
Invited Paper: Asynchronous Deterministic Leader Election in
Three-Dimensional Programmable Matter
Joseph L. Briones

Arizona State University

School of Computing and Augmented Intelligence

Tempe, AZ, USA

joseph.briones@asu.edu

Tishya Chhabra

Arizona State University

School of Computing and Augmented Intelligence

Tempe, AZ, USA

tishyac3.141@gmail.com

Joshua J. Daymude

Arizona State University

School of Computing and Augmented Intelligence

Biodesign Center for Biocomputing, Security and Society

Tempe, AZ, USA

jdaymude@asu.edu

Andréa W. Richa

Arizona State University

School of Computing and Augmented Intelligence

Tempe, AZ, USA

aricha@asu.edu

ABSTRACT
Over three decades of scientific endeavors to realize programmable
matter, a substance that can change its physical properties based

on user input or responses to its environment, there have been

many advances in both the engineering of modular robotic systems

and the corresponding algorithmic theory of collective behavior.

However, while the design of modular robots routinely addresses

the challenges of realistic three-dimensional (3D) space, algorithmic

theory remains largely focused on 2D abstractions such as planes

and planar graphs. In this work, we formalize the 3D geometric
space variant for the canonical amoebot model of programmable

matter, using the face-centered cubic (FCC) lattice to represent space
and define local spatial orientations. We then give a distributed

algorithm for leader election in connected, contractible 2D or 3D

geometric amoebot systems that deterministically elects exactly one

leader inO(𝑛) rounds under an unfair sequential adversary, where𝑛
is the number of amoebots in the system. We then demonstrate how

this algorithm can be transformed using the concurrency control

framework for amoebot algorithms (DISC 2021) to obtain the first

known amoebot algorithm, both in 2D and 3D space, to solve leader

election under an unfair asynchronous adversary.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; Concur-
rent algorithms; Self-organization.

KEYWORDS
programmable matter, leader election, three-dimensional

ACM Reference Format:
Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W.

Richa. 2023. Invited Paper: Asynchronous Deterministic Leader Election in

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICDCN 2023, January 4–7, 2023, Kharagpur, India
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9796-4/23/01.

https://doi.org/10.1145/3571306.3571389

Three-Dimensional Programmable Matter. In 24th International Conference
on Distributed Computing and Networking (ICDCN 2023), January 4–7, 2023,
Kharagpur, India. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3571306.3571389

1 INTRODUCTION
Since its inception [27], programmable matter has been envisioned

as a material that can dynamically alter its physical properties

based either on user input or autonomous sensing of the envi-

ronment. Many strides have been made to realize this technol-

ogy over the last several decades, both from the practical per-

spective of modular robotics and the algorithmic contributions

of distributed computing theory. However, when it comes to realis-

tic considerations of three-dimensional (3D), gravity-bound space,

advances in robotics have outpaced their distributed computing

counterparts. Modular, reconfigurable robotic systems such as Pro-

teo [31], SlidingCube [14], 3D M-Blocks [24], RollingSphere [20],

FireAnt3D [25], FreeBOT [18, 19], and 3D Catoms [23, 26] rou-

tinely address engineering challenges both in individual module

design (such as binding and locomotion) and in collective recon-

figuration (such as gravity stability) that are inherent to 3D en-

vironments. Besides a few notable exceptions [29, 30], the vast

majority of abstract models of mobile robots and programmable

matter treat space as two-dimensional (2D) planes or planar graph

structures [2, 4, 9, 15, 21, 22, 28], simplifying their assumptions but

limiting their application to practical domains.

Our goal is to move theoretical programmable matter research

towards the 3D reality by extending the established amoebot model
of programmable matter [8, 9]. Research using the amoebot model

has historically assumed 2D discretizations of space, most com-

monly the “geometric” triangular lattice (Figure 1a). Under this

treatment of space, amoebot algorithms have been developed for

a myriad of problems including leader election, shape formation,

object coating and enclosure, bridging, and more (see [5, 7, 8] for

an overview of results). The recent canonical amoebot model [8]
systematized the many disparate assumptions appearing in these

works into categories, each with a set of “assumption variants” of

varying strengths. In this paper, we formalize the 3D geometric space

38

https://orcid.org/0000-0002-5847-4263
https://orcid.org/0000-0002-3555-1078
https://orcid.org/0000-0001-7294-5626
https://orcid.org/0000-0003-3592-3756
https://doi.org/10.1145/3571306.3571389
https://doi.org/10.1145/3571306.3571389
https://doi.org/10.1145/3571306.3571389
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571306.3571389&domain=pdf&date_stamp=2023-01-04

ICDCN 2023, January 4–7, 2023, Kharagpur, India Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa

(a) (b)

Figure 1: The Geometric Space Variants. (a) The 2D triangular
lattice 𝐺Δ. (b) The 3D face-centered cubic (FCC) lattice 𝐺FCC.

variant for the canonical amoebot model that discretizes space as

the face-centered cubic (FCC) lattice (Figure 1b).
Lattice representations of modular robots and programmable

matter typically assume either a cubic lattice corresponding to cubic

or spherical modules [19, 20, 24, 29] or an FCC lattice corresponding

to (quasi-)spherical or rhombic-dodecahedral modules [17, 23, 26].

The FCC lattice is a natural 3D generalization of the 2D triangular

lattice already used for many amoebot algorithms; in fact, it can

be decomposed into layers of triangular lattices and thus remains

compatible with existing results for 2D amoebot systems. Also,

maintaining module connectivity during movements is easier in an

FCC lattice than in a cubic one (see, e.g., [23]).

Using this new 3D geometric space variant, we revisit the clas-

sical problem of leader election, defined formally in Section 4. We

demonstrate that among the many existing algorithms for leader

election in 2D amoebot systems [1, 6, 10–13, 16], the erosion-based
algorithm of Di Luna et al. [11] extends naturally to 3D—surprisingly,

without any cost to runtime. Although erosion-based election in

3D may seem simple at first glance, its analysis requires new, non-

trivial topological arguments specific to the 3D setting. Our al-

gorithm elects exactly one leader in any connected, contractible

amoebot system (defined formally in Section 3) within O(𝑛) rounds
under an unfair sequential adversary, where 𝑛 is the number of

amoebots in the system. We thus achieve similar guarantees as the

state-of-the-art algorithm for 3D leader election by Gastineau et

al. [17], with two important differences: (1) we consider all 24 possi-

ble amoebot orientations in 3D achievable by rotation or reflection

while Gastineau et al. only consider eight, and (2) we break sym-

metry using local comparisons between neighbors’ orientations

while Gastineau et al. assume 2-neighborhood vision. We further

show that our algorithm is compatible with the concurrency con-
trol framework for amoebot algorithms [8], implying that it can

be transformed into an algorithm with equivalent behavior that

remains correct even under an unfair asynchronous adversary.

Our Contributions. Our main contributions are summarized as:

• A formalization of the 3D geometric space variant for the
canonical amoebot model using the FCC lattice to discretize

space and define amoebots’ spatial orientations (Section 3).

• A deterministic amoebot algorithm that solves leader elec-

tion in both 2D and 3D geometric space for connected, con-

tractible systems under an unfair sequential adversarywithin

O(𝑛) rounds, where 𝑛 is the number of amoebots in the sys-

tem (Sections 5–6).

• An application of the concurrency control framework for

amoebot algorithms [8] that yields the first known amoebot

algorithm, in both 2D and 3D space, to solve leader election

under an unfair asynchronous adversary (Section 7).

2 THE AMOEBOT MODEL
We begin by describing the features of the canonical amoebot model

that will be used in this work; a deeper description of the model and

its rationale can be found in [8]. In the canonical amoebot model,

programmable matter consists of individual, homogeneous com-

putational elements called amoebots. The structure of an amoebot

system is represented as a subgraph of an infinite, undirected graph

𝐺 = (𝑉 , 𝐸) where 𝑉 represents all relative positions an amoebot

can occupy and 𝐸 represents all atomic movements an amoebot can

make. Each node in𝑉 can be occupied by at most one amoebot at a

time. There are many possible assumption variants one could make

about space; here, we consider the 2D geometric variant which as-

sumes 𝐺 = 𝐺Δ, the triangular lattice (Figure 1a), and the presently

introduced 3D geometric variant which assumes 𝐺 = 𝐺FCC, the

face-centered cubic lattice (Figure 1b).

