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Abstract
The amoebot model abstracts active programmable matter as a collection of simple computational elements called amoebots
that interact locally to collectively achieve tasks of coordination and movement. Since its introduction at SPAA 2014, a
growing body of literature has adapted its assumptions for a variety of problems; however, without a standardized hierarchy
of assumptions, precise systematic comparison of results under the amoebot model is difficult. We propose the canonical
amoebot model, an updated formalization that distinguishes between core model features and families of assumption variants.
A key improvement addressed by the canonical amoebot model is concurrency. Much of the existing literature implicitly
assumes amoebot actions are isolated and reliable, reducing analysis to the sequential setting where at most one amoebot
is active at a time. However, real programmable matter systems are concurrent. The canonical amoebot model formalizes
all amoebot communication as message passing, leveraging adversarial activation models of concurrent executions. Under
this granular treatment of time, we take two complementary approaches to concurrent algorithm design. We first establish
a set of sufficient conditions for algorithm correctness under any concurrent execution, embedding concurrency control
directly in algorithm design. We then present a concurrency control framework that uses locks to convert amoebot algorithms
that terminate in the sequential setting and satisfy certain conventions into algorithms that exhibit equivalent behavior in the
concurrent setting. As a case study,we demonstrate both approaches using a simple algorithm for hexagon formation. Together,
the canonical amoebot model and these complementary approaches to concurrent algorithm design open new directions for
distributed computing research on programmable matter.

Keywords Programmable matter · Self-organization · Distributed algorithms · Concurrency

1 Introduction

The vision of programmable matter is to realize a mate-
rial that can dynamically alter its physical properties in
a programmable fashion, controlled either by user input
or its own autonomous sensing of its environment [46].
Towards a formal characterization of the minimum capabili-
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ties required by individual modules of programmable matter
to achieve a given system behavior, many abstract models
have been proposed over the last several decades [3,12–
14,35,42,44,45,47]. We focus on the amoebot model [20,24]
which is motivated bymicro- and nano-scale robotic systems
with strictly limited computational and locomotive capabil-
ities [7,39–41,48,49]. The amoebot model abstracts active
programmablematter as a collection of simple computational
elements calledamoebots that utilize local interactions to col-
lectively achieve tasks involving coordination, movement,
and reconfiguration. Since its introduction at SPAA 2014,
the amoebot model has been used to study both fundamental
problems—such as leader election [5,14,19,28,32–34,37,38]
and shape formation [10,25,26,31,32,43]—as well as more
complex behaviors including object coating [17,27], convex
hull formation [18], bridging [2], spatial sorting [9], and fault
tolerance [23,30].

With this growing body of amoebot model literature, it
is evident that the model has evolved—and, to some extent,
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fractured—during its lifetime as assumptions were updated
to support individual results, capture more realistic settings,
or better align with other models of programmable matter.
This makes it difficult to conduct any systematic comparison
between results under the amoebot model (see, e.g., the over-
lapping but distinct features used for comparison of leader
election algorithms in [5,34]), let alone between amoebot
model results and those of related models (e.g., those from
the established autonomousmobile robots literature [35]). To
address the ways in which the amoebot model has outgrown
its original rigid formulation, we propose the canonical
amoebot model that includes a standardized, formal hier-
archy of assumptions for its features to better facilitate
comparison of its results. Moreover, such standardization
will more gracefully support future model generalizations
by distinguishing between core features and assumption vari-
ants.

A key area of improvement addressed by the canonical
amoebot model is concurrency. The original model treats
concurrency at a high level, implicitly assuming an isola-
tion property that prohibits concurrent amoebot actions from
interfering with each other. Furthermore, amoebots are usu-
ally assumed to be reliable; i.e., they cannot crash or exhibit
Byzantine behavior. Under these simplifying assumptions,
most existing algorithms are analyzed for correctness and
runtime as if they are executed sequentially, with at most
one amoebot acting at a time. Notable exceptions include the
recent work of Di Luna et al. [30–32] and Nokhanji and San-
toro [43] that adopt ideas from the “look-compute-move”
paradigm used in autonomous mobile robots to bring the
amoebot model closer to a realistic, concurrent setting. Our
canonical amoebot model furthers these efforts by formal-
izing all communication and cooperation between amoebots
as message passing while also addressing the complexity
of potential conflicts caused by amoebot movements. This
careful formalization allows us to use standard adversarial
activation models from the distributed computing literature
to describe concurrency [1].

This fine-grained treatment of concurrency in the canoni-
cal amoebot model lays the foundation for the design and
analysis of concurrent amoebot algorithms. Concurrency
adds significant design complexity, allowing concurrent
amoebot actions to mutually interfere, conflict, affect out-
comes, or fail in ways far beyond what is possible in the
sequential setting. As a tool for controlling concurrency, we
introduce a Lock operation in the canonical amoebot model
enabling amoebots to attempt to gain exclusive access to their
neighborhood.

We then take two complementary approaches to concur-
rent amoebot algorithmdesign: a direct approach that embeds
concurrency control directly into the algorithm’s designwith-
out requiring locks, and an indirect approach that relies
on the Lock operation to mitigate issues of concurrency.

In the first approach, we establish a set of general suffi-
cient conditions for amoebot algorithm correctness under
any adversary—sequential or asynchronous, fair or unfair—
using the hexagon formation problem (see, e.g., [20,25]) as
a case study. Our Hexagon-Formation algorithm demon-
strates that locks are not necessary for correctness even under
an unfair, asynchronous adversary. However, this algorithm’s
asynchronous correctness relies critically on its actions suc-
ceeding despite any concurrent action executions, whichmay
be a difficult property to obtain in general.

For our second approach, we present a concurrency con-
trol framework using the Lock operation that, given an
amoebot algorithm that terminates under any sequential exe-
cution and satisfies some basic conventions, produces an
algorithm that exhibits equivalent behavior under any asyn-
chronous execution. This framework establishes a general
design paradigm for concurrent amoebot algorithms: one
can first design an algorithm with correct behavior in the
simpler sequential setting and then, by ensuring it satisfies
our framework’s conventions, automatically obtain a correct
algorithm for the asynchronous setting. The convenience of
this approach comes at the cost of limiting the full gener-
ality of the canonical amoebot model to comply with the
framework’s conventions. Nevertheless, we prove that the
Hexagon-Formation algorithm satisfies these conventions
and thus is compatible with the framework.

Our Contributions. We summarize our contributions as fol-
lows.

• The canonical amoebot model, an updated formalization
that treats amoebot actions at the fine-grained level of
message passing and distinguishes between core model
features and hierarchies of assumption variants (Sect. 2).

• General sufficient conditions for amoebot algorithm cor-
rectness under any adversary and an algorithm for
hexagon formation that satisfies these conditions (Sect. 3).

• A concurrency control framework that converts amoebot
algorithms that terminate under any sequential execu-
tion and satisfy certain conventions into algorithms that
exhibit equivalent behavior under any asynchronous exe-
cution (Sect. 4), and an application of this framework to
the algorithm for hexagon formation (Sect. 4.1).

Relationship to prior versions.This work improves over its
conference version published at DISC 2021 [21] in several
aspects. First, this work contains all details and proofs that
were omitted due to conference space constraints, including
the message passing implementations of amoebot opera-
tions. Second, whereas the original publication treated the
newly added Lock and Unlock operations as black boxes,
this work suggests a possible implementation based on the
recent algorithm for local mutual exclusion in dynamic
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networks [22]. Third, this work improves the usability of
the concurrency control framework. Of the three algorithm
conventions required for compatibility with the framework
in [21], the most difficult to understand and verify is mono-
tonicity. In fact, it was not known whether any amoebot
algorithm involving movement could satisfy monotonicity,
posing a serious limitation to the framework’s use. This
work replaces monotonicity with a more general and more
easily-understood convention, expansion-robustness, with-
out changing the framework’s guarantees. Finally, this work
proves that the algorithm for hexagon formation (Sect. 3) is
expansion-robust, thus identifying the first algorithm involv-
ing movement that is compatible with the concurrency con-
trol framework and resolving the previously open question.

1.1 Related work

There are many theoretical models of programmable mat-
ter, ranging from the non-spatial population protocols [3]
and network constructors [42] to the tile-based models of
DNA computing and molecular self-assembly [12,44,47].
Most closely related to the amoebot model studied in this
work is the well-established literature on autonomous mobile
robots, and in particular those using discrete, graph-based
models of space (see Chapter 1 of [35] for a recent overview).
Bothmodels assume anonymous individuals that can actively
move, lacking a global coordinate system or common orien-
tation, and having strictly limited computational and sensing
capabilities. In addition, stronger capabilities assumed by
the amoebot model also appear in more recent variants of
mobile robots, such as persistent memory in the F-state
model [4,36] and limited communication capabilities in lumi-
nous robots [15,16,29].

There are also key differences between the amoebotmodel
and the standard assumptions for mobile robots, particu-
larly around their treatment of physical space, the structure
of individuals’ actions, and concurrency. First, while the
discrete-space mobile robots literature abstractly envisions
robots as agents occupying nodes of a graph—allowing mul-
tiple robots to occupy the same node—the amoebot model
assumes physical exclusion that ensures each node is occu-
pied by at most one amoebot at a time, inspired by the
real constraints of self-organizing micro-robots and col-
loidal state machines [7,39–41,48,49]. Physical exclusion
introduces conflicts of movement (e.g., two amoebots con-
currently moving into the same space) that must be handled
carefully in algorithm design.

Second, mobile robots are assumed to operate in look-
compute-move cycles, where they take an instantaneous
snapshot of their surroundings (look), perform internal com-
putation based on the snapshot (compute), and finally move
to a neighboring node determined in the compute stage
(move). While it is reasonable to assume robots may instan-

taneously snapshot their surroundings due to all information
being visible, the amoebotmodel—and especially the canon-
ical version presented in this work—treats all inter-amoebot
communication as asynchronous message passing, making
snapshots nontrivial. Moreover, amoebots have read and
write operations allowing them to access or update variables
stored in the persistent memories of their neighbors that do
not fit cleanly within the look-compute-move paradigm.

Finally, the mobile robots literature has a well-established
and carefully studied hierarchy of adversarial schedulers
capturing assumptions on concurrency that the amoebot
model has historically lacked. In fact, other than notable
recent works that adapt look-compute-move cycles and a
semi-synchronous scheduler frommobile robots to the amoe-
bot model [30–32,43], most amoebot literature assumes only
sequential activations. A key contribution of our canonical
amoebot model presented in this work is a hierarchy of con-
currency and fairness assumptions similar in spirit to that
of mobile robots, though our underlying message passing
design and lack of explicit action structure require different
formalizations.

2 The canonical amoebot model

We introduce the canonical amoebot model as an update to
themodel’s original formulation [20,24]. This update has two
main goals. First, we model all amoebot actions and opera-
tions using message passing, leveraging this finer level of
granularity for a formal treatment of concurrency. Second,
we clearly delineate which assumptions are fixed features
of the model and which have stronger and weaker variants,
providing unifying terminology for future amoebot model
research. Unless variants are explicitly listed, the following
description of the canonical amoebot model details its core,
fixed assumptions. The variants are summarized in Table1;
we anticipate that this list will grow as future research devel-
ops new adaptations and generalizations of the model.

In the canonical amoebot model, programmable matter
consists of individual, homogeneous computational elements
called amoebots. The structure of an amoebot system is
represented as a subgraph of an infinite, undirected graph
G = (V , E) where V represents all relative positions an
amoebot can occupy and E represents all atomic movements
an amoebot can make. Each node in V can be occupied by
at most one amoebot at a time. There are many possible
representations of space; previous amoebot literature most
commonly assumes the geometric variant where G = G�,
the triangular lattice (Fig. 1a).

An amoebot has two shapes: contracted, meaning it
occupies a single node in V , or expanded, meaning it occu-
pies a pair of adjacent nodes in V (Fig. 1b). For a contracted
amoebot, the unique node it occupies is considered its head;
for an expanded amoebot, the node it has most recently come
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Table 1 Summary of assumption variants in the canonical amoebot model, each organized from most to least general

Variant Description

Space General∗ G is any infinite, undirected graph

Geometric∗,† G = G�, the triangular lattice

Orientation Assorted∗,† Assorted direction and chirality

Common Chirality∗ Assorted direction but common chirality

Common Direction Common direction but assorted chirality

Common Common direction and chirality

Memory Oblivious No persistent memory

Constant-Size∗,† Memory size is O(1)

Finite Memory size is O( f (n)), some function of the system size

Unbounded Memory size is unbounded

Concurrency Asynchronous† Any amoebots can be simultaneously active

Synchronous∗ Any amoebots can simultaneously execute a single action per discrete step. Each step has an
evaluation phase and an execution phase

k-Isolated No amoebots within hop distance k can be simultaneously active

Sequential∗ At most one amoebot is active per time

Fairness Unfair† Some enabled amoebot is eventually activated

Weakly Fair∗ Every continuously enabled amoebot is eventually activated

Strongly Fair Every amoebot enabled infinitely often is activated infinitely often

Variants marked with ∗ have been considered in existing literature, and variants marked with † are the focus of the algorithmic results in this work

Fig. 1 The Canonical Amoebot Model. a A section of the triangular
latticeG� used in the geometric variant; nodes of V are shown as black
circles and edges of E are shown as black lines. b Expanded and con-
tracted amoebots;G� is shown in gray, and amoebots are shownas black

circles. Amoebots with a black line between their nodes are expanded.
c Two amoebots that agree on their chirality but not on their direction,
using different offsets for their clockwise-increasing port labels

to occupy (due to movement) is considered its head and the
other is its tail. Each amoebot keeps a collection of ports—
one for each edge incident to the node(s) it occupies—that are
labeled consecutively according to its own local, persistent
orientation. For any space variant where G is a planar graph
(i.e., those that can be thought of as “two-dimensional”), an
amoebot’s orientation depends on its direction—i.e., which
incident edge it perceives as “north”—and its chirality, or
sense of clockwise and counter-clockwise rotation. Differ-
ent variants may assume that amoebots share one, both, or
neither of their directions and chiralities in common (see
Table1), Fig. 1c gives an example of the common chirality
variant where amoebots share a sense of clockwise rotation
but have different directions.

Two amoebots occupying adjacent nodes are said to be
neighbors. Although each amoebot is anonymous, lacking a
unique identifier, we assume an amoebot can locally identify
its neighbors using their port labels. In particular, we assume
that amoebots A and B connected via ports pA and pB each
know one another’s orientations and labels for pA and pB .
If A is expanded, we also assume B knows the direction A
is expanded in with respect to its own local direction, and
vice versa. This is sufficient for an amoebot to reconstruct
which adjacent nodes are occupied by the same neighbor and
to translate its local orientation into those of its neighbors,
but is not so strong so as to collapse the hierarchy of orien-
tation assumptions. More details on an amoebot’s anatomy
are given in Sect. 2.1.
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Table 2 Summary of operations exposed by an amoebot’s system layer to its application layer

Operation Return value on success

Connected(p) true iff a neighboring amoebot is connected via port p

Connected() [c0, . . . , ck−1] ∈ {N1, . . . , Nk , false}k where cp = Ni if Ni is the locally identified neighbor connected via port p and
cp = false otherwise

Read(p, x) The value of x in the public memory of this amoebot if p = ⊥ or of the neighbor incident to port p otherwise

Write(p, x, xval ) Confirmation that the value of x was updated to xval in the public memory of this amoebot if p = ⊥ or of the neighbor
incident to port p otherwise

Contract(v) Confirmation of the contraction out of node v ∈ {head, tail}
Expand(p) Confirmation of the expansion into the node incident to port p

Pull(p) Confirmation of the pull handover with the neighbor incident to port p

Push(p) Confirmation of the push handover with the neighbor incident to port p

Lock() Port labels corresponding to the amoebots that were locked

Unlock(L) Confirmation that the amoebots of L were unlocked

An amoebot’s functionality is partitioned between a
higher-level application layer and a lower-level system layer.
Algorithms controlling an amoebot’s behavior are designed
from the perspective of the application layer. The system
layer is responsible for an amoebot’s core functions and
exposes a limited programming interface of operations to
the application layer that can be used in amoebot algorithms.
The operations are defined in Sect. 2.2 and their organiza-
tion into algorithms is described in Sect. 2.3. Throughout,
we assume amoebots execute their algorithms reliably, with-
out crash or Byzantine faults.1 Although theoretical models
usually abstract away from a system layer, we describe it in
detail to justify the interface to the application layer since
amoebots are not a standard computing platform. In future
publications, one may abstract from the system layer and
focus only on the interface.

2.1 Amoebot anatomy

Each amoebot has memory whose size is a model variant; the
standard assumption is constant-sizememory. An amoebot’s
memory consists of two parts: a persistent public memory
that is read-writeable by the system layer but only accessible
to the application layer via communication operations (see
Sect. 2.2.1), and a volatile privatememory that is inaccessible
to the system layer but read-writable by the application layer.
The public memory of an amoebot A contains (i) the shape of
A, denoted A.shape ∈ {contracted, expanded}, (ii) the
lock state of A, denoted A.lock (see Sect. 2.2.3), and (iii)
any variables used in the algorithm being run by the appli-

1 As we discuss in Sect. 5, designing fault tolerant algorithms is an
important research direction for programmable matter. We leave the
formalization of different fault models under the canonical amoebot
model for future work.

cation layer. An amoebot’s private memory can be modified
by the application layer as needed.

Neighboring amoebots (i.e., those occupying adjacent
nodes) form connections via their ports facing each other.
An amoebot’s system layer receives instantaneous feedback
whenever a new connection is formed or an existing connec-
tion is broken.Communication between connected neighbors
is achieved via message passing. To facilitate message pass-
ing communication, each of an amoebot’s ports has a FIFO
outgoing message buffer managed by the system layer that
can store up to a fixed (constant) number ofmessages waiting
to be sent to the neighbor incident to the corresponding port.
If two neighbors disconnect due to some movement, their
system layers immediately flush the corresponding message
buffers of any pending messages. Otherwise, we assume that
any pending message is sent to the connected neighbor in
FIFO order in finite time. Incoming messages are processed
as they are received.

2.2 Amoebot operations

Operations provide the application layerwith a programming
interface for controlling the amoebot’s behavior; the appli-
cation layer calls operations and the system layer executes
them. We assume the execution of an operation is blocking
for the application layer; that is, the application layer can only
call one operation at a time. We formally define the commu-
nication, movement, and concurrency control operations and
their execution details in Sects. 2.2.1–2.2.3; see Table2 for
a summary and Appendix A for complete distributed pseu-
docode. As we will show in Sect. 2.2.4, each operation is
carefully designed so that any operation execution terminates
in finite time (Observation1) and, at any time, there are at
most a constant number of messages being sent or received
between any pair of neighboring amoebots as a result of any
set of concurrent operation executions (Observation2). Com-
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Fig. 2 Different neighborhood configurations for an amoebot A and their corresponding Connected() return values. The ports of A are shown
with their labels and neighboring amoebots are shown with their local identifiers according to A

Fig. 3 Execution flows of the Read and Write operations for the calling amoebot A

bined with the blocking and reliability assumptions, these
design principles prohibit outgoing message buffer overflow
and deadlocks in operation executions.

