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ABSTRACT

Over three decades of scientific endeavors to realize programmable
matter, a substance that can change its physical properties based
on user input or responses to its environment, there have been
many advances in both the engineering of modular robotic systems
and the corresponding algorithmic theory of collective behavior.
However, while the design of modular robots routinely addresses
the challenges of realistic three-dimensional (3D) space, algorithmic
theory remains largely focused on 2D abstractions such as planes
and planar graphs. In this work, we formalize the 3D geometric
space variant for the canonical amoebot model of programmable
matter, using the face-centered cubic (FCC) lattice to represent space
and define local spatial orientations. We then give a distributed
algorithm for leader election in connected, contractible 2D or 3D
geometric amoebot systems that deterministically elects exactly one
leader in O(n) rounds under an unfair sequential adversary, where n
is the number of amoebots in the system. We then demonstrate how
this algorithm can be transformed using the concurrency control
framework for amoebot algorithms (DISC 2021) to obtain the first
known amoebot algorithm, both in 2D and 3D space, to solve leader
election under an unfair asynchronous adversary.
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1 INTRODUCTION

Since its inception [27], programmable matter has been envisioned
as a material that can dynamically alter its physical properties
based either on user input or autonomous sensing of the envi-
ronment. Many strides have been made to realize this technol-
ogy over the last several decades, both from the practical per-
spective of modular robotics and the algorithmic contributions
of distributed computing theory. However, when it comes to realis-
tic considerations of three-dimensional (3D), gravity-bound space,
advances in robotics have outpaced their distributed computing
counterparts. Modular, reconfigurable robotic systems such as Pro-
teo [31], SlidingCube [14], 3D M-Blocks [24], RollingSphere [20],
FireAnt3D [25], FreeBOT [18, 19], and 3D Catoms [23, 26] rou-
tinely address engineering challenges both in individual module
design (such as binding and locomotion) and in collective recon-
figuration (such as gravity stability) that are inherent to 3D en-
vironments. Besides a few notable exceptions [29, 30], the vast
majority of abstract models of mobile robots and programmable
matter treat space as two-dimensional (2D) planes or planar graph
structures [2, 4, 9, 15, 21, 22, 28], simplifying their assumptions but
limiting their application to practical domains.

Our goal is to move theoretical programmable matter research
towards the 3D reality by extending the established amoebot model
of programmable matter [8, 9]. Research using the amoebot model
has historically assumed 2D discretizations of space, most com-
monly the “geometric” triangular lattice (Figure 1a). Under this
treatment of space, amoebot algorithms have been developed for
a myriad of problems including leader election, shape formation,
object coating and enclosure, bridging, and more (see [5, 7, 8] for
an overview of results). The recent canonical amoebot model 8]
systematized the many disparate assumptions appearing in these
works into categories, each with a set of “assumption variants” of
varying strengths. In this paper, we formalize the 3D geometric space
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Figure 1: The Geometric Space Variants. (a) The 2D triangular
lattice Ga. (b) The 3D face-centered cubic (FCC) lattice Gpcc.

variant for the canonical amoebot model that discretizes space as
the face-centered cubic (FCC) lattice (Figure 1b).

Lattice representations of modular robots and programmable
matter typically assume either a cubic lattice corresponding to cubic
or spherical modules [19, 20, 24, 29] or an FCC lattice corresponding
to (quasi-)spherical or rhombic-dodecahedral modules [17, 23, 26].
The FCC lattice is a natural 3D generalization of the 2D triangular
lattice already used for many amoebot algorithms; in fact, it can
be decomposed into layers of triangular lattices and thus remains
compatible with existing results for 2D amoebot systems. Also,
maintaining module connectivity during movements is easier in an
FCC lattice than in a cubic one (see, e.g., [23]).

Using this new 3D geometric space variant, we revisit the clas-
sical problem of leader election, defined formally in Section 4. We
demonstrate that among the many existing algorithms for leader
election in 2D amoebot systems [1, 6, 10-13, 16], the erosion-based
algorithm of Di Luna et al. [11] extends naturally to 3D—surprisingly,
without any cost to runtime. Although erosion-based election in
3D may seem simple at first glance, its analysis requires new, non-
trivial topological arguments specific to the 3D setting. Our al-
gorithm elects exactly one leader in any connected, contractible
amoebot system (defined formally in Section 3) within O(n) rounds
under an unfair sequential adversary, where n is the number of
amoebots in the system. We thus achieve similar guarantees as the
state-of-the-art algorithm for 3D leader election by Gastineau et
al. [17], with two important differences: (1) we consider all 24 possi-
ble amoebot orientations in 3D achievable by rotation or reflection
while Gastineau et al. only consider eight, and (2) we break sym-
metry using local comparisons between neighbors’ orientations
while Gastineau et al. assume 2-neighborhood vision. We further
show that our algorithm is compatible with the concurrency con-
trol framework for amoebot algorithms [8], implying that it can
be transformed into an algorithm with equivalent behavior that
remains correct even under an unfair asynchronous adversary.

Our Contributions. Our main contributions are summarized as:

o A formalization of the 3D geometric space variant for the
canonical amoebot model using the FCC lattice to discretize
space and define amoebots’ spatial orientations (Section 3).

o A deterministic amoebot algorithm that solves leader elec-
tion in both 2D and 3D geometric space for connected, con-
tractible systems under an unfair sequential adversary within
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O(n) rounds, where n is the number of amoebots in the sys-
tem (Sections 5-6).

e An application of the concurrency control framework for
amoebot algorithms [8] that yields the first known amoebot
algorithm, in both 2D and 3D space, to solve leader election
under an unfair asynchronous adversary (Section 7).

