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Abstract

The detection of critical heat flux (CHF) is crucial in heat boiling applica-
tions as failure to do so can cause rapid temperature ramp leading to device fail-
ures. Many machine learning models exist to detect CHF, but their performance
reduces significantly when tested on data from different domains. To deal with
datasets from new domains a model needs to be trained from scratch. Moreover,
the dataset needs to be annotated by a domain expert. To address this issue,
we propose a new framework to support the generalizability and adaptability of
trained CHF detection models in an unsupervised manner. This approach uses
an unsupervised Image-to-Image (UI2I) translation model to transform images
in the target dataset to look like they were obtained from the same domain
the model previously trained on. Unlike other frameworks dealing with domain
shift, our framework does not require retraining or fine-tuning of the trained
classification model nor does it require synthesized datasets in the training pro-
cess of either the classification model or the UI2I model. The framework was

tested on three boiling datasets from different domains, and we show that the
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CHEF detection model trained on one dataset was able to generalize to the other
two previously unseen datasets with high accuracy. Overall, the framework en-
ables CHF detection models to adapt to data generated from different domains
without requiring additional annotation effort or retraining of the model.
Keywords: Critical Heat Flux, Domain Adaptation, Generative Adversarial
Networks, Image-to-Image Translation, Pool Boiling, Unsupervised Machine

Learning.

1. Introduction

Boiling is a heat transfer mechanism that dissipates a large amount of heat
with minimal temperature increase by taking the advantage of the latent heat
of the working fluid. As such, boiling has been widely implemented. Never-
theless, the heat flux of boiling is bounded by a practical limit known as the
critical heat flux (CHF), beyond which, a continuous vapor layer will blanket
the heater surface, leading to a significant reduction in heat transfer coeflicient
(HTC) and deteriorating the heat dissipation; this process is also known as the
critical heat flux (a.k.a. boiling crisis). Upon the occurrence of CHF, a rapid
temperature ramp takes place on the heater surface which will lead to detrimen-
tal device failures. To capture CHF, a variety of theoretical models have been
developed based on different transport mechanisms during boiling, including
hydrodynamic instabilities (Zuber, 1959), force balance (Kandlikar, 2001) , etc.
However, due to the complexity and stochasticity of the boiling process, existing
theoretical CHF models are overly-simplified to accurately predict CHF before
it happens. Often, a safety factor (e.g. the departure from the nucleate boiling
ratio (DNBR) in nuclear reactors) is applied to avoid the boiling crisis, leading
to reduced system performance (Lee et al., 2021).

Boiling images have attracted great attention lately as the images contain de-
tailed information on the bubble dynamics. It is of both fundamental and prac-
tical interest to detect the CHF and identify the dominant transport mechanism

that triggers CHF using boiling images. In the side view boiling images, bubbles



at different locations are at different stages of the ebullition cycle. As such, un-
der steady-state conditions, the dynamics of the bubbles are embedded in static
boiling images. A static image of pool boiling may cover the entire ebullition
cycle, including bubble nucleation, growth, and departure. Traditional analysis
of the boiling images relies on the extraction of physical parameters based on
domain knowledge, such as bubble size, bubble departure frequency (Li et al.,
2019), nucleation site density (Park et al., 2016), void fraction (Ridwan & Mc-
Carthy, 2019), vapor film (Allred et al., 2018), etc. But the stochasticity of
the bubble dynamics adds to the fluctuations and uncertainties of the extracted
physical parameters. Furthermore, the traditional boiling image analysis is lim-
ited to known physical parameters, whereas it is not clear whether the known
parameters are sufficient to capture the boiling crisis.

Machine learning algorithms have been widely used in various engineer-
ing applications (Altarazi et al., 2019; Alhindawi & Altarazi, 2018; Rokoni
et al., 2022; Rassoulinejad-Mousavi et al., 2021; Zhao et al., 2022; Ji et al.,
2022; Wang et al., 2022). Specifically for CHF, researchers started develop-
ing models using a variety of supervised learning algorithms, including support
vector machine (Hobold & Silva, 2018), multilayer perceptron (MLP) neural
networks (Hobold & Silva, 2018), and convolutional neural networks (CNN)
(Rassoulinejad-Mousavi et al., 2021), and using different modalities such as
acoustic emissions (Sinha et al., 2021), optical images (Rokoni et al., 2022), and
thermographs (Ravichandran et al., 2021) to predict boiling heat flux or/and
the boiling regime. While these studies have shown high prediction accuracy
and success in heat flux detection, most of them were only trained and tested
on a single-source dataset, e.g., the authors’ own experimental data. For appli-
cations where there is a domain shift problem (the target data are drawn from
a different distribution than the source training data), the performance of the
model declines dramatically and in extreme cases, it may become worse than
random guessing(Wilson & Cook, 2020).

