers to proof techniques in the complexity
theory of random circuit sampling

We now elaborate more on the connection between the
hardness of sampling and the hardness of computing out-
put probabilities for random quantum circuits. There has
been an effort in the literature to prove, under a reason-
able complexity assumption, that approximately sampling
from the output distribution of random quantum circuits is
classically hard. In order to prove this statement, it suffices
to prove that approximating an output probability pgg. ¢ :=
[(00...0]|UJ00...0)|* of an n-qubit random quantum cir-
cuit U is hard on average [24,34]. More specifically, prov-
ing that pgq._ o is #P-hard to compute to within imprecision
(measured in terms of the additive error) 27" /poly(n) for
some polynomial poly(n) would give the desired claim
that approximately sampling from the target distribution
to within a small imprecision is classically hard. The target
imprecision of 27" arises from the fact that the Hilbert-
space dimension is 2" and a typical output probability of a
given bit string is approximately 27",

The state-of-the-art results [14,35,36] on the average-
case hardness of computing output probabilities of quan-
tum circuits come close to proving the desired result in a
certain sense. The “closeness” is measured in terms of the
largest imprecision to which computing the output prob-
ability pgo.o of a random circuit is still hard on average.
The state-of-the-art results prove that computing pgo._.o iS
hard to within a smaller imprecision of 2=©"% matching
the required imprecision of 27" /poly(n) when d is a con-
stant. These results improve upon prior results [37,38] that
proved hardness with imprecision 27P°Y™ Such results
are often viewed as evidence for the conjecture that pgg._o
is hard to compute on average to a much larger imprecision

of 27" /poly(n).

1. Shallow-depth random circuits

In Ref. [39], the authors have given important no-go
results for proving the desired result, i.e., the average-
case hardness of computing pgo.o to an imprecision
27" /poly(n) for a specific class of constant-depth ran-
dom circuits. Specifically, they have shown that it is in
fact classically easy to compute pgo..o to within this much
imprecision, even when previous techniques have implied
that computing pgo..o to within a much smaller impre-
cision of 27PoY" is average-case hard. Therefore, these
results mean that one cannot, in general, view the hardness
of computing pgo.o to a smaller imprecision as evidence
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for the hardness of computing pgo.o to a larger impre-
cision. In other words, these results constitute a barrier
for any technique purporting to prove the desired average-
case hardness result for general quantum circuits. Any such
technique must necessarily be sensitive to the depth of the
circuit; otherwise, it would work for constant-depth cir-
cuits of the sort studied in Ref. [39] and contradict their
easiness results. Barrier results such as this are useful
because they rule out certain proof techniques and guide
the search for a proof technique that is resistant to these
barriers. In this case, the barrier result informs us about
depth-sensitivity of a proof technique.

2. Noisy random circuits

A second barrier has been identified by Bouland et al.
[14], concerning the issue of noise. The authors have
shown that existing hardness-proof techniques are appli-
cable to noisy random circuits as well, to yield hardness of
computing a noisy output probability pg..o to small impre-
cision. Contrastingly, for the slightly larger imprecision of
27" /poly(n), it is known to be easy to compute output
probabilities, since the output distribution in the presence
of noise is believed to converge rapidly to the uniform
distribution [15,18,19]. An algorithm that always outputs
“1/2"” successfully computes pgo..o to within the required
imprecision. Therefore, the results of Ref. [14] exhibit
another barrier for hardness-proof techniques purporting
to work with higher imprecision—these techniques must
distinguish between noiseless and noisy random circuits.

3. Consequences of our results on tightness of proof
techniques

Bouland et al. [14] have also shown that existing
noise-agnostic techniques for proving average-case hard-
ness are almost tight. The logic is that current techniques
prove average-case hardness for imprecision 2~¢(dlognd)
or smaller. On the other hand, assuming that noisy random
circuits become 279”9 close in total variation distance
to the uniform distribution, as suggested by small-scale
numerics [18,19], would mean that it is average-case easy
to approximate output probabilities to within imprecision
2700d) or larger. Thus, knowing the convergence proper-
ties of noisy random circuits sheds light on the tightness of
noise-agnostic techniques.

We now discuss the implications of our results on
these aforementioned barrier results. First, Theorem 3 casts
more light on the depth barrier result in Ref. [39]. Napp
et al. [39] have proved that for certain short depths d <
3 on certain architectures, approximating output proba-
bilities to additive error 27" is easy on average. This
constitutes a barrier for improving robustness of proof
techniques, since the same output probabilities are for-
mally average-case hard to approximate to within error

2~Ologm "Oyr Theorem 3 states that for any sublogarith-
mic depth d = o(logn), most output probabilities are at
most 27" x 279" = o(27"). This indicates a severe lack
of anticoncentration, a property that has been linked to the
classical hardness of sampling from output distributions of
random quantum circuits [24-26]. Because of Theorem 3,
a trivial algorithm that always guesses “0” as the output
probability turns out to work to within imprecision < 27"
with high probability. Therefore, we conclude that any
technique to show the conjecture on average-case hard-
ness to within imprecision 2~©® must not work at depth
d = o(logn). This extends the previously proven regime
of d < 3[39,40].

Regarding the noise barrier, our result, namely Theorem
1, shows that current noise-agnostic techniques may yet
be improved. This is because this theorem disproves the
hypothesis that the total variation distance to uniformity
follows [Eg[8] < exp[—® (nd)] in the asymptotic limit. As
mentioned earlier, this latter scaling has been numerically
observed at small system sizes [18,19] and hypothesized
to hold asymptotically. Since we show that the distance to
uniform distribution behaves as 2~°@  there is some scope
for improving current noise-agnostic techniques. More-
over, we also show in Corollary 1 that as long as the
depth satisfies d < clogn for some constant ¢, the trivial
algorithm “output 1/2"” fails with high probability. This is
achieved by a strengthening of Theorem 1, where, in addi-
tion to a lower bound on the expectation value of the total
variation distance [E5[8], we show that this lower bound is
typical.

To summarize, noise-agnostic techniques can only work
in the regime d = Q(logn), d = O(n). In fact, in this
regime, the possibility of being able to prove hardness
results for both noisy and noiseless circuits to imprecision
2790 js not ruled out (see Fig. 1).

4. Surmounting barriers

Owing to this work, we now identify a map of param-
eter regimes showing where a quantum advantage may
be obtained over classical computers and where depth-
and noise-agnostic techniques can be used to prove the
conjecture on average-case hardness of computing output
probabilities to within imprecision at most O(27"). The
limitations are explored via two trivial algorithms for com-
puting output probabilities—one always outputting 1/2"
and the other always outputting 0. We now speculate on
how one might avoid, or surmount, these barrier results.

One possible lesson to glean from these results is that we
need fundamentally new techniques to prove average-case
hardness of computing output probabilities. Indeed, all
known average-case hardness results rely on polynomial
interpolation, which has been pioneered by Lipton [42].
In the context of quantum advantage, all known proofs of
average-case hardness [14,35-38] construct a univariate
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FIG. 1.

(c>0)

The status of hardness of approximating random output probabilities to within 27" imprecision for any constant a > 0,

(a) before and (b) after our work, for noisy and noiseless circuits at various depths. The results in both (a) and (b) are shown for
two dimensions [41]. The solid yellow regions correspond to the regions where the problem is known to be easy (for all a), while
the dashed yellow regions are those where the problem has been thought to be easy. The red arrows imply that a technique to show
hardness that is either noise-agnostic or depth-agnostic will fail because of the easy region, while the blue arrow indicates that such
a technique is not ruled out. The references next to the arrow refer to the works that discuss the presence or absence of a barrier. In
(a), the entire shaded region for noisy circuits follows from the assumption that noisy circuits converge to uniformity at a rate 2~ °%,
Since we disprove this possibility in Theorem 1, this region is smaller in (b) and allows for a noise-agnostic technique in the regime
of ®(logn) < d < ©(n). At large depths, noisy circuits continue to be easy due to their convergence to uniform, as strengthened by
Theorem 2. We also extend the easy region at shallow depths from constant to o(log n) by virtue of Theorem 3. Finally, Theorem 4
implies that the trivial algorithm of outputting 0 for noisy circuits stops working after depth Q (log ).

polynomial in a specific way by perturbing each of the
®(nd) gates of the random circuit and using the Feynman
path integral. This unavoidably leads to the imprecision
depending on the combination nd rather than on just n.
An alternative way of constructing polynomials that also
explicitly fails for noisy circuits could potentially avoid
this drawback and lead to a better dependence of the
imprecision.

A second interpretation of our results relies on the fol-
lowing observation. In both known barrier results, the
algorithm for computing output probabilities is just a triv-
ial algorithm that outputs a fixed constant independent
of the input, i.e., either 0 (by virtue of Theorem 3) or
1/2" (by virtue of Corollary 1 and other results [15]).
Suppose that we want to prove a hardness result say-
ing that no PH algorithm that depends nontrivially on the
input successfully approximates pgo.o on average. Let us
call these algorithms “instance-dependent” [43]. Note that
instance dependence is an extremely weak requirement;
most nontrivial algorithms, e.g., tensor networks and clus-
ter expansions, are instance dependent. Results proving
instance-dependent hardness are almost as strong as gen-
eral hardness results that rule out all algorithms. By our
observation from Corollary 1 and Theorem 3 that trivial
algorithms generally suffice in the easy cases, we raise the
possibility of obtaining these seemingly weaker hardness
results that only rule out instance-dependent algorithms,
without encountering any barrier. Thus, by finding a suit-
able enough technique, it may be possible to surmount both

the noise and depth barriers. Note that the algorithm of
Napp et al. [39] does not output a fixed constant. Nev-
ertheless, our result showing that there is an alternative
instance-independent algorithm in this regime raises the
interesting open question of whether their algorithm fits
into the framework of instance-independent algorithms
that we have identified here.

