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Recently, several quantum benchmarking algorithms have been developed to characterize
noisy quantum gates on today’s quantum devices. A fundamental issue in benchmarking is
that not everything about quantum noise is learnable due to the existence of gauge freedom,
leaving open the question what information is learnable and what is not, which is unclear
even for a single CNOT gate. Here we give a precise characterization of the learnability of
Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results
reveal the optimality of cycle benchmarking in the sense that it can extract all learnable
information about Pauli noise. We experimentally demonstrate noise characterization of
IBM’s CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using
physical constraints. In addition, we show that an attempt to extract unlearnable information
by ignoring state preparation noise yields unphysical estimates, which is used to lower bound
the state preparation noise.

I. INTRODUCTION

Characterizing quantum noise is an essential step in the development of quantum hardware [1, 2].
Remarkably, despite recent progress in both gate-level and scalable noise characterization methods [3–
16], the full characterization of the noise channel of a single CNOT/CZ gate remains infeasible.
This is unlikely to be caused by limitations of existing benchmarking algorithms. Instead, it is
believed to be related to the fundamental question of what information about a quantum system
can be learned, in a setting where initial states, gates, and measurements are all subject to unknown
quantum noise. It is well-known that some information about quantum noise can be learned (such
as the gate fidelity learned by randomized benchmarking [3–7] or cycle benchmarking [9]), but not
everything can be learned (due to the gauge freedom in gate set tomography [17–19]). The boundary
of learnability of quantum noise – a precise understanding of what information is learnable and
what is not, still remains an open question.

Recently, there has been an interest in formulating noise characterization as learning unknown
gate-dependent Pauli noise channels [9, 11]. This is motivated by randomized compiling, a technique
that has been proposed to suppress coherent errors via inserting random Pauli gates [20, 21]. As
an added benefit, randomized compiling twirls the gate-dependent CPTP noise channel into Pauli
noise, thus reducing the number of parameters to be learned. Note that the twirled Pauli noise
channel corresponds to the diagonal of the process matrix of the CPTP map, so Pauli noise learning
is a necessary step for characterizing the CPTP map, regardless of whether randomized compiling
is performed.

However, even under this simplified setting of Pauli noise learning, all prior experimental attempts
can only partially characterize the noise channel of a single CNOT/CZ gate [21–23], which only has
15 degrees of freedom. A natural question is whether this limitation is caused by the fundamental
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unlearnability of the noise channel, and if so, which part of the noise channel and how many degrees
of freedom among the 15 are unlearnable?

In this paper, we give a precise characterization of what information in the Pauli noise channel
attached to Clifford gates is learnable, in a way that is robust against state preparation and
measurement (SPAM) noise. We develop a systematic method for characterizing learnable degrees
of freedom of a Clifford gate set using notions from algebraic graph theory and show that learnable
information exactly corresponds to the cycle space of the Pauli pattern transfer graph, while
unlearnable information exactly corresponds to the cut space. This characterization can be used
to write down a list of linear functions of the noise model that corresponds to all independent
learnable degrees of freedom. As an example, we show that the Pauli noise channel of an arbitrary
2-qubit Clifford gate has at most 2 unlearnable degrees of freedom. We perform an experimental
characterization of a CNOT gate on IBM Quantum hardware [24] up to 2 unlearnable degrees of
freedom. Although the unlearnable information cannot be estimated with high precision, we can
determine a feasible region of those freedoms using the constraint that the noise model must be
physical (i.e., all Pauli error rates are nonnegative).

A corollary of our result is that cycle benchmarking is optimal in the setting we consider, in the
sense that it can learn all the information that is learnable. This reveals a fundamental fact about
noise benchmarking, namely that cycle benchmarking – the idea of repeatedly applying the same
gate sequence interleaved by single qubit gates, is the “right” algorithm for benchmarking Clifford
gates, because of the fact that learnable information forms a cycle space. As an interesting side
remark, the term “cycle” in cycle benchmarking originally refers to parallel gates applied in a clock
cycle. Here we show that the term can also be understood in a graph-theoretical context.

In addition, we also explore ways to overcome the unlearnability barrier. It has been recognized
that the unlearnability does not apply if the initial state |0〉⊗n can be prepared perfectly [15, 23],
and it has been suggested that state preparation noise could be much smaller than gate and/or
measurement noise in practice [25–27], which would make gate noise fully learnable up to small
error. We develop an algorithm based on cycle benchmarking that fully learns gate-dependent
Pauli noise channel assuming perfect initial state preparation, and experimentally demonstrate the
method on IBM’s CNOT gate. Based on the experiment data, we conclude that this assumption
is unlikely to be correct in our experiment as it gives unphysical estimates that are outside the
feasible region we determined. Furthermore, we use the data to obtain a lower bound on the state
preparation noise and conclude that it has the same order of magnitude as gate noise on the device
we used. Therefore, the issue of unlearnability is a practically relevant concern, for which the noise
on initial states is an important factor that cannot be neglected on current quantum hardware.

II. RESULTS

A. Theory of learnability

We start by considering the learnability of the Pauli noise channel of a single n-qubit Clifford
gate. A Pauli channel can be written as

Λ(·) =
∑

a∈Pn

paPa(·)Pa, (1)

where {pa} is a probability distribution on Pn = {I,X, Y, Z}n. The goal is to learn this distribution,
which has 4n − 1 degrees of freedom. Considering Λ as a linear map, its eigenvectors exactly
correspond to all n-qubit Pauli operators, as

Λ(Pa) = λaPa, ∀a ∈ Pn (2)
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FIG. 1. Cycle benchmarking for learning the Pauli noise channel of a CNOT gate. (a) Standard CB circuits,
where CNOT gates are interleaved by random Pauli gates (green boxes), with initial stabilizer states and
Pauli basis measurements (red boxes). (b) CB circuits with additional interleaved single qubit Clifford gates
(blue boxes).

where λa = ∑
b∈Pn pb(−1)〈a,b〉 is the Pauli fidelity associated with the Pauli operator Pa. Therefore

Λ is a linear map with known eigenvectors and unknown eigenvalues, so a natural way to learn
Λ is to first learn all the Pauli fidelities λa, and then reconstruct the Pauli errors via pa =
1

4n

∑
b∈Pn λb(−1)〈a,b〉.

The convenience of working with Pauli fidelities is further demonstrated by the fact that some
Pauli fidelities can be directly learned by cycle benchmarking, even with noisy state preparation
and measurement. For example, consider the CNOT gate which maps the Pauli operator IX to
itself. Fig. 1 (a) shows the cycle benchmarking circuit. Imagine that we put the Pauli operator IX
after the left red box and evolve it with the circuit, then the evolved operator (before the right red
box) equals λ3

IX · IX, up to a ± sign (which comes from the random Pauli gates and can always be
accounted for during post-processing). Here we use the convention that the noise channel happens
before each CNOT gate. In experiments, we prepare a +1 eigenstate of IX (such as |+〉 |+〉),
measure the expectation value of IX at the end, and average over random Pauli twirling sequences.
These SPAM operations are noisy and are represented as the red boxes. It is shown [9, Theorem 1
in Supplementary Information] that the measured expectation value equals

E〈IX〉 = AIX · λd
IX (3)

where the expectation is over random Pauli twirling gates and randomness of quantum measurement,
and AIX depends on SPAM noise but is independent of circuit depth d. From this λIX can be
learned by estimating the observable IX at several different depths and perform a curve fitting.

The Pauli operator IX is special as it is invariant under CNOT. Consider another example:
CNOT maps XZ to Y Y and vice versa. Consider Fig. 1 (b) where we insert additional layers of
single-qubit Clifford gates

√
Z ⊗
√
X that also maps XZ to Y Y and vice versa (up to a minus sign

that can always be accounted for during post-processing). After XZ picks up a coefficient λXZ in
front of the CNOT gate, it gets mapped to λXZ · Y Y by CNOT but then rotated back to λXZ ·XZ
by
√
Z ⊗
√
X. Following the same argument we conclude that both λXZ and λY Y are learnable.

For simplicity here we make an assumption that single qubit gates are noiseless, motivated by the
fact that single qubit gates are 1-2 magnitudes less noisy than 2-qubit gates on today’s quantum
hardware [24]. In practice, it is a standard assumption to model noise on single-qubit gates as
gate-independent (e.g. [23, Sec. II A]), and our noise characterization result can be interpreted as
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the noise channel induced by a dressed cycle which consists of a CNOT gate and two single-qubit
gates [20].

The main challenge comes with the next example: CNOT maps IZ to ZZ and vice versa. By
directly applying cycle benchmarking as in Fig. 1 (a) (with even depth d) we obtain

E〈IZ〉 = AIZ · λIZλZZλIZλZZ · · · = AIZ (λIZλZZ)d/2 , (4)

and curve fitting gives
√
λIZλZZ (similar results have been obtained in [9, 21–23]). To learn λIZ ,

we may consider applying the same technique in Fig. 1 (b). However, the problem is that once
IZ gets mapped to ZZ, it cannot be rotated back to IZ because I is invariant under single qubit
unitary gates. The main difference between this example and previous examples is that here the
Pauli weight pattern (an n-bit binary string with 0 indicating identity and 1 indicating non-identity)
changes from 01 to 11, thus making the single qubit rotation tool inapplicable.

In fact we can go on to prove that λIZ (as well as λZZ) is unlearnable. Here unlearnable means
that there exists two noise models such that the parameter λIZ is different, but the two noise
models are indistinguishable by any quantum experiment, meaning that any quantum experiment
generates exactly the same output statistics with the two noise models. The result also generalizes
to arbitrary n-qubit Clifford gates.

Theorem 1. Given an n-qubit Clifford gate G and an n-qubit Pauli operator Pa, the Pauli fidelity
λa of the noise channel attached to G is learnable if and only if pt(G(Pa)) = pt(Pa). Here pt denotes
the Pauli weight pattern.