Recent efforts were dedicated to alleviating this problem. Transfer learning

(TL) was used to adapt a trained CNN model for boiling regime classification to



a new target domain with a small volume of labeled data from the target domain
(Rassoulinejad-Mousavi et al., 2021). By taking features from the trained CNN
model and fine-tuning the networks, the TL model requires much less labeled
data from the target domain than CNN to yield the same level of prediction
accuracy. Nevertheless, this TL approach still relies on labeled data from the
target domain and is not applicable to an unlabeled target domain.

The utilization of GANs and unsupervised domain adaptation methods to
solve the domain shift in heat transfer processes has been limited with several
novel applications in studying fluid dynamics problems only such as unsteady
flows(Lee & You, 2019; Deng et al., 2019), turbulence closure models(Bode
et al., 2021), and flow field visualization(Lee & You, 2019). Please note these
approaches are not designed to support unsupervised cross-domain classifica-
tion (e.g., data collected from different sources). There has yet to emerge a
framework to support the unsupervised generalizability and adaptability of CHF
detection models for the boiling crisis problem which is the goal of this research.

In this research, we propose a new framework to generalize a pre-trained
CHF detection model and enable it to adapt to data generated from a differ-
ent domain. The framework consists of two parts. The first part utilizes a
pre-trained typical classification model that is trained and tested on the source
dataset. The second part utilizes an Unsupervised Image-to-Image (UI2I) trans-
lation model to transform images in the target dataset to look as if they were
obtained from the same domain of the source dataset. Instead of spending
resources on manually labeling each new dataset and building separate classi-
fication models for each one, we can adapt an existing classification model to
new datasets by incorporating them into the familiar domain, without requiring
human supervision.

A total of three datasets from different domains were used. Two of which
were publicly available datasets (DS-1 and DS-2) and the third was obtained
from in-house experiments (DS-3). We used the public dataset with the lowest
resolution (DS-1) as our source dataset and alternated DS-2 and DS-3 with

higher resolution images as the target dataset. This demonstrates the ability



of the framework to work even from low resolution to high resolution and when
using publicly available datasets as the base. Determining whether two domains
are transferable in unsupervised image-to-image translation applications can
be a challenging task. Typically, this task involves utilizing techniques like
visual inspection, statistical analysis, or domain expertise. Often a combination
of such methods is required. In our case, we relied on visual inspection and
domain knowledge to make this decision. The datasets employed in this work
depict boiling images conducted under different circumstances exhibiting the
same physical phenomena that accompany the boiling heat transfer mechanism.
This resemblance can be spotted by domain expert’ naked eyes.

It is worth mentioning that there has been a number of approaches that
leverage GANs and UI2I models to address the bias between different domains.
For example, Deng et al. (2018) translated the source DS to the target domain
and then trained a new model on the features of the translated images. In Xiang
et al. (2020), the authors synthesized a dataset and generated different contex-
tual conditions on the synthetic data set. They created labels for the synthesized
dataset and fine-tuned the model using the synthesized dataset. In general, our
method shares an inherited sub-problem with these approaches developed to
address the domain shift challenges. However, our solutions fundamentally dif-
fer. Specifically, of particular interest in our study is the generalizability of the
classification-based framework which can adopt unlabeled data collected from
other sources without the need of extra efforts such as fine-tuning as in Xiang
et al. (2020) or even training a new classifier as in Deng et al. (2018). We
contend this retrain-free or fine-tuning-free approach is scalable to applications
with multiple domains.

To summarize, the contribution of this paper includes:

e Introducing a framework to support the generalizability and adaptability
of CHF detection models to unlabeled datasets coming from domains never
seen previously by the model in a fully unsupervised manner using a UI2I

translation model.



e The framework was applied to generalize a CNN classification model, but
it is model agnostic and could be applied to any type of classification

models.

e The framework used FP-GAN for UI2I translation, but it is agnostic to the
UI2I model used. FP-GAN could be replaced by any other model. This
means that the more the UI2I models advance, the better the performance

of the framework.

e Unlike other frameworks tackling the domain shift problem, our frame-
work does not require re-training or fine-tuning of the trained classifica-
tion model, nor does it require synthesized datasets in the training process

of either the classification model or the UI2I model.

The paper is organized as follows, we first discuss the related work in the
literature. Next, we introduce the proposed framework in the Methods section.
Afterward, in the experiments section, we discuss data preparation, the source
classification model training, and the UI2I translation model training. We follow
that with the results and discussion section where we discuss our findings and

analysis of the results before we finally conclude the paper.

2. Related Work

(GANS) were initially introduced by Goodfellow et al. (2014). In their work,
the authors proposed a model architecture that consists of two networks (a
generator and a discriminator) that are trained together to generate synthetic
data that resembles a given dataset.

The first work to utilize GANs to solve the I2I translation problem was
Isola et al. (2017). In their pix2pix model, they used conditional adversarial
networks to learn the mapping from an input image to an output image, where
the networks learn a loss function to train this mapping. This method uses a
"U-Net” based architecture for the generator and a ”PatchGAN” classifier for

the discriminator.