In this work, all amoebots remain contracted, each occupying

a single node in 𝑉 ; other works also consider expanded amoebots

that occupy a pair of adjacent nodes in 𝑉 . Each amoebot keeps

a collection of ports—one for each edge incident to the node it

occupies—that are labeled consecutively according to its own local,

persistent orientation. An amoebot’s orientation is defined accord-

ing to space variant-specific information; we define orientation

for our lattices of interest in Section 3. Two amoebots occupying

adjacent nodes are said to be neighbors. Although each amoebot

is anonymous, lacking a unique identifier, an amoebot can locally

identify its neighbors using their port labels. In particular, amoebots

𝐴 and 𝐵 connected via ports 𝑝𝐴 and 𝑝𝐵 are each assumed to know

one another’s orientations and labels for 𝑝𝐴 and 𝑝𝐵 .

Each amoebot has memory whose size is a model variant; here

we assume constant-size memories. An amoebot’s memory consists

of two parts: a persistent public memory that is only accessible

to an amoebot algorithm via communication operations (defined

next), and a volatile private memory that is directly accessible by

amoebot algorithms for temporary variables, private computation,

etc. Operations define the programming interface for amoebot algo-

rithms to communicate, move, and control concurrency that are, in

reality, implemented via message passing (see [8] for details). Our

algorithm for leader election only makes use of the communication

operations Connected, Read, and Write.

• The Connected operation tests the presence of neighbors.

Connected(𝑝) returns true if and only if there is a neigh-

bor connected via port 𝑝 .

• The Read and Write operations exchange information in

public memory. Read(𝑝, 𝑥) issues a request to read the value
of a variable 𝑥 in the public memory of the neighbor con-

nected via port 𝑝 whileWrite(𝑝, 𝑥, 𝑥𝑣𝑎𝑙) issues a request to
update its value to 𝑥𝑣𝑎𝑙 . If 𝑝 = ⊥, an amoebot’s own public

memory is accessed instead of a neighbor’s.

39

Asynchronous Deterministic Leader Election in 3D Programmable Matter ICDCN 2023, January 4–7, 2023, Kharagpur, India

(a) (b)

Figure 2: Lattice Decompositions of 𝐺FCC. A node of 𝐺FCC

(black) viewed as the intersection of (a) four non-parallel
triangular lattices or (b) three orthogonal square grids.

Amoebot algorithms are defined as sets of actions, each of the

form ⟨𝑙𝑎𝑏𝑒𝑙⟩ : ⟨𝑔𝑢𝑎𝑟𝑑⟩ → ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠⟩. An action’s label specifies
its name. Its guard is a Boolean predicate determining whether an

amoebot𝐴 can execute it based on the ports𝐴 has connections on—

i.e., which nodes adjacent to 𝐴 are (un)occupied—and information

from the public memories of 𝐴 and its neighbors. An action is

enabled for an amoebot 𝐴 if its guard is true for 𝐴, and an amoebot

is enabled if it has at least one enabled action. An action’s operations
specify the finite sequence of operations and computation in private

memory to perform if this action is executed.

An amoebot is active if it is currently executing an action and is

inactive otherwise. The model assumes an adversary controls the

timing of amoebot activations and the resulting action executions,

whose concurrency and fairness are assumption variants. In this

work, we consider two concurrency variants: sequential, in which

at most one amoebot can be active at a time; and asynchronous,
in which any set of amoebots can be simultaneously active. We

consider the most general fairness variant: unfair, in which the

adversary may activate any enabled amoebot.

An amoebot algorithm’s time complexity is evaluated in terms of

rounds representing the time for the slowest continuously enabled

amoebot to execute a single action. Let 𝑡𝑖 denote the time at which

round 𝑖 ∈ {0, 1, 2, . . .} starts, where 𝑡0 = 0, and let E𝑖 denote the set
of amoebots that are enabled or already executing an action at time

𝑡𝑖 . Round 𝑖 completes at the earliest time 𝑡𝑖+1 > 𝑡𝑖 by which every

amoebot in E𝑖 either completed an action execution or became

disabled at some time in (𝑡𝑖 , 𝑡𝑖+1]. Depending on the adversary’s

concurrency, action executions may span more than one round.

3 THE THREE-DIMENSIONAL (3D)
GEOMETRIC SPACE VARIANT

We now formally define the 3D geometric space variant for the
canonical amoebot model, one of the main contributions of this

work. This variant assumes space is represented by the face-centered
cubic (FCC) lattice, 𝐺FCC (Figure 1b). Just as the triangular lattice

𝐺Δ used by the 2D geometric space variant can be viewed as the

adjacency graph of the closest circle packing or as the dual of the

hexagonal tiling, 𝐺FCC can be viewed as the adjacency graph of

the sphere packing that minimizes unoccupied volume or as the

(a) Home Lattices

(b) Views

(c) Spins

(d) Rotations

0

1 2

3

4
5

6

7

8

9

10

11

(e) Labeling

Figure 3: Amoebot Orientations. (a)–(d) The components of
an amoebot’s orientation. For brevity, only the spins and
rotations of the blue home lattice are shown in (c) and (d). (e)
An example port labeling.

dual of the rhombic-dodecahedral tessellation. Each node in 𝐺FCC

has degree 12 and can be viewed as the intersection of four infinite,

non-parallel triangular lattices (Figure 2a) or as the intersection of

three orthogonal square grids (Figure 2b). Thus, in 3D geometric

space, a contracted amoebot has 12 neighbors and an expanded

amoebot has at most 18.

An amoebot’s orientation represents all the ways its local sense

of space can be rotated or reflected while respecting the underlying

spatial structure. In𝐺Δ, an amoebot’s orientation is represented as a

direction indicatingwhich incident lattice edge it thinks of as “north”
and a chirality establishing the clockwise vs. counterclockwise

ordering of its incident edges. We generalize orientation in 𝐺FCC

using view, spin, and rotation as defined below. Different model

variants may assume that amoebots share all, some, or none of their

views, spins, and rotations in common. This work assumes assorted
orientations, meaning the amoebots are not guaranteed to share

any aspect of their orientations.

The home lattice of an amoebot is one of the four infinite triangu-

lar lattices that contain the node the amoebot occupies (Figure 3a).

An amoebot’s view is the triangular lattice decomposition of 𝐺FCC

containing the amoebot’s home lattice (Figure 3b). A view can al-

ternatively be defined as the set of triangular lattices whose planar

embeddings in 3D space are non-intersecting, each orthogonal to

the same two anti-parallel vectors. An amoebot’s spin defines the

“top” and “bottom” sides of the amoebot’s home lattice; formally, it

is the differentiation of the home lattice’s two orthogonal vectors

as positive and negative (Figure 3c). Having fixed this spin vector,

any node’s incident edges contained in the amoebot’s view can be

40

ICDCN 2023, January 4–7, 2023, Kharagpur, India Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa

Table 1: Comparison of Amoebot Algorithms for Leader Election. Algorithms are organized chronologically by first publication.
Gastineau et al. [17] details two separate leader election algorithms; the row with “#2” is specific to its “Algorithm 2” which
is marked with a ∗ to denote its non-standard assumption of 2-neighborhood vision. When 𝑘 ∈ Z+ appears in the number of
leaders elected, it refers to the amoebot system being 𝑘-symmetric. For the runtime bounds, 𝐿∗ denotes the length of the longest
system boundary, 𝐿 denotes the length of the system’s outer boundary, 𝐷 is the diameter of the system’s initial configuration,
and 𝑛 denotes the number of amoebots in the system. The runtime terms 𝑟 and𝑚𝑡𝑟𝑒𝑒 are specific to [16], and it can be shown
that 𝑟 +𝑚𝑡𝑟𝑒𝑒 is both Ω(𝐷) and O(𝑛).