The “if” part follows directly from cycle benchmarking as discussed above. For the “only if”
part, when pt(G(Pa)) 6= pt(Pa), we construct a gauge transformation to prove the unlearnability
of λa, following ideas from gate set tomography [17–19]. A gauge transformation is an invertible
linear mapM that converts a noise model (initial states ρi, POVM operators Ej , noisy gates Gk)
to a new noise model as

ρi 7→ M(ρi), Ej 7→ (M−1)†(Ej), Gk 7→ M ◦Gk ◦M−1, (5)

with the constraint that the new noise model is physical. Note that the old and new noise models are
indistinguishable by definition. To construct such a gauge transformation, as pt(G(Pa)) 6= pt(Pa),
there exists a bit on which the two Pauli weight patterns differ. We then defineM as a single-qubit
depolarizing noise channel on the corresponding qubit. In this way we can show that the old and
new noise models assign different values to λa, which means λa is unlearnable. This proof naturally
implies that using other noisy gates from the gate set (that are subject to different unknown noise
channels) does not change the learnability of Pauli fidelities. More details of the proof are given
in Supplementary Section II B. As a side remark, it is known that under the stronger assumption
of gate-independent noise (where different multi-qubit gates are assumed to have the same noise
channel), the noise channel is fully learnable [28–30].

Theorem 1 provides a simple condition for determining the learnability of individual Pauli
fidelities, but it is not sufficient for characterizing the learnability of joint functions of different
Pauli fidelities. In the CNOT example, we know that both λIZ and λZZ are unlearnable, but we
also know that their product λIZλZZ is learnable. This means that there is only one unlearnable
degree of freedom in the two parameters {λIZ , λZZ}. In the following we show how to determine
learnable and unlearnable degrees of freedom of Pauli noise, and also generalize the discussion from
a single gate to a gate set.

We start by defining learnable information. Consider a Clifford gate set with m gates, where we
model each gate as an n-qubit gate associated with an n-qubit Pauli noise channel. This model is
applicable to both individual gates (e.g. a 2-qubit system where each 2-qubit gate is implemented by
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FIG. 2. Pattern transfer graph of CNOT, SWAP, and a gate set consisting of CNOT and SWAP. Here,
multiple edges are represented by a single edge with multiple labels. The labels on the first two graphs are
gate dependent, though we omit the superscripts of CNOT or SWAP. The labels on the last graph are a
combination of the first two graphs and are omitted for clarity.

a different physical process and subject to a different noise channel) as well as parallel applications
of gates (e.g. an n-qubit system where each “gate” in the gate set is implemented by a layer of
2-qubit gates; the n-qubit noise channel models the crosstalk among the 2-qubit gates). The goal is
to characterize the learnable degrees of freedom among the m · 4n parameters.

Recall that the output of cycle benchmarking is a product of Pauli fidelities (including SPAM
noise). We further show that without loss of generality this is the only type of information that we
need to obtain from quantum experiments for the purpose of noise learning. This is because in
general the output probability of any quantum experiment can be expressed as a sum of products of
Pauli fidelities, and each individual product can be learned by cycle benchmarking (Supplementary
Section IV). We therefore consider learning functions of the noise model that can be expressed as a
product of Pauli fidelities (also see below Eq. (7) for a related discussion). This can be reduced
to considering functions of the form f = ∑

a,G v
G
a · lGa , where lGa := log λGa is the log Pauli fidelity,

vGa ∈ R, and the superscript G denotes the corresponding Clifford gate. In the CNOT example
lIZ + lZZ is a learnable function. The idea of learning log Pauli fidelities in benchmarking has also
been considered in [15, 31]. The advantage of considering log Pauli fidelities here is that the set of
all learnable functions f forms a vector space. Therefore to characterize all independent learnable
degrees of freedom, we only need to determine a basis of the vector space.

Recall that the reason that lIZ + lZZ is learnable in the CNOT example is because the path of
Pauli operator in the cycle benchmarking circuit forms a cycle IZ → ZZ → IZ → · · · , and the
product of Pauli fidelities along the cycle (λIZλZZ) can be learned via curve fitting. In general, as
we can also insert single qubit Clifford gates in between, we do not need to differentiate between
X,Y, Z. We therefore consider the pattern transfer graph associated with a Clifford gate set where
vertices corresponds to binary Pauli weight patterns and each edge is labeled by the Pauli fidelity of
the incoming Pauli operator. The graph has 2n vertices and m · 4n directed edges. They can also be
merged to form the pattern transfer graph of the gate set {CNOT, SWAP}. Fig. 2 shows the pattern
transfer graph of CNOT, SWAP, and the gate set of {CNOT, SWAP}. Consider an arbitrary cycle
in the pattern transfer graph C = (e1, . . . , ek) where each edge ei is associated with some Pauli
fidelity λi. Following Fig. 1 (b), a cycle benchmarking circuit can be constructed which learns
the product of the Pauli fidelites along the cycle, or equivalently the function fC := ∑

ei∈C log λi

can be learned. This implies that the set of functions defined by linear combination of cycles
{
∑

C∈cycles αCfC : αC ∈ R} are learnable. In the following we show that this in fact corresponds to
all learnable information about Pauli noise.

We label the edges of the pattern transfer graph as e1, . . . , eM where M = m · 4n and each
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edge ei is a variable that represents some log Pauli fidelity. The goal is to characterize the
learnability of linear functions of the edge variables f = ∑M

i=1 viei, vi ∈ R. The set of linear
functions can be equivalently understood as a vector space of dimension M , called the edge
space of the graph, where f corresponds to a vector (v1, . . . , vM ) and we think of e1, . . . , eM as
the standard basis. Following the above discussion, the cycle space of the graph is defined as
span{∑e∈C e : C is a cycle}, which is a subspace of edge space. We also define another subspace,
the cut space, as span{∑e∈C(−1)e from V1 to V2e : C is a cut between a partition of vertices V1, V2}.
It is known that the edge space is the orthogonal direct sum of cycle space and cut space for any
graph [32]. Interestingly, we show that the complementarity between cycle and cut space happens
to be the dividing line that determines the learnability of Pauli noise.

Theorem 2. The vector space of learnable functions of the Pauli noise channels associated with
an n-qubit Clifford gate set is equivalent to the cycle space of the pattern transfer graph. In other
words,

All information ≡ Edge space,
Learnable information ≡ Cycle space,

Unlearnable information ≡ Cut space.
(6)

This implies that the number of unlearnable degrees of freedom equals 2n − c, where c is the number
of connected components of the pattern transfer graph.

The learnability of cycle space follows from cycle benchmarking as discussed above. To prove
the unlearnability of cut space, we use a similar argument as in Theorem 1 and show that a gauge
transformation can be constructed for each cut in the pattern transfer graph. By linearity, this
implies that any vector in the cut space corresponds to a gauge transformation. By definition, a
learnable function must be orthogonal to all such vectors and thus orthogonal to the entire cut
space. More details of the proof are given in Supplementary Section II C.

It is a well-known fact in graph theory that the cycle space of a directed graph G = (V,E) has
dimension |E| − |V |+ c while the cut space has dimension |V | − c, where c ≥ 1 is the number of
connected components in G [32] (a (weakly) connected component is a maximal subgraph in which
every vertex is reachable from every other vertex via an undirected path). Theorem 2 implies that
among the m · 4n degrees of freedom of the Pauli noise associated with a Clifford gate set, there are
2n − c unlearnable degrees of freedom. This shows that while the number of unlearnable degrees of
freedom can be exponentially large, they only occupy an exponentially small fraction of the entire
space. In addition, a cycle and cut basis can be efficiently determined for a given graph, though in
our case this takes exponential time because the pattern transfer graph itself is exponentially large.
However, computing the cycle/cut basis is not the bottleneck as the information to be learned also
grows exponentially with the number of qubits. For small system sizes such as 2-qubit Clifford
gates, we can write down a cycle basis as shown in Table I (a) for the CNOT and SWAP gates,
which represents all learnable information about these gates. The CNOT gate has 2 unlearnable
degrees of freedom while the SWAP gate has 1 unlearnable degree of freedom. As the pattern
transfer graph has at least 2 connected components, we conclude that the Pauli noise channel of
a 2-qubit Clifford gate has at most 2 unlearnable degrees of freedom. Note that when treating
{CNOT, SWAP} together as a gate set, there are only 2 unlearnable degrees of freedom according
to Theorem 2 instead of 2 + 1 = 3, because there is one additional learnable degree of freedom (such
as lCNOT

IZ + lCNOT
XX + lSWAP

XI ) that is a joint function of the two gates.
Finally, the learnability of Pauli errors can be determined by the learnability of Pauli fidelities

according to the Walsh-Hadamard transform pa = 1
4n

∑
b∈Pn λb(−1)〈a,b〉. An issue here is that Pauli

errors are linear functions of {λb} instead of {log λb}. Here we make a standard assumption in the



7

Gate CNOT SWAP

(a) Cycle basis
lII , lZI , lIX , lZX , lXZ , lY Y , lXY , lY Z ,
lIZ + lZZ , lIY + lZY , lIZ + lZY ,
lXI + lXX , lY I + lY X , lXI + lY X

lII , lXX , lXY , lXZ , lY X , lY Y , lY Z , lZX , lZY ,
lZZ , lIX + lXI , lIY + lY I , lIZ + lZI ,

lXI + lIY , lXI + lIZ

(b) Learnable
Pauli fidelities

λII , λZI , λIX , λZX , λXZ , λY Y , λXY , λY Z ,
λIZ · λZZ , λIY · λZY , λIZ · λZY ,
λXI · λXX , λY I · λY X , λXI · λY X

λII , λXX , λXY , λXZ , λY X , λY Y , λY Z , λZX , λZY ,
λZZ , λIX · λXI , λIY · λY I , λIZ · λZI ,

λXI · λIY , λXI · λIZ

(c) Learnable
Pauli errors

pII , pZI , pIX , pZX , pXZ , pY Y , pXY , pY Z ,
pIZ + pZZ , pIY + pZY , pIZ + pZY ,
pXI + pXX , pY I + pY X , pXI + pY X

pII , pXX , pXY , pXZ , pY X , pY Y , pY Z , pZX , pZY ,
pZZ , pIX + pXI , pIY + pY I , pIZ + pZI ,

pXI + pIY , pXI + pIZ

(d) Unlearnable
degrees of freedom λXI , λIZ λXI

TABLE I. A complete basis for the learnable linear functions of log Pauli fidelities and Pauli error rates for a
single CNOT/SWAP gate.

literature [9, 10] that the total Pauli error is sufficiently small. In this case all individual Pauli
errors are close to 0 while all individual Pauli fidelities are close to 1. Therefore the Pauli errors
can be estimated via

pa = 1
4n

∑
b∈Pn

λb(−1)〈a,b〉 ≈ 1
4n

∑
b∈Pn

(−1)〈a,b〉 (1 + log λb) , (7)

which means that their learnability can be determined by Theorem 2. In fact it has been sug-
gested [31] that any function of Pauli fidelities can be estimated in this way (as a linear function
of log Pauli fidelities) up to a first-order approximation, which means that the learnability of any
function of Pauli fidelities can be determined by Theorem 2. In Table I (c) we show the learnable
Pauli errors for CNOT and SWAP, where “learnable” is in an approximate sense up to Eq. (7).
Interestingly, for these two gates, the learnable functions of Pauli errors have the same form as the
cycle basis, i.e. the cycle space is invariant under Walsh-Hadamard transform. We calculate the
learnable Pauli errors for up to 4-qubit random Clifford gates and this seems to be true in general.
We leave a rigorous investigation into this phenomenon for future work.