The main limitation of the pix2pix model was that it was supervised. The
training process required paired images in the training set for the model to learn
the mapping G : X — Y, where generated images from G(X) are indistinguish-
able from real images coming from domain Y. Simply using the adversarial
loss for this problem makes it heavily under-constrained. Thus, to solve this
problem, Zhu et al. (2017) introduced one of the most famous unsupervised
121 models known as CycleGAN. The authors coupled the adversarial loss with
an inverse mapping F' : Y — X and introduced a cycle consistency loss. The
objective of this loss is to enforce F(G(X)) ~ X and G(F(Y)) ~ Y. The idea
was inspired by the language translation process, where a reverse translation of
a sentence that was translated from language A to language B should give the
same original sentence in language A. A similar approach was performed by Yi
et al. (2017) and Kim et al. (2017) concurrently with cycleGAN. Li et al. (2018)
proposed the SCANs framework to address the shortcomings of UI2I models in
handling problems where there is a marginal difference between the domains or
when the images are of high resolution. Their framework works by decomposing
a single translation into multi-stage transformations where the information from
the previous stage is used in the next stage using an adaptive fusion block. Kim
et al. (2019) incorporated a new attention module to guide the model in distin-
guishing between source and target domains by focusing on the most important
features.

Choi et al. (2018) introduced their StarGAN framework that simultaneously
trains multiple datasets with different domains using a single generator and dis-
criminator pair. However, StarGAN tends to change the images unnecessarily
during image-to-image translation even when no translation is required (Sid-
diquee et al., 2019). To address this issue, Siddiquee et al. (2019) proposed the
Fixed-Point GAN (FP-GAN) framework. This framework focused on identify-
ing a minimal subset of pixels for domain translation and introduced fixed-point
translation by supervising same-domain translation through a conditional iden-
tity loss, and regularizing cross-domain translation through revised adversarial,

domain classification, and cycle consistency loss.



GAN-based I2I translation frameworks have been widely applied in a variety
of fields. In the medical imaging field for example, Amirkolaee et al. (2022) pro-
posed a novel GAN for medical 121 translation to enhance the quality of medical
imaging for diagnostic and therapeutic purposes. Arruda et al. (2022) proposed
a novel multidomain signal-to-signal translation method using a StarGAN-based
model to generate artificial steady-state visual evoked potential (SSVEP) sig-
nals from resting electroencephalograms to improve the performance of SSVEP-
based brain-computer interfaces. In the field of autonomous driving, Tremblay
et al. (2018) employed I2I translation models to support the training of au-
tonomous driving algorithms. In the field of text extraction, Kundu et al. (2020)
utilized I21 transltion to address the problem of text-line extraction (TLE) from
unconstrained handwritten document images. Deng et al. (2018); Xiang et al.
(2020) utilized UI2I to solve person re-identification problem. In the area of
fluid dynamics, Deng et al. (2019) used GANs to reconstruct high-fidelity data
from low-fidelity Particle Image Velocimetry (PIV) data for flow around single
and multiple cylinders (Deng et al., 2019). Lee & You (2019) predicted unsteady
flow around a cylinder by using the GAN to reproduce flow fields that match
Large Eddy Simulations (LES).

Unfortunately, albeit all this, the utilization of GANs and unsupervised do-
main adaptation methods to study heat transfer processes has been rather lim-
ited and the specific use of UI2I translation models is even more scarce. One ma-
jor challenge preventing this is the lack of high-quality labeled data for training
and evaluation. Collecting and labeling data for boiling crisis and CHF detection
is a difficult and expensive process, as these phenomena occur under extreme
conditions and require specialized equipment and expertise for measurement.
Furthermore, the lack of a clear understanding of the underlying mechanisms
of boiling crisis and CHF detection limits the development of accurate mod-
els. These phenomena are still not fully understood, and the complexity of the
phenomena makes it challenging to develop models that embed the underlying

physics in the model.



3. Methods

The proposed framework is summarized in Figl. The framework consists
of two components, the first component utilizes a typical classification model
that is trained and tested on the source dataset. This process is depicted in
red in the figure. The specific details of the source classification model training
are discussed further in section 4.2. The second component utilizes a UI2I
translation model to transform images in the target dataset to look as if they
were obtained from the same domain of the source dataset. The model was
trained 300k iterations and a checkpoint model was saved every 10k iterations.
After the UI2I training was finished, Validation was conducted on all checkpoint
models saved and the best-performing model was move forward for final testing.
The UI2I training process is depicted in blue in the figure and the final testing
is depicted in yellow. The specific details of the UI2I translation model training
and testing are discussed further in section 4.3. The method is further described
in the pseudo-code in Algorithm 1.

This way, instead of generalizing the classification model by either training
it on hundreds of labeled datasets (which is infeasible) or by training a new
model for every new experiment, we can use this framework to make the data
adapt to a pre-existing model. Although we are using this framework on boiling
image datasets, the concept could be easily translated to any case scenario where
there exists a pre-trained model on one domain that needs to be generalized to

datasets from other domains.