B. Benchmarking noise using random circuits

Sampling from random quantum circuits is a lead-
ing proposal for demonstrating a quantum computational
advantage over classical computers [2,18,37,44,45]. Part
of the reason behind the strength of this proposal is the suc-
cess of the linear cross-entropy measure as a predictor of
fidelity [18,20,46] (although there can be exceptions [47]).
This is believed to be a major advantage of schemes based
on random circuit sampling over schemes based on other
quantum sampling problems, such as boson sampling and
Gaussian boson sampling. In fact, the resources needed for
experimental implementation of benchmarking based on
random circuit sampling can scale better than the imple-
mentation of randomized benchmarking [20]. The effec-
tiveness of measures such as cross entropy at reflecting the
fidelity is crucially related to how the noisy distribution
behaves and how close it is to the identity. For example, a
crucial fact used in Ref. [20] is that the average fidelity is
upper and lower bounded by an exponential function of the
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noise strength (e~¢"¢ < E[F] < Ke~““" for known con-
stants ¢, K) [48]; therefore, estimating the decay rate of the
fidelity serves to estimate the noise strength €. However,
like Ref. [33], this result is only applicable to the regime
of asymptotically small noise strength ¢ < 1.

In the more prevalent and natural regime of € = ©(1), it
would be worthwhile to obtain even tighter results on the
scaling of the total variation distance between the experi-
mental and uniform distributions with respect to the circuit
depth. Our work is the first step in obtaining asymptotically
correct decay rates. We prove tight bounds (with respect to
scaling with depth) of the form e~“1¢¢ < Eg[8] < Ke~2¢¢
for different ¢, ¢;. These results might be useful to show a
similar decay behavior for other proxies for the fidelity,
such as the linear cross entropy, which is an interesting
question for future work. Improving these bounds to obtain
the same constants ¢; = ¢, for sample-efficient estimators
of the fidelity would lead to applications in benchmarking
noise based on random circuits.

C. Near-term algorithms

Our results also have important consequences for near-
term variational quantum algorithms that can be mod-
eled by random circuits. Variational algorithms with
parametrized circuits suffer from the problem of “barren
plateaus,” which affects the trainability of the circuit due
to the vanishing of gradients in the cost-function landscape
[11]. Previous work on noise-induced barren plateaus [12]
has shown that the gradient of local cost functions van-
ishes as poly(n) exp[—2(d)] in the presence of noise. One
possible workaround to avoid the barren-plateau problem
would be to use cost functions that are not (sums of) local
observables and instead rely on postprocessing the entire
data at the output distribution. However, since we give an
information-theoretic proof that the output distribution is
close to the uniform one, our results (specifically, Theorem
2) imply that even these strategies cannot ameliorate the
problem.

More optimistically, at short depths d = O(logn),
Theorem 1 implies that there is enough information con-
tent in the output distribution for circuit trainability. We
thus avoid a pessimistic conclusion that even constant-
depth noisy circuits are untrainable, a conclusion that
would have followed from the incorrect hypothesis that
noisy circuits converge to uniformity at a rate 279",

D. Monitored random circuits and entanglement
phase transitions

As mentioned above, we study the upper bounds on the
expected total variation distance to the uniform distribution
for a noise channel called Heralded dephasing corresponds
exactly to the situation where, after each layer of the cir-
cuit, a random fraction p of qubits is measured. This is
the model of monitored random circuits, or random circuits

with intermediate measurements, that have been studied in
the many-body-physics literature [10,16,49—-53].

These models feature entanglement and purity phase
transitions as a function of measurement strength (the
probability p of measuring a qubit at a given time), exhibit-
ing a volume-law behavior of entanglement entropy of
the final pure state for p < p. and an area-law behav-
ior above the critical point (p > p.). These transitions
have also been linked to computational-complexity phase
transitions [39,54,55]. One can study the computational
complexity of sampling from the output distribution of the
random circuit conditioned on knowledge of the measure-
ment locations. This problem can be studied both in the
setting where the results of the intermediate measurements
are known or unknown. The case where the results of the
intermediate measurements are unknown corresponds to
heralded dephasing. As a consequence of our work, we
conclude that for the problem of approximate sampling
from the output distribution of monitored random circuits
with unknown intermediate measurement results, the prob-
lem becomes easy for classical computers for any depth
d = w(logn) and any p > 0. Therefore, there is no com-
plexity transition in this setting. It remains open whether
there is a complexity transition in the setting where the
intermediate measurement results are also known.

II1. PRIOR WORK

In this section, we summarize prior work. The founda-
tional work by Aharonov et al. [15] dealt with the conver-
gence of states evolving under arbitrary quantum circuits
with depolarizing noise to the maximally mixed state.
They showed that the entropy of the system reaches its
maximal value exponentially fast with d. They concluded
that noisy circuits (without error correction) are essentially
“worthless” after logarithmic depth d = Q(logn). Trans-
lated to our setting, their proof techniques imply that the
total variation distance § to the uniform distribution satis-
fies § < 279 Depolarizing noise is also studied in more
detail in Refs. [56,57]. Ben-Or et al. [58] have generalized
the work of Aharonov et al. [15] to other forms of noise
and observed that the time after which noisy circuits are
worthless depends on the class of channels.

More recently, Gao and Duan [13] have studied the case
of circuits with a more generalized form of Pauli noise and
have shown an upper bound on the distance to the uniform
distribution of the form E[§] = exp[—<2(d)]. This result,
however, does not work for the case of dephasing noise.
In fact, the upper bound for dephasing noise is a constant
independent of n and d, which is not informative. More-
over, the result explicitly assumes a property of random
quantum circuits known as anticoncentration.

Note that for dephasing noise, it is not possible to prove
a general upper bound on § that works for arbitrary cir-
cuits by using the techniques of Ref. [13]. This is because a
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state in the computational basis is unaffected by dephasing
and hence there are instances (e.g., circuits with diago-
nal gates in the computational basis) where the state is
always in the computational basis throughout the evolu-
tion and the output distribution is unaffected by the noise
channels. Techniques such as the Pauli twirl do not work
either, since we are interested in a quantity that is not a
linear observable of p.

Prior work on anticoncentration has mostly been via
second-moment bounds on the output probabilities [26,28,
32,34,59], which can be proved via the design property of
random circuits [26,60,61]. An exception is the case of
the one-clean-qubit model (DQC1) [62]. A tool to ana-
lyze random circuits that has proven particularly fruitful
is that of mapping to models in statistical mechanics. This
method has been successfully used in prior work (see, e.g.,
[28-32], among others).

IV. DEFINITIONS

We define a depth-d noisy circuit on n qubits as a
sequence of quantum channels

Nu(p) = (EaoCq---E 0 Ci)(p), (D

where C,,(p) = U,,p UZ, is a unitary operation on # qubits
and &, (p) is a noise channel. A noisy Haar-random circuit
is a noisy circuit for which each U,, is decomposable into
tensor products of two-qubit Haar-random gates.

The results in our work are subject to different assump-
tions on the noise model. We always work with local noise,
where the channels &, act on at most £k = ©(1) many
qubits at a time. We call a noise channel stochastic if it
can be written in Kraus form, where at least one Kraus
operator is a positive multiple of the identity. Pauli noise
is described in general by &,(0) = Y poppm(E)EpET,
where P is the Pauli group on n qubits and p,,(E) is
a probability distribution over the Pauli-group elements.
The local noise rate in Pauli sector u € {/,X,Y,Z} at
depth m on site i is the marginal distribution gq,.,; =
ZEEP,E,-:M pm(E). Most results in this work are applica-
ble to Pauli-noise channels, though we sometimes discuss
what other noise channels the proof techniques could be
applicable to. It is not too restrictive to consider Pauli-
noise channels, since in practice one may use strategies
such as randomized compilation [63] to implement random
circuit sampling or benchmarking based on random cir-
cuit sampling. It is proved in Ref. [63] that this technique
tailors correlated and even coherent noise into stochastic
Pauli noise.