B. Experiments on IBM Quantum hardware

We demonstrate our theory on IBM quantum hardware [24] using a minimal example – char-
acterizing the noise channel of a CNOT gate. In our experiments both the gate noise and SPAM
noise are twirled into Pauli noise using randomized compiling. In the following we show how to
extract all learnable information of Pauli noise SPAM-robustly, and also attempt to estimate the
unlearnable degrees of freedom by making additional assumptions.

First, we conduct two types of cycle benchmarking (CB) experiments, the standard CB and
CB with interleaving single-qubit gates (called interleaved CB), as shown in Fig. 1. The results
are shown in Fig. 3. Here a set of two Pauli labels in the x-axis (e.g., {IZ, ZZ}) corresponds
to the geometric mean of the Pauli fidelity (e.g.,

√
λIZλZZ). Comparing to Table I, we see that

all learnable information of Pauli fidelities (including learnable individual and 2-product) are
successfully extracted. Also note from Fig. 3 that the two types of CB experiments give consistent
estimates, in terms of both the process fidelity and individual Pauli fidelities (e.g.,

√
λXZλY Y

estimated from standard CB is consistent with λXZ and λY Y from interleaved CB).
We have shown that all 13 learnable degrees of freedom (excluding the trivial λII = 1) are

extracted in Fig. 3 by comparing with Table I, and there remain 2 unlearnable degrees of freedom.
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FIG. 3. Estimates of Pauli fidelities of IBM’s CNOT gate via standard CB (left) and CB with interleaved
gates (right), using circuits shown in Fig. 1. Data are collected from ibmq_montreal on 2022-03-23. Each
Pauli fidelity is fitted using seven different circuit depths L = [2, 22, ..., 27]. For each depth C = 60 random
circuits and 1000 shots of measurements are used. Throughout this paper, the error bar represents the
standard error.

We can bound the feasible region of the 2 unlearnable degrees of freedom using physical constraints,
i.e., the reconstructed Pauli noise channel must be completely positive. This is equivalent to
requiring pa ≥ 0 for all Pauli error rates pa. We choose λXX and λZZ as a representation of the
unlearnable degrees of freedom, and plot the calculated feasible region in Fig. 4 (a), which happens
to be a rectangular area. We also calculate the feasible region for each unlearnable Pauli fidelity
and Pauli error rate, which are presented in Fig. 4 (b), (c). In particular, we choose two extreme
points (blue and green dots in Fig. 4 (a)) in the feasible region and plot the corresponding noise
model in Fig. 4 (b), (c). Note that the (approximately) learnable Pauli error rates (on the left of
the red vertical dashed line) are nearly invariant under change of gauge degrees of freedom, but
they can be estimated to be negative due to statistical fluctuation. Thus, when we calculate the
physical constraints, we only require those unlearnable Pauli error rates (on the right of the red
vertical dashed line) to be non-negative.

Next, we explore an approach to estimate the unlearnable information with additional assump-
tions. Suppose that one can prepare |0〉⊗n perfectly. Since we assume noiseless single-qubit gates,
this means we can prepare a set of perfect tomographically complete states {|0/1〉 , |±〉 , |±i〉}. In
this case, all the unlearnable degrees of freedom become learnable, as one can first perform a
measurement device tomography, and then directly estimate the process matrix of a noisy gate
with measurement error mitigated [25]. Following this general idea, we propose a variant of cycle
benchmarking for Pauli noise characterization, which we call intercept CB as it uses the information
of intercept in a standard cycle benchmarking protocol. Given an n-qubit Clifford gate G, let m0
be the smallest positive integer such that Gm0 = I. For any Pauli fidelity λa (regardless of whether
learnable or not according to Theorem 1), consider the following two CB experiments using the
standard circuit as in Fig. 1 (a). First, prepare an eigenstate of Pa, run CB with depth lm0 + 1 for
some non-negative integer l, and estimate the expectation value of Pb := G(Pa). The result equals

E〈Pb〉lm0+1 = λS
Pa
λM

Pb
λa

(
m0∏
k=1

λGk(Pa)

)l

, (8)

where λS/M
Pa/b

is the Pauli fidelity of the state preparation and measurement noise channel, respectively
(earlier we have absorbed these two coefficients into a single coefficient A for simplicity). Second,
prepare an eigenstate of Pb, run CB with depth lm0, and estimate the expectation value of Pb. The
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unlearnable degrees of freedom in terms of λXX and λZZ . (b) Feasible region of individual Pauli fidelities.
(c) Feasible region of individual Pauli errors.

result equals

E〈Pb〉lm0
= λS

Pb
λM

Pb

(
m0∏
k=1

λGk(Pa)

)l

. (9)

By fitting both E〈Pb〉lm0+1 and E〈Pb〉lm0
as exponential decays in l, extracting the intercepts

(function values at l = 0), and taking the ratio, we obtain an estimator λ̂ICB
a that is asymptotically

unbiased to λa · λS
Pa
/λS

Pb
. This estimator is robust against measurement noise. Note that λS

Pa
=

λS
Pb

= 1 if we assume perfect initial state preparation, and in this case the above shows that λa is
learnable, and thus the entire Pauli noise channel is learnable. We note that, instead of fitting an
exponential decay in l, one could in principle just take l = 0 and estimate the ratio of E〈Pb〉0 and
E〈Pb〉1, which also yields a consistent estimate for λa · λS

Pa
/λS

Pb
. If one has already obtained all the

learnable information from previous experiments, this could be a more efficient approach. However,
if one has not done those experiments, the intercept CB with multiple depths can estimate the
intercept (unlearnable information) and slope (learnable information) simultaneously, which is more
sample efficient.

We numerically simulate intercept CB for characterizing the CNOT gate under different state
preparation (SP) and measurement (M) noise. As shown in Fig. 5, this method yields relatively
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FIG. 5. Simulation of intercept CB on CNOT under different SPAM noise rate. The simulated noise channel
is a 2-qubit amplitude damping channel with effective noise rate 5%, and SPAM noise are modeled as bit-flip
errors. For the blue (green) lines, we introduce random bit-flip errors to the measurement (state preparation).
The solid lines show the l1-distance of the estimated Pauli fidelities from the true Pauli fidelities. The solid
lines show the l1-distance of the (individually) learnable Pauli fidelities from the ground truth.

precise estimate when there is only measurement noise even if the noise is orders of magnitude
stronger than the gate noise, but will have large deviation from the true noise model even under
small state preparation noise. We refer the reader to Supplementary Section III for more details
about the numerical simulation.

Finally, we experimentally implement intercept CB to estimate λXX and λZZ , which are the two
unlearnable degrees of freedom of CNOT, allowing us to determine all the Pauli fidelities and Pauli
error rates. One challenge in interpreting the results is that we do not know in general whether
the low SP noise assumption holds, therefore it is unclear if the learned results should be trusted.
However, for the estimate to be correct, it should at least lie in the physically feasible region we
obtained earlier in Fig. 4. In Fig. 6, we present our experimental results of intercept CB. It turns
out that certain Pauli fidelities are far away from the physical region by several standard deviations.
This gives strong evidence that the low SP noise assumption was not true on the platform we used.

The data collected here can further be used to give a lower bound for the SP noise. Suppose we
obtain the physical region of λa to be [λ̂a,min, λ̂a,max]. Combining with the expression of intercept
CB, we have

λ̂ICB
a /λ̂a,max ≤ λS

Pa
/λS

Pb
≤ λ̂ICB

a /λ̂a,min. (10)

Applying this to the data of IZ and ZZ in Fig. 6 (a), we have λS
IZ/λ

S
ZZ ≤ 0.9879(23). If we

make a physical assumption that the state preparation noise is a random bit-flip during the qubit
initialization, one can conclude the bit-flip rate on the first qubit is lower bounded by 0.61(12)%. One
can in principle bound the bit-flip rate on the second qubit by looking at λS

XX/λ
S
XI . Unfortunately,

our estimate of λS
XX from intercept CB falls in the physical region within one standard deviation,

so there is no nontrivial lower bound. One could expect obtaining a useful lower bound by looking
at a CNOT gate with reversed control and target. The lower bound of SP noise obtained here
is completely independent of the measurement noise and does not suffer from the issue of gauge
freedom [19], as long as all of our noise assumptions are valid, i.e., there is no significant contribution
from time non-stationary, non-Markovian, or single-qubit gate-dependent noise.
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FIG. 6. The learned Pauli noise model using intercept CB. The feasible region (blue bars) are taken from
Fig. 4. Estimates of Pauli fidelities (a) and Pauli error rates (b). Each data point is fitted using seven different
circuit depths L = [2, 22, ..., 27]. For each depth C = 150 random circuits and 2000 shots of measurements
are used. Data are collected from ibmq_montreal on 2022-03-23.