2.2.1 Communication operations

An amoebot checks for the presence of neighbors using the
Connected operations and exchanges information with its
neighbors using the Read and Write operations. When the
application layer callsConnected(p), the system layer sim-
ply returns true if there is a neighbor connected via port p
and false otherwise. The application layer may instead call
Connected() to obtain a full snapshot of its current port
connectivity. Specifically, the system layer returns an array
[c0, . . . , ck−1] mapping the amoebot’s k ports to local iden-
tifiers for its neighbors, of which there can be at most k. If
there is no neighbor connected via port p, then cp = false;
otherwise, cp = Ni where Ni ∈ {N1, . . . , Nk} locally iden-
tifies the neighbor connected via port p (see Fig. 2). Note
that, depending on amoebots’ shapes and the geometry of
the space variant, multiple ports may connect to the same
neighbor Ni .

The application layer calls Read(p, x) to issue a request
to read the value of a variable x in the public memory of the
neighbor connected via port p. Analogously, the application
layer callsWrite(p, x, xval) to issue a request to update the

value of a variable x in the public memory of the neighbor
connected via port p to a new value xval . If p = ⊥, an amoe-
bot’s own public memory is accessed instead of a neighbor’s.

Suppose that the application layer of an amoebot A calls
Read(p, x), illustrated in Fig. 3a. If p = ⊥, the system layer
simply returns the value of x in the publicmemory of A to the
application layer and thisRead succeeds.Otherwise, the sys-
tem layer checks if there is a neighbor connected via port p:
if so, the system layer enqueues m = read_request(x)
in the message buffer on p; otherwise, this Read fails. Let
B be the neighbor connected to A via port p and let p′ be
its corresponding port. Eventually, m is sent in FIFO order
and the system layer of B receives it, prompting it to access
variable x with value xval in its public memory and enqueue
m′ = read_ack(x, xval) in the message buffer on p′. Mes-
sage m′ is eventually sent in FIFO order by B and received
by the system layer of A, prompting it to unpack xval and
return it to the application layer, successfully completing this
Read. If A and B are disconnected (i.e., due to a movement)
any time after A enqueues message m but before A receives
message m′, this Read fails.

A Write(p, x, xval) operation is executed analogously,
though it does not need to wait for an acknowledgement after
its write request is sent (see Fig. 3b).
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Fig. 4 Execution flows of the movement operations for the calling amoebot A

2.2.2 Movement operations

The application layer can direct the system layer to initiate
movements using the four movement operations Contract,
Expand, Pull, and Push. An expanded amoebot can
Contract into either node it occupies; a contracted amoebot
can Expand into an unoccupied adjacent node. Neighboring
amoebots can coordinate their movements in a handover,
which can occur in one of two ways. A contracted amoebot
A can Push an expanded neighbor B by expanding into a

node occupied by B, forcing it to contract. Alternatively,
an expanded amoebot B can Pull a contracted neighbor
A by contracting, forcing A to expand into the node it is
vacating.

Contract. Suppose that the application layer of an amoe-
bot A calls Contract(v), where v ∈ {head, tail} (see
Fig. 4a). The system layer of A first determines if this con-
traction is valid: if A.shape �= expanded or A is currently
involved in a handover, this Contract fails. Otherwise, the
system layer releases all connections to neighboring amoe-
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bots via ports on node v and begins contracting out of node
v. Once the contraction completes, the system layer updates
A.shape ← contracted, successfully completing this
Contract.

Expand. Suppose an amoebot A calls Expand(p) for one of
its ports p (see Fig. 4b); let vp denote the node A is expand-
ing into. If A.shape �= contracted, A is already involved
in a handover, or vp is already occupied by another amoebot,
this Expand fails. Otherwise, A begins its expansion into
node vp. Once this expansion completes, the system layer
establishes connections with all neighbors adjacent to vp and
updates A.shape ← expanded, successfully completing
this Expand. However, A may collide with other amoebots
while expanding into vp. We assume that the system layer
can detect when a collision has occurred and, on collision,
performs contention resolution such that exactly one con-
tending amoebot succeeds in completing its expansion into
vp while all others fail within finite time. We abstract away
from the details of this contention resolution mechanism for
the sake of clarity, but give one possible implementation in
Appendix B to demonstrate its feasibility.

Pull and Push. Suppose an amoebot A calls Pull(p) for one
of its ports p (see Fig. 4c); let vp denote the node A intends
to vacate in this pull handover. If A.shape �= expanded,
A is already involved in a handover, or A is not connected to
a neighbor via port p, this Pull fails. Otherwise, the system
layer of A enqueues m = pull_request() in the mes-
sage buffer on port p. Let B be the neighbor connected to
A via port p. Eventually, message m is sent in FIFO order
and the system layer of B receives it. If B is not involved in
another movement and B.shape = contracted, its sys-
tem layer prepares message m′ = pull_ack(); otherwise,
it sets m′ = pull_nack(). In either case, the system layer
of B enqueuesm′ in themessage buffer on its port facing A. If
A and B are disconnected any time after A enqueuesmessage
m but before A receives message m′, this Pull fails; other-
wise, message m′ is eventually sent in FIFO order by B and
received by the system layer of A. If m′ = pull_nack(),
this Pull fails. Otherwise, if m′ = pull_ack(), A discon-
nects from all ports on node vp (except for p) and A and B
begin their coordinated handover of node vp. When A com-
pletes its contraction, it updates A.shape ← contracted;
analogously, when B completes its expansion, it updates
B.shape ← expanded and establishes connections to its
new neighbors adjacent to node vp. This successfully com-
pletes this Pull.

APush(p)operation is executed analogously (seeFig. 4d).

2.2.3 Concurrency control operations

The amoebot model’s concurrency control operations Lock
and Unlock encapsulate a variant of the classical mutual

exclusion problem in which an amoebot attempts to gain
exclusive control over itself and the amoebots in its neighbor-
hood. Achieving this behavior in the system layer’s setting of
asynchronous message passing with dynamic neighbor con-
nections is non-trivial. Daymude et al. recently solved this
problem in their algorithm for “local mutual exclusion” [22]
where nodes in a dynamic graph seek to acquire exclusive
locks over themselves and their “persistent” neighbors, i.e.,
nodes that remain connected to them over the time inter-
val of the lock request. Here, we focus on the properties
that Lock and Unlock must satisfy and refer the interested
reader to [22] for one possible implementation.

Each amoebot A stores a variable A.lock ∈ {⊥,−1,
. . . ,� − 1}, where � is the maximum number of neighbors
an amoebot can have based on the assumed space variant,
that is equal to ⊥ if A is unlocked, −1 if A has locked itself,
and i ∈ {0, . . . ,� − 1} if A is locked by its neighbor con-
nected via port i . An amoebot A calls Lock() to issue a lock
request to itself and the neighbors it has at the start of this
execution. To succeed, this Lock operation must lock A and
every persistent neighbor of A that remained connected to
A throughout its Lock execution, setting their lock vari-
ables accordingly. On success, the Lock operation returns
the lock set L of port labels corresponding to the amoebots
A has locked. We assume that a Lock operation either suc-
ceeds or fails in finite time. An amoebot calls Unlock(L′)
to release its locks on itself or any neighbors connected via
port labels in L′, resetting their lock variables to ⊥; this
operation always succeeds.

Any implementation of these operations must ensure that
any set of Lock andUnlock executions satisfies: (i)mutual
exclusion, meaning that the amoebots’ lock sets must be dis-
joint at all times, and (ii) deadlock freedom, meaning that
if a Lock operation is initiated at time t , then some Lock
execution succeeds after time t . The local mutual exclusion
algorithm of [22] satisfies both of these properties; in fact, it
even satisfies the stronger property of lockout freedom, guar-
anteeing that every Lock execution eventually succeeds.

2.2.4 Operation time and space complexity

With the communication, movement, and concurrency con-
trol operations defined, we now briefly characterize their
time and space complexity. Recall that we assume amoe-
bots execute reliably, without crash or Byzantine faults. The
Connected operations are effectively instantaneous as the
system layer has immediate access to the physical informa-
tion about its port connectivity;moreover, these operations do
not involve any messages. The complexity of the Lock and
Unlock operations depend on their implementation; e.g.,
the local mutual exclusion algorithm of [22] guarantees ter-
mination in finite time and that at most two messages are
in transit between any pair of neighbors at any time. For the
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remaining operations, recall from Sects. 2.1 and 2.2.2 that we
assume (i) messages pending in an outgoing message buffer
are each sent to the connected neighbor in FIFOorder in finite
time and are immediately flushed on disconnection, and (ii)
every physical movement completes in finite time. We first
consider the execution of each operation independently.

• A Read operation by an amoebot A from its own public
memory is immediate and does not involve anymessages.
If instead A reads from the public memory of a neighbor
B, at most two messages are used—a read_request
sent from A to B followedbyaread_ack sent from B to
A—that are each delivered in finite time by (i). Successful
termination occurs when A receives read_ack while
a disconnection between A and B results in immediate
failure with any related messages being flushed.

• A Write operation by an amoebot A to its own public
memory is immediate and does not involve anymessages.
If instead Awrites to the public memory of a neighbor B,
one message is used: a write_request sent from A
to B that is delivered in finite time by (i). Successful ter-
mination occurs when A sends write_requestwhile
a disconnection between A and B results in immediate
failure with any related messages being flushed.

• A Contract operation does not involve any messages.
It either fails at its start or succeeds after releasing its
connections and completing its contraction, which must
occur in finite time by (ii).

• An Expand operation does not involve any messages. It
either fails at its start or is able to begin its expansion.
If there are no collisions, (ii) guarantees the expansion
completes in finite time; otherwise, the contention reso-
lutionmechanism guarantees that exactly one contending
amoebot succeeds while all others fail within finite time.

• A Pull operation by an amoebot A with a neighbor B
involves atmost twomessages—apush_request sent
from A to B and either a push_ack or a push_nack
sent from B to A—that are delivered in finite time by (i).
The contraction of A and expansion of B must complete
in finite time by (ii). Any failures can only happen earlier.

• A Push operation is symmetric to a Pull and thus satis-
fies the same properties.

This immediately reveals the following observation regard-
ing time complexity.

Observation 1 Any execution of an operation in the canon-
ical amoebot model terminates—either successfully or in
failure—in finite time.

By the blocking assumption, the application layer of each
amoebot can execute at most one operation per time. The
above discussion shows that each operation has at most one
message in transit per time. Thus, there can be at most two

messages in any outgoing message buffer at any time, e.g., in
the situation where an amoebot A is executing an operation
that involves sending amessagem1 to a neighbor Bwhile B is
concurrently executing an operation that requires A to send a
messagem2 back to B in response to some priormessage sent
from B. This yields the following observation, demonstrating
that constant-size buffers suffice to avoid overflow.

Observation 2 At any time, there are at most a constant
number of messages in transit (i.e., being sent or received)
between any pair of neighboring amoebots as a result of any
set of operation executions.

2.3 Amoebot actions, algorithms and executions

Following the message passing literature, we specify dis-
tributed algorithms in the amoebot model as sets of actions
to be executed by the application layer, each of the form:

〈label〉 : 〈guard〉 → 〈operations〉

An action’s label specifies its name. Its guard is a Boolean
predicate determining whether an amoebot A can execute it
based on the connected ports of A—i.e., which nodes adja-
cent to A are (un)occupied—and information from the public
memories of A and its neighbors. An action is enabled for an
amoebot A if its guard is true for A, and an amoebot is enabled
if it has at least one enabled action. An action’s operations
specify the finite sequence of operations and computation in
private memory to perform if this action is executed. The
control flow of this computation may optionally include ran-
domization to generate random values and error handling to
address any operation executions resulting in failure.

Each amoebot executes its own algorithm instance inde-
pendently and reliably, without crash or Byzantine faults.
An amoebot is said to be active if its application layer is exe-
cuting an action and is inactive otherwise. An amoebot can
begin executing an action if and only if it is inactive; i.e., an
amoebot can execute at most one action at a time. On becom-
ing active, an amoebot A first evaluates which of its actions
αi : gi → opsi are enabled. Since each guard gi is based
only on the connected ports of A and the public memories
of A and its neighbors, each gi can be evaluated using the
Connected and Read operations. If no action is enabled, A
returns to inactive; otherwise, A chooses an enabled action
αi and executes the operations and private computation spec-
ified by opsi . Recall from Sect. 2.2 that each operation is
guaranteed to terminate (either successfully or with a failure)
in finite time. Thus, since A is reliable and opsi consists of
a finite sequence of operations and finite computation, each
action execution is also guaranteed to terminate in finite time
after which A returns to inactive. An action execution fails
if any of its operations’ executions result in a failure that is
not addressed with error handling and succeeds otherwise.
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Fig. 5 Adversary concurrency variants. Amoebots are shown in rows and their actions over time are shown as colored boxes, subdivided into
operations (gradient of colors)

As is standard in the distributed computing literature (see,
e.g., [1]), we assume an adversary (or daemon) controls the
timing of amoebot activations, the choice of enabled actions
to execute, and the timing of action executions. The power of
an adversary is determined by its concurrency and fairness.
We distinguish between four concurrency variants: sequen-
tial, in which at most one amoebot can be active at a time
(Fig. 5a); k-isolated, in which no two amoebots occupying
nodes of G within hop distance k can be simultaneously
active, but any others can (Fig. 5b); synchronous, in which
time is discretized into “steps” and in each step any set
of amoebots can simultaneously execute one action each
(Fig. 5c); and asynchronous, in which any set of amoebots
can be simultaneously active (Fig. 5d). For synchronous con-
currency, we further assume that each step is partitioned
into an evaluation phase when all active amoebots evaluate
their guards followed by an execution phase when all active
amoebots with enabled actions execute the corresponding
operations. Fairness restricts how often the adversary must
activate enabled amoebots. We distinguish between three
fairness variants: strongly fair, in which every amoebot that
is enabled infinitely often is activated infinitely often;weakly
fair, in which every continuously enabled amoebot is eventu-
ally activated; andunfair, inwhich the adversarymay activate
any enabled amoebot. An algorithm execution is said to ter-
minate if eventually all amoebots are inactive and disabled;
note that since an amoebot can only become enabled based
on some other amoebot’s action, termination is permanent.

We evaluate an amoebot algorithm’s time complexity in
terms of rounds, which informally represent the time for the
slowest continuously enabled amoebot to execute a single
action. Let ti denote the time at which round i ∈ {0, 1, 2, . . .}
starts, where t0 = 0, and let Ei denote the set of amoebots

that are enabled or already executing an action at time ti .
Round i completes at the earliest time ti+1 > ti by which
every amoebot in Ei either completed an action execution or
became disabled at some time in (ti , ti+1]. Depending on the
adversary’s concurrency, action executions may span more
than one round.

In this paper, we focus on unfair sequential and asyn-
chronous adversaries. In the sequential setting, there is at
most one active amoebot per time; thus, its guard evalua-
tions and subsequent operation executions must be correct.
In the asynchronous setting, however, concurrent move-
ments and memory updates can cause discrepancies between
the adversary’s instantaneous view of enabled actions and
an amoebot’s real-time evaluation of its guards, potentially
allowing disabled actions to be executed or enabled actions to
be skipped. Moreover, concurrency can cause operations to
fail due to conflicts.We address these issues in twoways, jus-
tifying the formulation of algorithms in terms of actions: In
Sect. 3, we present an algorithm whose actions are carefully
designed to ensure correct execution under any adversary;
in Sect. 4, we present a concurrency control framework that
uses locks to ensure correct guard evaluation and operation
execution even in the asynchronous setting.

3 Asynchronous hexagon formation without
locks

We use the hexagon formation problem as a concrete case
study for algorithm design, pseudocode, and analysis in
the canonical amoebot model. Our Hexagon-Formation
algorithm (Algorithm1) assumes geometric space, assorted
orientation, and constant-size memory (Table1) and is for-
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Fig. 6 An example run of Hexagon-Formation with 19 amoebots. a
All amoebots are initially idle (black dots), with the exception of a
unique seed amoebot (large black dot). b Amoebots adjacent to the
seed become roots (gray circles), and followers form parent–child rela-

tionships (black arcs) with roots and other followers. c–f Roots traverse
the forming hexagon clockwise, becoming retired (black circles) when
reaching the position marked by the last retired amoebot

mulated in terms of actions as specified in Sect. 2.3. Our
analysis of Hexagon-Formation reveals a set of sufficient
conditions for any amoebot algorithm’s correctness under
an unfair asynchronous adversary: (i) correctness under an
unfair sequential adversary, (ii) enabled actions remaining
enabled despite concurrent action executions, and (iii) execu-
tions of enabled actions remaining successful and unaffected
by concurrent action executions. Any concurrent execution
of an algorithm satisfying (ii) and (iii) can be shown to
be serializable, which combined with sequential correctness
establishes correctness under an unfair asynchronous adver-
sary, themost general of all possible adversaries. Notably, we
prove that our Hexagon-Formation algorithm satisfies these
sufficient conditions without using locks, demonstrating that
while locks are useful tools for designing correct amoebot
algorithms under concurrent adversaries, they are not always
necessary.

The hexagon formation problem tasks an arbitrary, con-
nected system of initially contracted amoebots with forming
a regular hexagon (or as close to one as possible, given the
number of amoebots in the system). We assume that there is
a unique seed amoebot in the system and all other amoebots
are initially idle; note that the seed amoebot immediately col-
lapses the hierarchy of orientation assumptions since it can
impose its own local orientation on the rest of the system.

Following the sequential algorithm given by Derakhshandeh
et al. [20,25], the basic idea of ourHexagon-Formation algo-
rithm is to form a hexagon by extending a spiral of amoebots
counter-clockwise from the seed (see Fig. 6).

Algorithm 1 describes Hexagon-Formation in terms of
actions. In addition to the shape variable assumed by the
amoebot model, each amoebot A keeps variables A.state
∈ {seed, idle, follower, root, retired}, A.parent ∈
{null, 0, . . . , 9}, and A.dir ∈ {null, 0, . . . , 9} in pub-
lic memory. W.l.o.g., we assume that if multiple actions are
enabled for an amoebot, the enabled action with smallest
index is executed.2 In action guards, we use N (A) to denote
the neighbors of amoebot A and say that an amoebot A has
a tail-child B if B is connected to the tail of A via port
B.parent.