We consider circuit architectures where, for simplicity,
the gates are applied in parallel. More formally, we define
a parallel architecture as one for which » is an even num-
ber and every qubit is involved in a two-qubit gate at every
unit of depth [64]. Our results can be easily extended to

more general gate-layering strategies with a suitable redef-
inition of the depth. For a given site i, we define n,,(i)
as the set of neighbors of i, which are the sites involved
in a two-qubit gate at circuit layer m with i, including i
itself. We extend #,, to all subsets of sites 4 C {I,...,n}
through the composition rule n,,(4 U B) = n,,(4) U n,,(B).
We define the forward and backward light cones L;(i) and

LZ(i), respectively, of site i at depth d as the sets

Ly()) =ngo---on(i), (2)
LHG) = nyo---ong(i). 3)

In general, we have the bounds |L;(7)], |Lji(i)| <24,

We denote the above ensemble of noisy parallel cir-
cuits as BB and our results are generally stated in terms
of expectation values over this ensemble, denoted Eg.
The ensemble B describes the distribution over unitaries
only and not over the possible noise operations. We also
denote § = ||D — U||yp, where D denotes the (noisy)
output distribution when measuring in the computational
basis, (£ is the uniform distribution over n-bit strings, and
“TVD” denotes the total variation distance. A central con-
sequence of our results relates to anticoncentration proper-
ties of low-depth noisy random circuits. Here, we provide
a formal definition. In the following, we denote by poo..0
the output probability of the string 00...0. For noise-
less circuits, we have pgo.o = [(00...0[UJ00...0)|?,
while for noisy circuits it is given by pgo.0 =
Tr[]00...0) (00...0[ Ny(]00...0)(00...0D].

Definition 1: A family of random circuit ensembles is
anticoncentrated if there exist constants & € (0,1] and ¢ >
0 such that

o
Iér [Poo.‘.o = 2_"] = cC. 4)

A stronger definition of anticoncentration is often given
in terms of the collision probability, which we define for
noisy circuits as

ZU,E= Y pi 6]
1

xe{0,1}7

We denote the collision probability for noiseless circuits as
Z(U,I). The strong definition of anticoncentration requires
that 2"Eg[Z(U, £)] < ¢ for some constant ¢ > 0 [28,32,
65]. It follows from a standard argument provided in the
proof of Theorem 4 that, under this stronger definition
of anticoncentration, the random circuit ensemble also
satisfies Definition 1; however, the converse does not hold.
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V. RESULTS

A. Lower bound on the distance to the uniform
distribution

Theorem 1: For a Haar-random circuit on any parallel-
circuit architecture subject to local Pauli noise with a
uniform upper bound on the local noise rate q,,; < q,
for all Pauli-noise sectors |1, m, and i, we have the lower
bound

_Apy2d
>(1 2b)

el = e

(6)
where b = min[gx + gy, qy + 4z, 9: + 9] < 1/2.

Proof. Let p, denote the probability of observing the bit
string x at the output for a fixed circuit chosen from B and
with a local noise channel applied after every gate. For a
region 4, let x4 be the value of x restricted to the sites in
A. By definition, the total variation distance is the max-
imum difference in probabilities ascribed to any event £
by the two distributions, i.e., §(D,U) = maxg[|Prp[E] —
Pr;,[E]|]. Considering the event that the first qubit is mea-
sured to be in the state |0), the total variation distance
satisfies

1

where py and p,; are the probabilities of observing a 0 and
a 1 on the first qubit at the (noisy) output distribution,
respectively. Now since the above is a quantity in [0, 1],
it satisfies |po — %l > |po — %lz. We now lower bound the
expectation value of the latter quantity over parallel cir-
cuits, giving us Eg[8] > Eg[p? — po + 1/4]. Observe that
for a given circuit,

po = Tr[|0) (0]; NV4(]00...0)(00...0])] (8)

=Y Y > @lWVa.. Ual2) e 1)

xx1=0y.2,... y/ 2/ ...

x (y| U1]00....0)
x (00...0[U} [y ' | Vh |2V (2| UL .. Valw). (9)

In the above, the gates V), are purifications of the noise
channels &,, over ancillary qubits that are traced out. The
above equation is simply a Feynman-path-integral repre-
sentation of a noisy probability, from which it is evident
that py is a degree-two polynomial in the gate entries of
the Haar-random gates (or, more accurately, a degree-one
polynomial in the entries of U ® U").

This fact means that the expectation value Eg[pd —
po + 1/4], which is over parallel circuits with local Haar-
random gates, can be replaced by an expectation value
over parallel circuits with local random Clifford gates E¢

because of the 2-design property of the Clifford group.
Consider the quantity Ec[pZ — py + 1/4], which we reex-
press as follows:

1
Eclp; —po+1/41= 7 —Eclpo(1 —pp)].  (10)
We lower bound this quantity by upper bounding
Ec[po(1 — po)]. We define the probability density f (p)
through f (p)dp = Prc(po € [p,p + dp]) and write

1
Ec[poa—po)]:/o dof @ x (1—p). (1)

Our overall strategy is as follows. First, observe that since
the quantity p (1 — p) takes the maximum value 1/4 in the
interval p € [0, 1], a crude upper bound for Eq. (11) is
simply 1/4 x fol dpf (p) = 1/4. This is a useless bound,
since it results in the conclusion Eg[8] > 0. We refine
this useless bound slightly by observing that at least some
instances of the Clifford ensemble lead to a value of
p bounded away from 1/2, implying that p(1 —p) is
bounded away from 1/4. This will result in a better upper
bound on E¢[po(1 — po)], which will translate into a better
lower bound on Ez[§].

We split the integral in Eq. (11) into two parts—those
with p < % + € and those with p > % + €, for some € €
0,1/2):

(1/2)+e
Eclpo(l — po)] = /O dpf PIp x (1= p)

1
+/ dpf (p)p x (1 — p)
(1/2)+¢

1 /2+e 1 )
EZ/O de(P)-I—(Z—e)

1
<
(1/2)+e€

In the above, we use the fact that if p > 1/2 + €, then
p(1 —p) < 1/4 — €. Continuing, we obtain

dpf (p). (12)

1 1
Eclpo(I —po)] = (1 —Pr (po 2 5 —1—6))

1 1
—i—(Z—GZ)PCr(pOZ 5Jre) (13)
! Zp >1+ (14)
=-—-—€"Pr —+e€]).
4 c \P'=73

It only remains to lower bound Pr¢ (pg > 1/2 + €). For
this, we observe that we can take an extreme case over cir-
cuits satisfying a certain property. As long as these circuits
result in a final state with py > % + € and the likelihood
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of applying these (Clifford) circuits is large enough, we
are done. The extreme case that we choose is simple: it
consists of Clifford circuits where all of the d two-qubit
Clifford gates that touch the first qubit map the Pauli oper-
ator Z; to Z). In particular, for Pauli-noise channels, this
means that the first qubit is never entangled with any
other qubit in the system and any mixture of the |0) (0]
and |1) (1| states is unchanged by the unitary dynamics.
Effectively, the only evolution acting upon it is the noise
channel after every layer. Although these are rare events,
we prove that they still lead to a nontrivial lower bound
Prc (po = 1/2 + €).

We use Lemma 1, which analyzes this case and shows
that for a single-qubit evolution under only Pauli noise,

lpo — 1/2| = (1 —2(gqx + qy))d/Z. This means that we

can take € = (1 — 2(¢, + ¢,)) /2. Furthermore, the like-
lihood of observing this extreme event is lower bounded
away from 0. In each layer, the probability of applying
a Clifford circuit with the property above is at least 1/30
(this follows, for example, from a brute-force numerical
evaluation for each of the 11 520 two-qubit Clifford gates).
As a result, we obtain Pre(pg > 1/2 4 €) > 1/307 for e =
(1 —2(gx + Qy))d /2.
Wrapping everything up, this results in

1 1—=2 r+ 2d 4
Ec[po(l — po)] = i ( (4 +49))"/

304
(15)
— Bl —p+ 17012 U s D
— Bl —po+ 1/4] 2 L0 i(i"jofy))zd (17)
— Ealo)= U g D7 )

A comment is in order. First, note that the dependence on
qx + g, can also be written as ¢ — ¢, where ¢ = g, + ¢q, +
q.. For the extreme event we have considered, it is under-
standable that dephasing noise (where g = ¢,) does not
affect the quantity p,. For these cases, we can strengthen
the lower bound by considering events where the first
gates act as Hadamards or Hadamards plus a phase gate
S, the intermediate gates map X; to X or Y to Y1, respec-
tively, and the last gate inverts the first. By symmetry, the
previous analysis holds for these events as well. We can
combine everything to give the slightly better bound

(1—2p)"
Eg[d] > ———— 19
B[ ] = 4x 30d 5 ( )
where b = min[q, + qy,9, + ¢-,q: + q:.] = g — max
[9x, 9y, 4:]- [ ]

We also note that for the case of perfect depolarizing
noise on every qubit, we have ¢, = g, = ¢. = 1/4. This
gives the trivial bound Ez[8] > 0, as it should, because
perfect depolarizing noise immediately gives the identity
operator on every qubit and the distance to the uniform dis-
tribution is exactly 0. Similarly, for a Haar-random unitary,
we have an estimate from the Porter-Thomas distribution
Pr(poo..o = p) = (2" — (1 — p)*' 72 [18], leading to

1
1
Eyfs] = 2! / dolp — 3,1 Prpuo.o =p) = ™. (20)
0

Thus, in the case of noiseless Haar-random circuits on
architectures where the output probability approaches the
Porter-Thomas distribution, our lower bound is expected
to be a significant underestimate of the true value at large
depths. Barak et al. [32] have also obtained a similar
lower bound for single-qubit marginal probabilities in the
noiseless case.