III. DISCUSSION

We have shown how to characterize the learnability of Pauli noise of Clifford gates and discussed
a method to extract unlearnable information by assuming perfect initial state preparation. It is
also interesting to consider other physically motivated assumptions on the noise model to avoid
unlearnability. For example, we can write down a parameterization of the noise model based on the
underlying physical mechanism which may have fewer than 4n parameters. The main issue here is
that these assumptions are highly platform-dependent and should be decided case-by-case. Moreover,
it is unclear to what extent should the learned results be trusted when additional assumptions are
made, since in general we cannot test whether the assumptions hold due to unlearnability.

Another direction to overcome the unlearnability is to change the model of quantum experiments.
Here we have been working with the standard model as in gate set tomography, where a quantum
measurement decoheres the system and only outputs classical information. However, some platforms
might support quantum non-demolition (QND) measurements, and in this case measurements can
be applied repeatedly, which could potentially allow more information to be learned [33].

Recently, Ref. [30] considered similar issues of noise learnability. They studied a different Pauli
noise model with perfect initial state |0〉, perfect computational basis measurement, and noisy single
qubit gates, and showed the existence of unlearnable information. In contrast, here we focus on the
learnability of Pauli noise of multi-qubit Clifford gates assuming perfect single-qubit gates (with
noisy SPAM), and in practice we make the standard assumption that noise on single-qubit gates is
gate-independent (e.g. [23, Sec. II A]), in which case our noise learning results are interpreted as
characterizing a dressed cycle.

This work leaves open the question of noise learnability for non-Clifford gates. An issue here is
that randomized compiling is not known to work with non-Clifford gates in general, so it is unclear
if the general CPTP noise learnability problem can be reduced to Pauli noise. Recent work [14]
shows that random quantum circuits can effectively twirl the CPTP noise channel into Pauli noise
and can be used to learn the total Pauli error. The question of whether more information can be
learned still remains open.

Another issue to address is the scalability in noise learning. It is impossible to estimate all
learnable degrees of freedom efficiently as there are exponentially many of them (an exponential
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lower bound on the sample complexity is shown in [16]). One way to avoid the exponential scaling
issue is to assume the noise model has certain special structure (such as sparsity or low-weight) such
that the noise model only has polynomially many parameters [10, 11, 22, 34]. It is an interesting
open direction to study the characterization of learnability under these assumptions, and we give
some related discussions in Supplementary Section II D.
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Appendix A: Preliminaries

Define Pn to be the n-qubit Pauli group modulo its center. We can label any Pauli operator
Pa ∈ Pn with a 2n-bit string a. Specifically, we define P0 to be the identity operator I. We will use
the notations Pa and a interchangeably when there is no confusion.

The pattern of an n-qubit Pauli operator Pa, denoted as pt(Pa), is an n-bit string that takes 0
at the jth bit if Pa equals to I at the jth qubit and takes 1 otherwise. For example, pt(XY IZI) =
pt(XXIXI) = 11010.

An n-qubit Pauli diagonal map Λ is a linear map of the following form

Λ(·) =
∑

a∈Pn

paPa(·)Pa, (A1)

where p := {pa}a are called the Pauli error rates. If Λ is further a CPTP map, which corresponds
to the condition pa ≥ 0 and ∑a pa = 1, then it is called a Pauli channel. An important property
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of Pauli diagonal maps is that their eigen-operators are exactly the 4n Pauli operators. Thus, an
alternative expression for Λ is

Λ(·) = 1
2n

∑
b∈Pn

λb Tr(Pb(·))Pb, (A2)

where λ := {λb}b are called the Pauli fidelities or Pauli eigenvalues [10, 13, 35]. These two sets of
parameters, p and λ, are related by the Walsh-Hadamard transform

λb =
∑

a∈Pn

pa(−1)〈a,b〉, pa = 1
4n

∑
b∈Pn

λb(−1)〈a,b〉, (A3)

where 〈a, b〉 equals to 0 if Pa, Pb commute and equals to 1 otherwise.
For a general linear map E , define its Pauli twirl as

EP :=
∑

a∈Pn

PaEPa. (A4)

Here we use the calligraphic Pa to represent the unitary channel of Pauli gate Pa, Pa(·) := Pa(·)Pa.
The Pauli twirl of any linear map (quantum channel) is a Pauli diagonal map (Pauli channel).
When we talk about the Pauli fidelities of a non-Pauli channel, we are effectively referring to the
Pauli fidelities of its Pauli twirl.

Appendix B: Theory on the learnability of Pauli noise

In this section, we give a precise characterization of what information in the Pauli noise channel
associated with Clifford gates can be learned in the presence of state-preparation-and-measurement
(SPAM) noise. Our results show that certain Pauli fidelities of a noisy multi-qubit Clifford gate
cannot be learned in a SPAM-robust manner, even with the assumption that single-qubit gates
can be perfectly implemented. The proof is related to the notion of gauge freedom in the literature
of gate set tomography [19]. We note that the results presented in this section emphasizes on
the no-go part, i.e., some information about the Pauli noise is (SPAM-robustly) unlearnable even
with many favorable assumptions on the experimental conditions. As shown in the main text, the
learnable information about Pauli noise can be extracted in a much more practical setting using
cycle benchmarking [9] and its variant.

1. Assumptions and definitions

We focus on an n-qubit quantum system. Below are our assumptions on the noise model.

• Assumption 1. All single qubit unitary operation can be perfectly implemented.

• Assumption 2. A set of multi-qubit Clifford gates G := {G} can be implemented and are
subject to gate-dependent Pauli noise, i.e., G̃ = G ◦ ΛG where ΛG is some n-qubit Pauli
channel.

• Assumption 3. Any state preparation and measurement can be implemented, up to some
fixed Pauli noise channel ES and EM , respectively.

• Assumption 4. The Pauli noise channels appearing in the above assumptions satisfy that
all Pauli fidelities and Pauli error rates are strictly positive.
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Assumption 1 is motivated by the fact that the noise of single-qubit gates are usually much smaller
than that of multi-qubit gates on today’s hardware. Such approximation is widely adopted in the
literature [9, 20] with slight modifications. In Assumption 2, we view every Clifford gate as an
n-qubit gate, and allow the noise to be n-qubit. This means we are taking all crosstalk into account.
A Clifford gate acting on a different (ordered) subset of qubits is viewed as a different gate and can
thus have a different noise channel (e.g., CNOT12, CNOT21, CNOT23 have different noise channels.)
We will discuss the no-crosstalk situation in Sec. B 4. The rationale for assuming Pauli noise in
Assumption 2 and 3 is that we can always use randomized compiling [20, 21] to tailor general noise
into Pauli channels. Finally, Assumption 4 is mostly for technical convenience. The requirement
of positive Pauli error rates roughly implies the Pauli channels are at the interior of the CPTP
polytope, and will be useful later in constructing valid gauge transformations. The requirement of
positive Pauli fidelities is also reasonable for any physically interesting noise model.

Specifying a Clifford gate set G, a noise model satisfying our assumptions is determined by
the Pauli channels describing gate noise and SPAM noise. We can thus view a noise model as
a collection of Pauli fidelities, denoted as N = {ES , EM ,Λ}, where ES/M = {λS/M

a }a describes
the SPAM noise and Λ = {λGa}a,G describes the gate noise. We note that this is an example of
parametrized gate set in the language of gate set tomography [19].

In order to gain information about an unknown noise model, one needs to conduct experiments.
In the circuit model, any experiment can be described by some state preparation, a sequence of
quantum gates, and some POVM measurements. An experiment conducted with different underlying
noise model would yield different measurement outcome distributions. Explicitly, consider an (ideal)
experiment with initial state ρ0, gate sequence C, POVM measurements {Eo}o. Denote the noisy
implementation of these objects within a certain noise model N with a tilde. Then the experiment
effectively maps N to a probability distribution pN (o) = Tr(Ẽo(C̃(ρ̃0))). We call two noise models
N1, N2 indistinguishable if for all possible experiments we have pN1 = pN2 , and distinguishable
otherwise.

Definition 1 (Learnable and unlearnable function). A function f of noise models is learnable if

f(N1) 6= f(N2) =⇒ N1,N2 are distinguishable, (B1)

for any noise models N1, N2. In contrast, f is unlearnable if there exist indistinguishable noise
models N1, N2 such that f(N1) 6= f(N2).

Note that the above definition of “learnable” does not necessarily mean that the value of the
function can be learned. However, throughout this paper whenever some function is “learnable”
according to Definition 1, it is also learnable in the stronger sense that we can design an experiment
to estimate it up to arbitrarily small error with high success probability.

In the language of gate set tomography, an unlearnable function is a gauge-dependent quantity of
the gate set [19]. On the other hand, any learnable function can in principle be learned to arbitrary
precision. In the following, we will focus the learnability of the functions of the gate noise, including
individual and multiplicative combinations of Pauli fidelities.

2. Learnability of individual Pauli fidelity

We first study the learnability of individual Pauli fidelities associated with a Clifford gate. This
has been an open problem in recent study of quantum benchmarking. Perhaps surprisingly, we
obtain the following simple criteria on the learnability of Pauli fidelities with any Clifford gate.
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Theorem 3. With Assumptions 1-4, for any n-qubit Clifford gate G and Pauli operator Pa, the
Pauli fidelity λGa is unlearnable if and only if G changes the pattern of Pa, i.e., pt(G(Pa)) 6= pt(Pa).

The fact that certain Pauli fidelities are SPAM-robustly unlearnable is observed in some recent
works [9, 21–23], described as “degeneracy” of the noise model. Our work is the first to give a
rigorous argument for this by establishing connections to gate set tomography. As an example, for
the CNOT and SWAP gates, we can immediately list its learnable and unlearnable Pauli fidelities
in Table II. We note that, the no-go theorem holds even under the no-crosstalk assumption as will
be discussed in Sec. B 4, so introducing ancillary qubits or other multi-qubit Clifford gates cannot
help resolve the unlearnability.

Gate Learnable Unlearnable
CNOT λII , λZI , λIX , λZX , λXZ , λY Y , λXY , λY Z λIZ , λXI , λZZ , λXX , λIY , λY I , λZY , λY X

SWAP λII , λXX , λXY , λXZ , λY X , λY Y , λY Z , λZX , λZY , λZZ λIX , λIY , λIZ , λXI , λY I , λZI

TABLE II. Learnability of individual Pauli fidelity of CNOT and SWAP.