4. Experiments

4.1. Data Preparation

Three different pool boiling experimental image datasets (DS-1, DS-2, and
DS-3) were prepared in this study, where DS-1 and DS-2 were generated us-
ing publicly available YouTube videos (You, 2014; Minseok et al., 2014) while
DS-3 was conducted in-house. Specifically, the video from which DS-1 was pre-

pared shows a pool boiling experiment performed using a square heater made of
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Figure 1: Framework Summary Flow Chart: The Red Part of The Flow Chart Represents
The Source Classification Model Training Process. The Blue Part Represents The UI21
Translation Model Training Process. The Yellow Part Represents The Testing Process.

high-temperature, thermally-conductive microporous coated copper where the
surface was fabricated by sintering copper powder. The square heater had a
surface area of ~ 100 mm? and the working fluid used was water. All exper-
iments were performed at a steady-state under an ambient pressure of 1 atm.
A T-type thermocouple was used for temperature measurements. The resolu-
tion of the video frames was 512 x 480 pixels. The YouTube video from which
DS-2 was prepared shows a pool boiling experiment performed using a circular
heater made of microporous coated copper where the surface was fabricated
by sintering copper powder. The circular heater had a diameter of ~ 16 mm
and the working fluid used was DI water. All experiments were performed at a
steady state under an ambient pressure of 0.5 atm. A T-type thermocouple was
used for temperature measurements. The resolution of the video frames was

1280 x 720 pixels. DS-3 was obtained from our in-house experiments of water

10



Algorithm 1: Framework pseudo code

1 Step 1: Function train_source_classifier(source_DS):

2 train model

3 save best model

4 source-DS classifier = best saved model

5 | return source-DS classification model

6 Step 2: Function train UI2I_model(source_-DS,target_DS):

7 Initialize models_list = [ ]

8 use source_DS and target_DS to train UI2I translation model
9 run training for 300k iterations

10 save a checkpoint model every 10k iterations

11 append saved checkpoint model to models_list

12 | return models_list [10k-model, 20k-model, ... , 300k-model]
13 Step 3: Function translate_target(target_DS,models_list):

14 Initialize translated_sets_list = [ ]

15 For each model in models_list:

16 translate target_DS to source domain using model

17 append translated images set to translated_sets_list

18 return translated_sets_list [source_DS* — 10k, source_DS* — 20k, ... ,

| source_DS™ — 300k]

19 Step 4: Function validation_and testing(translated_sets_list,test_set):
20 Initialize best_FID, best_translated_set, best_UI2I_model

21 For each translated_set in translated_sets_list:

22 IF FID(translated_set) < best_FID:

23 best_FID = FID(translated_set)

24 best_translated_set= translated_set

25 best_UI2I_model = UI2I of best_translated_set

26 | translate and evaluate test_set using best_UI2I_model

boiling on polished copper surfaces with an area of 100 mm?. The high-speed
videos were captured using Phantom VEO 710L at a frame rate of 3000 fps and
a resolution of 1280 x 800 pixels.

Images for DS-1 and DS-2 were prepared by downloading the videos from
YouTube and extracting individual frames using a MATLAB code via the Vide-
oReader and imwrite functions. Recognizing duplicate frames extracted from
the YouTube videos, quality control was conducted to remove the repeated im-
ages by calculating the relative difference using the Structural Similarity Index
(SSIM) value (Gao et al., 2020) between two consecutive images where images
with a relative difference less than 0.03% were removed. This pre-processing
is important to ensure DL models were not biased by identical image frames.
Benefiting from the large optical sensor size (25.6 mm X 16 mm) and the high-
power backlight (Advanced Ilumination BT200100-WHIIC), images of DS-3
have a balanced and homogeneous background. Also, the images are directly
saved from the raw video files (.cine) that retain the highest image quality. As

such, this pre-processing step was not necessary for DS-3.
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Figure 2: Representative Images of Bubble Dynamics From Source Videos.

The images were categorized into two boiling regimes: (1) The critical heat
flux regime (CHF), where a significant drop in the heat transfer coefficient is
observed due to a continuous vapor layer blanketing the heater surface and (2)
pre-CHF regime, where optimal heat transfer coefficient is obtained and only
discrete bubbles or frequent bubble coalescence is observed before departure.
While images of DS-1 and DS-2 have been labeled by the authors of the datasets,
this study is designed to be unsupervised learning thus labeling of DS-2 is only
used to assess the model performance. Originally, DS-1 had a total of 6158
images (786 CHF versus 5372 pre-CHF), DS-2 had a total of 3215 (1233 CHF
versus 1982 pre-CHF') and DS-3 had a total of 23890 (12166 CHF versus 11724
pre-CHF). As seen, all data sets were unbalanced. We used undersampling to
balance DS-1. Datasets DS-2 and DS-3 were not balanced since the objective of
this study is to introduce a framework that utilizes unsupervised learning, that
is, the labeling information of DS-2 and DS-3 are assumed to be unavailable.
Tablel shows the number of images in each regime for each dataset before
and after the down-sampling process and Fig2 shows a visual representation
of the images for each dataset. The pixel intensity values in each image were
normalized to fit in the range [0,1] to ensure uniformity over multiple datasets

during deep learning training.