The amoebot system first self-organizes as a spanning for-
est rooted at the seed amoebot using their parent ports
(action α2). Follower amoebots follow their parents until
reaching the surface of retired amoebots that have already
found their place in the hexagon (actions α5 and α6). They
then become roots (action α1), traversing the surface of
retired amoebots clockwise (actions α4 and α5). Once they

2 Observe that any amoebot algorithm could directly implement this
assumption by replacing each guard gi of action αi with the guard
gi ∧ ∧i−1

j=1(¬g j ).
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connect to a retired amoebot’s dir port, they also retire
and set their dir port to the next position of the hexagon
(action α3). This process continues until all non-seed amoe-
bots retire, forming a hexagon.

We begin our analysis of the Hexagon-Formation algo-
rithm by showing it is correct under an unfair sequential
adversary. Although the related algorithm of Derakhshan-
deh et al. has already been analyzed in the sequential
setting [20,25], Hexagon-Formationmust be proved correct
with respect to its action formulation.

Lemma 3 Any unfair sequential execution of the Hexagon-
Formation algorithm terminates with the amoebot system
forming a hexagon.

Proof We first show that the system remains connected
throughout the execution. Recall that the amoebot system
is assumed to be initially connected. A disconnection can
only result from a movement, and in particular, a contrac-
tion. Expansions only enlarge the set of nodes occupied by the
system and handovers only change which amoebot occupies
the handover node, not the fact that the node remains occu-
pied. So it suffices to consider α6, the only action involving
a Contract operation. Action α6 only allows an expanded
follower or root amoebot to contract its tail if it has no idle
neighbors or neighbors pointing at its tail as their parent. The
onlyother possible tail neighbors are the seed, roots, or retired
amoebots; however, all of these neighbors are guaranteed to
be connected to the forming hexagon structure. Thus, the sys-
tem remains connected throughout the algorithm’s execution.

Now, suppose to the contrary that theHexagon-Formation
algorithm has terminated—i.e., no amoebot has an enabled
action—but the system does not form a hexagon. By inspec-
tion of action α3, the retired amoebots form a hexagon
extending counter-clockwise from the seed. Thus, for the
system to not form a hexagon, there must exist some amoe-
bot that is neither the seed nor retired.

First of all, there cannot be any idle amoebots remaining
in the system; in particular, we argue that so long as there are
idle amoebots in the system, there exists an idle amoebot for
whichα1 orα2 is enabled, and thus the algorithm cannot have
terminated. Suppose to the contrary that there are idle amoe-
bots in the system but none of them have non-idle neighbors,
yielding α1 and α2 disabled. Then the idle amoebots must be
disconnected from the rest of the system, since we assumed
that the system contains a unique seed amoebot initially, a
contradiction of connectivity. Thus, if the algorithm has ter-
minated, all idle amoebots must have already become roots
or followers.

For all root or follower amoebots to be disabled, we have
the following chain of observations:

(a) No follower can have a seed or retired neighbor; other-
wise, action α1 would be enabled for that follower.

(b) Since we have already established that there are no idle
amoebots in the system, there must not be a contracted
root occupying the next hexagon node; otherwise, action
α3 would be enabled for that root.

(c) Every contracted root amoebot must have its clockwise
traversal of the forming hexagon’s surface blocked by
another amoebot; otherwise, action α4 would be enabled
for some contracted root. Moreover, since there are no
followers on the hexagon’s surface by (a) and no con-
tracted root has yet reached the next hexagon node by (b),
each contracted root must be blocked by another root.

(d) By (c), there must exist at least one expanded root amoe-
bot A. Since actions α5 and α6 must be disabled for A
by supposition—and, again, there are no idle amoebots
remaining in the system—A must have one or more tail-
children that are all expanded.

(e) By the same argument, actions α5 and α6 can only be dis-
abled for the expanded tail-children of A if they also each
have at least one tail-child, all of which are expanded.

The chain of expanded tail-children established by (d) and
(e) cannot continue ad infinitum since the amoebot system
is finite. There must eventually exist an expanded root or
follower amoebot that either has a contracted tail-child or
no tail-children, enabling α5 or α6, respectively. In all cases,
we reach a contradiction: so long as the amoebot system
does not yet form a hexagon, there must exist an amoe-
bot with an enabled action. The execution of any enabled
action brings the system monotonically closer to forming a
hexagon: turning idle amoebots into followers, bringing fol-
lowers to the hexagon’s surface, turning followers into roots,
bringing roots closer to their final position, and finally turn-
ing roots into retired amoebots. Therefore, regardless of the
unfair sequential adversary’s choice of enabled amoebot to
activate, the system is guaranteed to reach and terminate in
a configuration forming a hexagon, as desired. �


We next consider unfair asynchronous executions, the
most general of all possible concurrency assumptions.
The Hexagon-Formation algorithm maintains the following
invariants:

(i) Thestatevariable of an amoebot A canonlybeupdated
by A itself. This follows from actions α1, α2, and α3.

(ii) Only follower amoebots have non-null parent vari-
ables. An idle amoebot sets its own parent variable
when it becomes a follower. While an amoebot A is a
follower, the only amoebot that can update A.parent
is the amoebot indicated by A.parent. Finally, when
a follower becomes a root, it updates its own parent
variable to null, after which its parent variable never
changes again. This follows from actions α1, α2, and α5.
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Algorithm 1 Hexagon-Formation for Amoebot A
1: α1 : (A.state ∈ {idle, follower}) ∧ (∃B ∈ N (A) : B.state ∈ {seed, retired}) →
2: Write(⊥,parent,null).
3: Write(⊥,state, root).
4: Write(⊥,dir,GetNextDircounter-clockwise). � See Algorithm2.
5: α2 : (A.state = idle) ∧ (∃B ∈ N (A) : B.state ∈ {follower, root}) →
6: Find a port p for which Connected(p) = true and Read(p,state) ∈ {follower, root}.
7: Write(⊥,parent, p).
8: Write(⊥,state, follower).
9: α3 : (A.shape = contracted) ∧ (A.state = root) ∧ (∀B ∈ N (A) : B.state �= idle)
10: ∧ (∃B ∈ N (A) : (B.state ∈ {seed, retired}) ∧ (B.dir is connected to A)) →
11: Write(⊥,dir,GetNextDirclockwise).
12: Write(⊥,state, retired).
13: α4 : (A.shape = contracted) ∧ (A.state = root) ∧ (the node adjacent to A.dir is empty) →
14: Let p ← Read(⊥,dir).
15: Expand(p).
16: α5 : (A.shape = expanded) ∧ (A.state ∈ {follower, root}) ∧ (∀B ∈ N (A) : B.state �= idle)
17: ∧ (A has a tail-child B : B.shape = contracted) →
18: if Read(⊥,state) = root then Write(⊥,dir,GetNextDircounter-clockwise).
19: Find a port p ∈ TailChildren s.t. Read(p,shape) = contracted. � See Algorithm2.
20: Let p′ be the label of the tail-child’s port that will be connected to p after the pull handover.
21: Write(p,parent, p′).
22: Pull(p).
23: α6 : (A.shape = expanded) ∧ (A.state ∈ {follower, root}) ∧ (∀B ∈ N (A) : B.state �= idle)
24: ∧ (A has no tail-children) →
25: if Read(⊥,state) = root then Write(⊥,dir,GetNextDircounter-clockwise).
26: Contract(tail).

Algorithm 2 Helper Functions for Hexagon-Formation
1: function GetNextDir(c) � c ∈ {clockwise, counter-clockwise}
2: Let p be any head port.
3: try:
4: while ¬Connected(p) ∨ (Read(p,state) /∈ {seed, retired}) do
5: p ← the next head port in orientation c.
6: catch disconnect-failure do p ← the next head port in orientation c; go to Step4.
7: try:
8: while Connected(p) ∧ (Read(p,state) ∈ {seed, retired}) do
9: p ← the next head port in orientation c.
10: catch disconnect-failure do p ← the next head port in orientation c; go to Step8.
11: return p.
12: function TailChildren( )
13: Let P ← ∅.
14: for each tail port p do
15: try:
16: if Connected(p) ∧ (Read(p,parent) points to A) then
17: P ← P ∪ {p}.
18: catch disconnect-failure do nothing.
19: return P .

(iii) Only root and retired amoebots have non-nulldir vari-
ables. The dir variable of an amoebot A can only be
updated by A itself. Once a dir variable is set by a
retired amoebot, it never changes again. This follows
from actions α1, α3, α5, and α6.

(iv) Seed, idle, and retired amoebots are always contracted
and never move. Moreover, seed and retired amoebots
never change their state.

(v) Theshape variable of a root or expanded follower A can
only be updated by a movement operation initiated by A
itself, while the shape variable of a contracted follower
A can only be updated by a Pull operation initiated by
the neighboring amoebot connected via A.parent. This
follows from actions α4, α5, and α6.
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(vi) No amoebot can disconnect from an idle neighbor.More-
over, a root will not change its state if it has an idle
neighbor. This follows from actions α3, α5, and α6.

(vii) Root amoebots traverse the surface of the forming
hexagon clockwise while follower amoebots are pulled
by their parents. This follows from actions α1, α4, α5,
and α6.

In general, asynchronous executions may cause amoe-
bots to incorrectly evaluate their action guards. Nevertheless,
in the following two lemmas, we show that Hexagon-
Formation has the key property that whenever an amoebot
thinks an action is enabled, it remains enabled and will
execute successfully, even when other actions are executed
concurrently.

Lemma 4 For any asynchronous execution of the Hexagon-
Formation algorithm, if an action αi is enabled for an
amoebot A, then αi stays enabled for A until A executes
an action.

Proof We use the invariants to prove the claim on an action-
by-action basis.

α1 : If A evaluates the guard of α1 as true, then it must
be an idle or follower amoebot with a seed or retired
neighbor. Invariant (i) ensures that A remains an idle
or follower amoebot, and Invariant (iv) ensures its seed
or retired neighbor does not move or change state.

α2 : If A evaluates the guard of α2 as true, then it must
be an idle amoebot with a follower or root neighbor.
Invariant (i) ensures that A remains an idle amoebot,
and Invariant (vi) ensures that its neighbors remain con-
nected to A while A is idle. A follower neighbor of A
can concurrently change its state to root by α1; how-
ever, a root neighbor of Awill not change its state while
A is idle by Invariant (vi).

α3 : If A evaluates the guard of α3 as true, then it must be
a contracted root with no idle neighbors and a seed or
retired neighbor that indicates that the node A occupies
is the next hexagon node. Invariants (i) and (v) ensure
that A remains a contracted root, Invariant (iv) ensures
that A cannot gain any idle neighbors, and Invariants
(iii) and (iv) ensure that the seed or retired neighbor
continues to indicate the node A occupies as the next
hexagon node.

α4 : If A evaluates the guard of α4 as true, then it must be a
contracted root with no neighbor connected via A.dir.
Invariants (i) and (v) ensure that A remains a contracted
root, and Invariant (vii) ensures that no amoebot but A
can move into the node adjacent to A.dir.

α5 : If A evaluates the guard of α5 as true, then it must be
an expanded follower or rootwith no idle neighbors and
some contracted tail-child. Invariants (i) and (v) ensure

that A remains an expanded follower or root, Invariant
(iv) ensures that A cannot gain any idle neighbors, and
Invariants (ii) and (v) ensure that any contracted tail-
child of A remains so.

α6 : If A evaluates the guard of α6 as true, then it must
be an expanded follower or root with no idle neighbors
and no tail-children. Invariants (i) and (v) ensure that
A remains an expanded follower or root, and Invariants
(ii) and (iv) ensure that A cannot gain any idle neighbors
or tail-children.

Therefore, any action that A evaluates as enabled must
remain enabled, as claimed. �

Lemma 5 For any asynchronous execution of the Hexagon-
Formation algorithm, any execution of an enabled action is
successful and unaffected by any concurrent action execu-
tions.

Proof We once again consider each action individually.

α1 : Action α1 first executes two Write operations to A’s
own public memory which cannot fail. It then executes
a helper function GetNextDir(counter-clockwise)
which involves a sequence of Connected and Read
operations.Connected operations always succeed, so
it suffices to consider the Read operations. While it
is possible that Read operations issued to follower or
root neighbors may fail if those neighbors disconnect,
these failures are caught by error handling and thus do
not cause the action to fail. Moreover, the criticalRead
operations issued to seed or retired neighbors that the
function depends on for calculating the correct direc-
tion must succeed by the guard of α1 and Lemma4.
Once this direction is computed, α1 then executes a
Write operation to A’s own memory which cannot
fail.

α2 : Action α2 first executes Connected and Read oper-
ations to find a follower or root neighbor. Such a
neighbor must exist and the corresponding Read oper-
ations must succeed by the guard of α2 and Lemma4.
Action α2 then executes two Write operations to A’s
own public memory which cannot fail.

α3 : Action α3 first executes helper function GetNextDir
(clockwise) which must succeed by an argument anal-
ogous to that of α1. Once this direction is computed,
α3 executes two Write operations to A’s own public
memory which cannot fail.

α4 : Action α4 executes an Expand operation toward port
A.dir which must succeed because A is contracted
and the node adjacent to A.dir must remain unoccu-
pied, as ensured by the guard of α4 and Lemma4.

α5 : Action α5 first executes a conditional based on a Read
operation issued to A’s own public memory which
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cannot fail. It then executes helper function Get-
NextDir(counter-clockwise) which must succeed by
an argument analogous to that of α1. The computed
direction is then used in aWrite operation to A’s own
public memory which cannot fail. Action α5 then exe-
cutes a helper function TailChildren() which, like
GetNextDir, involves Connected and Read oper-
ations. It must succeed for similar reasons: any failed
Read operations are caught by error handling, and the
critical Read operations issued to tail-children must
succeed by the guard of α5 and Lemma4. Once the
ports connected to tail-children are computed, Read
operations are executed to find a contracted tail-child
B which once again must succeed by the guard of α5

and Lemma4. Finally, α5 executes aWrite to the pub-
lic memory of B and performs a Pull handover with
B; both operations must succeed because B remains
connected to A and cannot be involved in another
movement by Invariant (v).

α6 : Action α6 first executes the same conditional operation
as α5 and thus succeeds for an analogous reason. It
then executes a singleContract operationwhichmust
succeed because A is expanded, as ensured by the guard
of α6 and Lemma4.

Therefore, any execution of an enabled action must be
successful and unaffected by concurrent action executions,
as claimed. �


We next show that the Hexagon-Formation algorithm is
serializable. We denote the execution of an action α by an
amoebot A in an execution of the algorithm as a pair (A, α).

Lemma 6 For any asynchronous execution of the Hexagon-
Formation algorithm, there exists a sequential ordering of
its action executions producing the same final configuration.

Proof Argue by induction on i , the number of action execu-
tions in the asynchronous execution ofHexagon-Formation.
Clearly, if i = 1, the asynchronous execution of a sin-
gle action is also a sequential execution, and we are
done. So suppose that any asynchronous execution of
Hexagon-Formation consisting of i ≥ 1 action executions
can be serialized, and consider any asynchronous execution
S consisting of i+1 action executions. Consider awall-clock
that marks the exact time that any amoebot A starts an action
execution (A, α); we emphasize that this wall-clock timing
is only used for this analysis and is never available to the
amoebots. Partially order the action executions (A, α) of S
according to their wall-clock start times. Let (A∗, α∗) be the
action execution with the latest activation time; if there are
multiple such executions because the asynchronous adver-
sary activatedmultiple amoebots simultaneously, choose any
such execution. If (A∗, α∗)was removed fromS to produce a

new asynchronous execution S−, we have by Lemmas4 and
5 that the remaining i action executions must still be enabled
and successful since all other action executions either termi-
nated before (A∗, α∗) was initiated or were concurrent with
it. By the induction hypothesis, there must exist a sequential
ordering of the i action executions in S− producing the same
final configuration as S−. Append (A∗, α∗) to the end of this
sequential execution to produce S∗, a sequential execution
of i + 1 action executions. Any actions that were concur-
rent with (A∗, α∗) in S have now terminated before (A∗, α∗)
in S∗. However, by Lemmas4 and 5, this does not change
the fact that α∗ is enabled for A∗ and its execution is suc-
cessful and produces the same outcome in S∗. Therefore, we
conclude that there exists a sequential ordering of the action
executions of S producing the same final configuration. �


Finally, we show that the Hexagon-Formation algorithm
is correct under an unfair asynchronous adversary.

Lemma 7 Anyunfair asynchronous executionof theHexagon-
Formation algorithm terminates with the amoebot system
forming a hexagon.

Proof First suppose to the contrary that there exists an asyn-
chronous execution of Hexagon-Formation that does not
terminate; i.e., there are an infinite number of executions of
enabled actions. By Lemmas4 and 5, any such action exe-
cution must succeed and do exactly what it would have in
a sequential execution where there are no other concurrent
action executions. But Lemma3 implies that there can only
be a finite number of successful action executions before no
amoebot has any enabled actions left, a contradiction. So all
asynchronous executions of Hexagon-Formation must ter-
minate.

Now suppose to the contrary that there exists an asyn-
chronous execution of Hexagon-Formation that has termi-
nated but the system does not form a hexagon. By Lemma6,
there must exist a sequential execution that also produces
this non-hexagon final configuration. However, this is a con-
tradiction of Lemma3 which states that every sequential
execution of Hexagon-Formation must terminate with the
system forming a hexagon. �


Our analysis culminates in the following theorem.

Theorem 8 Assuming geometric space, assorted orienta-
tions, and constant-size memory, the Hexagon-Formation
algorithm solves the hexagon formation problem under any
adversary.

Serializability and correctness under an asynchronous
adversary (Lemmas6 and 7) follow directly from Lem-
mas3–5, independent of the specific details of Hexagon-
Formation. Thus, Lemmas3–5 establish a set of general suf-
ficient conditions for amoebot algorithmcorrectness under an
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asynchronous adversary.We are optimistic that other existing
amoebot algorithms, once translated into action formula-
tions, will also satisfy these conditions.

4 A general framework for concurrency
control

In the sequential setting where only one amoebot is active
at a time, operation failures are necessarily the fault of the
algorithm designer: e.g., attempting to Read on a discon-
nected port, attempting to Expand when already expanded,
etc. Barring these design errors, it suffices to focus only on the
correctness of the algorithm—i.e., whether the algorithm’s
actions always produce the desired system behavior under
any sequential execution—notwhether the individual actions
themselves execute as intended. This is the focus of most
existing amoebot works [2,9,10,18,19,25–28,33,34,37].