Before going into the proof, we make several remarks about Theorem 3. The correct interpretation
of the no-go result in Theorem 3 is that certain Pauli fidelities cannot be learned in a fully SPAM-
robust manner. If one has some pre-knowledge that the SPAM noise is much weaker than the
gate noise, there exist methods to give a pretty good estimate of those unlearnable Pauli fidelities,
according to physical constraints. See the discussions in the main text. On the other hand, it is
observed that the product of certain unlearnable Pauli fidelities can be learned in a SPAM-robust
manner, such as λXI · λXX for the CNOT gate [9]. We will characterize the learnability of this kind
of products of Pauli fidelities in the next subsection.

Proof of Theorem 3. We start with the “only if” part, which is equivalent to saying that pt(Pa) =
pt(G(Pa)) implies λGa being learnable. The condition pt(G(Pa)) = pt(Pa) implies G(Pa) is equivalent
to Pa up to some local unitary transformation, i.e., there exists a product of single-qubit unitary
gates U := ⊗n

j=1 Uj such that

U ◦ G(Pa) = Pa. (B2)

Now we design the following experiments parameterized by a positive integer m,

• Initial state: ρ0 = (I + Pa)/2n,

• POVM measurement: E±1 = (I ± Pa)/2,

• Circuit: Cm = (U ◦ G)m.

Consider the measurement probability by running these experiments within a noise model N .

p
(m)
±1 (N ) = Tr

(
Ẽ±1C̃m(ρ̃0)

)
= Tr

(
I ± Pa

2 ·
(
EM ◦ (U ◦ G)m ◦ ES

)(I + Pa

2n

))

= Tr

I ± Pa

2 ·
I + λM

a

(
λGa

)m
λS

aPa

2n


=

1± λM
a

(
λGa

)m
λS

a

2 .

(B3)
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Recall that λS/M
a is the Pauli fidelity of the SPAM noise channel for Pa. The expectation value is

E(m)(N ) = λM
a

(
λGa

)m
λS

a . (B4)

If we take the ratio of expectation values of two experiments with consecutive m, we obtain (recall
that all these Pauli fidelities are strictly positive by Assumption 4)

Em+1(N )/Em(N ) = λGa . (B5)

This implies that if two noise model assign different values for λGa , the above experiments would be
able to distinguish between them. By definition 1, we conclude λGa is learnable.

Next we prove the “if” part. Fix an n-qubit Clifford gate G. Let Pa be any Pauli operator
such that pt(G(Pa)) 6= pt(Pa). We will show that λGa is unlearnable by explicitly constructing
indistinguishable noise models that assign different values to λGa .

Recall that any experiment involves a noisy initial state ρ̃0, a noisy measurement {Ẽl}l, and
a quantum circuit consisting of noiseless single-qubit gates U := ⊗n

j=1 Uj and noisy multi-qubit
Clifford gates T̃ . Now, introduce an invertible linear mapM : L(H2n)→ L(H2n), and consider the
following transformation

ρ̃0 7→ M(ρ̃0), Ẽl 7→ (M−1)†(Ẽl),
n⊗

j=1
Uj 7→ M ◦

n⊗
j=1
Uj ◦M−1,

T̃ 7→ M ◦ T̃ ◦M−1.

(B6)

One can immediately see that any measurement outcome distribution pl := Tr(ẼlC̃(ρ̃0)) remains
unchanged via such transformation. Therefore the noise models related by this transformation are
indistinguishable. This is called a gauge transformation in the literature of gate set tomography [19].
To use this idea for the proof, we start with a noise model N and construct a mapM such that

1. The transformation yields a physical noise model N ′ satisfying Assumptions 1-5 in Sec. B 1.

2. The two noise models N , N ′ assign different values to λGa .

Starting with a generic noise model N = {ES , EM ,Λ} satisfying the assumptions, we construct
the gauge transform map M as follows. Since pt(G(Pa)) 6= pt(Pa), there exists an index i ∈ [k]
such that one and only one of (Pa)i and G(Pa)i equals to I. LetM be the single-qubit depolarizing
channel on the i-th qubit,

M := Di ⊗ I[n]\i, (B7)

where the single-qubit depolarizing channel is defined as

∀P ∈ {I,X, Y, Z}, D(P ) =
{
P, if P = I,

ηP, otherwise,
(B8)

for some parameter 0 < η < 1. We will specify the value of η later.
Now we calculate the transformed noise model N ′ = {ES′ , EM ′ ,Λ′}. The SPAM noise channels

are transformed as

ES′ =MES , EM ′ = EMM−1, (B9)
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both of which are still Pauli diagnoal maps. Thanks to our Assumption 4, as long as η is sufficiently
close to 1, they can be shown to be Pauli channels.

Next, the single-qubit unitary gates are transformed as

M

 n⊗
j=1
Uj

M−1 = DiUiD†i ⊗
⊗
j 6=i

Uj =
⊗

j

Uj , (B10)

since the single-qubit deplorizing channel commutes with any single-qubit unitary. This implies the
single-qubit unitary gates are still noiseless.

Finally, consider an arbitrary n-qubit Clifford gate T . We show that the transformed noisy gate
takes the form T̃ ′ = T̃ ◦ Λ′T where Λ′T is still a Pauli channel, with the Pauli fidelities updated as
follows.

λTb
′ =


ηλTb , if pt(Pb)i = 0 and pt(T (Pb))i = 1,
η−1λTb , if pt(Pb)i = 1 and pt(T (Pb))i = 0,
λTb , if pt(Pb)i = pt(T (Pb))i.

(B11)

We give a proof for the first case. Note that

M◦ T̃ ◦M−1 = Di ◦ T̃ ◦ D−1
i

= Di ◦ T ◦ ΛT ◦ D−1
i

= T ◦ (T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1
i )

=: T ◦ Λ′T ,

(B12)

where we use Di as a shorthand for Di ⊗ I[n]\i. The transformed noise channel can be written as

Λ′T = T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1
i . (B13)

Let us calculate its action on arbitrary Pb.

Λ′T (Pb) = (T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1
i )(Pb)

= (η−1)pt(Pb)i(T −1 ◦ Di ◦ T ◦ ΛT )(Pb)
= λTb (η−1)pt(Pb)i(T −1 ◦ Di ◦ T )(Pb)
= ηpt(T (Pb))iλTb (η−1)pt(Pb)i Pb.

(B14)

Thus, Λ′T is indeed a Pauli diagonal map with Pauli fidelities given by Eq. (B11). The fact that Λ′T
is guaranteed to be a CPTP map by choosing appropriate η will be verified later. Specifically, if
we take T to be the Clifford gate G that we are interested in, we have λG′a = ηλGa or λG′a = η−1λGa .
In either case, λG′a 6= λGa . This means the two indistinguishable noise model N , N ′ indeed assign
different values to λGa .

We now verify that N ′ is indeed a physical noise model and satisfies Assumptions 1-4. We
have already shown that single-qubit unitary gates remain noiseless and that all gate noise and
SPAM noise are described by Pauli diagonal maps. The only thing left is to make sure all these
Pauli diagonal maps are CPTP and satisfy the positivity constraints in Assumption 4. According
to Eq. (B9) and (B11), any Pauli fidelity λb of either SPAM noise or gate noise is transformed
to one of the following λ′b ∈ {λb, ηλb, η

−1λb}, so λb > 0 implies λ′b > 0. On the other hand, any
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transformed Pauli error rate can be bounded by

p′c = 1
4n

∑
b∈Pn

(−1)〈b,c〉λ′b

≥ 1
4n

∑
b∈Pn

(
(−1)〈b,c〉λb − (η−1 − 1)λb

)
≥ pc − (η−1 − 1).

(B15)

To ensure every p′c > 0, we can choose 1 > η > (pmin + 1)−1 with pmin being the minimum Pauli
error rate among all Pauli channels of both SPAM and gate noise, which is possible since pmin > 0 by
Assumption 4. This means each transformed Pauli diagonal maps are completely positive (CP). To
see they are also trace-preserving (TP), just notice from Eq. (B9), (B11) that λ′0 = λ0 = 1 always
holds. Now we conclude that N ′ is indeed a physical noise model satisfying all the assumptions.
Combining with the reasoning in the last paragraph, we see λGa is unlearnable. This completes our
proof.

3. Characterization of learnable space via algebraic graph theory

We have characterized the learnability of individual Pauli fidelities associated with any Clifford
gates in Theorem 3. Here, we want to understand the learnablity for a general function of the
gate noise. We first show that, in our setting, any measurement outcome probability in experiment
can be expressed as a polynomial of Pauli fidelities of gate and SPAM noise, and each term in the
polynomial can be learned via a CB experiment (see Sec. D for details). Therefore, it suffices to
study the monomials, i.e., products of Pauli fidelities. For each Pauli fidelity λGa , we define the
logarithmic Pauli fidelity as lGa := log λGa (λGa > 0 by Assumption 4). It then suffices to study the
learnability of linear functions of the logarithmic Pauli fidelities. An alternative reason to only
study this class of function is that, under a weak noise assumption, we have la → 0, so we can
express any function of the noise model as a linear function of la under a first order approximation.
Note that similar approaches have been explored in the literature [15, 31].

Since we are working with Assumption 1-4 which takes all crosstalk into account, we treat the
noise channel for each gate in G as n-qubit. The number of independent Pauli fidelities we are
interested in is thus

|Λ| = |G| · 4n. (B16)

Denote the space of all (real-valued) linear function of logarithmic Pauli fidelities as F , then we have
F ∼= R|Λ|. A function f ∈ F uniquely corresponds to a vector v ∈ R|Λ| by f(l) = v · l = ∑

a,G va,Gl
G
a .

We will use the vector to refer to the linear function when there is no ambiguity.
Denote the set of all learnable function in F as FL (in the sense of Def. 1). As shown in the

following lemma, FL forms a linear subspace in F , so we call FL the learnable space.

Lemma 1. FL is a linear subspace of F .