Algorithm Space AssortedOri-
entation Adversary Deterministic Allows

“Holes” Stationary Leaders
Elected Runtime

Derakhshandeh et al. [10] 2D Direction Strong Seq. ✗ ✓ ✓ 1 O(𝐿∗) exp.
Daymude et al. [6] 2D Direction Strong Seq. ✗ ✓ ✓ 1, w.h.p. O(𝐿) w.h.p.
Di Luna et al. [11] 2D Both Sync. ✓ ✗ ✓ 𝑘 ≤ 3 O(𝑛2)
Gastineau et al. [16] 2D Direction Strong Seq. ✓ ✗ ✓ 1 O(𝑟 +𝑚𝑡𝑟𝑒𝑒)
Emek et al. [13] 2D Both Strong Seq. ✓ ✓ ✗ 1 O(𝐿𝑛2)
Bazzi and Briones [1] 2D Direction Weak Seq. ✓ ✓ ✓ 𝑘 ≤ 6 O(𝑛2)
Dufoulon et al. [12] 2D Direction Strong Seq. ✓ ✓ ✗ 1 O(𝐿 + 𝐷)
Gastineau et al. #2

∗
[17] 3D Spin/Rotation Strong Seq. ✓ ✗ ✓ 1 O(𝑛)

This Paper 2&3D All Strong Seq. ✓ ✗ ✓ 1 O(𝑛)
This Paper + [8] 2&3D All Async. ✓ ✗ ✓ 1 ?

listed in clockwise order according to the right-hand rule. The final

component of an amoebot’s orientation is its rotation about its spin

vector, of which there are three that agree with 𝐺FCC (Figure 3d).

A rotation can alternatively be defined as one of the three axes in

𝐺FCC that contain the amoebot’s node but are not contained in the

amoebot’s home lattice.
1

As in the 2D geometric space variant, an amoebot uses its orien-

tation in 3D geometric space to define a consistent labeling of its

ports (i.e., incident edges). In Figure 3e, we illustrate one possible

labeling for a contracted amoebot. The precise labeling scheme is

immaterial so long as all amoebots label their ports consistently as

a function of their (potentially differing) orientations.
2

We can connect the 2D and 3D geometric space variants as

follows. The single triangular lattice 𝐺Δ in 2D geometric space can

be thought of as any of the triangular lattices contained in 𝐺FCC;

i.e., all amoebots in a 2D system have the same home lattice (and

thus the same view) in a 3D system. An amoebot’s chirality in a 2D

system plays the same role as its spin in a 3D system, defining “up”

vs. “down” and clockwise vs. counterclockwise relative to the home

lattice. Finally, an amoebot’s direction in a 2D system functions

analogously to rotation about its spin vector in a 3D system, with

one discrepancy: due to the constraints of the underlying lattices,

a 2D system allows six possible 60
◦
rotations while a 3D system

allows three possible 120
◦
rotations.

Finally, we define two spatial properties of amoebot systems that

will be used throughout the remaining sections. An amoebot system

1
An amoebot’s orientation could be defined more succinctly as a pair of vectors

originating at the amoebot’s node: one that is orthogonal to the amoebot’s home

lattice and pointing to its “top” side (defining view and spin), and a second that points

to a neighboring node outside the amoebot’s home lattice (defining rotation).

2
This is strictly more general than the port labeling schemes allowed in the formulation

of 3D space by Gastineau et al. (see Sections 2.1 and 2.2.1 of [17]). Their formulation

assumes all amoebots share a common sense of “layers” analogous to our views, but for

a square lattice decomposition of𝐺FCC instead of a triangular one. With square “home

layers”, there are two possible spins (“up” vs. “down”) and four possible rotations,

yielding eight total orientations. Our formulation considers all 24.

is connected if the lattice nodes occupied by amoebots induce a sin-

gle connected component. We are also concerned with the notion

of “holes” in amoebot systems. In general topology, a hole is any
topological structure that prevents an object (or space) from being

continuously shrunk to a single point; an object is contractible if it
does not contain holes. To apply this definition to amoebot systems,

recall that the dual of𝐺FCC (resp.,𝐺Δ) is the rhombic dodecahedral

(resp., hexagonal) tessellation of space. Given a 3D (resp., 2D) amoe-

bot system, its lattice dual representation is the closed union of all

solid rhombic dodecahedrons (resp., hexagons) in the lattice’s dual

corresponding to lattice nodes occupied by amoebots. An amoebot

system contains a hole if and only if its lattice dual representation

contains a (topological) hole and is contractible otherwise.

4 AMOEBOT LEADER ELECTION
An algorithm solves the leader election problem if for any connected

system of initially contracted amoebots with well-initialized mem-

ories, eventually a single amoebot irreversibly declares itself the

system’s leader and no other amoebot ever does so. A leader’s

ability to break symmetry and coordinate the system via broad-

casts makes it a powerful primitive for other amoebot algorithms,

spurring a flurry of recent research on amoebot algorithms for

leader election [1, 4, 6, 10–13, 16, 17]. Table 1 compares these exist-

ing algorithms, their assumptions, and their outcomes to our own,

though we treat the D’Angelo et al. algorithm [4] and “Algorithm

1” of Gastineau et al. [17] separately due to their strong, one-off

assumptions. The common assumptions and outcomes are:

• Space. Nearly all amoebot algorithms for leader election as-

sume the 2D geometric space variant. Recently, Gastineau et

al. [17] introduced a pair of algorithms for amoebot leader

election on 𝐺FCC, much like our own 3D geometric space

variant, but with stronger assumptions (see below).

• Orientation. Recall that in 2D, amoebot orientation is defined

as a direction and chirality; analogously, 3D orientations are

41

Asynchronous Deterministic Leader Election in 3D Programmable Matter ICDCN 2023, January 4–7, 2023, Kharagpur, India

a view, spin, and rotation. In 2D, the algorithms of Di Luna et

al. [11] and Emek et al. [13] allow fully assorted orientations

while the rest assumed common chirality. In 3D, “Algorithm

2” of Gastineau et al. [17] assumes common (square) views

while our algorithm allows fully assorted orientations.

• Adversary/Scheduler. Until the canonical amoebot model was

introduced, most algorithms assumed a sequential sched-

uler under which at most one amoebot could be active at a

time. Strong sequential schedulers allow each amoebot to

read, write, and move in one atomic action. Weak sequential

schedulers used by Bazzi and Briones [1] are more general,

ensuring only that reading, writing, and moving are each

individually atomic but may not necessarily be combined

into a single atomic action. Di Luna et al. [11] assume a syn-

chronous scheduler that may activate arbitrary subsets of

amoebots concurrently, but only in discrete stages. This pa-

per starts with a strong sequential scheduler but ultimately

considers the most general asynchronous adversary that

allows for arbitrary concurrency among amoebot actions.

• Deterministic vs. Randomized. Randomization is a classical

technique for symmetry breaking, but incurs a failure prob-

ability (with respect to correctness, runtime, or both) that

is not present in deterministic algorithms. The original De-

rakhshandeh et al. algorithm [10] and its improvement by

Daymude et al. [6] are both randomized while the rest, in-

cluding our present algorithm, are deterministic.

• Connectivity and Holes. All existing algorithms assume con-

nected initial system configurations. The algorithms of Di

Luna et al. [11] and Gastineau et al. [16] further assume their

2D initial configurations are hole-free. Our algorithm analo-

gously assumes its 3D initial configurations are contractible

(as defined in Section 3), which is a necessary but likely insuf-

ficient condition for the “electable” configurations assumed

by “Algorithm 2” of Gastineau et al. [17].

• Movement. Emek et al. [13] and Dufoulon et al. [12] utilize

amoebots’ movement capabilities as a mechanism for sym-

metry breaking. All other algorithms, including ours, are

stationary, relying only on communication to elect a leader.

• Number of Leaders Elected.Due to symmetry in the initial sys-

tem configuration, some of the stationary deterministic algo-

rithms elect a constant number of leaders instead of a unique

one. In particular, for 𝑘-symmetric system configurations,

the Di Luna et al. algorithm [11] elects 𝑘 ∈ {1, 2, 3} leaders
and the Bazzi and Briones algorithm [1] elects 𝑘 ∈ {1, 2, 3, 6}.
All other algorithms, including ours, elect a unique leader.