Our present focus is on asynchronous executions, where
concurrent action executions can mutually interfere, affect
outcomes, and cause failures far beyond those of simple
designer negligence. Ensuring algorithm correctness in spite
of concurrency thus appears to be a significant burden for
the algorithm designer, especially for problems that are chal-
lenging even in the sequential setting due to the constraints of
constant-size memory, assorted orientation, and strictly local
interactions. What if there was a way to ensure that correct,
sequential amoebot algorithms could be lifted to the asyn-
chronous setting without sacrificing correctness? This would
give the best of both worlds: the relative ease in design from
the sequential setting and the correct execution in a more
realistic concurrent setting.

In this section, we introduce and rigorously analyze a
framework for transforming an algorithm A that works cor-
rectly for every sequential execution into an algorithm A′
that works correctly for every asynchronous execution. We
prove that our framework achieves this goal so long as the
original algorithms satisfy certain conventions. These con-
ventions limit the full generality of the amoebot model in
order to provide a common structure to the algorithms. In
Sect. 4.1, we define these conventions and prove that they
are satisfied by both the Hexagon-Formation algorithm of
Sect. 3 and a broad class of stationary amoebot algorithms.
This implies that these algorithms are immediately compati-
ble with our concurrency control framework, whichwe detail
in Sect. 4.2 and rigorously analyze in Sect. 4.3.

4.1 Algorithm conventions for concurrency control

The first convention requires that all actions of the given
algorithmare executed successfully under a sequential adver-
sary. For sequential executions, the system configuration is
defined as the mapping of amoebots to the node(s) they

occupy and the contents of each amoebot’s public mem-
ory. Certainly, this configuration is well-defined whenever
all amoebots are inactive, and we call a configuration legal
whenever the requirements of our amoebot model are met,
i.e., every position is occupied by at most one amoebot, each
amoebot is either contracted or expanded, itsshape variable
corresponds to its physical shape, and its lock variable cor-
responds to its lock state. Whenever we talk about a system
configuration in the following, we assume that it is legal.

Convention 1 (Validity) All actions α of an amoebot algo-
rithmA should be valid, i.e., for all system configurations in
which α is enabled for some amoebot A, the execution of α

by A should be successful whenever all other amoebots are
inactive.

The second convention defines a common structure for an
algorithm’s actions by controlling the order and number of
operations they perform. This structure is similar in spirit to
the look-compute-move paradigm used in the mobile robots
literature (see, e.g., [35]), though the canonical amoebot
model’s underlying message passing communication adds
additional complexity. Moreover, the instantaneous snapshot
performed in the mobile robots’ look phase is not trivially
realizable by amoebots whose public memories are included
in neighborhood configurations (Sect. 1.1).

Convention 2 (Phase Structure) Each action of an amoe-
bot algorithm A should structure its operations as: (1) a
compute phase, during which an amoebot performs a finite
amount of computation and a finite sequence ofConnected,
Read, andWrite operations, and (2) a move phase, during
which an amoebot performs at most one movement operation
decided upon in the compute phase. In particular, no action
should use Lock or Unlock operations.

The third and final convention, expansion-robustness,
allows us to map asynchronous executions of algorithms
produced by the concurrency control framework to related
sequential executions. A key challenge in achieving this
mapping for concurrent executions of amoebot algorithms is
the possibility of one or more amoebots expanding into the
neighborhood of an amoebot A that has already started exe-
cuting an action of its own. These newly expanded neighbors
were not present when A evaluated its action guard, and thus
may cause the execution to exhibit different behavior than in
the sequential setting—or worse, fail altogether. Informally,
an expansion-robust algorithm is ambivalent to these concur-
rent expansions, guaranteeing correct behavior regardless.

Formally, letA be any amoebot algorithm satisfying Con-
ventions1 and 2 and consider its expansion-robust variant
AE defined as follows. Each amoebot A executingAE addi-
tionally stores in public memory expand flags A.flagp ∈
{true, false} for each of its ports p that are initially
set to false. These expand flags communicate when an
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Algorithm 3 Expansion-Robust Variant AE of Algorithm A for Amoebot A
Input: Algorithm A = {[αi : gi → opsi ] : i ∈ {1, . . . ,m}} satisfying Conventions1 and 2.

1: Set αE
0 : (∃ port p of A : A.flagp = true) → Write(⊥,flagp, false).

2: for each action [αi : gi → opsi ] ∈ A do
3: Set gEi ← gi with N (A) replaced by NE (A) and connections defined w.r.t. NE (A).
4: Set opsEi ← “Do:

5: for each port p of A do Write(⊥,flagp, false). � Reset own expand flags.

6: for each unique neighbor B ∈ Connected() do � Reset neighbor’s expand flags.
7: for each port p of B do Write(B,flagp, false).

8: Execute each operation of opsi with connections defined w.r.t. NE (A).
9: if a Pull or Push operation was executed with neighbor B then
10: for each new port p of A not connected to B do Write(⊥,flagp, true).

11: for each new port p of B not connected to A do Write(B,flagp, true).

12: else if an Expand operation was successfully executed then
13: for each new port p of A do Write(⊥,flagp, true).

14: else if an Expand operation failed in its execution then undo opsi .”
15: return AE = {[αE

i : gEi → opsEi ] : i ∈ {0, . . . ,m}}.

amoebot has newly expanded into another amoebot’s neigh-
borhood. Each action αi : gi → opsi in A translates
to an action αE

i : gEi → opsEi in AE , as detailed in
Algorithm3.3 The main difference is that while an amoe-
bot A executes actions with respect to its full neighborhood
N (A) in algorithm A, it does so only with respect to
its established neighborhood N E (A) = {B ∈ N (A) :
∃ port p of B connected to A s.t. B.flagp = false} in
algorithmAE , effectively ignoring its newly expandedneigh-
bors until its next action execution. The expansion-robustness
convention can now be stated as follows:

Convention 3 (Expansion-Robustness) An amoebot algo-
rithm A should be expansion-robust, meaning that for any
(legal) initial system configuration C0 of A, the following
conditions hold:

1. Termination. If all sequential executions ofA starting in
C0 terminate, all sequential executions ofAE starting in
CE
0 (i.e., C0 with all false expand flags) also terminate.

2. Correctness. If some sequential execution ofAE starting
in CE

0 terminates in a configuration CE , there exists a
sequential execution of A starting in C0 that terminates
in C (i.e., CE without expand flags).

It is worth emphasizing that AE is simply a useful arti-
fact for formalizing expansion-robustness and, as such, we
are only interested in its behavior in the sequential setting.
Several operations in AE , such as the “undo” on Line 14 of
Algorithm3,may not even be possible in a concurrent setting,
but this is inconsequential for our purposes.

3 For the sake of clarity and brevity, we abuse Connected, Read,
and Write notation slightly by referring directly to the neighboring
amoebots and not to the ports which they are connected to.

We now demonstrate that Conventions1–3 are not too
limiting; i.e., there do exist algorithms that satisfy these
conventions and thus are compatible with our concurrency
control framework. Of the three conventions, expansion-
robustness (Convention3) is the most technically difficult
to verify. However, stationary amoebot algorithms A—
i.e., those that do not perform any movement operations,
including many of the existing algorithms for leader elec-
tion [5,19,28,32,37] and the recent algorithm for energy
distribution [23]—are trivially expansion-robust since no
amoebot ever moves and thus A and AE are identical.

Observation 9 Any stationary amoebot algorithm satisfies
Convention 3.

In the conference version of this work [21], it remained
an open question whether any amoebot algorithm involv-
ing movement satisfied all three conventions. By replacing
the prior version’s monotonicity convention with expansion-
robustness, we identify the Hexagon-Formation algorithm
of Sect. 3 as such an algorithm.

Theorem 10 The Hexagon-Formation algorithm satisfies
Conventions 1–3.

Proof It is easy to verify that Hexagon-Formation satis-
fies Conventions1 and 2 by inspection. Hence, it remains
to show Hexagon-Formation is expansion-robust (Conven-
tion3). To prove correctness, we will show that when-
ever an action αE

i ∈ Hexagon-FormationE (other than
αE
0 ) is enabled for an amoebot A w.r.t. NE (A), action

αi ∈ Hexagon-Formation is enabled for A w.r.t. N (A).
Moreover, we show that the executions of αi and αE

i by
A are identical except for the handling of expand flags.
This immediately implies that every sequential execution
of Hexagon-FormationE represents an identical sequential
execution of Hexagon-Formation (after removing the execu-
tions of αE

0 ), proving correctness. Observe that expand flags
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are only set to true in Hexagon-FormationE as a result of
an Expand, Pull, or Push operation, which are specific to
αE
4 and αE

5 ; thus, we need only focus on amoebots executing
these actions.

Suppose a contracted root amoebot A executes αE
4 ,

expanding towards A.dir along the surface of the forming
hexagon into the neighborhood of another amoebot B it was
not already connected to. If B is a root, then it can be easily
verified by inspecting the guards and operations ofα3,α4,α5,
and α6 that A—which must be “behind” B in the clockwise
traversal of the hexagon’s surface—has no bearing on which
actions are enabled for B nor on their execution. If B is a
follower, then its parent must be some amoebot other than
A because A only just became its neighbor. Thus, in either
of these cases, the fact that A ∈ N (B) \ NE (B) is inconse-
quential. Finally, if B is idle, then A /∈ NE (B) prohibits B
from choosing A as its parent in αE

2 while the same choice
is allowed in α2. If B chooses some amoebot C �= A as its
parent while executing αE

2 , then certainly an execution of α2

by B in the same configuration could have made the same
choice. Otherwise, if A is the only neighbor of B, then we
know αE

0 is continuously enabled for A while A /∈ NE (B).
Amoebot A cannot disconnect from B while B is idle by the
guards of α3, α5, and α6, so eventually an execution of αE

0
resets the expand flags of A, allowing B to choose A as its
parent just as in its corresponding execution of α2.

Now suppose an expanded follower or root amoebot A
executes αE

5 , pulling some follower tail-child B in a han-
dover. Consider any new port p of B for which B.flagp =
true after this handover occurs. If there is no neighboring
amoebot connected to port p, then only a contracted root
could expand into that position, as already covered in the
analysis of αE

4 . So suppose that an amoebot C is connected
to B via port p. The guard of α5 would have prohibited A
from performing the pull handover with B if A had any idle
neighbors, so C cannot be idle. Inspection of the guards and
operations of actions α1, α5, and α6 show that C is irrele-
vant to B if C is a root. So it remains to consider if C is
a follower. If C .parent points to any node other than the
new head of B, then B ∈ N (C) \ NE (C) is inconsequen-
tial to C . Otherwise, if C .parent refers to the new head of
B, the fact that B /∈ NE (C) is once again inconsequential
to C because children never initiate interactions with their
parents. Therefore, in all cases, the correctness condition of
expansion-robustness follows.

To prove termination, suppose to the contrary that there
exists a sequential execution SE of Hexagon-FormationE

starting in a legal initial configuration CE
0 that contains an

infinite number of action executions. By our correctness
analysis, we know that SE must correspond to an identi-
cal sequential execution S of Hexagon-Formation, modulo
executions of αE

0 . In Sect. 3, we proved that all sequential
executions of Hexagon-Formation, S included, must termi-

nate (Lemma3). Thus,SE must contain an infinite number of
executions of αE

0 . But this is impossible, as there are a finite
number of amoebots and each of them has a finite number
of expand flags to reset with αE

0 , a contradiction. Thus, the
termination condition is satisfied, and Hexagon-Formation
is expansion-robust. �


With thevalidity, phase structure, and expansion-robustness
conventions established, we now turn to the description and
analysis of the concurrency control framework.

4.2 The concurrency control framework

Our concurrency control framework (Algorithm4) takes as
input any amoebot algorithm A = {[αi : gi → opsi ] : i ∈
{1, . . . ,m}} satisfying Conventions1–3 and produces a cor-
responding algorithm A′ = {[α′ : g′ → ops′]} composed
of a single action α′. The core idea of our framework is to
carefully incorporate locks in α′ as a wrapper around the
actions of A, ensuring that A′ only produces outcomes in
concurrent settings that A can produce in the sequential set-
ting. With locks, action guards that in general can only be
evaluated reliably in the sequential setting can now also be
evaluated reliably in concurrent settings.

To avoid any deadlocks that lockingmay cause, our frame-
work adds an activity bit variable A.act ∈ {true, false}
to the public memory of each amoebot A indicating if any
changes have occurred in the memory or neighborhood of
A since it last attempted to execute an action. The single
action α′ of A′ has guard g′ = (A.act = true), ensuring
that α′ is only enabled for an amoebot A if changes in its
memory or neighborhood may have caused some actions of
A to become enabled. As will become clear in the presenta-
tion of the framework,Write andmovement operations may
enable actions of A not only for the neighbors of the acting
amoebot, but also for the neighbors of those neighbors (i.e.,
in the 2-neighborhood of the acting amoebot). The acting
amoebot cannot directly update the activity bits of amoe-
bots in its 2-neighborhood, so it instead sets its neighbors’
awaken bits A.awaken ∈ {true, false} to indicate that
they should update their neighbors’ activity bits in their next
action. Initially, A.act = true and A.awaken = false
for all amoebots A.

Algorithm A′ only contains one action α′ : g′ → ops′
where g′ requires that an amoebot’s activity bit is set to
true (Step 1). If α′ is enabled for an amoebot A, A first
attempts to Lock itself and its persistent neighbors (Step
2). Given that it locks successfully, there are two cases. If
A.awaken = true, then some amoebot must have previ-
ously changed the neighborhood of A without being able to
update the corresponding neighbors’ activity bits (Steps 14,
17, 24, or 28). So A updates the intended activity bits to true,
resets A.awaken, releases its locks, and aborts (Steps 4–6).
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Algorithm 4 Concurrency Control Framework for Amoebot A
Input: Algorithm A = {[αi : gi → opsi ] : i ∈ {1, . . . ,m}} satisfying Conventions1–3.

1: Set g′ ← (A.act = true) and ops′ ← “Do:
2: try: Set L ← Lock() to attempt to lock A and its persistent neighbors.
3: catch lock-failure do abort.
4: if Read(⊥,awaken) = true then
5: for all amoebots B ∈ L do Write(B,act, true).
6: Write(⊥,awaken, false), Unlock(L), and abort.
7: for all actions [αi : gi → opsi ] ∈ A do
8: Perform Connected and Read operations to evaluate guard gi w.r.t. L.
9: Evaluate gi in private memory to determine if αi is enabled.
10: if no action is enabled then Write(⊥,act, false), Unlock(L), and abort.
11: Choose an enabled action αi ∈ A and perform its compute phase in private memory.
12: Let Wi be the set of Write operations and Mi be the movement operation in opsi based on its compute phase; set Mi ← null if there is

none.
13: if Mi is Expand (say, from node u into node v) then
14: try: Perform the Expand operation andWrite(⊥,awaken, true).
15: catch expand-failure do Unlock(L) and abort.
16: for all amoebots B ∈ L do Write(B,act, true).
17: for all Write(B, x, xval ) ∈ Wi do Write(B, x, xval ) and Write(B,awaken, true).
18: if Mi is null or Expand then Unlock(L).
19: else if Mi is Contract (say, from nodes u, v into node u) then
20: Unlock each amoebot in L that is adjacent to node v but not to node u.
21: Perform the Contract operation.
22: Unlock each remaining amoebot in L.
23: else if Mi is Push (say, A is pushing B) then
24: Write(⊥,awaken, true) and Write(B,awaken, true).
25: Perform the Push operation.
26: Unlock(L).
27: else if Mi is Pull (say, A in nodes u, v is pulling B into node v) then
28: Write(B,awaken, true).
29: Unlock each amoebot in L (except B) that is adjacent to node v but not to node u.
30: Perform the Pull operation.
31: Unlock each remaining amoebot in L.”
32: return A′ = {[α′ : g′ → ops′]}.

Otherwise, A obtains the necessary information to evaluate
the guards of all actions in algorithm A (Steps 7–9). If no
action ofA is enabled for A, A sets A.act to false, releases
its locks, and aborts; this disables α′ for A until some future
change occurs in its neighborhood (Step 10). Otherwise, A
chooses any enabled action and executes its compute phase
in private memory (Step 11) to determine whichWrite and
movement operations, if any, it wants to perform (Step 12).

Before enacting these operations (thereby updating the
system’s configuration) amoebot A must be certain that no
operation of α′ will fail. It has already passed its first point
of failure: the Lock operation in Step 2. But the Expand
operation of α′ may also fail if it conflicts with some other
concurrent expansion (Step 14). In either case, A handles
the failure, releases any locks it obtained (if any), and aborts
(Steps 3 and 15). As we will show in Lemma13, these are
the only two operations of α′ that can fail. Provided neither
of these failures occur, A can now perform operations that—
without locks on its neighbors—could otherwise interfere
with its neighbors’ actions or be difficult to undo. This begins
with A setting the activity bits of all its locked neighbors to

true since it is about to cause activity in its neighborhood
(Step 16). It then enacts the Write operations it decided
on during its computation, writing updates to its own public
memory and the public memories of its neighbors. Since
writes to its neighbors can change what amoebots in its 2-
neighborhood see, it must also set the awaken bits of the
neighbors it writes to to true (Step 17).

The remainder of the framework handles movements and
releases locks. If A did not want to move or it intended to
Expand—which, recall, it already did in Step 14—it can
simply release all its locks (Step 18). If A wants to contract,
it must first release its locks on the neighbors it is contract-
ing away from; it can then Contract and, once contracted,
release its remaining locks (Step 20–22). If A wants to per-
formaPushhandover, it does so and then releases all its locks
(Steps 24–26). Finally, pull handovers are handled similarly
to contractions: A first releases its locks on the neighbors it is
disconnecting from; it can then Pull and, once contracted,
release its remaining locks (Steps 28–31).
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4.3 Analysis

In this section, we prove the following result regarding the
concurrency control framework.

Theorem 11 Let A be any amoebot algorithm satisfying
Conventions 1–3 andA′ be the amoebot algorithm produced
fromA by the concurrency control framework (Algorithm 4).
Let C0 be any (legal) initial system configuration for A and
let C ′

0 be its extension for A′ that adds A.act = true and
A.awaken = false for all amoebots A. If every sequential
execution ofA starting in C0 terminates, every asynchronous
execution of A′ starting in C ′

0 also terminates. Moreover, if
C ′ is the final configuration of some asynchronous execution
of A′ starting in C ′

0, then there exists a sequential execution
ofA starting in C0 with final configuration C that is identical
to C ′, modulo amoebots’ activity and awaken bits.

Informally, this theorem shows that the concurrency con-
trol framework only permits asynchronous outcomes that
could have occurred in the sequential setting, provided algo-
rithm A always terminates in the sequential setting and
satisfies the three conventions.