Proof. Given v1,v2 ∈ FL, consider the learnability of v1 + v2. For any noise models N1, N2,

(v1 + v2) · lN1 6= (v1 + v2) · lN2 =⇒ v1 · lN1 6= v1 · lN2 or v2 · lN1 6= v2 · lN2

=⇒ N1,N2 are distinguishable.
(B17)

Thus v1 + v2 ∈ FL. We also have v ∈ L =⇒ kv ∈ FL for all k ∈ R. Therefore, FL forms a vector
space in R|Λ|.
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Our goal is to give a precise characterization of the learnable space FL. For example, we may
want to know the dimension of FL, which represents the learnable degrees of freedom for the noise.
This is also the maximum number of linearly-independent equations about the logarithmic Pauli
fidelities we can expect to extract from experiments. Conversely, the unlearnable degrees of freedom
roughly correspond to the number of independent gauge transformations. We summarize these
definitions as follows.

Definition 2. Given a Clifford gate set G, the learnable degrees of freedom LDF(G) and unlearnable
degrees of freedom UDF(G) are defined as, respectively,

LDF(G) := dim(FL), UDF(G) := |Λ| − dim(FL). (B18)

Our approach is to relate FL to certain properties of a graph defined as follows.

Definition 3 (Pattern transfer graph). The pattern transfer graph associated with a Clifford gate
set G is a directed graph G = (V,E) constructed as follows:

• V (G) = {0, 1}n.

• E(G) = {ea,G := (pt(Pa), pt(G(Pa)) | ∀ Pa ∈ Pn, G ∈ G}.

The 2n vertices each corresponds to a possible Pauli pattern. The |E| = |Λ| = |G| · 4n edges
each corresponds to a Pauli operator and a Clifford gate, describing how the Clifford gate evolves
the pattern of the Pauli operator. One can also think each edge corresponds to a unique Pauli
fidelity (ea,G ↔ λGa ). The rationale for only tracking the Pauli pattern is that we assume the ability
to implement noiseless single-qubit unitaries, which makes the actual single-qubit Pauli operators
unimportant. Fig. 2 of main text shows the pattern transfer graphs for a CNOT gate, a SWAP
gate, and a gate set of CNOT and SWAP, respectively.

Next, we give some definitions from graph theory (see [32, 36]). A chain is an alternating
sequences of vertices and edges z = (v0, e1, v1, e2, v2, ..., vq−1, eq, vq) such that each edge satisfies
ek = (vk−1, vk) or ek = (vk, vk−1). A chain is simple if it does not contain the same edge twice. A
closed chain (i.e., v0 = vq) is called a cycle. If an edge ek in a chain satisfies ek = (vk−1, vk), it is
called an oriented edge. A chain consists solely of oriented edges is called a path. A closed path is
called a oriented cycle or a circuit. A graph is called strongly connected if there is a path from every
vertex to every other vertex. A graph is called weakly connected if there is a chain from every vertex
to every other vertex. The number of (strongly or weakly) connected components is the minimum
number of partitions of the vertex set V = V1 ∪ · · · ∪ Vc such that each subgraph generated by a
vertex partition is (strongly or weakly) connected.

We can equip a graph with vector spaces. Following the notations of [32, Sec. II.3], the edge
space C1(G) of a directed graph G is the vector space of all linear functions from the edges E(G) to
R. By construction, C1(G) ∼= R|Λ| ∼= F . Every linear function of the logarithmic Pauli fidelities
naturally corresponds to a linear function of the edges according to the label of the edges (lGa ↔ ea,G).
Again, we use vectors in R|Λ| to refer to elements of C1(G). The inner product on C1(G) is defined
as the standard inner product on R|Λ|.

There are two subspaces of C1(G) that is of special interest. For a simple cycle z in G, we assign
a vector vz ∈ C1(G) as follows

vz(e) =


+1, e ∈ z, e is oriented.
−1, e ∈ z, e is not oriented.

0, e /∈ z.
(B19)
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The cycle space Z(G) is the linear subspace of C1(G) spanned by all cycles vz in G.
Given a partition of vertices V = V1 ∪ V2 such that there is at least one edge between V1 and V2,

a cut is the set of all edges e = (u, v) such that one of u, v belongs to V1 and the other belongs to
V2. For each cut p we assign an vector vp ∈ C1(G) as follows

vp(e) =


+1, e ∈ p, e goes from V1 to V2.
−1, e ∈ p, e goes from V2 to V1.

0, e /∈ p.
(B20)

The cut space U(G) is the linear subspace of C1(G) spanned by all cuts vp in G. Note that different
partition of vertices may result in the same cut vector if G is unconnected.

Lemma 2. [32, Sec. II.3, Theorem 1] The edge space C1(G) is the orthogonal direct sum of the
cycle space Z(G) and the cut space U(G), whose dimensions are given by

dim(Z(G)) = |E| − |V |+ c(G), dim(U(G)) = |V | − c(G), (B21)

where c(G) is the number of weakly connected components of G.

In some cases, we are more interested in circuits (oriented cycles) instead of general cycles. The
following lemma gives a sufficient condition when the cycle spaces have a circuit basis, i.e. the cycle
space is spanned by oriented cycles.

Lemma 3. [36, Theorem 7] A directed graph has a circuit basis if it is strongly connected, or it is
a union of strongly connected subgraphs.

With all the graph theoretical tools introduced above, we are ready to present the main result
of this section.

Theorem 4. Under the Assumptions 1-4. For any G, FL
∼= Z(G). Explicitly, a linear function

fv(l) = v · l is learnable if and only if v belongs to the cycle space Z(G).

We give the proof at the end of this section. The proof involves two parts. The first is to show
that every cycle is learnable using a variant of cycle benchmarking [9], thus the cycle space belongs to
the learnable space. The second part is to show that every cut induces a gauge transformation [19],
and thus the learnable space must be orthogonal to the cut space, which implies it lies in the cycle
space.

We remark that Theorem 3 can be viewed as a corollary of Theorem 4. This is because an
individual Pauli fidelity λGa whose Pauli pattern changes (i.e., pt(Pa) 6= pt(G(Pa))) corresponds to
an simple edge in the pattern transfer graph, which does not belong to the cycle space and is thus
unlearnable. On the other hand, a Pauli fidelity without Pauli pattern change corresponds to a
self-loop in the pattern transfer graph, which belongs to the cycle space by definition, and is thus
learnable.

Combing Theorem 4 with Lemma 2 leads to the following.

Corollary 5. The learnable and unlearnable degrees of freedom associated with G are given by

LDF(G) = |G| · 4n − 2n + c(G), UDF(G) = 2n − c(G), (B22)

where c(G) is the number of connected components of the pattern transfer graph associated with G.
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Note that the unlearnable degrees of freedom always constitute an exponentially small portion,
though they can grow exponentially.

Examples of some gate sets are given in Table III and Figure 7. One can notice some interesting
properties. The UDF of CNOT and SWAP equals to 2 and 1, respectively, but a gate set containing
both has UDF = 2. This means UDF is not “additive”. The interdependence between different
gates can give us more learnable degrees of freedom. However, Corollary 5 implies that the UDF of
a gate set cannot be smaller than the UDF of any of its subset. This is because adding new gates
can only decrease the number of connected components c(G) of the pattern transfer graph.

Number of qubits n Gate set G Number of parameters |Λ| = 4n|G| UDF(G)
2 CNOT 16 2
2 SWAP 16 1
2 {CNOT, SWAP} 32 2
3 {CNOT12,CNOT23,CNOT31} 192 6
3 CIRC3 64 4

TABLE III. The unlearnable degrees of freedom of some gate sets. Here CIRC3 is the circular permutation
on 3 qubits. UDF is calculated by applying Corollary 5 to the corresponding pattern transfer graph in Fig. 2
of main text and Fig. 7.

FIG. 7. Pattern transfer graphs for {CNOT, SWAP}, {CNOT12,CNOT23,CNOT31}, and CIRC3. For
clarity, we omit labels of the edges, multiple edges, and self-loop. These omissions do not change the cut
space of the graph.

Proof of Theorem 4. The proof is divided into showing Z(G) ⊆ FL and FL ⊆ Z(G) (up to the
natural isometry between F and C1(G)).

Z(G) ⊆ FL: Roughly, this is equivalent to saying that all cycles are learnable. We will first show
that the pattern transfer graph always has a circuit basis, and then show that the linear function
associated with each circuit can be learned using a variant of cycle benchmarking protocol [9].

We begin by showing that the pattern transfer graph G associated with a gate set G is a union
of strongly connected subgraphs. This is equivalent to saying that for any vertices u, v ∈ V (G), if
there is a path from u to v, there must be a path from v to u. It suffices to show that for each
edge e = (u, v) there is a path from v to u, since any path is just concatenation of edges. By
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definition, the existence of e = (u, v) implies there exists P ∈ Pn and G ∈ G such that pt(P ) = u
and pt(Q) = v where Q := G(P ). Since a Clifford gate is a permutation on the Pauli group, there
must exist some integer d > 0 such that Gd = I, thus P = Gd−1(Q), which induces the following
path from v to u:

(pt(Q), eQ,G , pt(G(Q)), eG(Q),G , pt(G2(Q)), · · · , pt(Gd−2(Q)), eGd−1(Q),G , pt(Gd−1(Q))).

One can verify this is a path according to the definition of G. This shows that G is indeed a union
of strongly connected subgraphs. According to Lemma 3, G has a circuit basis that spans the cycle
space Z(G).

Now we show that every circuit in G represents a learnable function. Consider an arbitrary
circuit z = (v0, e1, v1, e2, v2, ..., vq−1, eq, vq ≡ v0). For each k = 1...q, the edge ek corresponds to a
Pauli operator Pk ∈ Pn and a Clifford gate Gk ∈ G such that pt(Pk) = vk−1 and pt(Qk) = vk where
Qk := Gk(Pk). On the other hand, since pt(Qk) = pt(Pk+1), there exists a product of single qubit
unitaries Uk such that Pk+1 = Uk(Qk) for k = 1...q (where we define Pq+1 := P1, as pt(Qq) = pt(P1)
by assumptions). Consider the following gate sequence,

C := UqGqUq−1Gq−1 · · · U1G1 (B23)

One can see that C(P1) = P1. Now we design the following experiments parameterized by a positive
integer m,

• Initial state: ρ0 = (I + P1)/2n,

• POVM measurement: E±1 = (I ± P1)/2,

• Circuit: Cm = (UqGqUq−1Gq−1 · · · U1G1)m.