• Runtime. All existing algorithms’ runtime bounds are given

in sequential rounds, where a round ends when each amoe-

bot has been activated at least once. Our analysis uses a com-

parable but more technical definition of a round that extends

to any concurrency assumption and focuses on the behavior

of enabled amoebots (see Section 2). Among the deterministic

algorithms, only the Dufoulon et al. algorithm [12] achieves

a faster runtime than ours.

D’Angelo et al. [4] introduced the SILBOT model which is in-

spired by the amoebot model and aims to study what collective

behaviors are possible when robots cannot communicate via mes-

sages or memory accesses. Under this seemingly challenging model,

they show how to deterministically elect up to three leaders (due

to symmetry) if the 2D system configuration is connected and hole-

free—and if the robots can sense the presence and shape of robots

in their 2-neighborhood on 𝐺Δ, a strong assumption that no other

amoebot algorithm makes. They then additionally show how the al-

gorithm can be generalized to connected configurations with holes

if each robot can sense which unoccupied nodes are holes andwhich

belong to the outside of the system. This very strong assumption is

unique to SILBOT, resolving the challenging “inner-outer boundary

problem” [6, 10] by simply granting the requisite knowledge to

robots a priori. Our algorithm makes no such assumptions.

The pair of Gastineau et al. algorithms for leader election in

3D amoebot systems are the most relevant to ours since they also

use 𝐺FCC to discretize space [17]. However, their first algorithm

assumes all amoebots have the same 3D orientation and O(𝑛 log𝑛)
memory, where 𝑛 is the number of amoebots in the system. Their

second algorithm addresses some of these concerns by assuming

orientations with assorted spins and rotations but common views

and constant-size memory, but allows amoebots to view “extended

neighborhoods” that include nodes at distance 2. Our algorithm

achieves the same leader election guarantees without these assump-

tions, using only constant-size memory and local comparisons

between 1-neighbors’ orientations for symmetry breaking.

5 3D LEADER ELECTION BY EROSION
Our algorithm for leader election in 3D amoebot systems is an

extension of the “lattice consumption” algorithm for 2D systems

by Di Luna et al. [11]. In the lattice consumption algorithm, all

amoebots are initially eligible for leader candidacy. When activated,

an eligible amoebot uses certain rules regarding the number and

relative positions of its eligible neighbors to decide whether to erode,
revoking its candidacy without disconnecting the set of eligible

amoebots or introducing a hole. Assuming the initial configuration

was connected and hole-free, Di Luna et al. [11] proved that under a

synchronous scheduler, erosion would eventually reduce the system

to 1, 2, or 3 candidate leaders depending on the system’s symmetry.

Our algorithm generalizes this approach to the 3D geometric

space variant by defining rules for erosion based on 3D neighbor-

hoods. It deterministically elects a unique leader for connected, con-

tractible systems by leveraging the sequential adversary to break

symmetry (Section 6). We then lift this strong timing assumption

to the asynchronous setting—the most general of all concurrency

assumptions—using the lock-based concurrency control framework

for amoebot algorithms [8] (Section 7).

Algorithm 1 details our algorithm’s pseudocode and Table 2

summarizes each amoebot’s local variables. Initially, the system has

no leader and all amoebots exist in a special null candidacy state.

Every amoebot’s first activation executes the Setup action which

sets the amoebot as a candidate and informs its neighbors of its

candidacy. Once all neighbors of a given candidate amoebot𝐴 have

also done their setup actions, the Erode action becomes enabled

for 𝐴 whenever 𝐴 satisfies an erosion rule. When executing Erode,

𝐴 revokes its candidacy and informs its neighbors that it did so.

As we will prove in the next section, repeated executions of the

42

ICDCN 2023, January 4–7, 2023, Kharagpur, India Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa

Algorithm 1 Leader Election by Erosion for Amoebot 𝐴

1: Setup : (𝐴.cand = null) →
2: Write(⊥, cand, true) . ⊲ Become a candidate.

3: for each port 𝑝 of 𝐴 do ⊲ Inform neighbors of candidacy.

4: if Connected(𝑝) then
5: Let 𝑝′ be the neighbor’s port connected to port 𝑝 .

6: Write(𝑝, nbrcand(𝑝′), true) .
7: Erode : (𝐴.cand = true) ∧ (∀𝐵 ∈ 𝑁 (𝐴), 𝐵.cand ≠ null) ∧

CanErode() →
8: Write(⊥, cand, false) . ⊲ Revoke candidancy.

9: for each port 𝑝 of 𝐴 do ⊲ Inform neighbors of erosion.

10: if Connected(𝑝) then
11: Let 𝑝′ be the neighbor’s port connected to port 𝑝 .

12: Write(𝑝, nbrcand(𝑝′), false) .
13: DeclareLeader : (𝐴.cand = true) ∧ (∀𝐵 ∈ 𝑁 (𝐴), 𝐵.cand =

false) →
14: Write(⊥, leader, true) .
15: function CanErode()

16: return true if and only if:

• Rule 1: 𝐴 has exactly one candidate neighbor; or

• Rule 2: 𝐴 has two to five candidate neighbors and these

neighbors’ positions induce a connected subgraph; or

• Rule 3: 𝐴 has exactly two candidate neighbors that have a

common candidate neighbor such that these four candidates

induce a square in𝐺FCC.

Table 2: Algorithm Notation. The domain, initialization, and
description of the local variables used in the leader election
algorithm by an amoebot 𝐴.

Variable Domain Init. Description

leader {true, false} false true iff 𝐴 is the unique leader

cand {null, true, false} null After first activation, true iff 𝐴 is a candidate

nbrcand(𝑝) {true, false} false true iff 𝐴 has a candidate neighbor on port 𝑝

Erode action eventually reduce the system to a single candidate

that, upon finding no candidate neighbors, elects itself as leader in

the DeclareLeader action.

It remains to specify the erosion rules for 3D geometric systems.

We formally specify these rules below and visualize them in Figure 4.

For the sake of clarity, we represent the collection of these rules in

Algorithm 1 as a function CanErode that returns true if and only

if the calling amoebot 𝐴 satisfies one of the following erosion rules:

Rule 1. 𝐴 has exactly one candidate neighbor (Figure 4a).

Rule 2. 𝐴 has two to five candidate neighbors, and these neighbors’

positions induce a connected subgraph (Figure 4b).

Rule 3. 𝐴 has exactly two candidate neighbors that have a common

candidate neighbor such that these four candidates induce

a square in 𝐺FCC (Figure 4c).

As we will show in Section 6, any connected and contractible

system of at least two candidate amoebots contains at least one

candidate 𝐴 satisfying one of these three rules. We can further

show that the “erosion” of 𝐴 does not violate the connectivity or

contractibility of the remaining candidate structure, ensuring that

the system eventually converges to exactly one leader amoebot.

Rules 1 and 2 can be evaluated using only the local port labels of𝐴

that are connected to candidate neighbors—which can be obtained

(b) Rule 2(a) Rule 1

(c) Rule 3

Figure 4: Erosion Rules. Example configurations of neighbor-
ing candidates (green) for which an amoebot 𝐴 (black) can
safely erode. (a)–(b)𝐴 can erode if it has one to five neighbors
that induce a connected subgraph. (c) 𝐴 can only erode if the
catty-corner candidate neighbor (blue) exists.

using Read operations on neighbors’ cand variables—and some

basic information about the structure of 𝐺FCC. However, Rule 3

covers a special case that is specific to 𝐺FCC. If four candidates

𝐴, 𝐵, 𝐶 , and 𝐷 form a square in which each candidate is adjacent

to exactly two others
3
but not to the third that is “catty-corner”

to it, then none of these four candidates can determine whether

erosion will disconnect the candidate structure when using only the

positions of their candidate neighbors. For 𝐴, safe erosion hinges

on the existence of the catty-corner candidate 𝐶: if 𝐴 erodes, then

𝐵 and 𝐷 remain connected if and only if 𝐶 exists.

Instead of assuming this problem away by giving the amoebots

2-neighborhood vision, as “Algorithm 2” of Gastineau et al. [17]

does, we address this problem locally using the nbrcand variables.