This analysis has three parts. First, we show that asyn-
chronous executions ofA′ can be “sanitized” of “irrelevant”
events without changing the system’s final configuration
(Observation12–Lemma15). Second, we show that any san-
itized asynchronous execution of A′ can be transformed
into a sequential execution of (AE )′, the framework-applied
expansion-robust version of A, again without changing the
final configuration (Lemmas16–18). Finally, we leverage
the expansion-robustness of A (Convention3) to show that
any final configuration reached by a sequential execution
of (AE )′ is also reachable by a sequential execution of
A (Lemmas19–21). Combining these results after showing
asynchronous executions ofA′ terminate (Lemma22) yields
the theorem.

We first analyze algorithmA′ under asynchronous execu-
tions. Recall from Sect. 2.3 that although each amoebot exe-
cutes at most one action at a time and executes that action’s
operations sequentially to completion, asynchronous exe-
cutions allow arbitrarily many amoebots to execute actions
simultaneously. An asynchronous schedule is an assignment
of precise timing by a wall-clock to every event in an asyn-
chronous execution; i.e., every message sending and receipt,
variable update in public memory, movement start and end,
and operation failure.We emphasize that this wall-clock tim-
ing is only used for this analysis and is unavailable to the
amoebots. In keeping with Sects. 2.2 and 2.3, we make no
assumptions on timing other than (i) the delay between every
message’s sending and receipt as well as every movement’s
start and end must be positive, and (ii) the time taken by
every operation execution—and, by extension, every action
execution—must be finite. W.l.o.g., we may assume that any

two events either occur simultaneously or are at least one
time unit apart. We also assume, w.l.o.g., that at any time
before the asynchronous schedule has terminated, there is at
least one active amoebot; note that any positive delay during
which all amoebots are inactive could be truncated so that
the last action execution’s end time coincides with the next
action execution’s start time without changing the system
configuration. In addition to timing, an asynchronous sched-
ule specifies the operations executed, all messages’ contents,
and variable values accessed and updated; i.e., all details
except private computations.

To ensure that an asynchronous schedule captures the
actual system behavior of an amoebot system under an asyn-
chronous adversary, we introduce the concept of validity. An
asynchronous schedule is valid if there is an asynchronous
execution of (enabled) actions producing the same events
(w.r.t. timing and content) as in the given asynchronous
schedule. In the remainder of our analysis, whenever we refer
to an asynchronous schedule, we assume its timing is in the
control of an adversary constrained only by validity.

We begin with an observation that follows immediately
from A′ and Convention2.

Observation 12 Whenever an amoebot B is locked by an
amoebot A in an execution ofA′, only A can initiate a move-
ment with or update the public memory of B.

Next, we identify the points of failure in action α′ of A′.

Lemma 13 In an execution of action α′, only the Lock and
Expand operations can fail.

Proof The first operation A executes is the Lock opera-
tion which may fail, as claimed. If it fails, α′ catches the
lock-failure and aborts, so no further operations are
executed. Supposing the initial Lock operation succeeds, let
LA denote the set of amoebots locked by A. Recall from
Sect. 2.2.1 that a Read or Write operation by A can only
fail if A is accessing a variable in the public memory of
an amoebot B �= A that is disconnected from A during
that operation’s execution. By Observation12, no amoebot
in LA can change its shape outside of a movement opera-
tion initiated by A. By inspection of α′, A only executes
Read and Write operations involving amoebots in LA and
does so before its movement operation; thus, they must suc-
ceed. Finally, Unlock operations cannot fail because they
only involve locked amoebots, and Connected operations
always succeed.

It remains to consider the movement operations, all
of which are determined by the execution of an enabled
action α ∈ A. An Expand operation may fail, as claimed.
A Contract operation by A only fails if A.shape �=
expanded or A is already involved in a handover. By
Convention1, this contraction would succeed if all other
amoebotswere inactive, so Amust have been expandedwhen
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it evaluated the guard of α. Action α′ does not contain any
operations that change the shape of A between the guard
evaluations and this Contract operation, and by Observa-
tion12 no other action executions could have involved A in
a handover and changed its shape since A ∈ LA. Thus, A is
expanded and cannot be involved in a handover when starting
this contraction, so the Contract operation succeeds.

A Pull operation by A with a neighbor B only fails if
A.shape �= expanded, B.shape �= contracted, A and
B are not connected, or A or B is already involved in another
handover. By Convention1, this pull handover would suc-
ceed if all other amoebots were inactive, so A must have
been expanded, B must have been contracted, and A and B
must have been connected when A evaluated the guard of α.
Once again, α′ does not contain any operations that change
the shape of A between the guard evaluations and this Pull
operation, and by Observation12 neither A nor B can be
involved in another handover or could have changed their
shape since A, B ∈ LA. So A is expanded, B is contracted,
A and B are neighbors, and neither A nor B are involved
in another handover when starting this pull handover, so the
Pull operation succeeds. An analogous argument holds for
Push operations.

Therefore, in an execution ofα′, only theLock orExpand
operations can fail. �


We say that an amoebot is A-enabled if it has at least
one enabled action α ∈ A and is A-disabled otherwise. An
execution of α′ by an amoebot A is relevant in an asyn-
chronous schedule of A′ if all its operations succeed and
either A.awaken = true or A isA-enabled in α′. The next
two lemmas show that we can sanitize any asynchronous
schedule of A′ by removing all events associated with irrel-
evant executions of α′—i.e., those with at least one failed
operation or that have A.awaken = false and are A-
disabled—without changing the system’s final configuration.

Lemma 14 Let S be any asynchronous schedule of A′ and
let SL be the asynchronous schedule obtained from S by
removing all events except those associated with Lock and
Unlock operations and successful movements. Then SL is
valid w.r.t. its Lock operations. Moreover, for any set X of
successful Lock operations in SL , the asynchronous sched-
ule SX obtained from SL by removing all events associated
with Lock operations not in X is valid and all Lock oper-
ations of X are successful and lock the same amoebots they
did in SL .

Proof First consider the asynchronous schedule SL contain-
ing the events of S associated with all Lock, Unlock,
and successful movement operations. The only movements
included in S that are not present in SL are failed expan-
sions. However, a failed expansion does not introduce any

new connections or disconnections. Thus, since S is valid
w.r.t. its Lock operations and the validity of a Lock opera-
tion depends only on other Lock operations and amoebots’
connections,SL must also be valid w.r.t. itsLock operations.

Consider any set X of successful Lock operations in SL

and let SX be the asynchronous schedule obtained from SL

by removing all events associated with Lock operations not
in X . Since any Lock operation in X was successful in
SL , then by the Lock operation’s mutual exclusion prop-
erty all amoebots A it attempted to lock must have had
A.lock = ⊥. Removing other Lock operations cannot
cause amoebots’ lock variables to be �= ⊥. Thus, Lock
operations in X remain successful in SX . Any Lock opera-
tion in X must also lock the same amoebots in SX as it did
in SL since this depends only on connectivity—not on other
Lock operations—and themovement operations that control
connectivity are identical in SX and SL . Therefore, since SL

is valid w.r.t. its Lock operations, so must SX . �


Lemma 15 Let S be any asynchronous schedule of A′ and
let S∗ be its sanitized version keeping only the events asso-
ciated with relevant executions of α′ in S. Then S∗ is a valid
asynchronous schedule that changes the system configura-
tion exactly as S does except w.r.t. amoebots’ activity bits,
which have the property that the set of amoebots A with
A.act = true in S∗ is always a superset of those in S.

Proof By Lemma13, only Lock or Expand operations can
fail in an execution of α′, implying three types of irrelevant
executions of α′ by an amoebot A: those whose Lock oper-
ation fails, those whose Lock operation succeeds but that
have A.awaken = false and are A-disabled, and those
whose Lock operation succeeds but whose Expand opera-
tion fails. By Lemma14, when removing events associated
with irrelevant executions of α′ from S to obtain S∗, all suc-
cessful Lock operations in S remain valid and successful in
S∗ and lock the same amoebots as they did in S. Thus, the
only change an irrelevant execution of α′ could have made is
setting an A-disabled amoebot’s activity bit to false. This
implies that the set of amoebots A with A.act = true in
S∗ is always a superset of those in S and thus any relevant
action execution of α′ in S remains enabled in S∗.

Since relevant executions of α′ only issue Read and
Write operations to the executing amoebot or its locked
neighbors, the success and identical outcome of all Lock
operations in S∗ ensures that allRead andWrite operations
in S∗ also succeed. Moreover, because irrelevant executions
of α′ never performWrite operations, all Read andWrite
operations in S∗ must access or update the same variable
values as they did in S since the event timing is preserved.
Connected operations in S∗ are also guaranteed to return
the same results as in S since failed Expand operations dis-
carded from S do not change amoebot connectivity.
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It remains to show that all movement operations in S∗
are successful. Any Contract, Pull, or Push operations
in S∗ must have succeeded in S, implying that they were
unaffected by any failed Expand operations in S that are
now removed. So the only movement operations in S∗ that
could have interacted with failed Expand operations in S
are concurrentExpand operations that contendedwith failed
Expand operations for the same nodes. But the fact that these
Expand operations are in S∗ implies that they succeeded in
S, and thus must also succeed in S∗ when all contending
expansions are removed. �


It thus suffices to study algorithmA′ under sanitized asyn-
chronous schedules. Our next goal is to map any sanitized
asynchronous schedule S ofA′ to a sequential schedule that
produces the same final system configuration asS. Any asyn-
chronous schedule already totally orders the updates to any
single variable in an amoebot’s public memory and the occu-
pancy of any single node; here, we focus on ordering entire
action executions. Denote the (relevant) executions of α′ inS
as pairs (Ai , α

′
i ), where amoebot Ai executes α′

i . Construct
a directed graph D with nodes {(A1, α

′
1), . . . , (Ak, α

′
k)}

representing all executions of α′ in S and directed edges
(Ai , α

′
i ) → (A j , α

′
j ) for i �= j if and only if one of the

following hold:

1. Both (Ai , α
′
i ) and (A j , α

′
j ) lock some amoebot B in their

Lock operations and (A j , α
′
j ) is the first execution to

lock B after B is unlocked by (Ai , α
′
i ).

2. The nodes occupied by Ai at the start of α′
i and by A j

at the start of α′
j are adjacent and (Ai , α

′
i ) is the last

execution of Ai to execute an action of A before the
Lock operation of (A j , α

′
j ) completes.

3. (A j , α
′
j ) is the first execution to Expand into some node

v after v is vacated by aContract operation in (Ai , α
′
i ).

Lemma 16 The directed graph D corresponding to the exe-
cutions of α′ in a sanitized asynchronous schedule ofA′ is a
directed, acyclic graph (DAG).

Proof We will show that for any edge (Ai , α
′
i ) → (A j , α

′
j )

in D, (Ai , α
′
i ) completes its Lock operation before (A j , α

′
j )

does. This immediately implies that D is acyclic; otherwise,
the Lock operations of any two executions in a cycle of D
must complete both before and after each other, a contradic-
tion.

First suppose that (Ai , α
′
i ) → (A j , α

′
j ) is an edge in D by

Rule 1, i.e., both executions lock an amoebot B and (A j , α
′
j )

is the first execution to lock B after B is unlocked by (Ai , α
′
i ).

Clearly, A j can only lock B after Ai has unlocked B and Ai

can only unlock B after it locks B in its own Lock operation.
Since these operations all involve message transfers requir-

ing positive time, (Ai , α
′
i )must complete its Lock operation

before (A j , α
′
j ) does.

Next suppose that (Ai , α
′
i ) → (A j , α

′
j ) is an edge in D

by Rule 2, i.e., the nodes occupied by Ai and A j at the start
of their respective actions are adjacent and (Ai , α

′
i ) is the

last execution of Ai to execute an action of A before the
Lock operation of (A j , α

′
j ) completes. Any execution of an

action of A in (Ai , α
′
i ) must start after its Lock operation

completes; thus, (Ai , α
′
i ) must complete its Lock operation

before (A j , α
′
j ) does.

Finally, suppose that (Ai , α
′
i ) → (A j , α

′
j ) is an edge in

D by Rule 3, i.e., (A j , α
′
j ) is the first execution to Expand

into some node v after v is vacated by aContract operation
in (Ai , α

′
i ). It suffices to consider the case where the Lock

operation of (Ai , α
′
i ) does not lock A j ; otherwise, there exists

a directed path of Rule 1 edges from (Ai , α
′
i ) to (A j , α

′
j ) in

D and the first case proves the claim. For (Ai , α
′
i ) to not

lock A j , A j cannot be a neighbor of Ai at the time the Lock
operation of (Ai , α

′
i ) starts.We know that theLock operation

of (Ai , α
′
i ) is successful, so Ai is locked and occupies v until

the start of its Contract operation out of v. But A j must
occupy a node adjacent to v at the start of (A j , α

′
j ) and must

succeed in its ownLock operation in order toExpand into v.
Thus, the Lock operation of (A j , α

′
j ) cannot complete until

after Ai has started contracting out of v, which occurs strictly
after the completion of the Lock operation of (Ai , α

′
i ). �


The following lemma compares the outcome of any san-
itized asynchronous schedule of A′ to a schedule where an
execution of α′ corresponding to a sink in the DAG D is
removed. A property that will become important shortly
is whether any Expand operation in the removed execu-
tion of α′ could still be executed if it were placed in a
different schedule. Formally, we say a system configura-
tion C is expansion-compatible with an execution (Ai , α

′
i )

if either (Ai , α
′
i ) does not perform an Expand operation or

the Expand operation executed by Ai in α′
i would succeed

in C .

Lemma 17 Consider any sanitized asynchronous schedule
S of A′ and let (Ai , α

′
i ) be any sink in the corresponding

DAG D. Let S−
i be the asynchronous schedule obtained by

removing all events associated with (Ai , α
′
i ) from S. Then

S−
i is valid and the final configuration reached by S−

i is
expansion-compatible with (Ai , α

′
i ) and identical to that of

S except for the amoebots locked by (Ai , α
′
i ) in S, which

appear exactly as they did just after the Lock operation of
(Ai , α

′
i ) completed in S.

Proof If (Ai , α
′
i ) is the only execution in S, then its removal

yields an empty schedule S−
i that trivially satisfies the

lemma. So consider any action execution (A j , α
′
j ) in S with

j �= i . We first show that (A j , α
′
j ) must remain enabled
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in S−
i ; i.e., A j .act = true at the time of this execu-

tion. This must have been the case in S, so the only way
for (A j , α

′
j ) to not be enabled in S−

i is if (Ai , α
′
i ) was

responsible for enabling it in S. But (Ai , α
′
i ) could only have

updated A j .act to true if (Ai , α
′
i ) locked A j , implying that

(A j , α
′
j ) could not have started until after (Ai , α

′
i ) unlocked

A j . Thus, there must exist a directed path of Rule 1 edges
in D from (Ai , α

′
i ) to (A j , α

′
j ), contradicting the assumption

that (Ai , α
′
i ) is a sink.

We next show that (A j , α
′
j ) remains valid in S−

i . Let

L j (S) (resp., L j (S−
i )) denote the set of amoebots locked

by (A j , α
′
j ) in S (resp., in S−

i ); we begin by showing

L j (S) = L j (S−
i ). First suppose that there is a directed path

in D from (A j , α
′
j ) to (Ai , α

′
i ). By the proof of Lemma16,

(A j , α
′
j ) must complete its Lock operation before (Ai , α

′
i )

does, implying that (A j , α
′
j ) completes its Lock operation

before (Ai , α
′
i ) completes any operation. Since the tim-

ing of (A j , α
′
j ) in S is preserved in S−

i , it follows that

L j (S) = L j (S−
i ). Now suppose that there is no directed path

in D from (A j , α
′
j ) to (Ai , α

′
i ). Then the amoebots locked

by (A j , α
′
j ) and (Ai , α

′
i ) in S must be disjoint by Rule 1,

so certainly (A j , α
′
j ) can lock any amoebot in S−

i that it did

in S; i.e., L j (S) ⊆ L j (S−
i ). But suppose to the contrary

that (A j , α
′
j ) is able to lock some additional amoebot B in

S−
i that it did not lock in S. This is only possible if (Ai , α

′
i )

caused B to move out of the neighborhood of A j in S, either
directly via a handover or indirectly by enabling some action
of B involving a movement. In either case, Ai must have
locked B before A j did, implying the existence of a directed
path of Rule 1 edges in D from (Ai , α

′
i ) to (A j , α

′
j ). This

once again contradicts the assumption that (Ai , α
′
i ) is a sink.

So in any case, (A j , α
′
j ) locks the same set of amoebots in

S and S−
i .

After completing its Lock operation, (A j , α
′
j ) does one

of two things. If A j .awaken = true, then it updates the
activity bits of all the amoebots it locked to true, updates its
own awaken bit to false, releases its locks, and aborts. Since
L j (S) = L j (S−

i ) and timing is preserved, these updates
occur identically in S and S−

i .
Otherwise, if A j .awaken = false, A j evaluates the

guards of actions in A; recall that these depend only on the
positions, shapes, and public memories of the locked amoe-
bots. Suppose to the contrary that there is an amoebot B
locked by A j whose position, shape, or public memory is
different in S−

i than it was in S. Then (Ai , α
′
i ) must have

locked B to perform the corresponding update in S, imply-
ing that there is a directed path of Rule 1 edges from (Ai , α

′
i )

to (A j , α
′
j ) in D, contradicting the assumption that (Ai , α

′
i )

is a sink. So the outcomes of the guard evaluations must be
identical in S and S−

i .

Since (A j , α
′
j ) is in the sanitized schedule S, it must be

relevant, and thus A j must be A-enabled in α′
j . Whichever

enabled action of A is executed, any Write, Contract,
Pull, or Push operations involved must occur identically
in S and S−

i since the locked amoebots and their positions,
shapes, and public memories are the same in both sched-
ules. The only remaining possibility is that (A j , α

′
j ) causes

A j to Expand into an adjacent node v in S that is occu-
pied in S−

i , causing the Expand operation to fail in S−
i . This

implies that (Ai , α
′
i ) causes Ai to Contract out of v. But

then (Ai , α
′
i ) → (A j , α

′
j ) must be a Rule 3 edge in D, con-

tradicting the assumption that (Ai , α
′
i ) is a sink. Thus, we

conclude that S−
i is valid and all action executions (A j , α

′
j )

for which j �= i execute identically in S and S−
i .

Next, we show that the final configuration C−
i reached by

S−
i is expansion-compatible with (Ai , α

′
i ). Suppose to the

contrary that (Ai , α
′
i ) performs a successful Expand opera-

tion into a node v in S but the same expansion would fail in
C−
i . This is only possible if v is occupied by another amoe-

bot in C−
i . Since all executions other than (Ai , α

′
i ) are valid

and execute identically in S and S−
i , another amoebot can

only have come to occupy v in C−
i if Ai vacated v in some

later execution in S. But Ai can only change its shape if it is
locked, contradicting the assumption that (Ai , α

′
i ) is a sink

in D by Rule 1. So v must be unoccupied in C−
i and thus C−

i
is expansion-compatible with (Ai , α

′
i ).