2 THE AMOEBOT MODEL

We begin by describing the features of the canonical amoebot model
that will be used in this work; a deeper description of the model and
its rationale can be found in [8]. In the canonical amoebot model,
programmable matter consists of individual, homogeneous com-
putational elements called amoebots. The structure of an amoebot
system is represented as a subgraph of an infinite, undirected graph
G = (V,E) where V represents all relative positions an amoebot
can occupy and E represents all atomic movements an amoebot can
make. Each node in V can be occupied by at most one amoebot at a
time. There are many possible assumption variants one could make
about space; here, we consider the 2D geometric variant which as-
sumes G = Gy, the triangular lattice (Figure 1a), and the presently
introduced 3D geometric variant which assumes G = Gpcc, the
face-centered cubic lattice (Figure 1b).

In this work, all amoebots remain CONTRACTED, each occupying
a single node in V; other works also consider EXPANDED amoebots
that occupy a pair of adjacent nodes in V. Each amoebot keeps
a collection of ports—one for each edge incident to the node it
occupies—that are labeled consecutively according to its own local,
persistent orientation. An amoebot’s orientation is defined accord-
ing to space variant-specific information; we define orientation
for our lattices of interest in Section 3. Two amoebots occupying
adjacent nodes are said to be neighbors. Although each amoebot
is anonymous, lacking a unique identifier, an amoebot can locally
identify its neighbors using their port labels. In particular, amoebots
A and B connected via ports p4 and ppg are each assumed to know
one another’s orientations and labels for p4 and pp.

Each amoebot has memory whose size is a model variant; here
we assume constant-size memories. An amoebot’s memory consists
of two parts: a persistent public memory that is only accessible
to an amoebot algorithm via communication operations (defined
next), and a volatile private memory that is directly accessible by
amoebot algorithms for temporary variables, private computation,
etc. Operations define the programming interface for amoebot algo-
rithms to communicate, move, and control concurrency that are, in
reality, implemented via message passing (see [8] for details). Our
algorithm for leader election only makes use of the communication
operations CONNECTED, READ, and WRITE.

e The CONNECTED operation tests the presence of neighbors.
CoNNECTED(p) returns TRUE if and only if there is a neigh-
bor connected via port p.

e The READ and WRITE operations exchange information in
public memory. READ(p, x) issues a request to read the value
of a variable x in the public memory of the neighbor con-
nected via port p while WRITE(p, x, x,47) issues a request to
update its value to x,,. If p = L, an amoebot’s own public
memory is accessed instead of a neighbor’s.
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(2)
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Figure 2: Lattice Decompositions of Gpcc. A node of Gpcc
(black) viewed as the intersection of (a) four non-parallel
triangular lattices or (b) three orthogonal square grids.

Amoebot algorithms are defined as sets of actions, each of the
form (label) : (guard) — (operations). An action’s label specifies
its name. Its guard is a Boolean predicate determining whether an
amoebot A can execute it based on the ports A has connections on—
i.e., which nodes adjacent to A are (un)occupied—and information
from the public memories of A and its neighbors. An action is
enabled for an amoebot A if its guard is true for A, and an amoebot
is enabled if it has at least one enabled action. An action’s operations
specify the finite sequence of operations and computation in private
memory to perform if this action is executed.

An amoebot is active if it is currently executing an action and is
inactive otherwise. The model assumes an adversary controls the
timing of amoebot activations and the resulting action executions,
whose concurrency and fairness are assumption variants. In this
work, we consider two concurrency variants: sequential, in which
at most one amoebot can be active at a time; and asynchronous,
in which any set of amoebots can be simultaneously active. We
consider the most general fairness variant: unfair, in which the
adversary may activate any enabled amoebot.

An amoebot algorithm’s time complexity is evaluated in terms of
rounds representing the time for the slowest continuously enabled
amoebot to execute a single action. Let ¢; denote the time at which
round i € {0,1,2,...} starts, where ty = 0, and let &; denote the set
of amoebots that are enabled or already executing an action at time
ti. Round i completes at the earliest time t;+; > t; by which every
amoebot in &; either completed an action execution or became
disabled at some time in (#;, tj+1]. Depending on the adversary’s
concurrency, action executions may span more than one round.

3 THE THREE-DIMENSIONAL (3D)
GEOMETRIC SPACE VARIANT

We now formally define the 3D geometric space variant for the
canonical amoebot model, one of the main contributions of this
work. This variant assumes space is represented by the face-centered
cubic (FCC) lattice, Grcc (Figure 1b). Just as the triangular lattice
G used by the 2D geometric space variant can be viewed as the
adjacency graph of the closest circle packing or as the dual of the
hexagonal tiling, Grcc can be viewed as the adjacency graph of
the sphere packing that minimizes unoccupied volume or as the
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(a) Home Lattices

Figure 3: Amoebot Orientations. (a)-(d) The components of
an amoebot’s orientation. For brevity, only the spins and
rotations of the blue home lattice are shown in (c) and (d). (e)
An example port labeling,.

dual of the rhombic-dodecahedral tessellation. Each node in Ggce
has degree 12 and can be viewed as the intersection of four infinite,
non-parallel triangular lattices (Figure 2a) or as the intersection of
three orthogonal square grids (Figure 2b). Thus, in 3D geometric
space, a contracted amoebot has 12 neighbors and an expanded
amoebot has at most 18.

An amoebot’s orientation represents all the ways its local sense
of space can be rotated or reflected while respecting the underlying
spatial structure. In Ga, an amoebot’s orientation is represented as a
direction indicating which incident lattice edge it thinks of as “north”
and a chirality establishing the clockwise vs. counterclockwise
ordering of its incident edges. We generalize orientation in Grcc
using view, spin, and rotation as defined below. Different model
variants may assume that amoebots share all, some, or none of their
views, spins, and rotations in common. This work assumes assorted
orientations, meaning the amoebots are not guaranteed to share
any aspect of their orientations.