An amoebot 𝐴 has 𝐴.nbrcand(𝑝) = true if and only if 𝐴 has a

neighbor candidate connected via port 𝑝; these are set to true by

neighbors becoming candidates during their Setup actions and

then are reset to false by eroding candidate neighbors during their

Erode actions. Maintaining these variables allows an amoebot

𝐴 that might be in a square to Read the corresponding nbrcand
variable of its candidate neighbors 𝐵 or 𝐷 to check for the existence

of the catty-corner candidate𝐶 . Importantly, this uses the amoebot

model’s assumption that neighboring amoebots know one another’s

orientations, and thus 𝐴 can translate the adjacency it wants to

check into the correct port label from the perspective of 𝐵 or 𝐷 .

6 SEQUENTIAL ANALYSIS
Wefirst analyze our algorithm under an unfair sequential adversary;

i.e., when at most one amoebot can be active per time and the

adversary may activate any enabled amoebot. We will extend these

results to an unfair asynchronous adversary allowing for arbitrary

3
Adjacency in𝐺FCC is taken by (2D) face adjacency; note that amoebots𝐴, 𝐵,𝐶 and

𝐷 actually do intersect in the rhombic dodecahedral tessellation at exactly one vertex

point.

43

Asynchronous Deterministic Leader Election in 3D Programmable Matter ICDCN 2023, January 4–7, 2023, Kharagpur, India

concurrency in the next section. We first prove our algorithm never

violates a safety condition.

Lemma 6.1. Let 𝑆 be a connected and contractible amoebot system
on𝐺FCC. If amoebot 𝐴 satisfies an erosion rule with respect to 𝑆 , then
𝑆 −𝐴 is also connected and contractible.

Proof. Suppose to the contrary that there exists an amoebot 𝐴

in 𝑆 that satisfies an erosion rule but 𝑆 −𝐴 is either disconnected

or not contractible. Suppose first that 𝑆 − 𝐴 is disconnected, i.e.,

there exist amoebots {𝐵,𝐶} ∌ 𝐴 such that a simple path from

𝐵 to 𝐶 exists in the subgraph induced by 𝑆 but not in the sub-

graph induced by 𝑆 −𝐴. Any (𝐵,𝐶)-path P in 𝑆 must necessarily

must have contained 𝐴 and, by extension, two distinct neighbors

𝑁1 and 𝑁2 of 𝐴. Thus, 𝐴 could not have eroded because it had

exactly one neighbor in 𝑆 (Rule 1). Moreover, 𝐴 could not have

eroded because it had between two and five neighbors in 𝑆 that

themselves induced a connected subgraph (Rule 2) since the path

P = (𝐵, . . . , 𝑁1, 𝐴, 𝑁2, . . . ,𝐶) could be augmented using the connec-

tivity of 𝑁1 and 𝑁2 as (𝐵, . . . , 𝑁1, . . . , 𝑁2, . . . ,𝐶), a (𝐵,𝐶)-path in

𝑆 −𝐴. So 𝐴 must have eroded as a result of Rule 3; w.l.o.g., suppose

the clockwise order of amoebots in the square is (𝐴, 𝑁1, 𝑋, 𝑁2). But
𝐴 could only have satisfied Rule 3 if its catty-corner amoebot 𝑋

existed in 𝑆 , implying the path (𝐵, . . . , 𝑁1, 𝑋, 𝑁2, . . . ,𝐶) exists in
𝑆 −𝐴. Therefore, in all cases, 𝑆 −𝐴 must be connected.

So suppose instead that 𝑆−𝐴 is connected but is not contractible;

i.e., 𝑆 − 𝐴 contains a hole. Since 𝑆 is contractible by supposition,

the hole in 𝑆 −𝐴 must correspond to exactly the position of 𝐴; i.e.,

the lattice dual representation replacing the neighbors of 𝐴 with

rhombic dodecahedrons must contain a topological hole. One can

prove using exhaustive search that no configuration of at most five

neighbors has a corresponding closed union of rhombic dodecahe-

drons containing a topological hole.
4
Since all erosion rules involve

𝐴 having between one and five neighbors in 𝑆 , it is impossible for

𝐴 to both satisfy an erosion rule and create a hole by eroding, a

contradiction. □

We next leverage this safety condition to prove progress.

Lemma 6.2. Any connected and contractible amoebot system 𝑆 on
𝐺FCC comprising at least two amoebots contains an amoebot that
satisfies an erosion rule with respect to 𝑆 .

Proof. Argue by induction on |𝑆 |, the number of amoebots in

𝑆 . When |𝑆 | = 2, the fact that 𝑆 is connected implies that the two

amoebots in 𝑆 each have each other as their only neighbor in 𝑆 .

Thus, both of these amoebots satisfy Rule 1.

So suppose that |𝑆 | > 2 and that, for all 2 ≤ 𝑘 < |𝑆 |, any
connected and contractible amoebot system on 𝐺FCC comprising

𝑘 amoebots contains an amoebot satisfying an erosion rule. We

decompose the amoebots of 𝑆 into two types: “chain” amoebots

whose removal would disconnect 𝑆 , and those belonging to the

remaining 2-connected components. A chain is a maximal set of

amoebots 𝐴1, . . . , 𝐴ℓ in 𝑆 satisfying one of the following cases: (i) if

ℓ > 2, then for all 1 < 𝑖 < ℓ , (𝐴𝑖−1, 𝐴𝑖) and (𝐴𝑖 , 𝐴𝑖+1) are the only
edges in 𝑆 incident to 𝐴𝑖 , (𝐴1, 𝐴ℓ) ∉ 𝑆 , and no other chain can exist

4
We verified this statement using a simple Mathematica program that enumerates

each neighborhood polyhedron of at most five neighboring rhombic dodecahedrons

and verifies that its genus is zero; see the link at the end of this paper.

with endpoints𝐴1 and𝐴ℓ , (ii) if ℓ = 2, then (𝐴1, 𝐴2) ∈ 𝑆 and no edge

of 𝑆 exists between {𝐴1}∪𝑁𝑆 (𝐴1) and {𝐴2}∪𝑁𝑆 (𝐴2), or (iii) if ℓ = 1,

then𝑁𝑆 (𝐴1) is disconnected. The final condition in (i) regarding the
uniqueness of a chainwith given endpoints follows from the squares

that exist in𝐺FCC. The lattice dual representation of a square is four

rhombic dodecahedrons that intersect at a single point; thus, no one

chain between catty-corner endpoints can individually disconnect

𝑆 and thus are omitted. No other such “parallel chains” can exist in

𝑆 because it is contractible.

Consider the graph composed of (i) all chain amoebots C in 𝑆

and (ii) each connected component of 𝑆 − C contracted to a single

node. Since 𝑆 is contractible, this graph must be a tree. Consider

any leaf of this tree. If this leaf corresponds to an amoebot 𝐴∗
with

exactly one neighbor in 𝑆 , then 𝐴∗
satisfies Rule 1. Otherwise, the

leaf corresponds to a connected component 𝑆 ′ of 𝑆 −C with at least

two amoebots. Since 𝑆 ′ is a leaf in the tree, there exists a unique

chain amoebot 𝐶 ∈ C connecting 𝑆 ′ to the rest of 𝑆 .

The remainder of this proof identifies an amoebot 𝐴∗ ≠ 𝐶 in 𝑆 ′

that satisfies erosion Rule 2 or 3. If there exists an amoebot 𝐴∗
in

𝑆 ′ such that 𝑁𝑆 ′∪{𝐶 } (𝐴∗) = {𝑋,𝑌 } and there exists an amoebot 𝑍

such that 𝐴∗
, 𝑋 , 𝑌 , and 𝑍 form an induced (chordless) square in

𝐺FCC, then 𝐴∗
satisfies erosion Rule 3.