It remains to show that the amoebots inLi (S)—i.e., those
locked by (Ai , α

′
i ) in S—appear in S−

i exactly as they did
after the Lock operation of (Ai , α

′
i ) in S. But this follows

immediately from the assumption that (Ai , α
′
i ) is a sink: for

an execution (A j , α
′
j ) with j �= i to change the position,

shape, or public memory of an amoebot B ∈ Li (S), it would
first have to lock B, implying that (Ai , α

′
i ) → (A j , α

′
j ) is a

directed edge in D. �

Lemma17 allows us to prove the following central result.

Here, we consider the expansion-robust variantAE ofA and
the algorithm (AE )′ produced from AE by the concurrency
control framework. We denote the sole action of (AE )′ as
(αE )′. Given the initial configuration C0 ofA, configuration
CE
0 is its extension with expand flags A.flagp = false for

all amoebots A and ports p; the initial configuration (CE
0 )′

of (AE )′ further extends CE
0 by adding A.act = true and

A.awaken = false for all amoebots A.

Lemma 18 For any finite sanitized asynchronous schedule
S of A′ starting in C ′

0, there exists a sequential schedule of
(AE )′ starting in (CE

0 )′ that reaches a final configuration that
is identical to that ofS, modulo amoebots’ expand flags, with
the exception that the set of amoebots A with A.act = true
or A.awaken = true is a superset of those in the final
configuration reached by S.
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Proof Consider any finite sanitized asynchronous schedule
S of A′ starting in C ′

0 and let D be its corresponding DAG
(Lemma16). We argue by induction on k, the number of
executions of α′ in S, that any sequential ordering of the
executions of α′ in S consistent with a topological order-
ing of D can be extended to a sequential schedule S̄ of
(AE )′ starting in (CE

0 )′ satisfying the lemma. Specifically,
we construct S̄ by replacing executions of α′ in S that exe-
cute some action αi ∈ A with corresponding executions
of (αE )′ that execute action αE

i ∈ AE . We then suitably
pad S̄ with executions of (αE )′ that execute action αE

0 (as
defined in Algorithm3) so that the set of amoebots A with
A.act = true or A.awaken = true in the final con-
figuration reached by S̄ is a superset of those in the final
configuration reached by S.

The lemma trivially holds for k = 0, so suppose the lemma
holds for any sanitized asynchronous schedule of A′ with
k ≥ 0 executions of α′. Let S be any sanitized asynchronous
schedule of A′ starting in C ′

0 consisting of k + 1 execu-
tions of α′, let C be the final configuration it reaches, and
let (Ai , α

′
i ) be any sink in the corresponding DAG D. By

Lemma17, the sanitized asynchronous scheduleS−
i obtained

by removing all events associated with (Ai , α
′
i ) from S is

valid and reaches a final configuration C−
i that is expansion-

compatible with (Ai , α
′
i ) and is identical to C except for the

amoebots locked by (Ai , α
′
i ) in S, which appear exactly as

they did just after the Lock operation of (Ai , α
′
i ) completed

in S. By the induction hypothesis, there exists a sequential
schedule S̄i of (AE )′ starting in (CE

0 )′ that reaches a final
configuration C̄i identical to C

−
i (modulo amoebots’ expand

flags) with the exception that the set of amoebots A with
A.act = true or A.awaken = true in C̄i is a superset
of those in C−

i . This implies that (Ai , (α
E )′i ) is enabled in

C̄i since (Ai , α
′
i ) was enabled in C

−
i and they have the same

guard: Ai .act = true.
The amoebots Li (S) locked by (Ai , α

′
i ) in S must still be

neighbors of Ai in C̄i (i.e., at the end of S̄i ) by Lemma17
and the induction hypothesis, but Ai may also have additional
neighbors in C̄i that were not originally present at the time
of its Lock operation in S. Thus, we have Li (S) ⊆ Li (S̄i ).
There are three cases for the behavior of (Ai , α

′
i ); in each,

we construct a sequential schedule S̄ by combining S̄i , the
execution (Ai , (α

E )′i ), and possibly additional executions of
(αE )′ involving αE

0 whose final configuration satisfies the
lemma.
Case 1. Ai .awaken = true both at the start of (Ai , α

′
i )

in S and at the end of S̄i . Let S̄ be the sequential schedule
obtained by appending (Ai , (α

E )′i ) to the end of S̄i . Then
in S̄ , (Ai , (α

E )′i ) updates B.act to true for all amoebots
B that it locks, updates Ai .awaken to false, releases its
locks, and aborts—just as (Ai , α

′
i ) does in S. Since Li (S) ⊆

Li (S̄i ), the only difference between the final configurations
of S and S̄ (other than amoebots’ expand flags) is that the

latter may have additional amoebots with their activity or
awaken bits set to true, so the lemma holds.
Case 2. Ai .awaken = false at the start of (Ai , α

′
i ) in S but

Ai .awaken = true at the end of S̄i . Let S̄ be the sequential
schedule obtained by activating Ai twice at the end of S̄i .
The first activation has the same effect as Case 1, potentially
yielding more amoebots with their activity or awaken bits
set to true. It also resets the awaken bit of Ai , yielding
Ai .awaken = false in both S and S̄i + (Ai , (α

E )′i ). We
address this in the following case.
Case 3. Ai .awaken = false both at the start of (Ai , α

′
i ) in

S and at the end of S̄i . Since (Ai , α
′
i ) is an execution of S,

a sanitized schedule, we know that (Ai , α
′
i ) is relevant and

thus must have an action α j ∈ A in S that is enabled by the
amoebots Li (S) locked in α′

i . Intuitively, we would like to
construct the sequential schedule S̄ byappending (Ai , (α

E )′i )
to the end of S̄i , where the execution of (αE )′i involves
the corresponding action αE

j ∈ AE . However, because S̄i
involves expand flags and Li (S) ⊆ Li (S̄i ), it is not immedi-
ately obvious that αE

j is enabled at the end of S̄i and can be
executed to satisfy the lemma.

To this end, we first show that any amoebot A� ∈
Li (S̄i )\Li (S)—i.e., those locked by (Ai , (α

E )′i ) at the end
of S̄i but not by (Ai , α

′
i ) in S—would be ignored in any

guard evaluation and execution of αE
j at the end of S̄i due to

expand flags. Such an A� can only exist if there was some
time t during theLock operation of (Ai , α

′
i ) inS at which Ai

and A� were not connected. But A� ∈ Li (S̄i ) implies that A�

later became a neighbor of Ai , so consider the first event in
S after time t at which Ai and A� are connected. This event
must correspond to A� completing an expansion or handover
and connecting to Ai , so in the corresponding action exe-
cution in S̄i , A� must have updated the expand flag of any
new port now connected to Ai to true (see Lines 10, 11, and
13 of Algorithm3). Any such expand flag can only be reset
to false in S̄i if A� or Ai execute another action in S after
their connection event (seeLine 5 or 7 ofAlgorithm3, respec-
tively). But A� (resp., Ai ) cannot execute another action in
S because Rule 2 (resp., Rule 1) of the DAG D would imply
(Ai , α

′
i ) is not a sink in D, a contradiction. Thus, any port p

of any amoebot A� ∈ Li (S̄i )\Li (S) connected to Ai must
have A�.flagp = true at the end of S̄i .

We have established that if α j ∈ A was enabled in
S for execution (Ai , α

′
i ), then any additional neighbors

Li (S̄i )\Li (S) locked by Ai at the end of S̄i cannot cause
αE
j ∈ AE to be disabled because their expand flags are true

and they are thus ignored. However, we must show the oppo-
site for anyoriginal neighbor A� ∈ Li (S) at the endof S̄i , i.e.,
that its expand flags do not cause Ai to ignore it and thus pos-
sibly disable αE

j . This situation can be easily prevented using

the αE
0 ∈ AE action as follows. For any port p of any amoe-

bot A� ∈ Li (S) connected to Ai with A�.flagp = true,
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append an execution (A�, (α
E )′�) to the endof S̄i that involves

an execution of αE
0 resetting A�.flagp to false. Com-

plete the construction of the desired sequential schedule S̄ by
appending the execution (Ai , (α

E )′i ) involving the execution
of αE

j . We have shown that this final execution in S̄ consid-
ers exactly the same neighborhood as (Ai , α

′
i ) did in S, and

thus because α j is enabled in S so is αE
j in S̄. This further

guarantees that their respective executions make the same
updates to the original variables ofA and, by the expansion-
compatibility ensured by Lemma17, the same movement.
Theonlydifferences between thefinal configurations reached
by S and S̄ are (i) the added executions (A�, (α

E )′�) in S̄ for
executing αE

0 might set additional activity and awaken bits
to true, and (ii) the final execution (Ai , (α

E )′i ) involving
the execution of αE

j will set the activity bit of any amoebot

in Li (S̄i )\Li (S) to true. But these differences are exactly
those allowed by the lemma, completing the induction. �


We now turn to the analysis ofA′ under sequential execu-
tions.Define a sequential scheduleS = ((A1, α1), (A2, α2), . . .)

as the sequence of actions executed in a sequential execution,
where αi is the i-th action of A executed by the system and
Ai is the amoebot that executed it. For a sequential schedule
to be valid, αi must be enabled for Ai in the configura-
tion produced by executions (A1, α1), . . . , (Ai−1, αi−1), for
all i ≥ 1. Certainly, sequential schedules obfuscate various
details that were made explicit in asynchronous schedules;
e.g., they ignore the precise timing of message transmissions
and movements. Although a single sequential schedule may
in fact represent many possible sequential executions, this
abstraction suffices for our purposes because the resulting
system configurations are well-defined.

We first argue that sequential executions ofA′ terminate.

Lemma 19 If every sequential schedule of A starting in C0

is finite, then every sequential schedule of A′ starting in C ′
0

is also finite.

Proof Suppose to the contrary that there exists an infi-
nite sequential schedule S of A′ starting in configuration
C ′
0. When ignoring the handling of amoebots’ activity and

awaken bits, any execution of action α′ ofA′ either makes no
change to the system configuration or makes changes iden-
tical to those of some action α ∈ A. First suppose that S
contains an infinite number of executions of α′ executing
actions of A. Then by constructing a sequential schedule
comprising only these A action executions, we obtain an
infinite schedule of A starting in C0, a contradiction.

Suppose instead that S contains only a finite number of
executions of α′ executing actions ofA. Since there are only
a finite number of such executions, there must exist a time
t after which no amoebot is A-enabled and the remaining
infinite executions of α′ only involve updates to amoebots’
activity and awaken bits. Any activation of an amoebot A

with A.awaken = true results in A setting the activity bits
of its neighbors to true—of which there can be at most a
finite number� that depends on the assumed space variant—
and resetting A.awaken to false (Steps 4–6). Otherwise,
an activation of A with A.awaken = false must result in
A resetting A.act to false since it is not A-enabled (Step
10). Then the potential function�(C) = ∑

A(IA.act+(�+
1)IA.awaken) over system configurations C where IA.act ∈
{0, 1} (resp., IA.awaken ∈ {0, 1}) is equal to 1 if and only if
A.act = true (resp., A.awaken = true) is both lower
bounded by 0 and strictly decreasing after time t . Therefore,
S can only contain a finite number of executions of α′ only
involving updates to amoebots’ activity and awaken bits, a
contradiction of S being infinite. �


We next establish a crucial property for characterizing
configurations reachable by A′.

Lemma 20 Consider any sequential schedule S of A′ start-
ing in C ′

0. Any amoebot that is A-enabled in the final
configuration reached by S either (i) is A′-enabled or (ii)
has an A′-enabled neighbor B with B.awaken = true.

Proof Argueby inductionon the lengthofS = ((A1, α1), . . . ,

(Ak, αk)). If k = 0, then the lemma trivially holds since all
amoebots A initially have A.act = true in C ′

0 and thus are
allA′-enabled. So suppose the lemma holds for schedules of
A′ starting inC ′

0 with any length k ≥ 0, and consider any such
schedule Sk+1 = ((A1, α1), . . . , (Ak+1, αk+1)) with length
k + 1. For 1 ≤ i ≤ k + 1, let C ′

i be the final configuration
reached by the subschedule Si = ((A1, α1), . . . , (Ai , αi ))

of Sk+1. Consider any A-enabled amoebot A in C ′
k+1.

We first suppose that A was alsoA-enabled in C ′
k . By the

induction hypothesis, there are two cases to consider. If A
is A′-enabled in C ′

k , then the only scenario in which A.act
is updated to false is if A = Ak+1 and A is not A-enabled
(Step 10), contrary to our supposition. So A must also be
A′-enabled in C ′

k+1, satisfying (i). Otherwise, A must have
an A′-enabled neighbor B with B.awaken = true in C ′

k .
The only scenario in which B.awaken is updated to false
is if B = Ak+1 and B sets all of its neighbors’ activity bits,
including that of A, to true (Steps 4–6). So either B satisfies
(ii) by remaining anA′-enabled neighborwith B.awaken =
true or A is A′-enabled in C ′

k+1, satisfying (i).
Now suppose that A was not A-enabled in C ′

k ; i.e., the
execution of action αk+1 by amoebot Ak+1 causes a change
in the neighborhood of A such that A becomes A-enabled
in C ′

k+1. Note that because A was not A-enabled in C ′
k , we

must have Ak+1 �= A. If A and Ak+1 were neighbors in C ′
k ,

then Ak+1 must update A.act to true during its execution
of αk+1 (Step 16), satisfying (i). Otherwise, if A and Ak+1

were not neighbors inC ′
k , there are still twoways Ak+1 could

change the neighborhood of A by executingαk+1. First, Ak+1

could move into the neighborhood of A via an Expand or
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Push; in this case, Ak+1 remainsA′-enabled and updates its
own awaken bit to true (Steps 14 and 24), satisfying (ii).
Second, Ak+1 could update the memory of a neighbor B of
A via a Write; in this case, Ak+1 must also update B.act
and B.awaken to true (Steps 16 and 17), also satisfying
(ii). �


The following lemma concludes our analysis of sequential
executions.

Lemma 21 For any configuration C ′ in which some sequen-
tial execution of A′ starting in C ′

0 terminates, there exists a
sequential execution ofA starting in C0 that terminates in a
configuration C identical to C ′, modulo activity and awaken
bits.

Proof Consider any valid sequential schedule S ′ ofA′ start-
ing in C ′

0 under which A′ terminates and let C ′ be the
configuration it terminates in. As in the proof of Lemma19,
the executions of action α′ in S ′ involving A action execu-
tions form a valid sequential schedule S of A starting in C0

thatmakes the same system configuration changes asS ′ w.r.t.
the variables used inA. SoS reaches a configurationC that is
equivalent to C ′ modulo amoebots’ activity and awaken bits.
Moreover, S must terminate in C ; otherwise, there exists an
A-enabled amoebot in C that, by Lemma20, implies there
exists an A′-enabled amoebot in C ′, contradicting our sup-
position that A′ terminates in C ′. �


It remains to show that all asynchronous schedules of A′
are finite in a sense that they only require a finite amount of
time.

Lemma 22 If every sequential schedule of A starting in C0

is finite, then every asynchronous schedule of A′ starting in
C ′
0 is also finite.

Proof Suppose to the contrary that there exists an infinite
asynchronous schedule S of A′ starting in C ′

0.
First suppose that S contains only a finite number of

relevant action executions. Then there exists an earliest
time t after which no event associated with a relevant
action execution is ever scheduled. Time t is well-defined
because (i) every operation—and, by extension, every action
execution—terminates in finite time and (ii) there can be at
most a finite number of irrelevant action executions initiated
before time t due to the fact that there are a finite number
of amoebots, each amoebot executes at most one action per
time, and any non-simultaneous events in S are at least one
time unit apart. Since S is infinite and there always exists at
least one active amoebot, there must exist an infinite num-
ber of action executions initiated after time t and they must
all be irrelevant. Recall that, by Lemma13, there are three
types of irrelevant executions: those whose Lock operation
fails, those whose Lock operation succeeds but that have

A.awaken = false and are A-disabled, and those whose
Lock operation succeeds but whose Expand operation fails.

It is easy to see that there must exist an execution of α′
initiated after time t whose Lock operation succeeds; other-
wise, all action executions initiated after time t fail in their
Lock operation, a violation of the Lock operation’s dead-
lock freedom property.

Wenext argue that some execution ofα′ initiated after time
t whose Lock operation succeeds has A.awaken = false
and is A-enabled. Certainly, no execution of α′ initiated
after time t with a successful Lock operation could have
A.awaken = true as this execution would be relevant,
contradicting our assumption on t . Any execution of α′ that
succeeds in its Lock operation but is A-disabled sets its
amoebot’s activity bit to false, disabling α′. With a finite
number of amoebots, there cannot be an infinite number of
such executions.

So consider any execution (A, α′) initiated after time t that
succeeds in its Lock operation, has A.awaken = false,
and isA-enabled. This execution is irrelevant by supposition,
so by Lemma13, its Expand operation (say, into an adjacent
node v) must fail. Convention1 ensures that A could not have
called Expand if it was expanded or if v was occupied at the
time of the corresponding guard evaluation, and A cannot
be involved in a movement initiated by some other amoebot
because it is locked. The only way the Expand operation of
(A, α′) could fail is if another amoebot B successfullymoves
into v during an execution (B, α′) that is concurrent with
(A, α′). But if (B, α′) succeeds in its movement operation,
then all its operation executions must succeed by Lemma13;
therefore, (B, α′) is a relevant execution with an event occur-
ring after time t , again contradicting our assumption on t .

We conclude thatS must in fact contain an infinite number
of relevant action executions.Moreover, when ordering these
relevant action executions by the time their Lock operations
complete, there is at most a finite number of time units—and
thus afinite number of irrelevant action executions—between
any two consecutive relevant action executions. Thus, every
relevant action execution has a well-defined, finite start time.

SinceS contains an infinite number of relevant action exe-
cutions, its sanitized versionS∗ is also infinite. ByLemma15
(which also holds for infinite schedules), S∗ is a valid asyn-
chronous schedule that changes the system configuration
exactly as S does, except w.r.t. amoebots’ activity bits. Let
D be the infinite DAG corresponding to S∗ (Lemma16). We
argue next that Lemmas17 and 18 apply to any snapshot of
S∗ consistent with D.