The home lattice of an amoebot is one of the four infinite triangu-
lar lattices that contain the node the amoebot occupies (Figure 3a).
An amoebot’s view is the triangular lattice decomposition of Ggcc
containing the amoebot’s home lattice (Figure 3b). A view can al-
ternatively be defined as the set of triangular lattices whose planar
embeddings in 3D space are non-intersecting, each orthogonal to
the same two anti-parallel vectors. An amoebot’s spin defines the
“top” and “bottom” sides of the amoebot’s home lattice; formally, it
is the differentiation of the home lattice’s two orthogonal vectors
as positive and negative (Figure 3c). Having fixed this spin vector,
any node’s incident edges contained in the amoebot’s view can be
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Table 1: Comparison of Amoebot Algorithms for Leader Election. Algorithms are organized chronologically by first publication.
Gastineau et al. [17] details two separate leader election algorithms; the row with “#2” is specific to its “Algorithm 2” which
is marked with a * to denote its non-standard assumption of 2-neighborhood vision. When k € Z, appears in the number of
leaders elected, it refers to the amoebot system being k-symmetric. For the runtime bounds, L* denotes the length of the longest
system boundary, L denotes the length of the system’s outer boundary, D is the diameter of the system’s initial configuration,
and n denotes the number of amoebots in the system. The runtime terms r and mtree are specific to [16], and it can be shown

that r + mtree is both Q(D) and O(n).

Algorithm Space ?ri:::if: Ori- Adversary Deterministic é;li:i:;s,, Stationary ;f:izzs Runtime
Derakhshandeh et al. [10] 2D Direction Strong Seq. X v v 1 O(L") exp.
Daymude et al. [6] 2D Direction Strong Seq. X v v 1, whp. O(L) whp.
Di Luna et al. [11] 2D Both Sync. v X v k<3 o(n?)
Gastineau et al. [16] 2D Direction Strong Seq. v X v 1 O(r + mtree)
Emek et al. [13] 2D Both Strong Seq. v v X 1 O(Ln?)
Bazzi and Briones [1] 2D Direction Weak Seq. v/ v v k<6 0(n?)
Dufoulon et al. [12] 2D Direction Strong Seq. v v X 1 O(L+D)
Gastineau et al. #2* [17] 3D Spin/Rotation Strong Seq. v X v 1 O(n)

This Paper 2&3D Al Strong Seq. v/ X v 1 O(n)

This Paper + [8] 2&3D Al Async. v X v 1 ?

listed in clockwise order according to the right-hand rule. The final
component of an amoebot’s orientation is its rotation about its spin
vector, of which there are three that agree with Gpcc (Figure 3d).
A rotation can alternatively be defined as one of the three axes in
Grcc that contain the amoebot’s node but are not contained in the
amoebot’s home lattice.!

As in the 2D geometric space variant, an amoebot uses its orien-
tation in 3D geometric space to define a consistent labeling of its
ports (i.e., incident edges). In Figure 3e, we illustrate one possible
labeling for a contracted amoebot. The precise labeling scheme is
immaterial so long as all amoebots label their ports consistently as
a function of their (potentially differing) orientations.?

We can connect the 2D and 3D geometric space variants as
follows. The single triangular lattice G in 2D geometric space can
be thought of as any of the triangular lattices contained in Grcc;
i.e., all amoebots in a 2D system have the same home lattice (and
thus the same view) in a 3D system. An amoebot’s chirality in a 2D
system plays the same role as its spin in a 3D system, defining “up”
vs. “down” and clockwise vs. counterclockwise relative to the home
lattice. Finally, an amoebot’s direction in a 2D system functions
analogously to rotation about its spin vector in a 3D system, with
one discrepancy: due to the constraints of the underlying lattices,
a 2D system allows six possible 60° rotations while a 3D system
allows three possible 120° rotations.

Finally, we define two spatial properties of amoebot systems that
will be used throughout the remaining sections. An amoebot system

!An amoebot’s orientation could be defined more succinctly as a pair of vectors
originating at the amoebot’s node: one that is orthogonal to the amoebot’s home
lattice and pointing to its “top” side (defining view and spin), and a second that points
to a neighboring node outside the amoebot’s home lattice (defining rotation).

This is strictly more general than the port labeling schemes allowed in the formulation
of 3D space by Gastineau et al. (see Sections 2.1 and 2.2.1 of [17]). Their formulation
assumes all amoebots share a common sense of “layers” analogous to our views, but for
a square lattice decomposition of Grcc instead of a triangular one. With square “home
layers”, there are two possible spins (“up” vs. “down”) and four possible rotations,
yielding eight total orientations. Our formulation considers all 24.
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is connected if the lattice nodes occupied by amoebots induce a sin-
gle connected component. We are also concerned with the notion
of “holes” in amoebot systems. In general topology, a hole is any
topological structure that prevents an object (or space) from being
continuously shrunk to a single point; an object is contractible if it
does not contain holes. To apply this definition to amoebot systems,
recall that the dual of Ggcc (resp., Ga) is the rhombic dodecahedral
(resp., hexagonal) tessellation of space. Given a 3D (resp., 2D) amoe-
bot system, its lattice dual representation is the closed union of all
solid rhombic dodecahedrons (resp., hexagons) in the lattice’s dual
corresponding to lattice nodes occupied by amoebots. An amoebot
system contains a hole if and only if its lattice dual representation
contains a (topological) hole and is contractible otherwise.

