THEME ARTICLE: COMPILING FOR ACCELERATORS

Performance Left on the Table: An

Evaluation of Compiler Autovectorization
for RISC-V

Neil Adit ® and Adrian Sampson ® cornell University, Ithaca, NY, 14850, USA

Next-generation length-agnostic vector instruction set architecture (ISA) designs,
the RISC-V vector extension, and ARM’s scalable vector extension enable software
portability across hardware implementations with different vector engines. While
traditional, fixed-length single-instruction-multiple-data ISA instructions, such as
Intel AVX and ARM Neon, enjoy mature compiler support for automatic
vectorization, compiler support is still emerging for these length-agnostic ISAs.
This work studies the compiler shortcomings that constitute the gap in
autovectorization capabilities between length-agnostic and fixed-length
architectures. We examine LLVM'’s support for both the RISC-V vector extension and
traditional vector ISAs. We study a set of synthetic scalar loops to compare the
breadth of support in the two settings, and we examine a real benchmark suite to
compare autovectorized to hand-vectorized RISC-V code. We use both studies to
distill a set of recommendations for engineering improvements and future research
in compilers and programming models for length-agnostic vector programming.

ector instructions let software conveniently
Vexploit data parallelism within commodity
central processing units (CPUs). A new wave of
length-agnostic vector instruction set architectures
(ISAs), led by ARM SVE' and RISC-V's vector extension,?
address a main drawback in traditional single-instruc-
tion-multiple-data (SIMD) instruction sets: portability.
Traditional ISAs use fixed-length vectors, tying them to
a specific hardware configuration and requiring recom-
pilation or re-engineering for each new vector engine
width. Length-agnostic code remains portable across
design points and generations of vector engines.
Compiler autovectorization® is a well-studied way to
alleviate the effort of manual, intrinsic-based program-
ming for a vector ISA. Most research and most compiler
implementations, however, have focused on fixed-length
vector ISAs. This article seeks to understand how auto-
vectorizing compilers need to evolve to fully exploit
length-agnostic ISAs. We perform two empirical evalua-
tions to study compiler autovectorization in the context

0272-1732 © 2022 IEEE

Digital Object Identifier 10.1109/MM.2022.3184867

Date of publication 21 June 2022; date of current version
14 September 2022.

Sehutthorized (engedrEedimited to: Cornell Univensitip Liithrady bb awel taEEmNd pue 2820038t 23:41:44 UTC from IBEEEXpléceo Restrictions apply. 41

of the RISC-V vector (RVV) extension and the LLVM
compiler infrastructure. First, we use a set of synthetic
loops with broad coverage to identify autovectorization
differences between fixed-length and length-agnostic
ISAs. Next, using a set of data-parallel applications with
hand-vectorized implementations, we measure the per-
formance gap between intrinsic-based programming
and compiler autovectorization configurations. To further
understand this gap, we transform the applications’
scalar code to model improvements in the compiler and
programming model and measure their impact on closing
in the gap.

THISARTICLE SEEKS TO UNDERSTAND
HOW AUTOVECTORIZING COMPILERS
NEED TO EVOLVE TO FULLY EXPLOIT
LENGTH-AGNOSTIC ISAs.

We compile a list of proposals in Table 1, based on

the issues we find from both the evaluations and esti-

mate the difficulty of each proposal. We see these
potential improvements as an outline for future work



COMPILING FOR ACCELERATORS

TABLE 1. We propose solutions for compiler autovectorization
issues and rate the difficulty from a compiler's standpoint,
ranging from well-defined engineering fixes (e) to compiler (c)

and programming model (p) research problems.

Proposals Difficulty
Standardize IR representation (C) *xx
Runtime vector-length-based analysis (E) *
A Multilength SLP vectorization (E) *x
Vector reduction in dynamic loop (E) *
Math library vectorization for RISC-V (E)
Infer scalar width from vector code (C) *o
Dynamic vector length scalability (C) e
B Shuffle pattern detection (C)
Algorithmic loop fusion (P) Horkxk
Vectorizing specific loops (C,P)
Tune algorithm to parch (P) hxk

Notes: The proposals are grouped (A,B) based on the two evaluation
benchmarks.

on rethinking autovectorization in the context of RISC-
V and other scalable vector ISAs.

Maleki et al.® evaluated compiler autovectorization in
GCC, Intel C Compiler, and IBM's XLC compilers for 128-
bit fixed-length vector ISAs and proposed an extended
version to the original test suite for vectorizing com-
pilers (TSVC) benchmark.” Subsequently, additional
compiler evaluations®'® have focused on advanced
fixed-vector extensions: AVX2 and AVX-512. We focus
on a more recent compiler toolchain for RVV length
agnostic (VLA) and vector length specific (VLS) designs.

Prior work on evaluating next-generation vector
compilers'™'? has focused on comparing ARM SVE
with ARM Neon and Intel AVX fixed-length ISAs. The
prior work's focus on comparing between compilers
leads them to focus only on the loops that are feasible
to vectorize with current compilers. We evaluate
RISC-V in this article and our goal is not only to bridge
the gap between fixed- and scalable-vector designs
but also to understand the remaining gap with hand-
vectorized code.