Lemma 1: Consider a single qubit starting in the state
0 = 10) (0. After d applications of the channel E(p) =
(A =@p+qXpX +q,YpY +q.ZpZ (where q = q. +
gy + q-), the resulting state E%p) obeys

1+7
2

1 1
poi= Tf[ €d<p>] =5 +5(1-26+4))".

21

Proof. It suffices to show that £9(p) = po(d) |0) (0] +

d
(1= po(d)) 11) (1], where po(d) = 3 + 5 (1 —2(qx + 4,))".
We prove this by induction. The d = 0 base case follows
from the given initial state. The inductive step is

EM(p) = EEX(p))
= (1 = gx — ¢,)[po(d) |0) (0]
+ (1= po(@)) 1) (11 + (gx + g,)[po(@) [1) (1]
+ (1 = po(d)) 10) (0[]

=po(d+ 1)10) (0] + (1 — po(d + D) |1) (1],
(22)

which completes the proof. |

We also remark here that the lower bound (with poten-
tially different constants) is applicable to all noise channels
for which an analog of Lemma 1 holds. The only condi-
tion we need is that after d applications of the single-qubit
noise channel to the initial state |0) (0|, the resulting state
has |po(d) — 1/2] = exp[—ad] for some a > 0. If this is
satisfied, then one can take as an extreme case in the proof
of Theorem 1 the Clifford circuits where all of the d two-
qubit Cliffords encountered by the first qubit act as identity
on it. This would change the denominator 307 in Eq. (19)
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to 115207, although similar symmetry arguments could
improve this constant. The same considerations apply to
Theorem 3, the proof of which makes use of the analysis
in Theorem 1.

As we mentioned in Sec. I, Theorem 1 has wide-ranging
consequences for the properties of noisy random circuits.
To strengthen the result, we now show that a similar lower
bound applies to typical noisy random circuits (i.e., indi-
vidual elements of the ensemble that occur with high
probability) at sufficiently low depths.

Corollary 1: For a noisy Haar-random circuit on any
parallel-circuit architecture with a uniform upper bound
on the local noise rate q,,; <q, for all Pauli-noise
sectors |, m, and i, we have the bound

%I'((S < e—ZLZd) < 8e—ad+ 16e(2t1+10g4)d/n, (23)

where a = —2log(1 — 2b) + 1og(30) and b = min[q, +
Qys Gy T 4z2 9= + 4]

Proof. Following the arguments from Theorem 1, we have
the bound

5> A} = %<0|Nj(z,~)|o>2 (24)

for every site i, where N dT is the adjoint map of the depth-d
noisy circuit ;. We can, thus, obtain a lower bound by
the site-averaged quantity

In Theorem 1, we show that E5[A?] > e=%/4, which
implies E3[A?] > e~%/4. When the noise is given by
a Pauli-noise channel, as we consider, then the operator
./\/'dJf (Z;) has support on at most Lj,(i) sites. We can use
this fact to bound the second moment of the site-averaged
quantity:

1
Es[A'] = — ) Es[A7A7] (26)
i
1 22
== > Ep[A7A7]
isj eLgoL (i)
1
+— ). EslATEs[A]] @7

i3 #LaoL} ()

1
== Y, (EslA7A]]—Es[A]ES[A]])

n
ij €LgoL(i)
+ Eg[A’] (28)
212 1 T,.
< Ep[A°]"+ - max [LgoLy(d)|oio;, (29)
M ijeLgoL)

where we define 02 = Ez[A}] —Ez[A2]* < 1. To see
this, we use the Cauchy-Schwartz inequality:

Es (A7 - Es[ATD(A? — Es[AD] < 005, (30)

whenever j € L; o L;(i). For j outside this set, the cross-

§> A2 = lz A2, (25)  correlation is zero. Applying the lower bound from
n= Theorem 1, we now have the sequence of inequalities
|
Pr§ < e < Pr[§ < de “Ep[A° 1
Br[S_e ]_Br[S_ e sl ]] (31)
<Pr [A? < 4e“Eg[A%]] (32)
=1—Pr[A? > 4e”“Ep[A%]] (33)
a2 EB[A%]?

<1—(1—4e )2 2L 34
1= (e P o (34)

_ —ad\2 272

o (1 — 4= E5[A%]

Es[A% + (1/n) max, Ly o Ly(i)|oi0;]

JeLgorhol

8¢ “Exz[A%]? + (1/n) max, ILg o LY()]0i07]

izj €LgoL (i) [

< —— — (35)
Eg[A%]* + maxi;jeLdoLZ(i)HLd o L,(0)]ojo;]
—a T
- 8e “Ex[A%]* + (1/n) maxi;jeLdoLL(i)HLd o L;()]oio;] a6
B Es[A%]?
< 8¢ 416 x 49e%p, (37)
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where we apply the Paley-Zygmund inequality in Eq. (34),
use Eq. (29) in Eq. (35), and use the fact that |L,; o LZ(i)| <
44 for every site i to obtain Eq. (36). |

Corollary 1 shows that for any depth that grows slower
than

1
d — )1 38
= <2a+10g4) o8 (38)

for most circuits the total variation distance § is lower
bounded by e~ for some fixed constant c. This strength-
ens Theorem 1 by showing that the lower bound on Ez[§]
in Theorem 1 is actually characteristic of typical circuits
at these depths. The typicality result rules out the possibil-
ity that [E5[8] is dominated by rare circuits with unusually
large deviation §. It is an interesting subject for future work
to study similar typicality results for higher depths that
scale polynomially with 7.

B. Upper bound on the distance to uniform

In this section, we study a partially heralded noise model
where first a random set of sites are selected after each
layer of the circuit independently with probability p. At
each site 7 in this random subset, a local dephasing channel
&; is applied with dephasing parameter ¢, where

Ei(p) = —q)p +qZipZ. (39)
In the limit p — 1, this becomes a standard local dephas-
ing model with parameter ¢, while ¢ — 1/2 is equivalent
to a model where a random set of sites are measured at
rate p in the Z basis but without keeping track of the
measurement outcomes. For p < 1, we absorb the random
locations of the dephasing events into the ensemble 1.

The “heralding” refers to the fact that the set of sites
where the measurements occurred is known but not the
measurement outcomes. Note that this is different from a
dephasing model, where each site is uniformly dephased
with dephasing parameter pq. In particular, the noise loca-
tions act as an additional source of randomness in the
model.

We focus on this noise model for two reasons. First,
we would like to verify the intuition that noise acting
during a random unitary circuit renders the output dis-
tribution “worthless” (close to the uniform distribution)
after logarithmic depth [15], even though there are atyp-
ical circuits that can avoid the effects of the noise in a
heralded-dephasing model. The second motivation arises
from the observation that when the measurement outcomes
are also known, such models exhibit an entanglement
transition in the conditional evolution of the quantum
states as mentioned in Sec. IID [10]. Our analysis of
the heralded-dephasing model proves that discarding the
measurement outcomes but maintaining knowledge of the

noise locations is enough to remove any signature of such
entanglement transitions.

For a noisy Haar-random circuit with this noise model,
we prove an upper bound on the circuit-averaged total
variation distance § that is independent of the circuit
architecture.

Theorem 2: For a noisy Haar-random circuit on
any parallel-circuit architecture with heralded-dephasing
noise at rate p with the dephasing parameter q, we have
the upper bound

32/3
Eg[8] < —=—n'/Pe77Pd/3, (40)

where y = 8q(1 — q)/3.

Proof. We start from Pinsker’s inequality, which states
that the total variation distance between distributions P
and Q is related to the corresponding Kullback-Leibler
(KL) divergence (the classical relative entropy) by the rela-
tion (P, Q) < /DxL(P||Q)/2. The KL divergence with
respect to the uniform distribution / is given by nlog2 —
H(P), where H(P) is the Shannon entropy. Let D denote
the distribution of measurements for a circuit. This gives
us the following chain of inequality for variation distance
to the uniform distribution:

28(D,U)* < Dk (DIIU)
=nlog2 — H(D) < nlog2 — H,(D),

(41)
(42)

where the last inequality follows from the fact that sec-
ond Rényi entropy H,(D) = —log (ZX pf) is less than
or equal to the Shannon entropy H(D) = H,_.1(D) =
— > .pxlogp,. We can now use Markov’s inequality
to bound the average TVD. For any € € [0, 1], letting
Prz(6 = o) denote the probability density of the contin-
uous variable §, we have

€ 1
Ez(8) = ./o doo l;r(S =0) +/ doo I;r(S =o0) (43)

Es(8)

e

setPr@ze)=e+ (44)

If E5(8%) decays exponentially or faster with depth, i.e.,
e 7? for some y > 0, we can take € = e 7%/3 to ensure
that E3(8) decays exponentially as e~7%/3. To show that
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the second moment of the TVD must indeed decay expo-
nentially with d, we calculate the expectation of Sec. V B:

Es[28(D,U)*] < nlog2 — Es(Hy (D))
=nlog2 +Ez |:10g <Zp3>i|

<nlog2+logEg |:pr] (45)

In the last inequality, we use Jensen’s inequality for con-
cave functions, Eg[f (X)] <f (Eg[X]). The term inside
the expectation function, ) pf, is the collision prob-
ability. From Lemma 2, we have that the expecta-
tion of the collision probability is upper bounded by
27" exp[(n/?))e’”’d], where y = 8¢(1 — ¢)/3. With this,
we have

Es[26(D,U)*] < nlog2 + log [2*" exp [gef”’d]]

n _
= —e 7P,

. (46)

Thus, we have that the second moment of the TVD decays
exponentially in circuit depth. The right-hand side of
Eq. 44 is minimized at € = (n/3)!/? e7774/3_ This yields
the desired bound

32/3
Eg(8) < ——n'/3e7pd/3, (47)

To complete the proof, it remains to prove the following
lemma.