4 AMOEBOT LEADER ELECTION

An algorithm solves the leader election problem if for any connected
system of initially contracted amoebots with well-initialized mem-
ories, eventually a single amoebot irreversibly declares itself the
system’s leader and no other amoebot ever does so. A leader’s
ability to break symmetry and coordinate the system via broad-
casts makes it a powerful primitive for other amoebot algorithms,
spurring a flurry of recent research on amoebot algorithms for
leader election [1, 4, 6, 10-13, 16, 17]. Table 1 compares these exist-
ing algorithms, their assumptions, and their outcomes to our own,
though we treat the D’Angelo et al. algorithm [4] and “Algorithm
1” of Gastineau et al. [17] separately due to their strong, one-off
assumptions. The common assumptions and outcomes are:

e Space. Nearly all amoebot algorithms for leader election as-
sume the 2D geometric space variant. Recently, Gastineau et
al. [17] introduced a pair of algorithms for amoebot leader
election on Ggcc, much like our own 3D geometric space
variant, but with stronger assumptions (see below).

o Orientation. Recall that in 2D, amoebot orientation is defined
as a direction and chirality; analogously, 3D orientations are
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a view, spin, and rotation. In 2D, the algorithms of Di Luna et
al. [11] and Emek et al. [13] allow fully assorted orientations
while the rest assumed common chirality. In 3D, “Algorithm
2” of Gastineau et al. [17] assumes common (square) views
while our algorithm allows fully assorted orientations.

o Adversary/Scheduler. Until the canonical amoebot model was
introduced, most algorithms assumed a sequential sched-
uler under which at most one amoebot could be active at a
time. Strong sequential schedulers allow each amoebot to
read, write, and move in one atomic action. Weak sequential
schedulers used by Bazzi and Briones [1] are more general,
ensuring only that reading, writing, and moving are each
individually atomic but may not necessarily be combined
into a single atomic action. Di Luna et al. [11] assume a syn-
chronous scheduler that may activate arbitrary subsets of
amoebots concurrently, but only in discrete stages. This pa-
per starts with a strong sequential scheduler but ultimately
considers the most general asynchronous adversary that
allows for arbitrary concurrency among amoebot actions.

o Deterministic vs. Randomized. Randomization is a classical
technique for symmetry breaking, but incurs a failure prob-
ability (with respect to correctness, runtime, or both) that
is not present in deterministic algorithms. The original De-
rakhshandeh et al. algorithm [10] and its improvement by
Daymude et al. [6] are both randomized while the rest, in-
cluding our present algorithm, are deterministic.

e Connectivity and Holes. All existing algorithms assume con-
nected initial system configurations. The algorithms of Di
Luna et al. [11] and Gastineau et al. [16] further assume their
2D initial configurations are hole-free. Our algorithm analo-
gously assumes its 3D initial configurations are contractible
(as defined in Section 3), which is a necessary but likely insuf-
ficient condition for the “electable” configurations assumed
by “Algorithm 2” of Gastineau et al. [17].

e Movement. Emek et al. [13] and Dufoulon et al. [12] utilize
amoebots’ movement capabilities as a mechanism for sym-
metry breaking. All other algorithms, including ours, are
stationary, relying only on communication to elect a leader.

o Number of Leaders Elected. Due to symmetry in the initial sys-
tem configuration, some of the stationary deterministic algo-
rithms elect a constant number of leaders instead of a unique
one. In particular, for k-symmetric system configurations,
the Di Luna et al. algorithm [11] elects k € {1, 2,3} leaders
and the Bazzi and Briones algorithm [1] elects k € {1, 2,3, 6}.
All other algorithms, including ours, elect a unique leader.

o Runtime. All existing algorithms’ runtime bounds are given
in sequential rounds, where a round ends when each amoe-
bot has been activated at least once. Our analysis uses a com-
parable but more technical definition of a round that extends
to any concurrency assumption and focuses on the behavior
of enabled amoebots (see Section 2). Among the deterministic
algorithms, only the Dufoulon et al. algorithm [12] achieves
a faster runtime than ours.

D’Angelo et al. [4] introduced the SILBOT model which is in-
spired by the amoebot model and aims to study what collective
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behaviors are possible when robots cannot communicate via mes-
sages or memory accesses. Under this seemingly challenging model,
they show how to deterministically elect up to three leaders (due
to symmetry) if the 2D system configuration is connected and hole-
free—and if the robots can sense the presence and shape of robots
in their 2-neighborhood on Gj, a strong assumption that no other
amoebot algorithm makes. They then additionally show how the al-
gorithm can be generalized to connected configurations with holes
if each robot can sense which unoccupied nodes are holes and which
belong to the outside of the system. This very strong assumption is
unique to SILBOT, resolving the challenging “inner-outer boundary
problem” [6, 10] by simply granting the requisite knowledge to
robots a priori. Our algorithm makes no such assumptions.

The pair of Gastineau et al. algorithms for leader election in
3D amoebot systems are the most relevant to ours since they also
use Gpcc to discretize space [17]. However, their first algorithm
assumes all amoebots have the same 3D orientation and O(nlog n)
memory, where n is the number of amoebots in the system. Their
second algorithm addresses some of these concerns by assuming
orientations with assorted spins and rotations but common views
and constant-size memory, but allows amoebots to view “extended
neighborhoods” that include nodes at distance 2. Our algorithm
achieves the same leader election guarantees without these assump-
tions, using only constant-size memory and local comparisons
between 1-neighbors’ orientations for symmetry breaking.

5 3D LEADER ELECTION BY EROSION

Our algorithm for leader election in 3D amoebot systems is an
extension of the “lattice consumption” algorithm for 2D systems
by Di Luna et al. [11]. In the lattice consumption algorithm, all
amoebots are initially eligible for leader candidacy. When activated,
an eligible amoebot uses certain rules regarding the number and
relative positions of its eligible neighbors to decide whether to erode,
revoking its candidacy without disconnecting the set of eligible
amoebots or introducing a hole. Assuming the initial configuration
was connected and hole-free, Di Luna et al. [11] proved that under a
synchronous scheduler, erosion would eventually reduce the system
to 1, 2, or 3 candidate leaders depending on the system’s symmetry.