12



Before under-sampling of DS-1 After under-sampling of DS-1

DS CHF Pre-CHF CHF Pre-CHF
DS-1 786 5372 786 786
DS-2 1233 1982 1233 1982
DS-3 12166 11724 12166 11724

Table 1: Datasets Summary
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Figure 3: Architecture of The Customized Model.

4.2. Source Classification Model Training

To demonstrate that the framework is agnostic to the classification model
used, we tested three different model architectures. The first model is a cus-
tomized architecture tied to the application and is summarized in Fig3. The
second and third model architectures are the famous ResNet50 (He et al., 2015)
and MobileNet(Howard et al., 2017).

The dataset was divided into three parts: 1) a training set (80%), 2) a
validation set (10%), and 3) a test set (10%). Each model was trained for 100
epochs using an Adam optimizer and the model that scored the lowest loss on
the validation set was saved to be used in our pipeline. Finally, the selected

model was blind-tested on the test set for final evaluation.

4.8. UI2I Translation Model Training

The target dataset was divided into three parts: a) training set, b) validation
set, and c) testing set. The training set from the target dataset was fed into the

UI2I translation model along with 100% of the source dataset. The UI2I model
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was trained for 300k Iterations, where for every 10k iterations a model was saved,
making a total of 30 UI2I translation models saved. For our implementation,
we used the state-of-the-art FP-GAN (Siddiquee et al., 2019) as the UI2I trans-
lation model of choice. FP-GAN was designed to preserve important features of
the input image, such as edges, textures, and colors while maintaining seman-
tic consistency. This is in contrast to other models which can sometimes lose
important input features during the translation process. Moreover, it has been
shown to produce high-quality results for a variety of image-to-image translation
tasks, making it well-suited for our framework. That being said, We contend
that the framework is agnostic to the UI2I model used and could be replaced
by other UI2I translation models. For the training of FP-GAN, We used the
same training settings as used by the authors and proved to be successful.

To evaluate the UI2I translation model performance, we used the Fréchet
Inception Distance (FID) metric. The FID reflects on the difference between
two sets of images in terms of statistical vision features. Let p(.) be the dis-
tribution of the InceptionV3 model internal representations (activations) of the
images generated by the model and p,(.) the distribution of the same neural
network activations from the ”world” of real images used to train the model.
The FID is basically the difference of the two Gaussians measured by the Fréchet
distance also known as the Wasserstein-2 distance. The Fréchet distance d(.,.)
between the Gaussian with mean and covariance(m, C') obtained from p(.) and

the Gaussian (m,,, Cy,) obtained from p,,(.) is called the FID.

FID = d* (m, C), (M, Cw))
= |m — mw|§ + Tr (C’ +Cyw—2 (ch)l/Q)
The lower the score, the better the translation quality of the generated im-
ages by the UI2I translation model. The target validation data was fed into the
30 models to generate synthetic data images that look like source data images.

Thus, a total of 30 sets of generated images were to be evaluated. The FID

score was used to measure the distance between each of the 30 sets and the

14



real source data images. The model that scored the lowest FID score on the
validation set was the model to be selected to translate images from the target
domain to the source domain. In theory, the framework process is at an end
after selecting the best UI2I translation model to be deployed in production us-
ing the FID metric. However, since we do have the labels available, we utilized
these labels to see if the framework was in fact doing what it was supposed to
be doing in the final testing stage. In this part, we used the source classification
model to find the actual best attainable UI2I translation model out of the saved
30 and then compare it with the best FID-selected UI2I translation model that
was obtained without using the labels. After using the 30 models to gener-
ate the 30 newly translated datasets from the same validation set, the source
classification model was used to classify the newly generated images and the
results were evaluated using traditional supervised learning metrics to identify
the best attainable UI2I translation model. Afterward, both the best attainable
model and the best FID-selected model were used to translate the test data set
and then classify both translated sets using the source classification model and

finally evaluate it to further confirm the results.