Lemma 2: For a noisy Haar-random circuit on
any parallel-circuit architecture with heralded-dephasing
noise at rate p with the dephasing parameter q, we have
the upper bound on the collision probability Z

EslZ] = Ex [Zpi} =2"ep[ e, @)

where y = 8q(1 — q)/3.

To prove this bound, we make use of the statistical-
mechanics mapping method developed by Dalzell et al.
[28]. The proof of Lemma 2 can be found in Appendix A.

We compare our proof technique with that of Aharonov
et al. [15]. In that work, the authors prove that under
depolarizing noise, the information [as measured by [ =
nlog2 — S(p) in terms of the von Neumann entropy S(p)]
decays exponentially in the depth for any arbitrary cir-
cuit. As mentioned earlier, since we cannot hope to have

a result for arbitrary circuits for dephasing noise, we con-
sider the expectation value of the classical information
measured through the KL divergence of the classical distri-
bution D—i.e., Dxr (D, U) = nlog2 — H(D)—and prove
that this expectation value decays exponentially in the
depth.

C. No-go result for anticoncentration at low depth

In this section, we study the properties of quantum cir-
cuit dynamics at sublogarithmic depth, which is defined
as a limit where we fix 0 <c¢ < 1 and scale depth as
d = O[(log n)°] while taking n — oo. At this depth, there
is still a notion of locality in the circuit because the light
cone Ly(i) of each site cannot extend across the whole
system in the large-n limit. We prove that sampling from
Haar-random circuits on any parallel-circuit architecture
at sublogarithmic depth leads to a poorly anticoncentrated
output distribution. We consider the case of both noisy and
noiseless circuits.

Theorem 3: Consider a Haar-random circuit ensemble
on any parallel architecture subject to Pauli noise with
a uniform upper bound on the local noise rate q,,,i < q,,
for all Pauli-noise sectors w, m, and i. Also, let b =
min[g + ¢y, 9y + 4-,q: +g<] < 1/2 and a’ =1log120 —
2log(1 —2b). If the depth of the circuit ensemble is
sublogarithmic (i.e., satisfies 1 < d = o(logn)), then

. 1
nlgglo l;r [Poo...o < 2"@"9—“/‘1/41| =L (49)

Proof. The strategy of the proof is to show that a bound on
the logarithm,

1
- log poo...0, (50)

is sufficiently concentrated about its mean. This can be
thought of as the first step in proving a behavior akin to the
central limit theorem for the log-output probability simi-
lar to the behavior of the free energy in classical statistical
mechanics.

To see this, we express the output probability pgg. o in
terms of conditional probabilities:

p(-xl :0>-~-7xn=O)
=p(x1 =0)p@ =0x; =0)...

Xp(xn:lel :0,...,)6”,] :0)7 (51)

which also holds when the x; are reordered by any permuta-
tion. Taking the logarithm of both sides and summing over
all permutation representations of the formula, we arrive at
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the expression

—logpoo..o = —% Z Zlog

oeS, i

»Xo(i—1) = 0),
(52)

X poiy =0lxs1) =0,...

where S, is the permutation group on (1,...,n). We
rewrite 2p (x; = Ol{x; = 0};c;,) =1 + (Z;),; to express the
sum as

- 10g1?00 o0 —nlog2

Z > log(1+ (Zy@)oqt....i-1p) (53)

aeS,, i
e j{: 2{: o ()0 ({1mi=1))
‘oeS, i
4n' Z Z o (i) G( ,,,,, —1) (54
oeS, i
1 y 1 1 712
=51 A 4 2 i 2
oES, ij Tji
(35)
where we define 4, := — ) (Z;4))o(l...i—1}, use the

uniform lower bound — log(1 +x) > —x +x%/4 for x €
[—1,1], and denote by oj; the subset of permutations
with o (i) =j. Now let Jj(D run over all the subsets of
{1,...,n} not containing j of length i — 1. This set has
size ("_1) For each J; @ the term (Z;)? 50 appears multiple

times in the above sum, since there are multiple permuta-
tions t satisfying (i) = and {t(1),7(2)...7((— 1)} =
{o(1),0(2)...0@( —1)}. The number of such permuta-
tions is (i — 1)! x (n — i)!. Therefore, the above is equal
to

— N4, + Z 1) > (7 >j(,) (56)

oeS,, (l)
n—L; (d)+1 (n L; (d))
272A+Z 2 oy 7 6D
og€eSy z 1

where we denote L;(d) = |Ly oLji(i)|. In the above, we

restrict the sum to only those subsets J/(i) with Ly o

L:l(/') nJ; @ = (. This ensures conditional independence
p(x; = O|{xk = O}keJ“)) = p(x; = 0), which removes the

conditional dependence on (Z;) S0 The number of sub-
J

sets Jj(’) such that there is no qubit in Ly oLZ(j) ﬂJj(i)

is ("_lffl(d)). The sum over i is truncated to n — L;(d) + 1
since for larger i, we get back terms with conditional
dependence. Continuing, we use the hockey-stick relation

n=L;(d)+1 -1 .
2int’ (,,,Ljn(d),iﬂ) = (n7£ (d)) to obtain

— log poo. 0>n10g2+—ZA +Z4L @ (Z)?

o€eS),

(58)

1
anogZ—i—m ZA"

T oeS,

1 2 _ .
+ L@ ;<Zj> = x, (59)

where Lyax(d) = max; L;(d).

The proof of Theorem 1 provides the lower bound
Es [(po — 1/2)2] > ¢7%/4in Eq. (17). This bound is valid
for all qubits i, not just the first qubit as in Theorem
1. This bound translates to the lower bound Ez[(Z;)?] >
e % because (Z) =po— (1 —po) =2po— 1. We also
have Epz[4,] =0 because the conditional probability
(Zsi))o1....i—1y flips sign upon the action of the single-
qubit unitary X; at the output. By Haar invariance of the
layer of single-qubit unitaries, Eg [( Zo())o((l,..., ,-,1})] =0.
As aresult, we have a lower bound

Es[— logpoo..o] = nlog2 + ne™ /(4L (d)).  (60)

In Lemma 3, we prove that the variance of the lower bound
on — log pgo..0, denoted by x in Eq. (59), is 02 < 0? =
2n = o(n?). This implies that, by Chebyshev’s inequality,

Pl — Eslx]l > ko'] < Prllx — Eslx]l > kol < 5

2
(61)
1
— I;r[—x > —E[x] + ko] < 2 (62)
1
—— PI'[Ingoo 0> EB[X] + kA/ 2]’! < k2 (63)
Since  Lmax(d) <49, we have —Eg[x] < —nlog2 —
ne~?“/4 with a’ = a + log 4, which means that
dd 1
Pr|poo.o <27"exp| — +kV2n || =1 - —.
B K2
(64)

We choose k = ©(n*!) so that

nefa’d
lim Pr Poo.o <2 "exp|— 1 +0x>H )| =1
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This means a lack of anticoncentration through lim,_, o
Prs[poo.o = 0(2™)] =1 whenever ne 94 = w(n®"),
which is satisfied for any d < 0.49logn/d’, with & =
log 120 — 2log(1 — 2b), where b = min[g, + gy,4q, + -,
q: + qx]. Thus we establish a lack of anticoncentration
for any sublogarithmic depth d subject to the proof of
Lemma 3. |

Before stating Lemma 3, we state the following
corollary for noiseless circuits.

Corollary 2: An ensemble of noiseless Haar-random cir-
cuits on any parallel architecture at sublogarithmic depth
1 <d < o(logn) is poorly anticoncentrated, satisfying

— 1. (66)

. 1
lim Pr [poo...o < W] -

n—oo B

Proof. The proof for the noiseless case follows directly by
taking b = 0 in Theorem 3. |

We comment on the relation between this no-go result
for anticoncentration at sublogarithmic depth and a related
result of Dalzell et al. [28]. Dalzell et al. have adopted
a different definition of anticoncentration in terms of the
expected collision probability Ez[Z] < a/2". As men-
tioned earlier and justified in the proof of Theorem 4, a
bound on the collision probability implies anticoncentra-
tion as defined in Definition 1. In the original context of
quantum computational-advantage proofs [24], Definition
1 of anticoncentration is more relevant. Moreover, there
are simple cases where this definition of anticoncentration
is satisfied but there is not a good bound on the collision
probability. For example, consider a distribution where
1/2 of the probability mass is concentrated on a single
outcome and the remaining 1/2 of the mass is equally
distributed over all the other 2” — 1 outcomes. The dis-
tribution satisfies Definition 1 by taking « = 1/2 and any
¢ < 1. The collision probability for this distribution is Z =
1/44 0(1/2") > a/2".