Our algorithm generalizes this approach to the 3D geometric
space variant by defining rules for erosion based on 3D neighbor-
hoods. It deterministically elects a unique leader for connected, con-
tractible systems by leveraging the sequential adversary to break
symmetry (Section 6). We then lift this strong timing assumption
to the asynchronous setting—the most general of all concurrency
assumptions—using the lock-based concurrency control framework
for amoebot algorithms [8] (Section 7).

Algorithm 1 details our algorithm’s pseudocode and Table 2
summarizes each amoebot’s local variables. Initially, the system has
no leader and all amoebots exist in a special null candidacy state.
Every amoebot’s first activation executes the SETUP action which
sets the amoebot as a candidate and informs its neighbors of its
candidacy. Once all neighbors of a given candidate amoebot A have
also done their setup actions, the ERODE action becomes enabled
for A whenever A satisfies an erosion rule. When executing ERODE,
A revokes its candidacy and informs its neighbors that it did so.
As we will prove in the next section, repeated executions of the
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Algorithm 1 Leader Election by Erosion for Amoebot A

1: SETUP : (A.cand = NULL) —
> Become a candidate.
> Inform neighbors of candidacy.

2 WRITE( L, cand, TRUE).

3 for each port p of A do

4 if CONNECTED(p) then
5 Let p’ be the neighbor’s port connected to port p.
6 WRITE(p, nbrcand(p’), TRUE).

7. ERODE : (A.cand =
CANERODE() —

TRUE) A (VB € N(A),B.cand # NULL) A

8: WRITE( L, cand, FALSE). > Revoke candidancy.
9: for each port p of A do > Inform neighbors of erosion.
10: if CoNNECTED(p) then
11: Let p’ be the neighbor’s port connected to port p.
12: WRITE(p, nbrcand(p’), FALSE).
13: DECLARELEADER : (A.cand = TRUE) A (VB € N(A),B.cand =
FALSE) —
14: WRITE( L, leader, TRUE).

15: function CANERODE( )
16: return TRUE if and only if:
e Rule 1: A has exactly one candidate neighbor; or
e Rule 2: A has two to five candidate neighbors and these
neighbors’ positions induce a connected subgraph; or
o Rule 3: A has exactly two candidate neighbors that have a
common candidate neighbor such that these four candidates
induce a square in Ggcc.

Table 2: Algorithm Notation. The domain, initialization, and
description of the local variables used in the leader election
algorithm by an amoebot A.

Variable Domain Init. Description
leader {TRUE, FALSE } FALSE TRUE iff A is the unique leader
cand {NULL, TRUE, FALSE} NULL After first activation, TRUE iff A is a candidate

nbrcand(p) {TRUE, FALSE} FALSE TRUE iff A has a candidate neighbor on port p

ERODE action eventually reduce the system to a single candidate
that, upon finding no candidate neighbors, elects itself as leader in
the DECLARELEADER action.

It remains to specify the erosion rules for 3D geometric systems.
We formally specify these rules below and visualize them in Figure 4.
For the sake of clarity, we represent the collection of these rules in
Algorithm 1 as a function CANERODE that returns TRUE if and only
if the calling amoebot A satisfies one of the following erosion rules:

Rule 1. A has exactly one candidate neighbor (Figure 4a).

Rule 2. Ahas two to five candidate neighbors, and these neighbors’
positions induce a connected subgraph (Figure 4b).

Rule 3. Ahas exactly two candidate neighbors that have a common
candidate neighbor such that these four candidates induce
a square in Gpcc (Figure 4c).

As we will show in Section 6, any connected and contractible
system of at least two candidate amoebots contains at least one
candidate A satisfying one of these three rules. We can further
show that the “erosion” of A does not violate the connectivity or
contractibility of the remaining candidate structure, ensuring that
the system eventually converges to exactly one leader amoebot.

Rules 1 and 2 can be evaluated using only the local port labels of A
that are connected to candidate neighbors—which can be obtained
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(a) Rule 1

(b) Rule 2

Figure 4: Erosion Rules. Example configurations of neighbor-
ing candidates (green) for which an amoebot A (black) can
safely erode. (a)—(b) A can erode if it has one to five neighbors
that induce a connected subgraph. (c) A can only erode if the
catty-corner candidate neighbor (blue) exists.

using READ operations on neighbors’ cand variables—and some
basic information about the structure of Ggcc. However, Rule 3
covers a special case that is specific to Gpcc. If four candidates
A, B, C, and D form a square in which each candidate is adjacent
to exactly two others® but not to the third that is “catty-corner”
to it, then none of these four candidates can determine whether
erosion will disconnect the candidate structure when using only the
positions of their candidate neighbors. For A, safe erosion hinges
on the existence of the catty-corner candidate C: if A erodes, then
B and D remain connected if and only if C exists.

Instead of assuming this problem away by giving the amoebots
2-neighborhood vision, as “Algorithm 2” of Gastineau et al. [17]
does, we address this problem locally using the nbrcand variables.
An amoebot A has A.nbrcand(p) = TRUE if and only if A has a
neighbor candidate connected via port p; these are set to TRUE by
neighbors becoming candidates during their SETUP actions and
then are reset to FALSE by eroding candidate neighbors during their
ERODE actions. Maintaining these variables allows an amoebot
A that might be in a square to READ the corresponding nbrcand
variable of its candidate neighbors B or D to check for the existence
of the catty-corner candidate C. Importantly, this uses the amoebot
model’s assumption that neighboring amoebots know one another’s
orientations, and thus A can translate the adjacency it wants to
check into the correct port label from the perspective of B or D.

6 SEQUENTIAL ANALYSIS

We first analyze our algorithm under an unfair sequential adversary;
i.e., when at most one amoebot can be active per time and the
adversary may activate any enabled amoebot. We will extend these
results to an unfair asynchronous adversary allowing for arbitrary
3Adjacency in Grcc is taken by (2D) face adjacency; note that amoebots A, B, C and

D actually do intersect in the rhombic dodecahedral tessellation at exactly one vertex
point.
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concurrency in the next section. We first prove our algorithm never
violates a safety condition.