5. Results and Discussion

5.1. Ezperiment I: Source Classification Model and Blind Cross-Domain Testing

In this section, the results obtained from the source classification models
training are presented. Moreover, the results will be compared by blindly testing
the source classification models on the target images directly (without transla-
tion). As seen in Table2, while the source classification models has satisfactory
performance on the source DS on which the model was trained and validated,
its performance on the target DS, which is previously unseen by the model is
far from being acceptable as expected. This supports our efforts to explore the
use of UI2I translation to improve the prediction of unseen data from different

sources.
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Test Balanced F1 Precision Recall

Classifier DS Accuracy weighted weighted weighted ROC AUC
DS-1 0.99 0.99 0.99 0.99 1.00
Customized g 0.50 0.47 0.38 0.62 0.37

Model

DS-3 0.50 0.32 0.24 0.49 0.89
DS-1 1.00 1.00 1.00 1.00 1.00
ResNet50 DS-2 0.50 0.47 0.38 0.62 0.50
DS-3 0.50 0.32 0.24 0.49 0.59
DS-1 1.00 1.00 1.00 1.00 1.00
MobileNet DS-2 0.50 0.47 0.38 0.62 0.50
DS-3 0.50 0.32 0.24 0.49 0.50

Table 2: Test Results of Source Classification Models on DS-1, DS-2 And DS-3

5.2. Experiment II: Source Classification Model on Target Images Translated
Using UI2I Translation

In this experiment, we first apply the UI2I translation model to translate
images from the target DS which is then used as input for the source classifica-
tion model for classification. Once the UI2I translation model started training,
a checkpoint model was saved every 10k iterations until the end of the train-
ing session which was set to 300k iterations. Thus, a total of 30 models were
saved. Due to the absence of labels in unsupervised machine learning, con-
ventional supervised evaluation metrics cannot be employed to determine the
optimal stopping point for model training. Thus, each of these 30 models was
evaluated on the target validation dataset using the unsupervised FID metric.
The model that scored the best FID metric (lowest value), was selected to be
used in rendering generated images from the target test dataset. Fig4 shows
the FID values for images generated from the target validation sets of DS-2 and
DS-3 using the 30 saved checkpoint models.

As seen in Fig4, the models saved at epochs 190k and 230k were the best
FID scoring models for DS-2 and DS-3 respectively. The best FID scoring model
was then applied to the target testing data set to translate them into the source
DS domain. The target test set images translated by the best FID scoring
model were classified using the source classification model. The results were

then compared with the evaluation results when using the source classification
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FID vs. Model saved every 10k Epochs FID vs. Model saved every 10k Epochs
Expl: Base DS1 to Non-Base DS2 Exp2: Base DS1 to Non-Base DS3
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Figure 4: FID Values For Images Generated From The Validation Sets of DS-2 And DS-3
Using The 30 Saved UI2I Translation Checkpoint Models.

DS-2 DsS-3
Classifier Metric w/o translation with translation w/o translation with translation
Balanced Accuracy 0.50 0.75 0.50 0.90
F1 weighted 0.47 0.71 0.32 0.90
Customized Model Precision weighted 0.38 0.80 0.24 0.90
Recall weighted 0.62 0.71 0.49 0.90
ROC AUC 0.37 0.77 0.89 0.95
Balanced Accuracy 0.50 0.66 0.50 0.92
F1 weighted 0.47 0.69 0.32 0.92
ResNet Precision weighted 0.38 0.69 0.24 0.92
Recall weighted 0.62 0.69 0.49 0.90
ROC AUC 0.50 0.73 0.59 0.97
Balanced Accuracy 0.50 0.63 0.50 0.89
F1 weighted 0.47 0.66 0.32 0.89
MobileNet Precision weighted 0.38 0.66 0.24 0.90
Recall weighted 0.62 0.66 0.49 0.89
ROC AUC 0.50 0.68 0.50 0.96

Table 3: Source Classification Models Evaluations on DS-2 And DS-3 With And Without
Translation.

model on the same target test set without translation to showcase the efficiency
of the proposed framework. The results of this comparison are summarized in
Table3. As seen from the table, the models performance are improved on all

five evaluation metrics.

5.83.  Discussion on Framework Efficacy in Boiling Crisis Detection

Fig 5 shows samples generated from each class for DS-2 and DS-3, respec-
tively. The first row shows samples from the real target DS images, while the
second row shows the translated version of the same image generated using the
best FID scoring model.

The confusion matrices generated using the custom-built source classification

model for both datasets are presented in Table4. As seen, for DS-2, the model
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Figure 5: Samples Generated by the best FID Scoring Models for A) DS-2 — DS-1 and B)
DS-3 — DS-1.

Source DS-1 to Target DS-2 Source DS-1 to Target DS-3

Predicted Predicted
CHF Pre-CHF CHF Pre-CHF
Tr CHF 118 6 1109 107
Y€ Ppre-CHF 89 111 132 1040

Table 4: Confusion Matrices: Custom-Built Source Classification Model Predictions on
Translated Images From DS-2 And DS-3.

was able to predict 118 out of 124 CHF (95.2%) correctly and 111 out of 200
(55.5%) Pre-CHF. For DS-3, the model was able to predict 1109 out of 1216
CHF (91.2%) correctly and 1040 out of 1172 (88.7%) Pre-CHF. We believe this
initial effort shows the promise of using our framework in generalizing boiling
crisis detection models.