Barak et al. [32] and Dalzell et al. [28] have shown
that random circuits in one-dimensional and other parallel-
circuit architectures anticoncentrate (according to both
Definition 1 and their definition in terms of the colli-
sion probability). Dalzell et al. have shown that logarith-
mic depth is also necessary for the collision probability
bound E[Z] < a/2" but this has left open the possibility
that sublogarithmic-depth random circuits anticoncentrate
without a corresponding bound on the collision proba-
bility. Our Theorem 3 disproves this possibility and thus
strengthens the authors’ no-go result at sublogarithmic
depths.

Lemma 3: The variance o? := Eg[x*] — Eg[x]? of the
lower bound x in Eq. (59) satisfies 0> < 2n.

D. Anticoncentration at large enough depth

We now study anticoncentration properties of both noisy
and noiseless circuits at depths logarithmic in » or larger.
These results are established in terms of the collision prob-
ability defined in Eq. (5), which is the second moment of
the output probability.

Theorem 4: Haar-random circuits with Pauli noise anti-
concentrate at least as fast as those without noise. More
specifically, we show that the output probability distribu-
tion for a Haar-random circuit with Pauli noise is anticon-
centrated if the noiseless output satisfies 2"EgZ(U,I) < ¢
for some constant c.

Proof. To prove the result, we first need Lemma 4, which
shows that the collision probability for a noisy Clifford
circuit increases upon removing the noise, i.e., Z(U,&) <
Z(U,I). The proof of the theorem then follows from
the 2-design property of the Clifford group through the
inequalities

27" <EgZ(U, &) = EcZ(U, E)
< EcZ(U,T) = EgZ(U, D).

(67)
(68)

The first inequality in Eq. (67) follows from a generic
lower bound on Z(U, &), while the second inequality in
Eq. (68) follows from Lemma 4.

To prove that this bound on the collision probabil-
ity implies anticoncentration, we can apply the Paley-
Zygmund inequality for 0 < o < 1,

Pr [Pooi..o > ;—n] = Pr[poo..0 > aEg[poo..ol] (69)
(1 —a)? (1 —a)?

> > , 70

T 4Es[pgy. o] ¢ 7o

which converges to a number greater than 0 in the limit
n — oo. Here, we use the fact that

4"Egs [pdy. o] = 2"Es [Z pf] = 2"Ex[Z(U, E)], (71)

and then apply Eq. (68). ]
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Theorem 4 implies that noisy Haar-random circuits
on architectures that are reasonably well connected anti-
concentrate after ®(logn) depth, since 2"EzZ(U,I) =
2 4+ o(1) after depth ®(logn) for such circuits [28,66].
Theorem 3 also rules out anticoncentration at any sublog-
arithmic depth for a Haar-random circuit with Pauli noise.

We now present the lemma for noisy Clifford circuits.

Lemma 4: The collision probability decreases when
adding Pauli noise to a noiseless Clifford circuit, i.e.,

Z(U,E) < Z(U,D). (72)

Proof. The defining property of Clifford circuits is that
they send Pauli-group elements to Pauli-group elements.
Another result we need is that the composition of two
Pauli-noise channels is also a Pauli-noise channel. We can
use these two facts to move all the noise channels past the
Clifford gates to arrive at the expression

N(10)(0]) = (Ey 0 C)(100...0) (00...0]), (73)

where £y is a new Pauli-noise channel with a modified
distribution g(E) and C =Cy0---0(C; is the noiseless
Clifford circuit. Now we are left to bound the expression

2

ZWU,E) =) |Y qE)xIE []‘[ ]HTg} E'|x)

x |EeP i=1

2
, (74

s

= S st [T G
X i=1

where g; = Uy - -- UlZ,-UJlr . UZ are stabilizer generators
for the evolved initial state under the noiseless circuit and
Z; is the Pauli Z operator on site i. In the second equality,
we organize the sum into syndrome classes defined by the
anticommutation pattern 5 of the Pauli-group elements E
with the stabilizer generating set {g;} using the definition

g5 = Z

EeP st (—DSi=[[E.g]l

q(E). (75)

Here, [[4, B]] = Tr{ABA~'B~']/2" is the scalar commuta-
tor. To bound Eq. (74), we first use properties of stabilizer
states to evaluate the measurement probabilities as

" ]I —1)% i N
W[ TS50 = pan @ 5,00, (76)
i=1

where  pmax (U, I) = max, px (U, 1), p(U, 1) := [(x|U]00
...0)]%, and f (x,5, U) is either 0 or 1 and satisfies the sum
rule Y f (x,5,U) = p..L (U,D) for every 5. As a result,

Z(U,E) = pl (U Y gsg; Y _f (0,5, U)f (x, 4, U)
5.0 x

(77

< P2 (UD D gsq; Y f (x.5,0) (78)
50 x

= pmax (U, 1) = Z(U, D), (79)

where we use the fact that f (x, s, U)f (x, 7,0 <f(x5U),
> <q; = 1 and the property of Clifford circuits that all
nonzero probabilities are equal. |
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APPENDIX A: PROOF OF LEMMA 2

Here, we introduce the concepts that go into proving Lemma 2.
If X is a random variable in {0, 1}" denoting the measurement outcome of n qubits after a unitary U ~ B, the collision
probability of the random circuit architecture is defined as

Z=Eg| Y PrX=x"|=Es| Y pu@?|, (A1)

xe{0,1}n xe{0,1}n

where py(x) is the probability that the measurement result is x. If there is at least one gate for each qubit in a parallel-
circuit architecture with Haar-random gates, all measurement outcomes are equally random and, thus, there is a symmetry
over them:

Z=Ep| Y pu®’|=2"Es[pu(0")], (A2)
xe{0,1}7

where 0" denotes the state |00...0). Assuming that the input state is also 0", the probability of measuring 0" after the
circuit is given by Tr(]0”) (0"| U]0™)(0"|U"). To obtain the second moment of the probability distribution, we consider
two copies of the circuit acting on two copies of the input state. Since the trace obeys Tr(4 ® B) = Tr(4)Tr(B), we obtain

Z = 2" [pu(0)] = 2'BuTr(([0){0"]) 1% (j0r) o)™ W)
= 2Tr [ (j07){0"])** B [ U%2 (j07)(07])** (0H*?] | (A3)

For convenience, we denote the two-copy Haar-averaged channel over k qubits as My, :
My, [p] = Ez [U®?p(UH®?], (A4)

where Uy is a unitary acting on k qubits. To study noisy evolution, we define a dephasing noise of strength ¢ given by the
noise channel

Elpl= A —qp +qZpZ. (AS)

Lemma 2: For a noisy Haar-random circuit of depth d on any parallel-circuit architecture with heralded-dephasing
noise at rate p with the dephasing parameter q, we have the upper bound on the expected collision probability

EB[Z] = EB[ ;pg] <27" exp I:ge_)’pd] , (A6)
where y = 8q(1 —¢q)/3.

Proof. 1t is convenient to separate out the average over random locations of the dephasing events in the heralded-
dephasing model from the ensemble B (an ensemble of both gates and noise locations). We denote the ensemble of
gates for a fixed set of locations L by B, and averages over the noise locations by E.. We show in Lemma 6 that given
a random circuit ensemble B; on a parallel-circuit architecture with heralded-dephasing noise and a fixed set of loca-
tions L, there exists another circuit ensemble B}, with the gates drawn at random independently of L, composed solely
of single-qubit gates and SWAP gates with an average collision probability IEB/L [Z] greater than or equal to the average
collision probability of the original circuit Eg, [Z]. Note that for every circuit in the new ensemble C € B}, we can append
a network of SWAP gates to C to return all qubits to their original positions. Adding these SWAP gates does not change the
collision probability, since these gates only permute the support of the final probability distribution. We further break up
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the ensemble B3, into an ensemble of single-qubit Haar-random gates B and the random SWAP network B . The distri-
bution of gates in the ensemble 5} U B, is defined by taking every two-qubit gate for the circuits in B, and replacing it
with a SWAP gate or identity gate w1th equal probability on those sites, followed by Haar-random single-site gates on the
two qubits. The joint distribution over SWAP networks and single-site gates is also conditionally independent, allowing us
to commute averages over single-site gates, SWAP networks, and noise locations with each other.