Our experiments use a recent source version of LLVM
Clang 15.0.0.”® We evaluate autovectorization for RVV
and AVX-512 extensions. All configurations—scalar,
hand-vector, and autovector—are compiled with -0fast
flag, which enables math library approximations in addi-
tion to -03 optimizations. The scalar and hand-vector
configurations are compiled with -fno-vectorize, -fno-slp-
vectorize to disable any compiler autovectorization. The

autovector configuration for AVX-512 is also compiled
with -fveclib=libmvec which allows LLVM to vectorize
math lib calls using GLIBC vector math library.

Autovectorized versions can have three configura-
tions:RVV-VLS, RVV vector length agnostic (RVV-VLA),
and Intel AVX-512. The LLVM compilation flag for VLA
is -scalable-vectorization=on, VLS is -riscv-v-vector-bits-
min=N, where N determines the fixed vector width and
AVX-512 is -mavx512f -mavx512 cd, which enables fixed vec-
tor length of 512 bits.

We extend the gem5 simulator™ to support RISC-V
vector instructions to evaluate performance. We use
the Atomic CPU model to measure dynamic instruc-
tion-based statistics. We profile dynamic instruction
count for AVX-512 natively on Intel Xeon Gold 6230
using perf and compare the autovectorized instruction
speedup to RISC-V counterparts.

We first study the breadth of LLVM's support for
autovectorization for RISC-V using the TSVC bench-
mark. We compile all 151 loops from the TSVC bench-
mark and measure autovectorization differences
between RVV VLS and VLA configurations. We use
the instruction count speedup as a metric for com-
piler vectorization performance and define it for a
configuration, c as

Dynamic instruction count of scalar config

dup, = — - :
speedub. Dynamic instruction count of config, ¢

RVV-VLS autovectorizes 13 loops in addition to
82 loops vectorized in both configurations. Among the
82 commonly vectorized loops, RVV-VLS and RVV-VLA
have a geometric average of 7x and 6.3x instruction
count speedup, respectively, over the scalar version
for a vector length of 8 but have a few loops with dif-
ferences in instruction selection. In addition, 13 loops
are only autovectorized in RVV-VLS configuration
because they need compile-time fixed vector length
for vectorization passes. We discuss these cases in
the following and propose relevant solutions, also
summarized in Table 1(A).

» Instruction selection differences: VLS configura-
tion can select strided loads (vlse), whereas VLA
relies on the more general indexed loads (vluxei)
for memory access pattern like as follows:

for(inti=0; i <N; i+=2){
a[il=ali-1]1+b[i];
}

42Authorized licensed LBEHimieddo: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplynee rRestriclionsiappRl022



TABLE 2. RiVec benchmark transformations to aid compiler

autovectorization for an objective performance measurement.

Name Suite Transformations

Blackscholes ~ PARSEC Skip math function

Canneal PARSEC Loop fusion

Jacobi-2-D PolyBench Restrict to nonaliasing
memory;
Simplify 2-D access

Pathfinder Rodinia Restrict to nonaliasing
memory;
Simplify memory access
pattern

Particle filter ~ Rodinia -

Streamcluster PARSEC -

Swaptions PARSEC Skip math function; inline
function calls; loop
interchanging

This is due to an underlying compiler representa-
tion issue for length agnostic ISAs. In general, the
offsets of a gather instruction and shuffle masks
cannot be represented as a numerical array since
vector length is unknown for VLA, which hampers
the backend instruction selection procedure.

Standardize IR representation and backend
passes for gathering offsets and shuffle masks to
be length agnostic.

> Loop carried dependence analysis: To vectorize a
loop, dependence width should be greater than
vector length. However, vector length is unknown
for VLA at compile-time but could be speculated.”

Dynamically check hardware supported vector
length to conditionally execute vector code.

» SLP vectorization: Merging a fixed number of
instructions based on vector length.

Emit SLP vectorized code for cost-effective
vector widths and dynamically execute one of
them based on hardware vector length.

> Product reductions: Final reduction across vec-
tor register needs to be unrolled by the factor of
vector length.

Perform vector register reduction in a loop.

» Reverse loop traversal: Vector memory requests
need register reversal but the shuffling cost is
undefined for VLA RISC-V backend.

Define the reversal cost for RISC-V backend.

To complement the synthetic loop study in the previ-
ous section, we also measure real benchmarks. For this
study, we need a benchmark suite with existing hand-

Sehutthorized (iengedr&edimited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IBEEEXpléreo Restrictions apply. 43

COMPILING FOR ACCELERATORS

vectorized implementations for RISC-V. As far as we
are aware, only one such suite exists: RiVec.'® We
extend the benchmark suite to work with the upstream
LLVM repository, which now supports RVV v1.0.

We begin by comparing the performance of the hand-
vectorized and autovectorized versions of the bench-
marks, unmodified. This initial measurement reflects the
performance gap on a current LLVM with no programmer
cooperation whatsoever. To understand the makeup of
this gap, we then conduct a series of experiments to mea-
sure the influence of compiler optimizations, programmer
effort, or changes in the programming model. Each exper-
iment carefully modifies the autovectorized source code
in a specific way to approximate the impact of a potential
change. Table 2 lists the modifications for each applica-
tion. We use these experiments to quantify the potential
impact of an improvement in compilation or program-
ming for vector ISAs.