LEMMA 6.1. Let S be a connected and contractible amoebot system
on Ggcc.- If amoebot A satisfies an erosion rule with respect to S, then
S — A is also connected and contractible.

PRrOOF. Suppose to the contrary that there exists an amoebot A
in S that satisfies an erosion rule but S — A is either disconnected
or not contractible. Suppose first that S — A is disconnected, i.e.,
there exist amoebots {B,C} 3 A such that a simple path from
B to C exists in the subgraph induced by S but not in the sub-
graph induced by S — A. Any (B, C)-path P in S must necessarily
must have contained A and, by extension, two distinct neighbors
Ni and N; of A. Thus, A could not have eroded because it had
exactly one neighbor in S (Rule 1). Moreover, A could not have
eroded because it had between two and five neighbors in S that
themselves induced a connected subgraph (Rule 2) since the path
P =(B,...,N1,A Ny,...,C) could be augmented using the connec-
tivity of Ny and Ny as (B,...,Ni,...,Na,...,C), a (B,C)-path in
S — A. So A must have eroded as a result of Rule 3; w.Lo.g., suppose
the clockwise order of amoebots in the square is (A, N1, X, N2). But
A could only have satisfied Rule 3 if its catty-corner amoebot X
existed in S, implying the path (B,...,N1,X, Ny, ...,C) exists in
S — A. Therefore, in all cases, S — A must be connected.

So suppose instead that S — A is connected but is not contractible;
i.e.,, S — A contains a hole. Since S is contractible by supposition,
the hole in S — A must correspond to exactly the position of 4; i.e.,
the lattice dual representation replacing the neighbors of A with
rhombic dodecahedrons must contain a topological hole. One can
prove using exhaustive search that no configuration of at most five
neighbors has a corresponding closed union of rhombic dodecahe-
drons containing a topological hole.* Since all erosion rules involve
A having between one and five neighbors in S, it is impossible for
A to both satisfy an erosion rule and create a hole by eroding, a
contradiction. ]

We next leverage this safety condition to prove progress.

LEMMA 6.2. Any connected and contractible amoebot system S on
Grcc comprising at least two amoebots contains an amoebot that
satisfies an erosion rule with respect to S.

PRrROOF. Argue by induction on |S|, the number of amoebots in
S. When |S| = 2, the fact that S is connected implies that the two
amoebots in S each have each other as their only neighbor in S.
Thus, both of these amoebots satisfy Rule 1.

So suppose that |S| > 2 and that, for all 2 < k < ||, any
connected and contractible amoebot system on Gpcc comprising
k amoebots contains an amoebot satisfying an erosion rule. We
decompose the amoebots of S into two types: “chain” amoebots
whose removal would disconnect S, and those belonging to the
remaining 2-connected components. A chain is a maximal set of
amoebots Ay, ..., Ay in S satisfying one of the following cases: (i) if
¢ > 2,thenforall1 <i< ¢ (Aj—1,A;) and (A;, Aj+1) are the only
edges in S incident to A;, (A1, Ar) ¢ S, and no other chain can exist

4We verified this statement using a simple Mathematica program that enumerates
each neighborhood polyhedron of at most five neighboring rhombic dodecahedrons
and verifies that its genus is zero; see the link at the end of this paper.
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with endpoints A1 and Ay, (ii) if £ = 2, then (A1, A2) € S and no edge
of S exists between {A1 }UNg (A1) and {A2 }UNg(A»), or (iii) if £ = 1,
then Ng(A;) is disconnected. The final condition in (i) regarding the
uniqueness of a chain with given endpoints follows from the squares
that exist in Gpcc. The lattice dual representation of a square is four
rhombic dodecahedrons that intersect at a single point; thus, no one
chain between catty-corner endpoints can individually disconnect
S and thus are omitted. No other such “parallel chains” can exist in
S because it is contractible.

Consider the graph composed of (i) all chain amoebots C in S
and (ii) each connected component of S — C contracted to a single
node. Since S is contractible, this graph must be a tree. Consider
any leaf of this tree. If this leaf corresponds to an amoebot A* with
exactly one neighbor in S, then A™ satisfies Rule 1. Otherwise, the
leaf corresponds to a connected component S’ of S — C with at least
two amoebots. Since S’ is a leaf in the tree, there exists a unique
chain amoebot C € C connecting S’ to the rest of S.

The remainder of this proof identifies an amoebot A* # Cin §’
that satisfies erosion Rule 2 or 3. If there exists an amoebot A* in
S’ such that Ng/y(cy (A*) = {X, Y} and there exists an amoebot Z
such that A*, X, Y, and Z form an induced (chordless) square in
Grcc, then A* satisfies erosion Rule 3.

Otherwise, if an amoebot satisfying Rule 3 cannot be found in §’,
we show there must exist an amoebot A* in §’ satisfying Rule 2. We
do so by constructing an auxiliary (not necessarily convex) polyhe-
dron P from the nodes of Gpcc occupied by amoebots in §” U {C}
that is contractible. Let P be the polyhedron in the 3D embedding
of Gpec that contains all the nodes occupied by S’ U{C} and whose
faces are composed of (unions of) external triangles induced by
S’ U {C}, where an external triangle induced by S’ U {C} is a tri-
angle whose three vertices are mutually adjacent nodes occupied
by amoebots in §’ U {C} and where at least one of its vertices is
adjacent to a node not occupied by S” U {C}. Note that the fact that
the union of rhombic dodecahedrons corresponding to S’ U {C} is
contractible, which is true by assumption, does not immediately
imply that P will also be contractible, since by construction of P, P
might possibly contain an "exposed” chordless square cycle of Gpcc
on its surface whose nodes do not share a common neighbor: This
is not possible, however, since if such a cycle existed in P, there
would exist an amoebot A* satisfying Rule 3 - i.e., an amoebot A
in §” such that Ngy¢cy (A) = {X, Y} and there exists an amoebot
Z such that A, X, Y, Z form an induced (chordless) square cycle in
Grcc-