Otherwise, if an amoebot satisfying Rule 3 cannot be found in 𝑆 ′,
we show there must exist an amoebot𝐴∗

in 𝑆 ′ satisfying Rule 2. We

do so by constructing an auxiliary (not necessarily convex) polyhe-

dron 𝑃 from the nodes of 𝐺FCC occupied by amoebots in 𝑆 ′ ∪ {𝐶}
that is contractible. Let 𝑃 be the polyhedron in the 3D embedding

of𝐺FCC that contains all the nodes occupied by 𝑆 ′∪{𝐶} and whose
faces are composed of (unions of) external triangles induced by

𝑆 ′ ∪ {𝐶}, where an external triangle induced by 𝑆 ′ ∪ {𝐶} is a tri-
angle whose three vertices are mutually adjacent nodes occupied

by amoebots in 𝑆 ′ ∪ {𝐶} and where at least one of its vertices is

adjacent to a node not occupied by 𝑆 ′ ∪ {𝐶}. Note that the fact that
the union of rhombic dodecahedrons corresponding to 𝑆 ′ ∪ {𝐶} is
contractible, which is true by assumption, does not immediately

imply that 𝑃 will also be contractible, since by construction of 𝑃 , 𝑃

might possibly contain an "exposed" chordless square cycle of𝐺FCC

on its surface whose nodes do not share a common neighbor: This

is not possible, however, since if such a cycle existed in 𝑃 , there

would exist an amoebot 𝐴∗
satisfying Rule 3 – i.e., an amoebot 𝐴

in 𝑆 ′ such that 𝑁𝑆 ′∪{𝐶 } (𝐴) = {𝑋,𝑌 } and there exists an amoebot

𝑍 such that 𝐴,𝑋,𝑌, 𝑍 form an induced (chordless) square cycle in

𝐺FCC.

The internal angle of a face 𝐹 at its vertex 𝑣 is given by the angle

internal to 𝐹 defined by the two edges of 𝐹 that contain vertex 𝑣 .

The total internal angle of a vertex 𝑣 is the sum of internal angles of

all faces incident to 𝑣 , and its external angle is given by 2𝜋 minus

its total internal angle:

external-angle(𝑣) = 2𝜋 −
∑︁
𝑖∈𝑘

𝛼𝑖 ,

where 𝛼1, . . . , 𝛼𝑘 are the interior angles of faces 𝐹1, . . . , 𝐹𝑘 incident

to 𝑣 . The Euler characteristic on closed surfaces is given by

𝜒 = 2 − 2𝑔,

where 𝑔 is the genus of the surface. Since 𝑃 was shown to be con-

tractible, its genus is𝑔 = 0 and its Euler characteristic is 𝜒 = 2. From

44

ICDCN 2023, January 4–7, 2023, Kharagpur, India Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa

the proof of the discrete version of the Gauss–Bonnet theorem [3],∑︁
𝑣∈𝑃

external-angle(𝑣) = 2𝜋 𝜒.

Thus, the sum of external angles of all vertices of 𝑃 is equal to 4𝜋 .

The external angle of any vertex can be at most 2𝜋 , so there must

exist at least two vertices of 𝑃 whose external angles are strictly

positive. Since 𝐶 is the unique chain amoebot in 𝑆 ′ ∪ {𝐶}, there
must exist at least one non-chain amoebot 𝐴∗ ∈ 𝑆 ′ at a vertex of
𝑃 with a strictly positive external angle, which by definition of a

chain node must have a neighborhood in 𝑆 ′ ∪ {𝐶} that induces a
connected subgraph. One can show via exhaustive search that any

vertex of 𝑃 with a strictly positive external angle must correspond

to a node with degree at most five in the embedded 𝐺FCC lattice.
5

Thus, 𝐴∗
must satisfy Rule 2.

Therefore, there always exists an amoebot 𝐴∗
in 𝑆 satisfying

an erosion rule. When 𝐴∗
erodes, 𝑆 − 𝐴∗

remains connected and

contractible by Lemma 6.1, so the lemma follows by induction. □

The safety and progress lemmas yield our main theorem.

Theorem 6.3. Assuming 3D geometric space, assorted orienta-
tions, constant-size memory, and an unfair sequential adversary, Al-
gorithm 1 solves the leader election problem for any connected and
contractible system of 𝑛 amoebots in O(𝑛) rounds.

Proof. We analyze the erosion process by applying Lemmas 6.1

and 6.2 to the structure of both null and real candidates 𝐴 with

𝐴.cand ∈ {null, true}. At initialization, every amoebot is a null

candidate, so the structure of candidates is connected and con-

tractible by supposition. Lemma 6.2 guarantees that some candi-

date satisfies an erosion rule, but this does not immediately imply

it can erode: it might only be a null candidate that has not yet exe-

cuted Setup, or it might be a real candidate that has null candidate

neighbors. In either case, the Erode action is disabled.

Suppose that erosion progress is blocked, i.e., every candidate

that satisfies an erosion rule—of which there must be at least one

by Lemma 6.2—has its Erode action disabled. Since the candidate

structure is connected and contractible by Lemma 6.1, the Declare-

Leader action is never enabled for any amoebot until the very end,

when all but one amoebot has cand = false. This certainly cannot

occur while there are still null candidates in the system. So even the

unfair adversary has no choice but to activate some null candidate

𝐴waiting to execute Setup, which is guaranteed to be continuously

enabled for 𝐴 from initialization to its first activation.

Thus, regardless of the unfair adversary’s choice of activation,

either a null candidate executes Setup to become a real candidate

or a real candidate erodes by executing Erode. The guard of Erode

ensures that any such erosion occurs after the candidate’s neighbors

have all executed their Setup actions, avoiding any discrepancies

between the erosion rules dealing only with real candidate neigh-

bors and this proof’s inclusion of null candidates. Lemma 6.1 thus

guarantees that any erosion maintains the connectivity and con-

tractibility of the candidate structure, and Lemma 6.2 guarantees

once again that some candidate in the remaining structure satisfies

an erosion rule. Repeatedly applying this argument shows that the

5
We verified this statement using a simple Mathematica program that enumerates all

neighborhoods of six to eleven neighbors yielding a polyhedron vertex and verifies

that its external angle is nonpositive; see the link at the end of this paper.

candidate structure is eventually reduced to a single candidate, for

which DeclareLeader becomes enabled. This is the only enabled

amoebot remaining in the system, so the unfair adversary must

activate it, at which point the amoebot declares itself leader and

the algorithm terminates.

It remains to bound the worst-case runtime of our algorithm

on a system of 𝑛 amoebots, i.e., the largest number of rounds that

can complete before termination based on any possible activation

sequence of the unfair adversary. As observed earlier, the Setup

action is continuously enabled for each amoebot from initializa-

tion to its first activation, implying that the first round does not

complete until all 𝑛 amoebots have executed their Setup actions,

becoming (real) candidates. In the worst case, these are the only ac-

tion executions that occur in the first round. At the start of the next

round, Lemma 6.2 ensures there exists a candidate that satisfies an

erosion rule; in the worst case, there is only one such candidate 𝐴.

Because all other amoebots have moved past null candidacy, we are

guaranteed that Erode is enabled for 𝐴. Thus, 𝐴 must be activated

and will erode by the end of the second round. More generally, it

can take at most 𝑛 − 1 rounds for 𝑛 − 1 candidates to erode and at

most one additional round for the final candidate to declare itself

leader. Therefore, our algorithm terminates within O(𝑛) rounds in
the worst case. □

Recall from Section 3 that𝐺Δ used in 2D geometric space can be

treated as a single triangular lattice in 𝐺FCC used in 3D geometric

space. Certainly any connected and contractible 2D amoebot system

is thus also a connected and contractible 3D system, yielding the

following corollary.

Corollary 6.4. Theorem 6.3 also holds in 2D geometric space.

Notably, the special case involving erosion in squares of can-

didates never occurs in 2D geometric space, so an even simpler

version of our algorithm that omits nbrcand variables and Rule 3

could be used to solve leader election in 2D.