For a more in-depth comparative analysis of the results, a comparison of all
confusion matrices generated by the custom-built source classification model are
displayed in Fig6. The first column (Tables A and D) shows the results of the
model when tested blindly on target DS images without any translation (worst-
case scenario). As expected, the results show that the model is not generalizable

to foreign datasets and will produce results equivalent to randomly guessing with
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(A) Base CNN on Non-Translated DS-2

(B) Base CNN on translated DS-2

(C) Base DS1 on DS-1

Predicted Predicted Predicted
CHF  Pre-CHF CHF  Pre-CHF CHF Pre-CHF
CHF 0 124 CHF 118 6 CHF 80 0
TRUE Pre-CHF 0 200 TRUE Pre-CHF 89 111 TRUE Pre-CHF 1 79

Balanced Acc. = 50%

Balanced Acc. = 75%

Balanced Acc. = 99%

(D) Base CNN on Non-Translated DS-3

(E) Base CNN on translated DS-3

(F) Base DS1 on DS-1

Predicted Predicted Predicted
CHF  Pre-CHF CHF  Pre-CHF CHF Pre-CHF
121 11 107
TRUE CHF 0 6 TRUE CHF 09 0 TRUE CHF 80 0
Pre-CHF 0 1172 Pre-CHF 132 1040 Pre-CHF 1 79

Balanced Acc. = 50%

Balanced Acc. = 90%

Balanced Acc. = 99%

Figure 6: Comparison of All Confusion Matrices Generated By The Custom-Built Source
Classification Model.

a balanced accuracy of 50% for both DS-2 and DS-3. The second column (Tables
B and E) shows the results when using our framework and how it significantly
improves the generalization of the Base CNN model for both DS-2 and DS-3
than when used blindly as in the first column. It also shows how far away is
our method from the best-case scenario shown in the third column (Tables D
and F) where the Base CNN model was tested on the same dataset that it was
previously trained on.

It is observed that there is a significant improvement in the results when
the images are first translated from the target DS to look like DS-1 images
and then tested by the source classification model rather than blindly testing
the model on the target DS images without any translation. All metrics have
improved significantly, but most importantly, the “balanced accuracy” metric
has increased by 50% when using DS-2 as target, and by 80% when using DS-
3 as the target. This clearly demonstrates the effectiveness of the framework
in translating the images to a domain that the classification model has seen
before and how this translation will improve the results obtained by the same
model on the same images before the translation. To further understand the
performance of the model, a comparison between samples from the real and
the generated images for each class during different time intervals was plotted

for each experiment. Fig7 A), B) and C) shows the comparisons for the “pre-
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CHF”, while D), E) and F) shows the comparisons for the “CHF” class. As seen
when comparing Fig7 A) and B), the model for DS-2 doesn’t seem to be able
to identify that the early and intermediate stages “pre-CHF” from DS-2 should
be translated to early and intermediate -stages DS-1 “pre-CHF” images, but it
has more success in translating the latter stages of DS-2 “pre-CHE” to look like
their counterparts in DS-1 “pre-CHF”. This could be one of the reasons why
the misclassifications percentage is higher for this class. Another reason could
be attributed to the distortions (or fidelity) of the images. The performance
for DS-3 is much better for the “Pre-CHF” class. As seen when comparing
Fig7 A) and C), the translated images have much better quality throughout
the entire process and with little to no traces of the original domain appearing
in most images. The model also seems successful in allocating most images to
their proper timeline as in the real images which explains the superiority of the
results of DS-3 over DS-2 for this class. The performance of the model in the
“CHF” class for DS-2 was much better than the “pre-CHF” class. The model
seems to be able to translate each stage of this class to it’s correct counterpart.
The translated images such as those viewed in Fig7 E) seem to be exhibiting the
same distortion problem as in the case of the “pre-CHF” class. The performance
on DS-3 for the “CHF” class is also similar to the DS-2 performance, as seen in
Fig7 F); however, the translated DS-3 images seem to have much better quality
throughout the entire process and with little to no traces of the original domain
appearing in most images. The model also seems successful in allocating most
images to their proper timeline as in the real images.

Fig8 A) and B) show a sample of the misclassified images for DS-2 for the
“pre-CHF” and the “CHF” classes respectively. As observed, the major reason
behind the misclassifications of the “pre-CHF” class for DS-2 is that the trans-
lated images look more like the “CHF” class rather than the “pre-CHF” class.
The reason for the misclassifications in the “CHF” images for DS-2 could be that
the six misclassified images suffer from distortion and immature translation ef-
fects. Similarly, Fig8 C) and D) show a sample of the misclassified images for

DS-3. All classifications for the “pre-CHF” class are occurring exclusively in
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Figure 7: Samples From Real DS-1. Translated DS-2 And Translated DS-3 From Different
Stages For Each Regime.