Consider the outcome distribution generated by running these experiments within a noise model N .

p
(m)
±1 (N ) = Tr

(
Ẽ±1C̃m(ρ̃0)

)
= Tr

(
I ± P1

2 ·
(
EM ◦

(
UqG̃q · · · U1G̃1

)m
◦ ES

)(I + P1
2n

))

= Tr

I ± P1
2 ·

I + λM
P1

(
λ
Gq

Pq
· · ·λG2

P2
λG1

P1

)m
λS

P1
P1

2n


=

1± λM
P1

(
λ
Gq

Pq
· · ·λG2

P2
λG1

P1

)m
λS

P1

2 .

(B24)

The expectation value is

E(m)(N ) = λM
P1

(
λ
Gq

Pq
· · ·λG2

P2
λG1

P1

)m
λS

P1 . (B25)

If we take the ratio of expectation values of two experiments with consecutive m, we obtain (recall
that all these Pauli fidelities are strictly positive by Assumption 4)

Em+1(N )/Em(N ) = λ
Gq

Pq
· · ·λG2

P2
λG1

P1
. (B26)

This implies that if two noise models have different values for the product of Pauli fidelities
λ
Gq

Pq
· · ·λG2

P2
λG1

P1
, the above experiments would be able to distinguish between them. Therefore,

λ
Gq

Pq
· · ·λG2

P2
λG1

P1
is a learnable function. By taking the logarithm of this expression, we see that
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f(l) := ∑q
k=1 l

Gq

Pq
is a learnable linear function of the logarithmic Pauli fidelities. Notice that f(l)

exactly corresponds to the circuit of z according to the natural isometry between F and C1(G).
This tells us that every circuit in G indeed corresponds to a learnable linear function. Combining
with the fact that the circuits in G span the cycle space Z(G), and the fact that learnable functions
are closed under linear combination (Lemma 1), we conclude that Z(G) ⊆ FL.

FL ⊆ Z(G): For this part, we just need to show that FL is orthogonal to the cut space U(G),
which is the orthogonal complement of the cycle space Z(G). To show this, we will construct
a gauge transformation for each element of U(G). The definition of learnability then requires a
learnable linear function to be orthogonal to all gauge transformations, thus orthogonal to the
entire cut space.

Consider a cut V = V1 ∪ V2 (such that there is at least one edge between V1 and V2). We define
the gauge transform map M as the following Pauli diagonal map,

M(P ) :=
{
ηP, if pt(P ) ∈ V1,

P, if pt(P ) ∈ V2,
∀P ∈ Pn, (B27)

for a positive parameter η 6= 1. The gauge transformation induced by M is defined in the same
way as Eq. (B6). We will show that there exists two noise models satisfying all the assumptions
that are related by a gauge transformation (thus indistinguishable) but yields different values for
the function corresponding to the cut V1 ∪ V2.

Starting with a noise model N = {ES , EM ,Λ}, we first calculate the gauge transformed noise
model N ′. The SPAM noise channels are transformed as

ES′ =MES , EM ′ = EMM−1, (B28)

which are still Pauli diagonal maps. Using exactly the same argument as in the proof of Theorem 3,
by choosing η to be sufficiently close to 1, these transformed maps are guaranteed to be CPTP and
satisfy Assumption 4.

Secondly, the single-qubit unitaries are transformed as U ′ =MUM−1. Calculate the following
inner product for any P,Q ∈ Pn,

Tr(P · U ′(Q)) = Tr(M†(P ) · U(M−1(Q)))
= η1V1 [pt(P )](η−1)1V1 [pt(Q)] Tr(P · U(Q)).

(B29)

Here 1V1 is the indicator function of V1. We see that Tr(P · U ′(Q)) = Tr(P · U(Q)) if pt(P ) = pt(Q).
A crucial observation is that a product of single-qubit unitaries can never change the pattern of the
input Pauli. More precisely, U(Q) is a linear combination of Pauli operators with the same pattern
as Q. Therefore, if pt(P ) 6= pt(Q), we would have Tr(P · U ′(Q)) = Tr(P · U(Q)) = 0. Combining
the two cases, we conclude U ′ = U , i.e., the single-qubit unitaries are still noiseless in N ′.

Finally, the noisy Clifford gates are transformed as

G̃′ =MGΛGM−1

= GG−1MGΛGM−1

=: GΛ′G

(B30)

where the transformed noise channel Λ′G := G−1MGΛGM−1 is a Pauli diagonal map. We now
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calculate its Pauli eigenvalues. For P ∈ Pn,

Λ′G(P ) = G−1MGΛGM−1(P )
= η1V1 [pt(G(P ))](η−1)1V1 [pt(P )]λGP P

=


ηλGP , pt(P ) ∈ V1, pt(G(P )) ∈ V2.

η−1λGP , pt(P ) ∈ V2, pt(G(P )) ∈ V1.

λGP , otherwise.

(B31)

Again, Assumption 4 guarantees that Λ′G is a CPTP map satisfying all of our noise assumptions as
long as η is sufficiently close to 1. We omit the argument here as it is the same as in the previous
proof. Define tp := log η where p denotes the cut V1 ∪ V2. The above gauge transformation of the
log Pauli fidelity can be written as

l′ = l+ tpvp (B32)

where vp is the cut vector of V = V1 ∪ V2 as defined in Eq. (B20).

We have just defined a gauge transformationMp for an arbitrary cut p. Fix a basis of the cut
space B (where vectors in B has the form in Eq. (B20)). For a generic element of the cut space
v ∈ U(G), we can decompose it as v = ∑

p∈B tpvp (tp ∈ R). We define the gauge transformation
Mv associated with v as a consecutive application of the gauge transformations {Mp} for each
p ∈ B, each with parameter tp. Here we assume that each |tp| is sufficiently small, as otherwise we
can rescale the vector. This implies thatMv is a valid gauge transformation. The effect of such a
transformation is

l′ = l+ v. (B33)

Now, Definition 1 implies that a learnable function f must remain unchanged under gauge
transformations (as they result in indistinguishable noise models), which means that f · l′ = f · l.
Thus, for all f ∈ FL, and all v ∈ U(G), we must have

f · v = f · l′ − f · l = 0. (B34)

That is, FL must be orthogonal to the cut space U(G). According to Lemma 2, Z(G) is the
orthogonal complement of U(G), so we conclude that FL ⊆ Z(G). This completes the second part
of our proof.

4. Learnability under no-crosstalk assumption

As we commented before, the way we define the gate noise captures a general form of crosstalk [37].
One may ask, if we further make a favorable assumption that gate noise has no crosstalk, would
this make the learning of noise much easier. To consider this rigorously, we introduce the following
optional assumption. See Fig. 8 for an illustration.

• Assumption 5 (No crosstalk.) For any G ∈ G that acts non-trivially only on a k-qubit
subspace, the associated Pauli noise channel also acts non-trivially only on that subspace. In
other words, if G = G′ ⊗ I, we have G̃ = (G′ ◦ ΛG)⊗ I where ΛG is an k-qubit Pauli channel
depending only on G and the (ordered) subset of qubits on which G acts.
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FIG. 8. Illustration of the crosstalk model. (a) A 4-qubit circuit consists of three ideal CNOT gates. (b) Full
crosstalk. The noise channels are 4-qubit and depends on the qubits the CNOT acts on. (c) No crosstalk.
The noise channel only acts on a 2-qubit subspace. It can still depend on the qubits the CNOT acts on.

Assumption 5 reduces the number of independent parameters of a noise model. One might
expect certain unlearnable functions to become learnable with this assumption. Here, we show that
the simple criteria of learnablity given in Theorem 3 still hold even in this case, as stated in the
following proposition.

Proposition 6. With Assumption 1-5, for any k-qubit Clifford gate G and Pauli operator Pa, the
Pauli fidelity λGa is unlearnable if and only if G changes the pattern of Pa, i.e., pt(G(Pa)) 6= pt(Pa).

Proof. We just need to modify the proof of Theorem 3. For the “only if” part, restrict our attention
to the k-qubit subsystem that G acts on, and do a cycle benchmarking protocol as in the original
proof. We can easily conclude that λGa is learnable if pt(Pa) = pt(G(Pa)).

For the “if” part, construct the same gauge transformation map as in the original proof. That is,
for an index i ∈ [n] such that pt(Pa)i 6= pt(G(Pa))i, letM = Di⊗I[n]\i where Di is the single-qubit
deplorizing channel on the ith qubit with some parameter η. With the no-crosstalk assumption, a
generic k-qubit noisy Clifford gate T̃ transforms as

T̃ ⊗ I 7→ M ◦ (T̃ ⊗ I) ◦M−1. (B35)

If T does not act on the ith qubit, M commutes with T̃ and the noisy Clifford gate remains
unchanged. If T acts non-trivially on the ith qubit,

T̃ ⊗ I 7→ (Di ◦ T̃ ◦ D−1
i )⊗ I. (B36)

This means the transformed noise channel acts non-trivially only on the k-qubit subsystem that G
acts on, thus satisfies the no-crosstalk assumption. The Pauli fidelities of the noise channel will be
updated as Eq. (B11). Following the same argument of the original proof, we conclude that λGa is
unlearnable if pt(Pa) 6= pt(G(Pa)).

It is also possible to generalize the graph theoretical characterization in Theorem 4 to the
no-crosstalk case. One challenge in this case is that, different edges in the pattern transfer graph
no longer stand for independent variables. For example, consider a 3-qubit system and a CNOT
on the first two qubits. Since CNOT(XI) = XX, we would have the following two edges in the
pattern transfer graph

eXII,CNOT⊗I = (100, 110), eXIX,CNOT⊗I = (101, 111).