7 ASYNCHRONOUS LEADER ELECTION
The concurrency control framework for amoebot algorithms uses

the canonical amoebot model’s Lock operation to provide isolation

among concurrent amoebot’s actions [8]. Specifically, the frame-

work takes as input any amoebot algorithm that achieves a desired

behavior under a sequential adversary and—provided the algorithm

satisfies certain conventions—constructs another algorithm that

produces equivalent behavior under an asynchronous adversary by

carefully wrapping the original algorithm’s actions in Lock calls

and reorganizing their operations. In this section, we demonstrate

that our algorithm for leader election by erosion is compatible

with the concurrency control framework, proving the existence

of an amoebot algorithm that solves leader election under an un-

fair asynchronous adversary. In order to apply the framework, we

must first show that our algorithm satisfies the framework’s three

conventions:

(1) Validity. For all system configurations in which an action 𝛼

is enabled for an amoebot 𝐴, the execution of 𝛼 by 𝐴 should

be successful when all other amoebots are inactive.

45

Asynchronous Deterministic Leader Election in 3D Programmable Matter ICDCN 2023, January 4–7, 2023, Kharagpur, India

(2) Phase Structure. Each action should structure its operations

as: (1) a “compute phase”, during which an amoebot per-

forms a finite amount of computation and a finite sequence

ofConnected,Read, andWrite operations, and (2) a “move

phase”, duringwhich an amoebot performs atmost onemove-

ment operation decided upon in the compute phase.

(3) Monotonicity. Each action should be “monotonic”, a lengthy

technical condition describing actions’ resilience to concur-

rent movements. Because our algorithm is stationary, not
involving any movement operations, we omit this definition.

Lemma 7.1. Algorithm 1 satisfies the validity, phase structure, and
monotonicity conventions of the concurrency control framework for
amoebot algorithms.

Proof. Actions in Algorithm 1 only use Connected, Read, and

Write operations. The validity convention requires that every iso-

lated execution of an enabled action succeeds. Connected oper-

ations never fail. Read and Write operations only fail when the

neighbor whose memory is being accessed disconnects from the

calling amoebot due to a movement, which never happens in our

algorithm because it is stationary. Thus, all executions of enabled

actions in our algorithm succeed, satisfying validity. Phase struc-

ture can easily be verified by observing that—since our algorithm

is stationary—its actions are entirely composed of compute phases.

Finally, as observed in the concurrency control framework publica-

tion [8], all stationary algorithms are trivially monotonic. □

Theorem 7 of [8] states that if an algorithm satisfies the frame-

work’s three conventions and every sequential execution of the

algorithm terminates, then every asynchronous execution of the

corresponding algorithm produced by the framework terminates in

a configuration that was also reachable by the original algorithm.

Lemma 7.1 shows that our algorithm for leader election satisfies

the framework’s three conventions, and Theorem 6.3 shows that

every sequential execution of our algorithm terminates. Therefore,

we have the following corollary.

Corollary 7.2. There exists an algorithm that solves the leader
election problem for any connected and contractible amoebot system
under the assumptions of 2D or 3D geometric space, assorted orienta-
tions, constant-size memory, and an unfair asynchronous adversary.

We note that the runtime of this asynchronous algorithm de-

pends on the overhead of the concurrency control framework which

has not yet been analyzed.

8 CONCLUSION
In this work, we presented the 3D geometric space variant for

the amoebot model, extending the well-established model of pro-

grammable matter to 3D space. We then presented a deterministic

distributed algorithm for electing exactly one leader in O(𝑛) rounds
under an unfair sequential adversary (Theorem 6.3) for connected

and contractible systems, extending and simplifying the erosion-

based approach of Di Luna et al. [11]. This algorithm can be flexibly

applied to both 2D and 3D space (Corollary 6.4) and improves over

the related algorithm for 3D leader election by Gastineau et al. [17]

by extending the set of amoebot orientations and replacing the as-

sumption of 2-neighborhood visionwith local comparisons between

1-neighbors’ orientations. Finally, we proved that this algorithm

can be transformed using the concurrency control framework for

amoebot algorithms [8] to obtain the first known amoebot algo-

rithm that solves leader election under an unfair asynchronous

adversary (Corollary 7.2).

Although our leader election algorithm is the first to make use of

the concurrency control framework for asynchronous correctness,

several others discussed in Section 4 could likely do the same. The

proof of Lemma 7.1 suggests that any stationary algorithm adher-

ing to the standard amoebot assumptions (e.g., 1-neighborhood

vision) will likely satisfy the framework’s three conventions, and

all of the deterministic algorithms already have proofs of termi-

nation under a sequential adversary or some weaker scheduler.

Some work is required to translate existing algorithms into the

action-based semantics used by the canonical amoebot model and

to reprove their correctness with respect to the new formulation,

but the framework’s subsequent application seems straightforward.

One potentially interesting extension of this work is to modify

the leader election algorithm such that when it is run on an initially

connected amoebot system that contains holes, the existence of

holes can be identified in a distributed way. Just as the topological

definition of holes identifies the inability to shrink the object to a

single point, so too could the inability for our algorithm to erode a

system to a single amoebot be a clue about the existence of holes.

Our algorithm already confirms the absence of holes as this is

a necessary condition for a leader to emerge, but perhaps could

be extended—likely with additional amoebot communication—to

decide when holes exist.

Finally, we showed that our algorithm for leader election in 3D

geometric space could be immediately applied without modification

to a 2D geometric system as a special case (Corollary 6.4). This may

not necessarily be true of every problem and algorithm. What exist-

ing algorithms for 2D geometric systems can be viewed as special

cases of generalized 3D algorithms? What fundamental charac-

teristics of a given algorithm or problem inhibit this translation?

Answers to these questions will accelerate the development of 3D

amoebot algorithms and their potential applications to amoebots’

modular robotic counterparts.

SOURCE CODE AVAILABILITY
All Mathematica source code used to generate this paper’s fig-

ures and verify the claims in the proofs of Lemmas 6.1 and 6.2 is

openly available at https://github.com/SOPSLab/3DLeaderElection-

Mathematica.

ACKNOWLEDGMENTS
J.L.B. and A.W.R. are supported in part by the National Science

Foundation under awards CCF-1733680 and CCF-2106917 and by

the U.S. Army Research Office under award MURI W911NF-19-1-

0233. J.J.D. is supported by the Momental Foundation under the

Mistletoe Research Fellowship and by the ASU Biodesign Institute.

REFERENCES
[1] Rida A. Bazzi and Joseph L. Briones. 2019. Stationary and Deterministic Leader

Election in Self-Organizing Particle Systems. In Stabilization, Safety, and Security
of Distributed Systems (Lecture Notes in Computer Science, Vol. 11914). 22–37.
https://doi.org/10.1007/978-3-030-34992-9_3

46

https://github.com/SOPSLab/3DLeaderElection-Mathematica
https://github.com/SOPSLab/3DLeaderElection-Mathematica
https://doi.org/10.1007/978-3-030-34992-9_3

ICDCN 2023, January 4–7, 2023, Kharagpur, India Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa

[2] Gregory S. Chirikjian. 1994. Kinematics of a Metamorphic Robotic System. In

Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
449–455. https://doi.org/10.1109/ROBOT.1994.351256

[3] Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013.

Digital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH
2013 Courses (SIGGRAPH ’13). 7:1–7:126. https://doi.org/10.1145/2504435.2504442

[4] Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra, and

Giuseppe Prencipe. 2020. Asynchronous Silent Programmable Matter Achieves

Leader Election and Compaction. IEEE Access 8 (2020), 207619–207634. https:

//doi.org/10.1109/ACCESS.2020.3038174

[5] Joshua J. Daymude. 2021. Collaborating in Motion: Distributed and Stochastic Algo-
rithms for Emergent Behavior in ProgrammableMatter. Ph. D. Dissertation. Arizona
State University, Tempe, AZ. http://login.ezproxy1.lib.asu.edu/login?url=https:

//www.proquest.com/dissertations-theses/collaborating-motion-distributed-

stochastic/docview/2531565717/se-2?accountid=4485.

[6] Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and

Thim Strothmann. 2017. Improved Leader Election for Self-Organizing Pro-

grammable Matter. In Algorithms for Sensor Systems (Lecture Notes in Computer
Science, Vol. 10718). 127–140. https://doi.org/10.1007/978-3-319-72751-6_10

[7] Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Schei-

deler. 2019. Computing by Programmable Particles. In Distributed Computing by
Mobile Entities. Lecture Notes in Computer Science, Vol. 11340. Springer, Cham,

615–681. https://doi.org/10.1007/978-3-030-11072-7_22

[8] Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. 2021. The Canon-

ical Amoebot Model: Algorithms and Concurrency Control. In 35th International
Symposium on Distributed Computing (DISC 2021) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 209). 20:1–20:19. https://doi.org/10.4230/LIPIcs.