The internal angle of a face F at its vertex v is given by the angle
internal to F defined by the two edges of F that contain vertex v.
The total internal angle of a vertex v is the sum of internal angles of
all faces incident to v, and its external angle is given by 27 minus
its total internal angle:

external-angle(v) = 27 — Z ai,
iek
where a1, ..., ay are the interior angles of faces Fy, ..., F incident
to v. The Euler characteristic on closed surfaces is given by
X =2-29,

where g is the genus of the surface. Since P was shown to be con-
tractible, its genus is g = 0 and its Euler characteristic is y = 2. From
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the proof of the discrete version of the Gauss-Bonnet theorem [3],

Z external-angle(v) = 27 y.
vEP
Thus, the sum of external angles of all vertices of P is equal to 47.
The external angle of any vertex can be at most 277, so there must
exist at least two vertices of P whose external angles are strictly
positive. Since C is the unique chain amoebot in §” U {C}, there
must exist at least one non-chain amoebot A* € §’ at a vertex of
P with a strictly positive external angle, which by definition of a
chain node must have a neighborhood in $” U {C} that induces a
connected subgraph. One can show via exhaustive search that any
vertex of P with a strictly positive external angle must correspond
to a node with degree at most five in the embedded Gpcc lattice.
Thus, A* must satisfy Rule 2.
Therefore, there always exists an amoebot A* in § satisfying
an erosion rule. When A* erodes, S — A* remains connected and
contractible by Lemma 6.1, so the lemma follows by induction. O

The safety and progress lemmas yield our main theorem.

THEOREM 6.3. Assuming 3D geometric space, assorted orienta-
tions, constant-size memory, and an unfair sequential adversary, Al-
gorithm 1 solves the leader election problem for any connected and
contractible system of n amoebots in O(n) rounds.

Proor. We analyze the erosion process by applying Lemmas 6.1
and 6.2 to the structure of both null and real candidates A with
A.cand € {NULL, TRUE}. At initialization, every amoebot is a null
candidate, so the structure of candidates is connected and con-
tractible by supposition. Lemma 6.2 guarantees that some candi-
date satisfies an erosion rule, but this does not immediately imply
it can erode: it might only be a null candidate that has not yet exe-
cuted SETUP, or it might be a real candidate that has null candidate
neighbors. In either case, the ERODE action is disabled.

Suppose that erosion progress is blocked, i.e., every candidate
that satisfies an erosion rule—of which there must be at least one
by Lemma 6.2—has its ERODE action disabled. Since the candidate
structure is connected and contractible by Lemma 6.1, the DECLARE-
LEADER action is never enabled for any amoebot until the very end,
when all but one amoebot has cand = FALSE. This certainly cannot
occur while there are still null candidates in the system. So even the
unfair adversary has no choice but to activate some null candidate
A waiting to execute SETUP, which is guaranteed to be continuously
enabled for A from initialization to its first activation.

Thus, regardless of the unfair adversary’s choice of activation,
either a null candidate executes SETUP to become a real candidate
or a real candidate erodes by executing ERODE. The guard of ERODE
ensures that any such erosion occurs after the candidate’s neighbors
have all executed their SETUP actions, avoiding any discrepancies
between the erosion rules dealing only with real candidate neigh-
bors and this proof’s inclusion of null candidates. Lemma 6.1 thus
guarantees that any erosion maintains the connectivity and con-
tractibility of the candidate structure, and Lemma 6.2 guarantees
once again that some candidate in the remaining structure satisfies
an erosion rule. Repeatedly applying this argument shows that the
SWe verified this statement using a simple Mathematica program that enumerates all

neighborhoods of six to eleven neighbors yielding a polyhedron vertex and verifies
that its external angle is nonpositive; see the link at the end of this paper.
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candidate structure is eventually reduced to a single candidate, for
which DECLARELEADER becomes enabled. This is the only enabled
amoebot remaining in the system, so the unfair adversary must
activate it, at which point the amoebot declares itself leader and
the algorithm terminates.

It remains to bound the worst-case runtime of our algorithm
on a system of n amoebots, i.e., the largest number of rounds that
can complete before termination based on any possible activation
sequence of the unfair adversary. As observed earlier, the SETUP
action is continuously enabled for each amoebot from initializa-
tion to its first activation, implying that the first round does not
complete until all n amoebots have executed their SETUP actions,
becoming (real) candidates. In the worst case, these are the only ac-
tion executions that occur in the first round. At the start of the next
round, Lemma 6.2 ensures there exists a candidate that satisfies an
erosion rule; in the worst case, there is only one such candidate A.
Because all other amoebots have moved past null candidacy, we are
guaranteed that ERODE is enabled for A. Thus, A must be activated
and will erode by the end of the second round. More generally, it
can take at most n — 1 rounds for n — 1 candidates to erode and at
most one additional round for the final candidate to declare itself
leader. Therefore, our algorithm terminates within O(n) rounds in
the worst case. O

Recall from Section 3 that G used in 2D geometric space can be
treated as a single triangular lattice in Gpcc used in 3D geometric
space. Certainly any connected and contractible 2D amoebot system
is thus also a connected and contractible 3D system, yielding the
following corollary.

COROLLARY 6.4. Theorem 6.3 also holds in 2D geometric space.

Notably, the special case involving erosion in squares of can-
didates never occurs in 2D geometric space, so an even simpler
version of our algorithm that omits nbrcand variables and Rule 3
could be used to solve leader election in 2D.