Translated DS-2 Transated DS-3
A) Pre-CHF C) Pre-CHF D) CHF
y w o o A, O P — ‘ *

Figure 8: Examples of Misclassified Images From Each DS And Class.

the later half of this stage (from 60W to 120W) where the images start to look
similar to the “CHF” state as apparent in the figure. Misclassified images from
both classes seem to be suffering from apparent immature translation artifacts
that we suspect are the major cause for the confusion in the classification.

5.4. Discussion on FID

How good is the FID metric in selecting the best saved UI2I translation
model checkpoint? To test this, we assumed the labels for the validation data
are available and used balanced accuracy instead of FID for model selection.
Fig9 A) and B) show the balanced accuracy scores for every model on the labeled
validation set for DS-2 and DS-3 respectively. For DS-2; out of the 30 models,

the images generated by model 90k achieved the highest balanced accuracy when
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Figure 9: Metrics Comparison Between Best Attainable Models And FID Selected Models
on Test Set For DS-2 And DS-3.

Balanced F1 Precision Recall
DS Model Name Accuracy weighted weighted weighted ROC AUC
DS-2 90k model 0.95 0.96 0.96 0.96 0.99
190k model 0.75 0.71 0.80 0.71 0.77
DS-3 190k model 0.98 0.98 0.98 0.98 1.00
- 230k model 0.90 0.90 0.90 0.90 0.95

Table 5: Confusion Matrices of Custom-Built Source Classification Model Predictions on
Translated Images From DS-2 And DS-3.

tested with the custom-built source classification model with a value of 96% on
the validation set compared to 75% achieved by model 190k which was selected
by the FID metric. The 90k model was then used to generate fake images from
the test set and these images were also tested using the custom-built source
classification model, achieving a balanced accuracy of 95% as compared to the
75% achieved when using the 190k model as seen in Table 5. For DS-3, out of the
30 models, the images generated by model 190k achieved the highest balanced
accuracy when tested with the Base CNN model with a value of 98% on the
validation set compared to 90% achieved by model 230k that was selected by
the FID metric. The 190k model was then used to generate fake images from
the test set and these images were also tested using the custom-built source
classification model, achieving a balanced accuracy of 98% as compared to the
90% achieved when using the 230k model as seen in Tableb.

The confusion matrices for both models for DS-2 are displayed in FiglO0.
There is a notable improvement in the prediction accuracy of the “Pre-CHF”

class, it has improved from 56% to 99%, while the predicting accuracy for the
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Figure 10: Confusion Matrices For (A)90k And (B)190k Models Using The Customized

Source Classification Model.

Predicted Predicted
CHF __ Pre-CHF CHF _ Pre-CHF
CHF 1208 8 CHF 1109 107
Tree = IF 33 1134 True = F 132 1040

(A)

(B)

Figure 11: Confusion Matrices For (A) 190k And (B) 230k Models Using The Customized

Source Classification Model.

“CHF” class slightly decreased from 95% to 91%.

The confusion matrices for both models for DS-3 are displayed in Figll.

There is a notable improvement in the prediction accuracy of both classes.

The accuracy for the “pre-CHF” class improved from 89% to 97%, while the

predicting accuracy for the “CHF” class increased from 91% to 99%.

As seen from the results above, in general, although the FID metric provides

a good solution, it may not guarantee the best attainable one.

In the future,

we plan on developing a new unsupervised metric to support cross-domain clas-

sification applications such as this one. An example of a possible direction could

be in utilizing distance metrics based on the principal components derived from

the images (Rokoni et al., 2022) as our next step.

6. Conclusion

This paper presents a framework that utilizes UI2I translation for generalized

boiling crisis detection models. The approach involves training a classification

model on boiling images from a source dataset for detecting boiling crisis. To

classify boiling images from new datasets (target datasets), where they are first
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translated into the source domain using the UI2I translation model and then
classified by the source classification model. Three distinct boiling datasets from
different research groups were used to demonstrate the efficacy of the proposed
framework.

The results show that The proposed framework enables the source classi-
fication model to yield higher performance in comparison to its performance
without the framework. Moreover, the results show that the FID can help se-
lect a UI2I translation model checkpoint with reasonably good performance, but
is inconsistent and unable to select the best attainable model. Future efforts
are needed to be directed toward developing more reliable metrics for selecting
the best attainable UI2I translation model checkpoint.

Compared to existing visualization-based CHF detection studies that are
predominately based on datasets with labels, the presented work demonstrates
the feasibility of classifying boiling images from any new datasets without labels.
This work presents a step forward towards generalizing classification models for
engineering applications and making visualization-based boiling crisis a viable
monitoring and detection tool in industrial applications. Moreover, The pro-
posed framework could be generalized to work with any classification model
(not just CNN) using any UI2I translation model (not just FP-GAN). Finally,
the proposed framework has the capability to be utilized in any other similar
applications where a pre-trained classifier needs to be generalized to accommo-
date unlabeled datasets from foreign domains. A future direction for this work
is to explore further this capability and demonstrate its efficacy in applications

other than CHF detection.
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