Consider the schedule Ŝ obtained by selecting the first
T ≥ 1 relevant action executions from S∗ ordered by the
time their Lock operations complete; if multiple action exe-
cutions complete their Lock operations simultaneously, we
may assume any unique, canonical ordering of these action
executions. Since all edges of the DAG D of S∗ are forward
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in timew.r.t. completions ofLock operations, Ŝ forms a con-
sistent snapshot of S∗: for any edge (Ai , α

′
i ) → (A j , α

′
j ) in

D with execution (A j , α
′
j ) contained in Ŝ, we must have

that (Ai , α
′
i ) is also in Ŝ. This snapshot property ensures that

any memory accesses, contractions, and handovers execute
in Ŝ in the same way as in S∗ since these only depend on the
amoebots locked in theLock operations.Moreover, if Ŝ con-
tains the first execution (A j , α

′
j ) to Expand into a position

after it is vacated during an execution (Ai , α
′
i ) in S∗, then

(Ai , α
′
i ) → (A j , α

′
j ) is an edge in D by DAG Rule 3 and

thus (Ai , α
′
i ) is also contained in Ŝ because it is a consistent

snapshot. Hence, Ŝ is a valid asynchronous schedule of A′
starting in C ′

0. By Lemmas17 and 18, Ŝ can be mapped to
a valid sequential schedule of (AE )′ starting in (CE

0 )′ that
contains at least T action executions.

This immediately implies that if there exists an infinite
asynchronous schedule of A′ starting in C ′

0, then there must
also exist an infinite sequential schedule of (AE )′ starting
in (CE

0 )′. Otherwise, there exists a value of T for which
the above conversion fails, a contradiction. But this contra-
dicts our original supposition: if every sequential schedule
of A starting in C0 is finite, then every sequential schedule
of AE starting in CE

0 is finite by the termination condition
of Convention3, which in turn implies that every sequential
schedule of (AE )′ starting in (CE

0 )′ is finite by Lemma19.
This concludes the proof. �


We are now ready to prove Theorem11, concluding our
analysis.

Proof of Theorem 11 Every sequential execution of A start-
ing in C0 terminates by supposition, so every asynchronous
execution ofA′ starting in C ′

0 also terminates by Lemma22.
Consider any asynchronous schedule S of A′ starting in C ′

0
and letC ′ be the configuration it terminates in. ByLemma15,
the sanitized asynchronous schedule S∗ obtained from S is
valid and terminates in a configuration C∗ that is identical to
C ′, except C∗ may contain additional amoebots with true
activity bits. By Lemma18, there exists a sequential schedule
S̄ of (AE )′ starting in (CE

0 )′ that terminates in a configuration
(CE )′ that is identical to C∗, except (CE )′ contains amoe-
bots’ expand flags and may also have additional amoebots
with true activity or awaken bits. Applying Lemma21 to
AE implies that there exists some sequential schedule ofAE

starting in CE
0 that terminates in a configuration CE that is

identical to (CE )′, modulo amoebots’ activity and awaken
bits. Finally, because A satisfies Convention3 by supposi-
tion, the correctness condition of expansion-robustness states
that there exists a sequential execution of A starting in C0

that terminates in a configuration C that is identical to CE ,
modulo amoebots’ expand flags. Therefore, C and C ′ are
identical, modulo amoebots’ activity and awaken bits, con-
cluding the proof. �


5 Discussion and future work

An immediate application of the canonical amoebot model
and its hierarchy of assumption variants is a systematic com-
parison of existing amoebot algorithms and their assump-
tions. For example, when comparing two recent amoebot
algorithms for leader election using the canonical hierarchy,
we find that among other problem-specific differences, Bazzi
and Briones [5] assume an asynchronous adversary and com-
mon chirality while Emek et al. [34] assume a sequential
adversary and assorted orientations. Such comparisons will
provide valuable and comprehensive understanding of the
state of amoebot literature and will facilitate clearer connec-
tions to related models of programmable matter.

The canonical amoebot model should also be extended to
address fault tolerance and self-stabilizing algorithms. This
work assumed that all amoebots are reliable, though crash
faults have been previously considered in the amoebot model
for specific problems [23,30]. Faulty amoebot behavior is
especially challenging for lock-based concurrency control
mechanisms which are prone to deadlock in the presence of
crash faults. Additional modeling efforts will be needed to
introduce a stable family of fault assumptions.

Finally, further study is needed on the design of con-
current amoebot algorithms. Amoebots’ communication and
movement raise many issues of concurrency, ranging from
conflicts of movement to operating based on stale infor-
mation. Our analysis of the Hexagon-Formation algorithm
produced one set of algorithm-agnostic invariants that yield
correct asynchronous behavior without the use of locks
(Lemmas3–5) while our concurrency control framework
gives another set of sufficient conditions for obtaining cor-
rect behavior under an asynchronous adversary when using
locks (Conventions1–3).

Of the three conventions used by the concurrency con-
trol framework, expansion-robustness (Convention3) is the
most restrictive and technically difficult to verify, though it
is easier to understand and verify than the original “mono-
tonicity” convention [21] that it replaced. The framework’s
analysis relies on expansion-robustness to show that when an
action execution ismoved from its timing in an asynchronous
schedule into the future where it is not concurrent with any
other execution, it produces the same system configuration
that it did originally, regardless of any new amoebots that
may have moved into its neighborhood in the meantime. In
that light, it is easy to see that stationary algorithms that
do not use movement are trivially expansion-robust (Obser-
vation9). These include many of the existing algorithms
for leader election [5,19,28,32,37] and the recent algo-
rithm for energy distribution [23]. However,many interesting
collective behaviors for programmable matter require move-
ment. We proved that the Hexagon-Formation algorithm is
expansion-robust and compatible with the concurrency con-
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trol framework (Theorem10). Futurework should investigate
whether this is also true of other existing amoebot algorithms.

We emphasize that expansion-robustness is not simply a
technicality of our approach but rather a general phenomenon
for asynchronous amoebot systems. Imagine a cycle alter-
nating between contracted amoebots and empty positions
and an asynchronous execution where all amoebots, having
no neighbors, expand concurrently. This forms a cycle of
expanded amoebots. However, any sequence of these expan-
sions would result in at least one amoebot seeing an already
expanded neighbor at the start of its action execution, which
may prohibit its expansion and stop the system from reaching
the original outcome (an expanded cycle).

This discussion highlights two open questions. Do there
exist amoebot algorithms that are not correct under an asyn-
chronous adversary but are compatible with our concurrency
control framework, establishing the necessity of lock-based
approaches to concurrency control? What are the neces-
sary conditions for amoebot algorithm correctness in spite
of asynchrony, both with and without locks? We are hopeful
that our approaches to concurrent algorithmdesign combined
with answers to these open problems will advance the analy-
sis of existing and future algorithms for programmablematter
in the concurrent setting.
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AppendixA:Amoebotoperationpseudocode

In this appendix, we give formal distributed pseudocode for
the amoebot operations. Algorithm5 details the communi-
cation operations (Sect. 2.2.1) and Algorithms6 and 7 detail
the movement operations (Sect. 2.2.2). One possible imple-
mentation of the concurrency control operations (Sect. 2.2.3)
is given in [22].

Expand toward
node vp

Retract to
original node

Wait for
random delay

Expansion collides
with another amoebot

An amoebot connects
via port p

START

Connect to new
neighbors via vp

Yes

NoCheck for
A.shape = CONTRACTED

SUCCESS

FAILURE

Expansion
completes

Fig. 7 Execution flow of the Expand operation with contention reso-
lution for the calling amoebot A

AppendixB: Expansioncontention resolution

Recall that when an amoebot’s expansion collides with
another movement, it must perform contention resolution
such that exactly one contending amoebot succeeds in its
expansionwhile all others fail. In this appendix,we detail and
analyze one possible implementation of such a contention
resolution scheme inspired by randomized backoff mecha-
nisms for contention resolution inwireless networks [6,8,11].
We need one additional assumption: all amoebots know an
upper bound T on the time required for an amoebot to
complete any movement. For simplicity, we will assume
geometric space (i.e., the triangular lattice G�), though this
mechanism would generalize to any bounded degree graph.

The execution flow of our contention resolution mech-
anism is shown in Fig. 7 and its pseudocode is given in
Algorithm8. When A detects a collision, it retracts to its
original node and retries its expansion after waiting for a
delay chosen uniformly at random from [5T , 10T ], where
T is an upper bound on the time required for an amoebot to
complete an expansion or retraction. In the remainder of this
section, we verify the following claim.

Lemma 23 Suppose a set of amoebots are contending to
expand into the same node of G�. If each amoebot waits for
a delay chosen uniformly at random from [5T , 10T ] before
its expansion attempt, then exactly one contender succeeds
in O(log n) attempts w.h.p.4

Proof We first bound the probability that two amoebots A1

and A2 collide in their respective expansion attempts into the
same node. For each amoebot Ai ∈ {A1, A2}, let ti denote the
start of its expansion attempt, di denote its random delay, and

4 An event occurs with high probability (w.h.p.) if it occurs with proba-
bility at least 1−1/nc , where n is the number of amoebots in the system
and c > 0 is a constant.
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Algorithm 5 Communication Operations for Amoebot A
1: function Connected(p)
2: if there is a neighbor connected via port p then return true.
3: else return false.
1: function Connected( )
2: Let k be the number of edges incident to the node(s) A occupies.
3: Snapshot the connectivity status of each port p ∈ {1, . . . , k}.
4: Let cp ← Ni if neighbor Ni is connected via port p and cp ← false otherwise.
5: return [c0, . . . , ck−1] ∈ {N1, . . . , N8, false}k .
1: function Read(p, x)
2: On being called:
3: if p = ⊥ then return the value of x in the public memory of A; success.
4: else if Connectedp then enqueue read_request(x) in the message buffer on p.
5: else throw disconnect-failure.
6: On receiving read_request(x) via port p′:
7: Let xval be the value of x in the public memory of A.
8: Enqueue read_ack(x, xval) in the message buffer on p′.
9: On receiving read_ack(x, xval) via port p:
10: return xval ; success.
11: On disconnection via port p:
12: throw disconnect-failure.
1: function Write(p, x, xval )
2: On being called:
3: if p = ⊥ then update the value of x in the public memory of A to xval ; return success.
4: else if Connectedp then enqueue write_request(x, xval) in the message buffer on p.
5: else throw disconnect-failure.
6: On write_request(x, xval) being sent:
7: return success.
8: On disconnection via port p:
9: throw disconnect-failure.
10: On receiving write_request(x, xval) via port p′:
11: Update the value of x in the public memory of A to xval .

ei denote the duration of its expansion if it were to succeed.
The start time ti and expansion duration ei are fixed a priori
by the adversary while the delay di is chosen uniformly at
random from the interval [5T , cT ], where c > 5 is a constant.
So, in summary, amoebot Ai ∈ {A1, A2} is waiting in the
time interval [ti , ti + di ) and is expanding in the interval
[ti + di , ti + di + ei ]. Thus, the expansions of amoebots A1

and A2 collide if and only if:

[t1 + d1, t1 + d1 + e1] ∩ [t2 + d2, t2 + d2 + e2] �= ∅
⇐⇒ (t1 + d1 + e1 ≥ t2 + d2)

∧ (t1 + d1 ≤ t2 + d2 + e2)

⇐⇒ t2 − t1 − e1 ≤ d1 − d2 ≤ t2 − t1 + e2

This implies:

Pr [A1 and A2 collide | t1, t2, e1, e2]
= Pr [t2 − t1 − e1 ≤ d1 − d2 ≤ t2 − t1 + e2]

= Pr [d1 − d2 ≤ t2 − t1 + e2]

− Pr [d1 − d2 ≤ t2 − t1 − e1]

Delays d1 and d2 are both uniform random variables over
the interval [5T , cT ], so the difference d1 − d2 follows the
symmetric triangular distributionwith lower bound (5−c)T ,
upper bound (c − 5)T , and mode 0. W.l.o.g., suppose t1 <

t2. There are two cases: when t2 − t1 − e1 ≤ 0 and when
t2 − t1 − e1 > 0. If we have t2 − t1 − e1 ≤ 0, then:

Pr [d1 − d2 ≤ t2 − t1 + e2]

− Pr [d1 − d2 ≤ t2 − t1 − e1]

= 1 − ((c − 5)T − (t2 − t1 + e2))2

((c − 5)T − (5 − c)T )((c − 5)T − 0)

− (t2 − t1 − e1 − (5 − c)T )2

((c − 5)T − (5 − c)T )(0 − (5 − c)T )

=
[
2(c − 5)2T 2 − ((c − 5)T − t2 + t1 − e2)

2

−((c − 5)T + t2 − t1 − e1)
2
]
/2(c − 5)2T 2

=
[
2(c − 5)2T 2 − 2(c − 5)2T 2 + 2(c − 5)T e2

+ 2(c − 5)T e1 − 2t22 + 4t2t1 − 2t2e2 + 2t2e1

−2t21 + 2t1e2 − 2t1e1 − e22 − e21

]
/2(c − 5)2T 2
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Algorithm 6 Movement Operations for Amoebot A
1: function Contract(v)
2: On being called:
3: if A.shape �= expanded then throw shape-failure.
4: else if A is involved in a handover then throw handover-failure.
5: else release all connections via ports on v and begin contracting out of v.
6: On completing the contraction:
7: Update A.shape ← contracted; return success.

1: function Expand(p)
2: Let vp denote the node that port p faces.
3: On being called:
4: if A.shape �= contracted then throw shape-failure.
5: else if A is involved in a handover then throw handover-failure.
6: else if Connectedp then throw occupied-failure.
7: else begin expanding into vp .

8: On collision with another amoebot:
9: Perform contention resolution.
10: On failing contention resolution:
11: throw occupied-failure.
12: On completing the expansion or on succeeding in contention resolution:
13: Establish connections with any new neighbors adjacent to vp .
14: Update A.shape ← expanded; return success.

= [2(c − 5)T (e1 + e2) − 2(t2 − t1)(e2 − e1)

−2(t2 − t1)
2 − e21 − e22

]
/2(c − 5)2T 2

<
[
4(c − 5)T 2 + 2(c + 1)T 2

]
/2(c − 5)2T 2

= 3(c − 3)/(c − 5)2,

which is a constant probability whenever c > 13+√
33

2 ≈
9.373. The upper bound follows from:

• Since T is the upper bound on the time required for an
expansion, e1 + e2 ≤ 2T .

• We assumed that t1 < t2, but we also have that if t2 >

t1+d1+e1, then there cannot be a collision.Thus, t2−t1 ≤
d1+e1 ≤ cT +T is a necessary condition for a collision.
We also have that −T ≤ e2 − e1 ≤ T , so we conclude
that −2(t2 − t1)(e2 − e1) ≤ 2(c + 1)T 2.

• The last three numerator terms are all nonpositive, and
thus can be upper bounded by 0.

In the second case, if we have t2 − t1 − e1 > 0, then:

Pr [d1 − d2 ≤ t2 − t1 + e2]

− Pr [d1 − d2 ≤ t2 − t1 − e1]

= 1 − ((c − 5)T − (t2 − t1 + e2))2

((c − 5)T − (5 − c)T )((c − 5)T − 0)

− 1 + ((c − 5)T − (t2 − t1 − e1))2

((c − 5)T − (5 − c)T )((c − 5)T − 0)

=
[
((c − 5)T − t2 + t1 + e1)

2

−((c − 5)T − t2 + t1 + e2)
2
]
/2(c − 5)2T 2

= [2(c − 5)T e1 − 2(c − 5)T e2 − 2t2e1 + 2t2e2

+2t1e1 − 2t1e2 + e21 − e22

]
/2(c − 5)2T 2

= [2(c − 5)T (e1 − e2) − 2(t2 − t1)(e1 − e2)

+e21 − e22

]
/2(c − 5)2T 2

<
[
2(c − 5)T 2 + 2(c + 1)T 2 + T 2

]
/2(c − 5)2T 2

= (4c − 7)/2(c − 5)2,

which is a constant probability whenever c > 6+ √
15/2 ≈

8.739. Therefore, in any case, the probability that the expan-
sions of A1 and A2 collide when their delays are drawn
uniformly at random from the interval [5T , cT ] is at most
a constant p ∈ (0, 1) when c > 9.373.

Due to the structure of the triangular lattice G�, at most
six amoebots may be concurrently expanding into the same
node. We now establish that pairwise collisions of any of
these amoebots’ expansions are independent. Given each
expansion attempt’s starting time and expansion duration—
which are fixed by the asynchronous execution—the interval
of expansion is entirely determined by the delay. Since each
delay is drawn independently and uniformly from [5T , cT ],
each pair of expansions’ time intervals and thus also their
collision is independent. So, fixing an amoebot A1,

Pr
[
an expansion of A1 succeeds | t1, e1

]

= Pr [A1 and Ai do not collide | t1, ti , e1, ei ,∀i �= 1]
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Algorithm 7 Movement Operations for Amoebot A (cont.)
1: function Pull(p)
2: Let vp denote the node that port p faces.
3: On being called:
4: if A.shape �= expanded then throw shape-failure.
5: else if A is involved in a handover then throw handover-failure.
6: else if ¬Connectedp then throw disconnect-failure.
7: else enqueue pull_request() in the message buffer on p.
8: On receiving pull_request() via port p′:
9: if A.shape = contracted and A is not involved in a move then set m′ ← pull_ack().
10: else set m′ ← pull_nack().
11: Enqueue m′ in the message buffer on p′.
12: On sending pull_ack():
13: Begin expanding into vp .

14: On completing the expansion into vp:

15: Establish connections with any new neighbors adjacent to vp .
16: Update A.shape ← expanded.
17: On receiving pull_ack() via port p:
18: Release all connections via ports on vp except p and begin contracting out of vp .

19: On receiving pull_nack() via port p or on a disconnection via port p:
20: throw nack-failure.
21: On completing the contraction out of vp:

22: Update A.shape ← contracted; return success.

1: function Push(p)
2: Let vp denote the node that port p faces.
3: On being called:
4: if A.shape �= contracted then throw shape-failure.
5: else if A is involved in a handover then throw handover-failure.
6: else if ¬Connectedp then throw disconnect-failure.
7: else enqueue push_request() in the message buffer on p.
8: On receiving push_request() via port p′:
9: if A.shape = expanded and A is not involved in a move then set m′ ← push_ack().
10: else set m′ ← push_nack().
11: Enqueue m′ in the message buffer on p′.
12: On sending push_ack():
13: Release all connections via ports on vp except p and begin contracting out of vp .

14: On completing the contraction out of vp:

15: Update A.shape ← contracted.
16: On receiving push_ack() via port p:
17: Begin expanding into vp .

18: On receiving push_nack() via port p or on a disconnection via port p:
19: throw nack-failure.
20: On completing the expansion into vp:

21: Establish connections with any new neighbors adjacent to vp .
22: Update A.shape ← expanded; return success.

=
∏

i �=1

(1 − Pr [A1 and Ai collide | t1, ti , e1, ei ])

> (1 − p)5,

which is a constant probability since p is a constant proba-
bility.