7 ASYNCHRONOUS LEADER ELECTION

The concurrency control framework for amoebot algorithms uses
the canonical amoebot model’s Lock operation to provide isolation
among concurrent amoebot’s actions [8]. Specifically, the frame-
work takes as input any amoebot algorithm that achieves a desired
behavior under a sequential adversary and—provided the algorithm
satisfies certain conventions—constructs another algorithm that
produces equivalent behavior under an asynchronous adversary by
carefully wrapping the original algorithm’s actions in Lock calls
and reorganizing their operations. In this section, we demonstrate
that our algorithm for leader election by erosion is compatible
with the concurrency control framework, proving the existence
of an amoebot algorithm that solves leader election under an un-
fair asynchronous adversary. In order to apply the framework, we
must first show that our algorithm satisfies the framework’s three
conventions:

(1) Validity. For all system configurations in which an action o
is enabled for an amoebot A, the execution of a by A should
be successful when all other amoebots are inactive.
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(2) Phase Structure. Each action should structure its operations
as: (1) a “compute phase”, during which an amoebot per-
forms a finite amount of computation and a finite sequence
of CONNECTED, READ, and WRITE operations, and (2) a “move
phase”, during which an amoebot performs at most one move-
ment operation decided upon in the compute phase.

Monotonicity. Each action should be “monotonic”, a lengthy
technical condition describing actions’ resilience to concur-
rent movements. Because our algorithm is stationary, not
involving any movement operations, we omit this definition.

®)

LEmMA 7.1. Algorithm 1 satisfies the validity, phase structure, and
monotonicity conventions of the concurrency control framework for
amoebot algorithms.

ProoF. Actions in Algorithm 1 only use CONNECTED, READ, and
WRITE operations. The validity convention requires that every iso-
lated execution of an enabled action succeeds. CONNECTED oper-
ations never fail. READ and WRITE operations only fail when the
neighbor whose memory is being accessed disconnects from the
calling amoebot due to a movement, which never happens in our
algorithm because it is stationary. Thus, all executions of enabled
actions in our algorithm succeed, satisfying validity. Phase struc-
ture can easily be verified by observing that—since our algorithm
is stationary—its actions are entirely composed of compute phases.
Finally, as observed in the concurrency control framework publica-
tion [8], all stationary algorithms are trivially monotonic. O

Theorem 7 of [8] states that if an algorithm satisfies the frame-
work’s three conventions and every sequential execution of the
algorithm terminates, then every asynchronous execution of the
corresponding algorithm produced by the framework terminates in
a configuration that was also reachable by the original algorithm.
Lemma 7.1 shows that our algorithm for leader election satisfies
the framework’s three conventions, and Theorem 6.3 shows that
every sequential execution of our algorithm terminates. Therefore,
we have the following corollary.

COROLLARY 7.2. There exists an algorithm that solves the leader
election problem for any connected and contractible amoebot system
under the assumptions of 2D or 3D geometric space, assorted orienta-
tions, constant-size memory, and an unfair asynchronous adversary.

We note that the runtime of this asynchronous algorithm de-
pends on the overhead of the concurrency control framework which
has not yet been analyzed.

8 CONCLUSION

In this work, we presented the 3D geometric space variant for
the amoebot model, extending the well-established model of pro-
grammable matter to 3D space. We then presented a deterministic
distributed algorithm for electing exactly one leader in O(n) rounds
under an unfair sequential adversary (Theorem 6.3) for connected
and contractible systems, extending and simplifying the erosion-
based approach of Di Luna et al. [11]. This algorithm can be flexibly
applied to both 2D and 3D space (Corollary 6.4) and improves over
the related algorithm for 3D leader election by Gastineau et al. [17]
by extending the set of amoebot orientations and replacing the as-
sumption of 2-neighborhood vision with local comparisons between
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1-neighbors’ orientations. Finally, we proved that this algorithm
can be transformed using the concurrency control framework for
amoebot algorithms [8] to obtain the first known amoebot algo-
rithm that solves leader election under an unfair asynchronous
adversary (Corollary 7.2).

Although our leader election algorithm is the first to make use of
the concurrency control framework for asynchronous correctness,
several others discussed in Section 4 could likely do the same. The
proof of Lemma 7.1 suggests that any stationary algorithm adher-
ing to the standard amoebot assumptions (e.g., 1-neighborhood
vision) will likely satisfy the framework’s three conventions, and
all of the deterministic algorithms already have proofs of termi-
nation under a sequential adversary or some weaker scheduler.
Some work is required to translate existing algorithms into the
action-based semantics used by the canonical amoebot model and
to reprove their correctness with respect to the new formulation,
but the framework’s subsequent application seems straightforward.

One potentially interesting extension of this work is to modify
the leader election algorithm such that when it is run on an initially
connected amoebot system that contains holes, the existence of
holes can be identified in a distributed way. Just as the topological
definition of holes identifies the inability to shrink the object to a
single point, so too could the inability for our algorithm to erode a
system to a single amoebot be a clue about the existence of holes.
Our algorithm already confirms the absence of holes as this is
a necessary condition for a leader to emerge, but perhaps could
be extended—likely with additional amoebot communication—to
decide when holes exist.

Finally, we showed that our algorithm for leader election in 3D
geometric space could be immediately applied without modification
to a 2D geometric system as a special case (Corollary 6.4). This may
not necessarily be true of every problem and algorithm. What exist-
ing algorithms for 2D geometric systems can be viewed as special
cases of generalized 3D algorithms? What fundamental charac-
teristics of a given algorithm or problem inhibit this translation?
Answers to these questions will accelerate the development of 3D
amoebot algorithms and their potential applications to amoebots’
modular robotic counterparts.

SOURCE CODE AVAILABILITY

All Mathematica source code used to generate this paper’s fig-
ures and verify the claims in the proofs of Lemmas 6.1 and 6.2 is
openly available at https://github.com/SOPSLab/3DLeaderElection-
Mathematica.
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