DISC.2021.20

[9] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Chris-

tian Scheideler, and Thim Strothmann. 2014. Amoebot - a New Model for Pro-

grammable Matter. In Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures. 220–222. https://doi.org/10.1145/2612669.2612712

[10] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W.

Richa, and Christian Scheideler. 2015. Leader Election and Shape Formation

with Self-Organizing Programmable Matter. In DNA Computing and Molecular
Programming (Lecture Notes in Computer Science, Vol. 9211). 117–132. https:

//doi.org/10.1007/978-3-319-21999-8_8

[11] Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and

Yukiko Yamauchi. 2020. Shape Formation by Programmable Particles. Distributed
Computing 33, 1 (2020), 69–101. https://doi.org/10.1007/s00446-019-00350-6

[12] Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. 2021. Efficient De-

terministic Leader Election for Programmable Matter. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing. 103–113. https:

//doi.org/10.1145/3465084.3467900

[13] Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr. 2019. Determin-

istic Leader Election in Programmable Matter. In 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019) (Leibniz International
Proceedings in Informatics (LIPIcs)). 140:1–140:14. https://doi.org/10.4230/LIPICS.

ICALP.2019.140

[14] Robert Fitch and Zack Butler. 2008. Million Module March: Scalable Locomotion

for Large Self-Reconfiguring Robots. The International Journal of Robotics Research
27, 3-4 (2008), 331–343. https://doi.org/10.1177/0278364907085097

[15] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro (Eds.). 2019. Distributed
Computing by Mobile Entities: Current Research in Moving and Computing. Lecture
Notes in Computer Science, Vol. 11340. Springer, Cham. https://doi.org/10.1007/

978-3-030-11072-7

[16] Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. 2019. Dis-

tributed Leader Election and Computation of Local Identifiers for Programmable

Matter. In Algorithms for Sensor Systems (Lecture Notes in Computer Science,
Vol. 11410). 159–179. https://doi.org/10.1007/978-3-030-14094-6_11

[17] Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. 2022.

Leader Election and Local Identifiers for Three-dimensional Programmable Mat-

ter. Concurrency and Computation: Practice and Experience 34, 7 (2022), e6067.
https://doi.org/10.1002/cpe.6067

[18] Guanqi Liang, Haobo Luo, Ming Li, Huihuan Qian, and Tin Lun Lam. 2020. Free-

BOT: A Freeform Modular Self-Reconfigurable Robot with Arbitrary Connection

Point - Design and Implementation. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 6506–6513. https://doi.org/10.1109/

IROS45743.2020.9341129

[19] Haobo Luo and Tin Lun Lam. 2022. Adaptive Flow Planning of Modular Spherical

Robot Considering Static Gravity Stability. IEEE Robotics and Automation Letters
7, 2 (2022), 4228–4235. https://doi.org/10.1109/LRA.2022.3150028

[20] Haobo Luo, Ming Li, Guangqi Liang, Huihuan Qian, and Tin Lun Lam. 2020. An

Obstacle-Crossing Strategy Based on the Fast Self-Reconfiguration for Modular

Sphere Robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 3296–3303. https://doi.org/10.1109/IROS45743.2020.9341162

[21] Othon Michail and Paul G. Spirakis. 2016. Simple and Efficient Local Codes for

Distributed Stable Network Construction. Distributed Computing 29, 3 (2016),

207–237. https://doi.org/10.1007/s00446-015-0257-4

[22] Matthew J. Patitz. 2014. An Introduction to Tile-Based Self-Assembly and a

Survey of Recent Results. Natural Computing 13, 2 (2014), 195–224. https:

//doi.org/10.1007/s11047-013-9379-4

[23] Benoit Piranda and Julien Bourgeois. 2018. Designing a Quasi-Spherical Module

for a Huge Modular Robot to Create Programmable Matter. Autonomous Robots
42 (2018), 1619–1633. https://doi.org/10.1007/s10514-018-9710-0

[24] John W. Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 2015. 3D M-

Blocks: Self-Reconfiguring Robots Capable of Locomotion via Pivoting in Three

Dimensions. In 2015 IEEE International Conference on Robotics and Automation
(ICRA). 1925–1932. https://doi.org/10.1109/ICRA.2015.7139450

[25] Petras Swissler and Michael Rubenstein. 2020. FireAnt3D: A 3D Self-Climbing

Robot towards Non-Latticed Robotic Self-Assembly. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 3340–3347. https://doi.org/

10.1109/IROS45743.2020.9341116

[26] Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. 2021. Engineering Efficient

and Massively Parallel 3D Self-Reconfiguration Using Sandboxing, Scaffolding

and Coating. Robotics and Autonomous Systems 146 (2021), 103875. https:

//doi.org/10.1016/j.robot.2021.103875

[27] Tommaso Toffoli and Norman Margolus. 1991. Programmable Matter: Concepts

and Realization. Physica D: Nonlinear Phenomena 47, 1-2 (1991), 263–272. https:

//doi.org/10.1016/0167-2789(91)90296-L

[28] Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,

and Peng Yin. 2013. Active Self-Assembly of Algorithmic Shapes and Patterns

in Polylogarithmic Time. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science. 353–354. https://doi.org/10.1145/2422436.2422476

[29] Ryonosuke Yamada and Yukiko Yamauchi. 2022. Search by aMetamorphic Robotic

System in a Finite 3D Cubic Grid. In 1st Symposium on Algorithmic Foundations of
Dynamic Networks (SAND 2022) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 221). 20:1–20:16. https://doi.org/10.4230/LIPIcs.SAND.2022.20

[30] Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. 2017.

Plane Formation by Synchronous Mobile Robots in the Three-Dimensional Eu-

clidean Space. J. ACM 64, 3 (2017), 1–43. https://doi.org/10.1145/3060272

[31] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. 2001. Distributed Control

for 3D Metamorphosis. Autonomous Robots 10, 1 (2001), 41–56. https://doi.org/

10.1023/A:1026544419097

47

https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1145/2504435.2504442
https://doi.org/10.1109/ACCESS.2020.3038174
https://doi.org/10.1109/ACCESS.2020.3038174
http://login.ezproxy1.lib.asu.edu/login?url=https://www.proquest.com/dissertations-theses/collaborating-motion-distributed-stochastic/docview/2531565717/se-2?accountid=4485
http://login.ezproxy1.lib.asu.edu/login?url=https://www.proquest.com/dissertations-theses/collaborating-motion-distributed-stochastic/docview/2531565717/se-2?accountid=4485
http://login.ezproxy1.lib.asu.edu/login?url=https://www.proquest.com/dissertations-theses/collaborating-motion-distributed-stochastic/docview/2531565717/se-2?accountid=4485
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-030-11072-7_22
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.4230/LIPICS.ICALP.2019.140
https://doi.org/10.4230/LIPICS.ICALP.2019.140
https://doi.org/10.1177/0278364907085097
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-14094-6_11
https://doi.org/10.1002/cpe.6067
https://doi.org/10.1109/IROS45743.2020.9341129
https://doi.org/10.1109/IROS45743.2020.9341129
https://doi.org/10.1109/LRA.2022.3150028
https://doi.org/10.1109/IROS45743.2020.9341162
https://doi.org/10.1007/s00446-015-0257-4
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1109/ICRA.2015.7139450
https://doi.org/10.1109/IROS45743.2020.9341116
https://doi.org/10.1109/IROS45743.2020.9341116
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.4230/LIPIcs.SAND.2022.20
https://doi.org/10.1145/3060272
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1023/A:1026544419097

	Abstract
	1 Introduction
	2 The Amoebot Model
	3 The Three-Dimensional (3D) Geometric Space Variant
	4 Amoebot Leader Election
	5 3D Leader Election by Erosion
	6 Sequential Analysis
	7 Asynchronous Leader Election
	8 Conclusion
	Acknowledgments
	References