Fixing a realization of SWAP gates and noise locations, we can then follow the path of a qubit, count the total number
of dephasing events in that path, and merge consecutive single-qubit gates without intervening noise locations. Since we
are working with a parallel-circuit architecture, there is never a case of consecutive dephasing events (there is always a
single-qubit gate after each dephasing event). Let # be the number of dephasing events on the path of qubit i. For the
heralded-dephasing model, we can write the random variable #; as a sum

d
ti = inja (A7)
=1

where the x; € {0, 1} are independent identically distributed Bernoulli random variables for each i and j with parameter
p. Wehave E.-[x;] = p and Prz[x;; = a,xy = b] = Prz[x; = a] Pry[xy = b] for every ij # k.
After averaging over 3] using Lemma 5, the final two-copy circuit-averaged state is given by

n n 1 l
Q) [ Mu, 0 (E oMy -0 (€ oMy | 10007171 = &) [(EG - ,B”‘)) I+ gﬂt"S} : (A8)

i=1 4 i=1

where 8 =1 —8¢q(1 —¢)/3, and [ and S are the 4 x 4 identity and SWAP operators, respectively. Using Eq. (A3) and
noting that Tr(/ |0) (0|®%) = Tr(S0) (0|%?) = 1, the average collision probability for a fixed SWAP network and set of
noise locations equals

T 1 1 1 &
EBQ[Z]=2”H[§(3—ﬂff>+gﬂ“} ”1_[22 [1+ ﬁ} 2nl_[[l+ /3”} (A9)
i=1

We now average over the noise locations using our assumption that the noise locations are uncorrelated with each other
and the realization of the SWAP network:

EcEgZ]=E | [EB/l [Z]]

1"‘ 1
= — 1+ E, |=8"

R ’1[3’3 ]]

R B
= — 1+ = E.. [B%]]. A10
2] +3E , [B] (A10)

Using the fact that x; are Bernoulli random variables, we can compute the expectation E; [8%] as

Ey [B91=pB' + (1 —p)°=pp+(1-p)=1-p(1 =) =1-py, (A11)

where we define y = 1 — B. Inserting this expectation in Eq. (A10) and using Lemma 6, we obtain a bound on the average
collision probability:

EplZ] < Ep[Z] = Eg, EcEg,[Z2] =

1 1 | 1 "
—[1+ =0 =-py?| <—|1 “vrd | <) rrd | Al2
2n[+3( py)] _2[+3e ]_ eXp[3e ] (A12)

Here, we use Eg[Z] = E.Ep, [Z] < Eg[Z] := ELEB/L [Z] in applying Lemma 6 in the first inequality. We also use the
fact that for any x > 0, | —x < e in the second inequality and 1 + x < ¢ in the third inequality. |
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Lemma S: Consider a random circuit consisting of k dephasing error channels of strength q sandwiched between k + 1
single-qubit Haar-random gates (denoted by Uy). When this circuit acts on two copies of a single-qubit, the circuit-
averaged state is given by

1 1
My, o (€ o My,)--- o (€ o My)[|0) (0]®*] = E(3 — BHI + gﬂkS, (A13)

k

where f =1 — —q(l —q), and I and S are the 4 x 4 identity and SWAP operators, respectively.

Proof. We first make an observation that My, [p] = My, o My, [p], that is, one can split a Haar-random gate into two
Haar-random gates without changing the statistics. In the circuit described above, leaving the two terminal unitary gates
intact, we split all the inner gates into two. This lets us treat the circuit as a repeating sequence of # units of the composite
channel MU],S = MUI oo MU1~

From Ref. [28], we know the following:

1 1
My,[0] = (Tr(o) 27'Tr(08)) 1 + 3 (Tr(oS) — 27'Tr(0)) S. (A14)
If we follow this gate by a dephasing error channel, we obtain
1
(Tr(o) — 27 'Tr(0S)) E[1] + 3 (Tr(oS) — 27'Tr(0)) E[S]

£ oMy,[o] =

(Tr(o) —27'Tr(09)) I + % (Tr(o'S) — 27" Tr(0)) (1 — 9)S + 2q(1 — @)(ZD)S(ZI) + q*(Z2)S(ZZ))

1
=3 (Tr(o) — 27 'Tr(0S)) I + 3 (Tr(08) —27'Tr(0)) ((1 — @)* + ¢*)S + 2q(1 — @)(ZDS(ZI)) .

We follow this channel by another single-qubit random gate to finish the composite block. First, we observe that My, [I] =
I and My, [S] = S. Similarly, using Eq. (A14) together with the fact that Tr[S] = 2, Tr[(I2)S(IZ)S] = 0,
2 1
My, [U2)SUZ)] = §1 — §S.
The composite channel thus gives

My, elo] = < (Tr(o) — 27'Tr(0'S)) My, [11 + % (Tr(oS) — 27'Tr(0))

(
(A = 9* + My, [S] + 2q<1 — @My, [(ZDS(ZD)])
(

3

w|>—‘ X w|>—a

2
Tr(o) — 27 'Tr(08)) I + = (Tr(aS) 27'Tr(0)) (((1 9>+ ¢S +2q(1 — g ( -y - —S))

1 ; 4 . 1 ; 8
=3 Tr(o) — 27 'Tr(cS) + 5q(l —q) ([r(cS) —27'"Tr(o) | I + 3 (Tr(oS) —27'Tr(0)) (1 — gq(l —q)> S

* B
1 -1 -1 1 -1
=3 (Tr(o) —27'Tr(0S) + & (Tr(c'S) — 27'Tr(0))) I + 3 (Tr(o'S) — 27'Tr(0)) BS. (A15)

The composite sum returns a state of the form a/ + bS. Acting on this state with other composite blocks only changes the
coefficients a and b. In fact, we can work out exactly how a and b change after each block. Knowing that Tr(al + bS) =
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4a + 2b and Tr(S(al + bS)) = 2a + 4b, we obtain
- 1 1
My, glal + bS] = 3 (Ba+a(3b))I + 3(31))/35 = (a + ab)] + (BD)S. (A16)

The first composite acts on the state [0) (0]®2. Knowing that Tr[|0) (0|®?] = Tr(S |0) (0]*?) = 1 and using Eq. (A15),

1

My, e[l0) (0] = = (1 =27 +a (1 —27")) T+ % (1-27""ps= é (1+a)l+ éﬂS. (A17)

W |

We take this state and apply another k£ — 1 composite channels (since there are k in total). We can calculate the final state
recursively using Eq. (A16):

k—1
- . 1 . 1 1 1
My, o -0 My, £[10) (01%%] = g |:1 tota Zﬁl} I+ gﬂkS =5G- BOI + gﬂkS- (A1B)

i=1

This proves the lemma. n

It now remains to prove the following lemma, which lets us put a bound on the average collision probability in Lemma 2.

Lemma 6: Consider a random quantum circuit ensemble on a parallel architecture, By, with Haar-random two-qubit
gates and heralded-dephasing noise with a fixed set of noise locations L. There is a procedure to obtain another circuit
ensemble B, with gates drawn randomly independently of L, composed solely of noisy single-qubit channels and SWAP
gates, with an equal or higher average collision probability, i.e., Ep, [Z] < EBl [Z].

Proof. Note that without loss of generality, we can assume that every two-qubit Haar-random gate is preceded by Haar-
random single-qubit gates on both incoming lines, since the two situations correspond to the same ensemble. When the
noise is heralded, the circuit consists of three kinds of two-qubit gates:

(1) Type A, where the two-qubit gate is noiseless

(2) Type B, where one of the two outgoing legs of the gate undergoes dephasing, followed by a single-qubit random
gate

(3) Type C, where both outgoing legs undergo dephasing followed by single-qubit gates on both legs

We analyze each of these types separately and start with a brief review of the methods of Ref. [28] for noiseless random
circuits. In Ref. [28], it has been shown that taking a two copies of an n-qubit state |0") (0" |2 acted on by a Haar-random
circuit U ® U, and averaged over the unitaries, leads to a density matrix that can be represented by a linear combination
of length-n configurations in {/, S}" where / and S are the 4 x 4 identity and SWAP matrices. Any two-qubit unitary gate
takes a linear combination to another linear combination. More precisely, for y € {/,S}", a two-qubit unitary channel
My, , acting on qubits i and j, transforms it to

n

n
Muy,[7] = My, [@n} = Y MEQu= > M}, (A19)
a=1 ve{l,s)

Be(l.s) b=1
where M{;" are matrix elements determined by qubit locations i, :

i 1, ify;=y andy =7,
My =12/5, ifyi#y and v = v; and y; = v Vk € [n]/[i/], (A20)
0, otherwise.

Therefore, a state can be represented as a linear combination of trajectories of the configuration strings, with each trajectory
weighted according to Eq. (A20). Furthermore, since Tr(y |0") (07|®%) = 1 for each y € {I,S}", the collision probability
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can be, similarly, written as a sum over weighted trajectories. More precisely, the average collision probability of a circuit
with s gates,

s—1 L. s—1
Balzl=g 2 [IME =5 ¥ [Iwo. (A21)

yell.sy=s i=1 yellSy=s 1=1

In the above, the factor 1/3” comes from the fact that after the first layer of Haar-random single-qubit gates, the Haar-
averaged two-copy state is given by (1/6") Z};E{ 1.5 7, the uniform mixture of all configurations in {7, S}". Also, the

weight wt(y) of a configuration is defined as the product of the matrix elements A/, 5’2’}”“ .