However, with the no-crosstalk assumption, we have

λCNOT⊗I
XII = λCNOT⊗I

XIX = λCNOT
XI , (B37)
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which means the above two edges represent the same Pauli fidelity. As a result, a gauge transforma-
tion (as defined in the proof of Theorem 4) that changes λXII and λXIX differently is no longer a
valid transformation. In other word, a cut represents a valid gauge transformation only if it cuts
through all the edges for the same Pauli fidelity simultaneously. This could decrease the number of
unlearnable degrees of freedom. We leave the precise characterization of the learnable space with
no-crosstalk assumptions as an open question. It is also interesting to study the learnability under
other practical assumptions about the Pauli noise model, such as the sparse Pauli-Lindbladian
model [22] and the Markovian graph model [10, 11].

5. Learnability of Pauli error rates

We have been focusing on the learnability of Pauli fidelities λ. One may ask similar questions
about Pauli error rates p. It turns out that, at least in the weak-noise regime (i.e., λa close to 1),
the learnability of p is λ are highly related. To see this, note that

pa = 1
4n

∑
b

(−1)〈a,b〉λb

≈ 1
4n

∑
b

(−1)〈a,b〉(log λb + 1)

= 1
4n

∑
b

(−1)〈a,b〉lb + δa,0,

(B38)

which means that pa is approximately a linear function of the logarithmic Pauli fidelity l. Therefore,
one can in principle use Theorem 4 to completely decide the learnability of any Pauli error rates (with
weak-noise approximation). Furthermore, since the Walsh-Hadamard transformation is invertible,
different pa corresponds to linearly-independent function of l. This means that the number of
linearly independent equations we can obtain about the Pauli error rates is the same as the learnable
degrees of freedom of the Pauli fidelities. In Table IV, we list a basis for all the learnable Pauli
fidelities/Pauli error rates. One can see that there is an exact correspondence between these two.
We leave a fully general argument for future study.

Learnable log Pauli fidelities lII , lZI , lIX , lZX , lXZ , lY Y , lXY , lY Z ,
lIZ + lZZ , lIY + lZY , lIZ + lZY , lXI + lXX , lY I + lY X , lXI + lY X

Learnable Pauli error rates pII , pZI , pIX , pZX , pXZ , pY Y , pXY , pY Z ,
(approximately) pIZ + pZZ , pIY + pZY , pIZ + pZY , pXI + pXX , pY I + pY X , pXI + pY X

TABLE IV. A complete basis for the learnable linear functions of log Pauli fidelities and Pauli error rates
(the latter is approximate) for a single CNOT gate.

Appendix C: Additional details about the numerical simulations

In this section, we provide more details about the numerical simulations mentioned in the main
text. The simulation is conducted using qiskit [38], an open-source Python package for quantum
computing. We simulate a two-qubit system where single-qubit Clifford gates are noiseless, and
CNOT is subject to amplitude damping channels on both qubits. Note that amplitude damping is
not Pauli noise, but we apply randomized compiling and will only estimate its Pauli diagonal part.
We also note that, qiskit adds the noise channel after gate by default, but our theory assume the
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noise to be before gate. These two models can be easily converted between each other via

G ◦ ΛG = (G ◦ ΛG ◦ G†) ◦ G = Λ′G ◦ G. (C1)

If G is Clifford, ΛG is a Pauli channel if and only if Λ′G is a Pauli channel. In the following, we
will be consistent with our theory and assume the noise to be before gate. Besides, we let the
measurement to have 0.3% bit-flip rate on each qubit and the state-preparation to be noiseless.

Fig. 9 shows the estimates collected using standard CB and interleaved CB (circuits shown in
Fig. 1 of main text). Compared to the true values, we see that both simulations yields accurate
predictions of the learnable Pauli fidelities.

IX ZI ZX {IZ,ZZ} {XI,XX} {IY,ZY} {YI,YX} {XZ,YY} {XY,YZ}
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

Standard CB

True fidelity (averaged)
True fidelity
Estimated fidelity

IX ZI ZX XZ XY YZ YY {IZ,ZY}{XI,YX}{IY,ZZ}{YI,XX}
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

Interleaved CB

True fidelity (averaged)
True fidelity
Estimated fidelity

FIG. 9. Numerical estimates of Pauli fidelities of a CNOT gate via standard CB (left) and CB with interleaved
gates (right), using circuits shown in Fig. 1 of main text. Each Pauli fidelity is fitted using seven different
circuit depths L = [2, 22, ..., 27]. For each depth C = 30 random circuits and 200 shots of measurements are
used. The red cross shows the true fidelities and the red dash line shows the average of true fidelities within
any two-Pauli group.

Fig. 10 (a) calculates the physically feasible region according to the estimates in terms of
{λXX , λZZ}, using approaches discussed in the main text. Due to the special structure of the
twirled amplitude damping noise (no Z-error), the feasible region for λXX is extremely narrow. To
eliminate the effect of statistical error, we allow a smoothing parameter ε in calculating the physical
region, making the constraints to be pa ≥ −ε. Here ε is chosen to be the largest standard deviation
in estimating the learnable Pauli fidelities. In Fig. 10 (b)(c) we see that the true fidelity indeed
falls into the physical region and is actually close to the lower-left corner of the physical region.

Fig. 11 shows the simulation results of intercept CB. We see that, we obtain an accurate estimate
even for the unlearnable Pauli fidelities. Besides, the estimate lies inside the physically feasible
region up to a standard deviation. This shows that intercept CB should work well in resolving
the unlearnability if we do have access to noiseless state-preparation (and the method is robust
against measurement noise). Therefore, failure of this method in experiment implies a non-negligible
state-preparation error, as discussed in the main text.

Appendix D: Justification for the claim in Sec. B 3

We claim in Sec. B 3 that any measurement probability generated in experiment can be expressed
as a polynomial of Pauli fidelities, and that each term in the polynomial can be learned in a CB
experiment. This is the motivation why we only care for a single monomial of Pauli fidelities. Here
we justify this claim.

Consider the most general experimental design: prepare some initial state ρ0, apply some
quantum circuit C, and conduct a POVM measurement {Ej}j . Denote the noisy realization of these
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(b) Pauli fidelities
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FIG. 10. Feasible region of the learned Pauli noise model, using data from Fig. 9. (a) Feasible region of the
unlearnable degrees of freedom in terms of λXX and λZZ . (b) Feasible region of individual Pauli fidelities.
(c) Feasible region of individual Pauli errors.

objects with a tilde. Because of noise, the probability of obtaining a certain measurement outcome
j is

Pr(j) = Tr
(
Ẽj C̃(ρ̃0)

)
= Tr

(
Ej

(
ΛM ◦ C̃ ◦ ΛS

)
(ρ0)

)
≡ Tr

(
Ejρ

′) . (D1)

Here ΛS ,ΛM are the noise channels for state preparation and measurement, respectively. The
Pauli fidelity of them are denoted by λS

a , λ
M
a for Pauli operator a, respectively. We define ρ′ :=

(ΛM ◦ C̃ ◦ ΛS)(ρ0) which encodes all the information that can be extracted from a quantum
measurements. We will obtain a general formula for ρ′.

First note that a general noisy quantum circuit C̃ satisfying our assumptions can be expressed as

C̃ = C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1 ◦ C(0), (D2)

where Gj ∈ G is an n-qubit Clifford gate and C(j) is the tensor product of single-qubit gates. A
crucial property for single-qubit gates is that they never change the Pauli pattern. More rigorously,
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FIG. 11. The learned Pauli noise model using intercept CB. The feasible region (blue bars) are taken
from Fig. 10. Estimates of Pauli fidelities (a) and Pauli error rates (b). Each data point is fitted using
seven different circuit depths L = [2, 22, ..., 27]. For each depth C = 300 random circuits and 2000 shots of
measurements are used.

one have that

C(j)(Pa) =
∑

b∼pt(a)
c

(j)
b,aPb, ∀Pa ∈ Pn, (D3)

where c(j)
b,a ∈ R, and the summation is over all Pb that have the same Pauli pattern as Pa.

Now consider the action of C̃ on an arbitrary Pauli operator Pa.

C̃(Pa) = (C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1 ◦ C(0))(Pa)

= (C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1)

 ∑
b0∼pt(a)

c
(0)
b0,aPb0


= (C(m) ◦ G̃m ◦ · · · ◦ C(1))

 ∑
b0∼pt(a)

c
(0)
b0,aλ

G1
b0
PG1(b0)



= (C(m) ◦ G̃m ◦ · · · ◦ C(2))

 ∑
b0∼pt(a),

b1∼pt(G1(b0))

c
(1)
b1,G1(b0)c

(0)
b0,aλ

G2
b1
λG1

b0
PG2(b1)


= · · ·

=
∑

b0∼pt(a),
b1∼pt(G1(b0)),

...
bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,aλ

Gm
bm−1

· · ·λG2
b1
λG1

b0
Pbm .

(D4)

For any initial state ρ0, we can decompose it via Pauli operators as

ρ0 = 1
2n
I +

∑
a6=0

αaPa. (D5)
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Going through the state preparation noise, the quantum circuit, and the measurement noise, the
state evolves to

ρ′ = (ΛM ◦ C̃ ◦ ΛS)( 1
2n
I +

∑
a6=0

αaPa)

= 1
2n
I +

∑
a6=0

αa

∑
b0∼pt(a),

b1∼pt(G1(b0)),
...

bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,a λ

M
pt(bm)λ

Gm
bm−1

· · ·λG2
b1
λG1

b0
λS

pt(a)Pbm

≡ 1
2n
I +

∑
a6=0

αa

∑
b0∼pt(a),

b1∼pt(G1(b0)),
...

bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,a Γb,aPbm .

(D6)
Here we define Γb,a = λM

pt(bm)λ
Gm
bm−1

· · ·λG2
b1
λG1

b0
λS

pt(a), which is a monomial of Pauli fidelities. The
measurement outcome probability Pr(j) is a linear combination of such Γb,a plus some constant.
Moreover, each Γb,a of the above form can also be learned from a simple experiment, by choosing
the initial state to be a +1 eigenstate of Pa, measurement operator to be Pbm , and C(j) to be
the product of single-qubit Clifford gates satisfying C(j)(Gj(bj−1)) = bj (which is possible because
pt(bj) = pt(Gj(bj−1))). Therefore, to completely characterize a noise model, we only need to extract
the products of Pauli fidelities in the form of Γb,a. This justifies our earlier claim.
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