In order to amplify this success probability for the desired
w.h.p. result, we must establish independence of expansion
attempts. We have already shown that pairwise collisions of
amoebots’ expansions are independent, but this is insuffi-

cient to establish the independence of subsequent expansion
attempts. In particular, A1 and A2 may collide while con-
currently attempting to expand, causing them both to retract
before reattempting their expansions. A third amoebot A3

could then expand and collide with A1 or A2 while they
are retracting, causing A3 to also retract; a fourth amoebot
A4 could then expand and collide with A3 while it retracts,
and so on. In the worst case, if the expansions of A1 and
A2 collide at time t , these cascading expansion-retraction
collisions can continue until time t + 5T ; this occurs if all
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Algorithm 8 Expand Operation with Contention Resolution for Amoebot A
1: function Expand(p)
2: Let vp denote the node that port p faces.
3: On being called:
4: if A.shape �= contracted then throw shape-failure.
5: else if A is involved in a handover then throw handover-failure.
6: else wait for a delay of 0.
7: After waiting for a delay:
8: if ¬Connectedp then begin expanding into vp .
9: else throw occupied-failure.
10: On collision with another amoebot:
11: Retract back out of vp and wait for a delay chosen u.a.r. from [5T , 10T ].
12: On connection via port p:
13: throw occupied-failure.
14: On completing the expansion:
15: Establish connections with any new neighbors adjacent to vp .
16: Update A.shape ← expanded; return success.

retractions take the maximum time T and each amoebot Ai

(for i = 3, . . . , 6, since there are at most six competing
amoebots) collides with retracting amoebot Ai−1 at the last
possible moment. However, it is impossible for these cas-
cading collisions to continue after t + 5T : the earliest an
amoebot could reattempt its expansion is after time t +5T if
A1 or A2 immediately retracted after colliding at time t and
then sampled the minimum possible delay, 5T . Therefore,
the expansion attempt of an amoebot Ai is independent of
any of its previous attempts. So we have:

Pr
[
no amoebot successfully expands after k attempts

]

≤ Pr
[
A1 collides in all k expansion attempts

]

=
k∏

i=1

(
1 − Pr

[
A1’s i-th expansion attempt succeeds | t i1, ei1

])

<
(
1 − (1 − p)5

)k

Setting k = ln n/(1 − p)5, we have the probability that no
amoebot successfully expands after k attempts is at most

(
1 − (1 − p)5

)k ≤ e
−(1−p)5· ln n

(1−p)5 = 1

n

Once an amoebot’s expansion succeeds, it connects to
all its new neighbors causing any contending expansions to
immediately fail. Therefore, we conclude that exactly one
amoebot will successfully expand in at most ln n = O(log n)

attempts with high probability. �


References

1. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduc-
tion to Distributed Self-Stabilizing Algorithms, volume 8 of

Synthesis Lectures on Distributed Computing Theory. Mor-
gan & Claypool Publishers (2019). https://doi.org/10.2200/
S00908ED1V01Y201903DCT015

2. Andrés Arroyo,M., Cannon, S., Daymude, J.J., Randall, D., Richa,
A.W.: A stochastic approach to shortcut bridging in programmable
matter. Nat. Comput. 17(4), 723–741 (2018). https://doi.org/10.
1007/s11047-018-9714-x

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
Distrib. Comput. 18(4), 235–253 (2006). https://doi.org/10.1007/
s00446-005-0138-3

4. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asyn-
chronous robotic sensors in unknown orthogonal environments. In:
Algorithmic Aspects of Wireless Sensor Networks, volume 5389
of Lecture Notes in Computer Science, pp 125–140 (2008). https://
doi.org/10.1007/978-3-540-92862-1_11

5. Bazzi, R.A., Briones, J.L.: Stationary and deterministic leader elec-
tion in self-organizing particle systems. In: Stabilization, Safety,
and Security of Distributed Systems, volume 11914 of Lecture
Notes in Computer Science, pp 22–37 (2019). https://doi.org/10.
1007/978-3-030-34992-9_3

6. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiser-
son, C.E.: Adversarial contention resolution for simple channels.
In: Proceedings of the Seventeenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pp 325–332 (2005).
https://doi.org/10.1145/1073970.1074023

7. Blackiston, D., Lederer, E., Kriegman, S., Garnier, S., Bongard,
J., Levin, M.: A cellular platform for the development of synthetic
living machines. Sci. Robot. 6(52), eabf1571 (2021). https://doi.
org/10.1126/scirobotics.abf1571

8. Cali, F., Conti, M., Gregori, E.: IEEE 802.11 protocol: design and
performance evaluation of an adaptive backoff mechanism. IEEE
J. Sel. Areas Commun. 18(9), 1774–1786 (2000). https://doi.org/
10.1109/49.872963

9. Cannon, S., Daymude, J.J., Gökmen, C., Randall, D., Richa, A.W.:
A Local stochastic algorithm for separation in heterogeneous
self-organizing particle systems. In: Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019), volume 145 of Leibniz International
Proceedings in Informatics (LIPIcs), pp 54:1–54:22 (2019). https://
doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54

10. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov
chain algorithm for compression in self-organizing particle sys-
tems. In: Proceedings of the 2016 ACM Symposium on Principles

123

https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1007/s11047-018-9714-x
https://doi.org/10.1007/s11047-018-9714-x
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/978-3-540-92862-1_11
https://doi.org/10.1007/978-3-540-92862-1_11
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.1145/1073970.1074023
https://doi.org/10.1126/scirobotics.abf1571
https://doi.org/10.1126/scirobotics.abf1571
https://doi.org/10.1109/49.872963
https://doi.org/10.1109/49.872963
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54


The canonical amoebot model: algorithms and concurrency control 191

of Distributed Computing, pp 279–288 (2016). https://doi.org/10.
1145/2933057.2933107

11. Capetanakis, J.: Tree algorithms for packet broadcast channels.
IEEE Trans. Inform. Theory 25(5), 505–515 (1979). https://doi.
org/10.1109/TIT.1979.1056093

12. Chalk, C., Luchsinger, A., Martinez, E., Schweller, R., Winslow,
A., Wylie, T.: Freezing simulates non-freezing tile automata. DNA
Comput. Mol. Programm. 11145, 155–172 (2018). https://doi.org/
10.1007/978-3-030-00030-1_10

13. Chirikjian, G.S.: Kinematics of a metamorphic robotic system.
In: Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, pp 449–455 (1994). https://doi.org/10.
1109/ROBOT.1994.351256

14. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.:
Asynchronous silent programmablematter achieves leader election
and compaction. IEEE Access 8, 207619–207634 (2020). https://
doi.org/10.1109/ACCESS.2020.3038174

15. Das, S., Flocchini, P., Prencipe,G., Santoro,N.,Yamashita,M.: The
power of lights: synchronizing asynchronous robots using visible
bits. In: 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 506–515, (2012). https://doi.org/10.
1109/ICDCS.2012.71

16. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.:
Autonomous Mobile Robots with Lights. Theoret. Comput. Sci.
609(1), 171–184 (2016). https://doi.org/10.1016/j.tcs.2015.09.018

17. Daymude, J.J., Derakhshandeh, Z., Gmyr, R., Porter, A., Richa,
A.W., Scheideler, C., Strothmann, T.: On the runtime of univer-
sal coating for programmable matter. Nat. Comput. 17(1), 81–96
(2018). https://doi.org/10.1007/s11047-017-9658-6

18. Daymude, J.J., Gmyr, R.,Hinnenthal, K.,Kostitsyna, I., Scheideler,
C., Richa, A.W.: ConvexHull Formation for ProgrammableMatter.
In: Proceedings of the 21st International Conference onDistributed
Computing and Networking, pp 2:1–2:10 (2020). https://doi.org/
10.1145/3369740.3372916

19. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Improved leader election for self-organizing programmable
matter. In: Algorithms for Sensor Systems, volume 10718 of Lec-
ture Notes in Computer Science, pp 127–140 (2017). https://doi.
org/10.1007/978-3-319-72751-6_10

20. Daymude, J.J., Hinnenthal, K., Richa, A.W., Scheideler, C.: Com-
puting by Programmable Particles. In: Flocchini, P., Prencipe, G.,
Santoro, N., (eds.) Distributed computing by mobile entities, vol-
ume 11340 of Lecture Notes in Computer Science, pp 615–681.
Springer International Publishing, Cham (2019). https://doi.org/
10.1007/978-3-030-11072-7_22

21. Daymude, J.J., Richa,A.W., Scheideler, C.: The canonical amoebot
model: algorithms and concurrency control. In: 35th International
Symposium on Distributed Computing (DISC 2021), volume 209
of Leibniz International Proceedings in Informatics (LIPIcs), pages
20:1–20:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2021). https://doi.org/10.4230/LIPIcs.DISC.2021.20

22. Daymude, J.J., Richa,A.W., Scheideler, C.: Localmutual exclusion
for dynamic, anonymous, bounded memory message passing sys-
tems. In: 1st Symposium on Algorithmic Foundations of Dynamic
Networks (SAND 2022), volume 221 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:19. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik (2022). https://doi.
org/10.4230/LIPIcs.SAND.2022.12

23. Daymude, J.J., Richa, A.W., Weber, J.W.: Bio-inspired energy dis-
tribution for programmable matter. In: International Conference on
DistributedComputing andNetworking 2021, pages 86–95 (2021).
https://doi.org/10.1145/3427796.3427835

24. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler,
C., Strothmann, T.: Amoebot: a newmodel for programmable mat-
ter. In: Proceedings of the 26th ACM Symposium on Parallelism

in Algorithms and Architectures, pp 220–222, (2014). https://doi.
org/10.1145/2612669.2612712

25. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Stroth-
mann, T.: An algorithmic framework for shape formation problems
in self-organizing particle systems. In: Proceedings of the Sec-
ond Annual International Conference on Nanoscale Computing
and Communication, pages 21:1–21:2 (2015). https://doi.org/10.
1145/2800795.2800829

26. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Stroth-
mann, T.: Universal shape formation for programmable matter. In:
Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp 289–299 (2016). https://doi.org/10.
1145/2935764.2935784

27. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Stroth-
mann, T.: Universal coating for programmable matter. Theoret.
Comput. Sci. 671, 56–68 (2017). https://doi.org/10.1016/j.tcs.
2016.02.039

28. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa,
A.W., Scheideler, C.: Leader election and shape formation with
self-organizing programmable matter. In: DNA Computing and
Molecular Programming, volume 9211 of Lecture Notes in Com-
puter Science, pp 117–132 (2015). https://doi.org/10.1007/978-3-
319-21999-8_8

29. DiLuna,G.A., Flocchini, P.,GanChaudhuri, S., Poloni, F., Santoro,
N., Viglietta, G.: Mutual visibility by luminous robots without col-
lisions. Inf. Comput. 254(3), 392–418 (2017). https://doi.org/10.
1016/j.ic.2016.09.005

30. Di Luna, G.A., Flocchini, P., Prencipe, G., Santoro, N., Vigli-
etta, G.: Line recovery by programmable particles. In: Proceedings
of the 19th International Conference on Distributed Comput-
ing and Networking, pp 4:1–4:10 (2018). https://doi.org/10.1145/
3154273.3154309

31. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi,
Y.: Mobile RAM and shape formation by programmable particles.
In: Euro-Par 2020: Parallel Processing, volume 12247 of Lecture
Notes in Computer Science, pp 343–358 (2020). https://doi.org/
10.1007/978-3-030-57675-2_22

32. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi,
Y.: Shape formation by programmable particles. Distrib. Com-
put. 33(1), 69–101 (2020). https://doi.org/10.1007/s00446-019-
00350-6

33. Dufoulon, F., Kutten, S., Moses Jr., W.K.: Efficient deterministic
leader election for programmable matter. In: Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing,
pp 103–113 (2021). https://doi.org/10.1145/3465084.3467900

34. Emek, Y., Kutten, S., Lavi, R., Moses Jr, W.K.: Deterministic
leader election in programmable matter. In: 46th International
Colloquium on Automata, Languages, and Programming (ICALP
2019), Leibniz International Proceedings in Informatics (LIPIcs),
pp 140:1–140:14 (2019). https://doi.org/10.4230/LIPICS.ICALP.
2019.140

35. Flocchini, P., Prencipe, G., Santoro, N., (eds.): Distributed Com-
puting by Mobile Entities: Current Research in Moving and
Computing, volume 11340 of Lecture Notes in Computer Sci-
ence. Springer, Cham, (2019). https://doi.org/10.1007/978-3-030-
11072-7

36. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Ren-
dezvous with constant memory. Theor. Comput. Sci. 621, 57–72
(2016). https://doi.org/10.1016/j.tcs.2016.01.025

37. Gastineau, N., Abdou, W., Mbarek, N., Togni, O.: Distributed
leader election and computation of local identifiers for pro-
grammable matter. In: Algorithms for Sensor Systems, volume
11410 of Lecture Notes in Computer Science, pp 159–179 (2019).
https://doi.org/10.1007/978-3-030-14094-6_11

38. Gastineau, N., Abdou, W., Mbarek, N., Togni, O.: Leader election
and local identifiers for three-dimensional programmable matter.

123

https://doi.org/10.1145/2933057.2933107
https://doi.org/10.1145/2933057.2933107
https://doi.org/10.1109/TIT.1979.1056093
https://doi.org/10.1109/TIT.1979.1056093
https://doi.org/10.1007/978-3-030-00030-1_10
https://doi.org/10.1007/978-3-030-00030-1_10
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1109/ACCESS.2020.3038174
https://doi.org/10.1109/ACCESS.2020.3038174
https://doi.org/10.1109/ICDCS.2012.71
https://doi.org/10.1109/ICDCS.2012.71
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1007/s11047-017-9658-6
https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-030-11072-7_22
https://doi.org/10.1007/978-3-030-11072-7_22
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1016/j.tcs.2016.02.039
https://doi.org/10.1016/j.tcs.2016.02.039
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1016/j.ic.2016.09.005
https://doi.org/10.1016/j.ic.2016.09.005
https://doi.org/10.1145/3154273.3154309
https://doi.org/10.1145/3154273.3154309
https://doi.org/10.1007/978-3-030-57675-2_22
https://doi.org/10.1007/978-3-030-57675-2_22
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.4230/LIPICS.ICALP.2019.140
https://doi.org/10.4230/LIPICS.ICALP.2019.140
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1016/j.tcs.2016.01.025
https://doi.org/10.1007/978-3-030-14094-6_11


192 J. J. Daymude et al.

Concurr. Comput. Pract. Exp. (2020). https://doi.org/10.1002/cpe.
6067

39. Hines, L., Petersen, K., Lum, G.Z., Sitti, M.: Soft actuators for
small-scale robotics. Adv. Mater. 29(13), 1603483 (2017). https://
doi.org/10.1002/adma.201603483

40. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scal-
able pipeline for designing reconfigurable organisms. Proc. Natl.
Acad. Sci. 117(4), 1853–1859 (2020). https://doi.org/10.1073/
pnas.1910837117

41. Liu, A.T., Yang, J.F., LeMar, L.N., Zhang,G., Pervan,A.,Murphey,
T.D., Strano, M.S.: Autoperforation of two-dimensional materi-
als to generate colloidal state machines capable of locomotion.
Faraday Discuss. 227, 213–232 (2021). https://doi.org/10.1039/
D0FD00030B

42. Michail, O., Spirakis, P.G.: Simple and efficient local codes for
distributed stable network construction. Distrib. Comput. 29(3),
207–237 (2016). https://doi.org/10.1007/s00446-015-0257-4

43. Nokhanji, N., Santoro, N.: Line Reconfiguration by programmable
particles maintaining connectivity. In: Theory and Practice of Nat-
ural Computing, volume 12494 of Lecture Notes in Computer
Science, pp 157–169 (2020). https://doi.org/10.1007/978-3-030-
63000-3_13

44. Patitz, M.J.: An introduction to tile-based self-assembly and a sur-
vey of recent results. Nat. Comput. 13(2), 195–224 (2014). https://
doi.org/10.1007/s11047-013-9379-4

45. Piranda,B., Bourgeois, J.:Designing a quasi-sphericalmodule for a
huge modular robot to create programmable matter. Auton. Robot.
42, 1619–1633 (2018). https://doi.org/10.1007/s10514-018-9710-
0

46. Toffoli, T., Margolus, N.: Programmable matter: concepts and real-
ization. Phys. D 47(1–2), 263–272 (1991). https://doi.org/10.1016/
0167-2789(91)90296-L

47. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E.,
Yin, P.: Active self-assembly of algorithmic shapes and patterns
in polylogarithmic time. In: Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science, pp 353–354, (2013).
https://doi.org/10.1145/2422436.2422476

48. Xie, H., Sun, M., Fan, X., Lin, Z., Chen, W., Wang, L., Dong, L.,
He, Q.: Reconfigurable magnetic microrobot swarm: multimode
transformation, locomotion, and manipulation. Sci. Robot. 4(28),
eaav8006 (2019). https://doi.org/10.1126/scirobotics.aav8006

49. Yang, J.F., Liu, P., Koman, V.B., Liu, A.T., Strano, M.S.: Syn-
thetic cells: colloidal-sized statemachines. In:Walsh, S.M., Strano,
M.S. (eds.) Robotic Systems and Autonomous Platforms, Wood-
head Publishing in Materials, pp. 361–386. Woodhead Publishing
(2019). https://doi.org/10.1016/B978-0-08-102260-3.00015-9

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1002/cpe.6067
https://doi.org/10.1002/cpe.6067
https://doi.org/10.1002/adma.201603483
https://doi.org/10.1002/adma.201603483
https://doi.org/10.1073/pnas.1910837117
https://doi.org/10.1073/pnas.1910837117
https://doi.org/10.1039/D0FD00030B
https://doi.org/10.1039/D0FD00030B
https://doi.org/10.1007/s00446-015-0257-4
https://doi.org/10.1007/978-3-030-63000-3_13
https://doi.org/10.1007/978-3-030-63000-3_13
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1126/scirobotics.aav8006
https://doi.org/10.1016/B978-0-08-102260-3.00015-9

	The canonical amoebot model: algorithms and concurrency control
	Abstract
	1 Introduction
	1.1 Related work

	2 The canonical amoebot model
	2.1 Amoebot anatomy
	2.2 Amoebot operations
	2.2.1 Communication operations
	2.2.2 Movement operations
	2.2.3 Concurrency control operations
	2.2.4 Operation time and space complexity

	2.3 Amoebot actions, algorithms and executions

	3 Asynchronous hexagon formation without locks
	4 A general framework for concurrency control
	4.1 Algorithm conventions for concurrency control
	4.2 The concurrency control framework
	4.3 Analysis

	5 Discussion and future work
	Appendix A: Amoebot operation pseudocode
	Appendix B: Expansion contention resolution
	References