Now, we modify this construction to account for noise. We add one more gate of type A, B, or C to this circuit. Since
all three types are two-qubit gates, we let [i,7 ] denote the qubits on which the gate acts. We can isolate the qubits [7,/ ]
from the decomposition in Eq. (A21) as follows:

1
EslZl=5 | 2. W)+ ) wi+ Y} wo+ Y wiy) |, (A22)
yE(LSY™ y (LS yEell.5)™ y (LS
yl; =1 y,; =IS )7[; =S7 yl; =SS

a. Type A When we add a noiseless two-qubit gate, the bit strings transform according to Eq. (A20). Focusing on qubits
i andj, the trajectories evolve as follows:

2
My =11, My,[SS]=SS,  My,lIS.S1]= S (I +55). (A23)

The trajectories for which )75 € {l1, SS} have their weights unchanged. The trajectories for which )75 € {IS, SI'} have their
weights changed by 4/5 (the trajectory splits two ways, each weighted by 2/5): '

1 4 4
BslZl=2| 2. WO+5 ) wW+s D Wi+ Y w) | (A2
}/E{],S}n<s+l) )/E{I,S}n(s+l) )/E{[,S}n<s+l) ]/E{[,S}n<x+l)
7=l 73 =1Is 75 =Sl 75 =5

If, instead, we consider a modified random circuit where the two-qubit gate consists of a SWAP gate or identity with
probability 1/2 followed by Haar-random single-qubit gates, all the trajectories retain their original weights, since the
collision probability is invariant under a SWAP gate and My, [/] = I and My, [S] = S. Denoting the locally modified circuit
ensemble with the same set of noise locations by B, we have, in both cases,

Eg [Zo1] = Ep,[Z] = Eg;[Zr1] > Ep, [Zs11]. (A25)
e =2 et
4 HE - 1 m-

| I — | (A26)

b. Type B The gate of type B has a noiseless two-qubit gate followed by dephasing on one of the outgoing legs. The
dephasing is also followed by a single-qubit random gate. To simplify things, we first understand the effect of the channel
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My, ® £ onl and S. Of course, My, o E[I] = I, since neither the error nor the random gate has any effect on the identity
matrix. However, for S, we obtain

M) 0 ED[S] = My, [(1 — 9)*S + q(1 — YUZ)SUZ) + q(1 — ¢)(ZDSZI) + ¢S] (A27)
=al + B8, (A28)

with @« = 4¢9(1 — ¢)/3,8 = 1 — 8¢q(1 — q)/3. Without loss of generality, we assume that the dephasing happens on gate
i, and the dephasing channel is denoted by £. We now tabulate the effect of this composite channel:

M(i) o g(i) o My, [II = 11, (A29)
Uy 2
M) 0 ED o My, [SS] = oIS + BSS, (A30)
D ) [2 2
M 0 €9 o My, [1S, 51 = M) [5(11 + SS)} = SUI +aiS + BSS). (A3D)

The average collision probability of the new circuit is given by
1 2
EslZoil =5 | 2o W)+ +a+ B 3w+ 3, wi) [ +@+p) Y wi) | (A32)
v =1l 7 =1s 7 =51 75 =58
Using the same locally modified circuit ensemble as above, we obtain
i i 1 i i ho L i i j
M((Jl) 0D oMy, = EMI(JI) 0 ED oM((Jl) oMgl) + EM[(]I) 0 ED OM((/1) oMgl) o swap (A33)
Lo e i h L) e )l
- 5M{,l) 0 EP oMY oMY + EMgl 0D o MY o M. (A34)
Under this new composite channel, the bit strings evolve as follows:
1 1
-1, SS— BSS+ %(IS+ S, IS— 5(1S+ oll + BIS), SI — E(al[ + BSI + SI). (A35)
The collision probability of the modified circuit is given by
1 1
ElZ]=5 | 2o W) +50+a+p) | D W)+ Y W) | +@+p) Y wi) | (A36)
p =l vs=IS 7 =S 75 =SS

Since 2/5 < 1/2,wehave Z; | > Z,,.

g o EHEHT R AT
2 N

(A37)

c. Type C These gates have dephasing noise on both legs. The noise is followed by single-qubit gates for both legs. The
combined channel has the form M, gl) 0&Wo Ml(j’f 0 ED o My, . The bit strings evolve as follows:

2
I — II, SS— o?I +aBIS + apSI + B2SS, IS — g((1 + a®)II + apIS + aBSI + B>SS). (A38)

The average collision probability is thus given by
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2
Es[Zoil=5 | 2o W)+ 5 (1+@+p7) [ 3, W)+ Y wi) [+@+5)° D wiy) | (A39)

1
3n
7p=Il 75 =IS py=si 75=S8

U,

e[u[ BB e e
— H - ] X

EE

(A40)

If, instead, we replace the two-qubit gate with two single-qubit Haar-random gates preceded by a SWAP gate with probabil-
ity 1/2 (as shown in the diagram above), we obtain channels of the form M, (]1) 0D o ED oM, (]1) 0 ED oMy, (’) o 1 (swap +
I), which, up to the SWAP gate, is same as the composite channel in Lemma 5 applied to both qubits. The states evolve as

II — I, SS— o*I +apIS + afSI + B*SS,

B B (A41)
IS — oIl + E(IS+S])’ SI — all + E(S] + 1S).

The collision probability of the modified circuit is thus

1
By lZenl= 3 | Do W) +@+p) | 2o Wi+ 3 wi) [+ @+ 3 wiy) |. (A42)

7=l 7p=Is 7p=s1 75=58

Since (o + B) = 1 +49(1 — ¢)/3, a + B € [1,4/3] C (3,2), we have that (2/5) (1 + (« + B)?) < (& + p) and there-
fore Z; | > Z,.

Startlng from the input state, we can use the replacement procedure discussed above to iteratively define a new circuit
ensemble 3, with the gates drawn at random independently of L, composed solely of single-qubit gates and SWAP gates,
that has an equal or higher gate-averaged collision probability. This concludes the proof of the lemma. |

APPENDIX B: PROOF OF LEMMA 3
We restate the lemma here for reference.

Lemma 3: The variance o —EB[x] Eg[x)? of the random variable x :=nlog2+ (1/n!) ZaeSn +

4Lmax(d) >, (Z 2in Eq. (59) satisfies o> < 2n.

Proof of Lemma 3. Recalling that Ez[A4,] = 0, the variance of x is

2
1 1 1
EB[X2] - EB[X]z = WEB (XJ:AU> + WEB XG:AG Z(Zj)z + WEB Z(Zi>2<zj)2

J ij

1
RRTTNEL [Z(Z,V}EB > ) (B1)

i J
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We use the covariance bound

E[XY] = ) /PP (B2)

i

(Zpix%> > by} (B3)
i J

= JE[X2]E[¥?]. (B4)

IA

Applying this to the first term gives

2
1 1
—5Es (ZAU) = —5 2 Esld4c] (BS)
o o,T

1
= Z Es[42Es[42]. (B6)
Now consider
Es[42] =Ep Z(Za(i))au)...a(i—l)(Zag))a(l)...ag—l) (B7)
=Ep Z(Za(i)>(2f(l)‘.‘a([—l)j| +2Ep Z(Zd(i)xr(l)...rr(ifl)<Z(7(/')>(7(1).,‘(7(/'71) . (B8)
L i i<j

Consider the expression Ep [(Z(,(i)),,(l),,,(,(,-,l)(Zg(/))na)...o(,»,])]. The ensemble of circuits that we consider is invariant
under the action of single-qubit Haar-random unitaries at each site at the output. Therefore, we can imagine that we have a
layer of single-qubit Haar-random unitaries at every site and average over this layer separately. Averaging over this layer,
we obtain an expression that is linear in the operator,

— Us(r) 1 10)0lo1) — Uy —

— Uy(2) {10010y U

— Yo Zo(j) Uz ;) t—

(B9)

where [ dU is a shorthand for [ dU,dUs, . ..dU, and we omit the unitaries that have averages of the form [ dU, Uy U,Tc =1.
Now, we observe that the average over U, ;) gives [ dUa(,-)UU(,»)Za(,-)UZ ) = 0 (there is no other instance of Uy ;) in this
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expression, since o (j) ¢ {o(1),...0(i)} because j > i). Therefore, the average over all the gates is 0. This means that
Es [(Zo@)o()..o-1){Ze))o)..ai—1] = 0, giving

Es[42] <n. (B10)
‘We obtain
1 2 1
—Es (ZAJ) < Wza/nxnzn. (B11)
The next term is
1 —1
L 4,272 | =——FE Zo i Vo D). o Z)2|. B12
TR B Xa: ;(,) o] B XU:Z( @)o)..o( 1);(/) (B12)

Consider a term in the sum above, which is proportional to Ep [(Zg(,-))U(l)g(z)_._g(i_l)(Zj)z]. By a similar argument as
before, the average over the last layer of single-qubit Haar-random gates will be proportional to a three-copy Haar average
of the following form:

— Up(a) 10)X0[¢(1) U;(l) —
— Us2) 10)X0¢(2) Ul —

/du — Uo(i=1) [ 100Olo(i—1) = Ugio1) —

— Us(i) Zo (i) Ul
U; Z; ut
) t
5 % Y (B13)

The expectation over U, is zero whenever o (i) # j . The only (potentially) nonzero term is when o (i) = j . But this term
is zero as well, since the relevant three-copy Haar average over U, is

— Uj — - u]’f -
/du— LI] — Z]‘Z]'Z]' — u]Jr L =0.

— U; — LUt | —

] ! (B14)
This brings us to the final term,
_ NI D . 2
6L (@? ;@ L T [Z“’) }E ?Zf) (B15)
1

T 6Ly (d)? Z (Es [(Z)*(Z)*] — Es [(Z)*| Es [(Z)?]) - (B16)

ij
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For a fixed i and j, the term B [(Z))%(Z;)*] — Es [(Z))*] Eg [(Z;)?] is zero unless j is in L, o LZ(Z’). Otherwise, it is at

most 1. This means that the sum is at most

1
6L ()2 Z

< " <
——— n.
= 16Lmax(d) ~

The variance in Eq. (B1) is therefore at most 2n.
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