Unmodified Code

Figure 1(a) compares the dynamic instruction count
speedup over scalar code on corresponding ISAs
(RVV or AVX-512), of the hand-vectorized and com-
piler-generated configurations at a hardware vector
length of 8.

Streamcluster: The compiler can effectively auto-
vectorize the critical function: dist which has a
streaming regular access pattern and a reduction
operation. Figure 1(a) shows that the compiler auto-
vectorized configurations have an even lower ins-
truction overhead (better speedup!) than the hand-
vector counterpart. The hand-vectorized configura-
tion uses vector control instructions within the
loop for dynamic vector length scalability (discu-
ssed in detail later), which increases the overall
instruction overhead.

Blackscholes: It is embarrassingly parallel but the
RISC-V autovectorized versions (RVV-VLA and RVV-
VLS) have no speedup over the scalar version. The
compiler is unable to vectorize math function calls
rendering a scalar code for the RVV-VLA configura-
tion. In the RVV-VLS configuration, the compiler
serially unrolls math function calls to process them
on the scalar machine before switching back to
vector computation resulting in expensive register
spilling and high instruction overhead. However, the
compiler can use the GLIBC vector math library for
AVX-512, which results in a 9.3x speedup over the
scalar version.

Jacobi-2-D, Pathfinder: All the autovectorized con-
figurations vectorize the applications to get compa-
rable speedup to the hand-vectorized version.
However, the autovector configurations fail to



COMPILING FOR ACCELERATORS

Scalar
RIiVEC
Auto-RVV-VLS
Auto-RVV-VLA
Auto-AVX-512

-
© o
L
9.3
7.3
2

o

59
5.7
5.8

4.3
4.4

IS
3.8
34

Dynamic instruction count speedup
5.2

(a)

!

=
=5m

—
N]
L

ScalarT
RIVEC-T
Auto-RVV-VLS-T
Auto-RVV-VLA-T
Auto-AVX-512-T

,_.
[=)] (== o
N L
6.8
5
£}
6
6.
6.
.6
8.4
4.3
5.8
52
9

Dynamic instruction count speedup

B

.7

.8

6.
3.
.4
3
5

1.0
0
0
1
i
0

1.0

(b)

FIGURE 1. Dynamic instruction count speedup over the scalar version using a vector length of 8. Transformations for the auto-

vector configurations are based on Table 2, whereas the serial and RiVec versions are transformed to skip math functions only.

(a) Unmodified benchmarks. (b) Transformed benchmarks (labeled as —77).

identify data reuse patterns leading to redundant
memory accesses.

Particlefilter, Swaptions: For these benchmarks, the
compiler is unable to autovectorize critical sections
resulting in minimal speedup over scalar code.

Table 1(B) summarizes the areas of improvement
needed to improve the performance of the compiler
autovectorized code when compared to the hand-
vector version. We discuss these gaps in detail using
the context of the evaluation results.

Vector Math Libraries

For some benchmarks, we find that a significant
impediment to compiler autovectorization in RISC-V is
the use of math function (1ibm) calls in otherwise vec-
torizable code. An inner loop may be easily paralleliz-
able but contain a call to a scalar log1e, for example,
that prevents LLVM from vectorizing the entire loop.
Both Blackscholes and Swaptions have such function
calls in the critical sections of the code.

To measure the performance impact of this limita-
tion, we construct special versions of the two affected
benchmarks that “factor out” the influence of these
math functions. In both the hand-vectorized and auto-
vectorized versions, we replace the problematic math
functions with no-ops. The resulting comparison approxi-
mates the remaining performance gap if the compiler
could perfectly autovectorize code with math functions.

Figure 1(a) shows the results all transformed
benchmarks: in Blackscholes, factoring out math func-
tions closes the gap entirely, but autovectorization for

Swaptions is still limited by other factors (discussed
ahead). The autovectorized configurations after trans-
forming Blackscholes, have over 11x speedup com-
pared to the 6.8x speedup for the hand-vector
counterpart. This margin is due to better fused-
instruction selection and loop invariant optimization
by the compiler. However, since math lib calls take
a major fraction of the code execution, the hand-
vectorized version might have glossed over these
optimizations.

These advantages show that the compiler does a
good job at instruction selection and optimizations, for
simple compute patterns. Moreover, autovectorization
can take advantage of the boring, fiddly optimizations
and let programmers focus on the bigger picture.

LLVM should support autovectorizing code with
libm calls by replacing them with calls to a vectorized
math library for RISC-V.

Vector-Scalar Width Mismatch
The RISC-V vector extension (RVV) and AVX ISA allows a
flexible element width in vector registers, in contrast
to the fixed-width scalar registers defined by the base
RISC-V ISA. This flexibility can cause problems when
code has interactions between scalar and vector values.
If an application uses 32-bit values everywhere but is
compiled for RV64, then the scalar values will be pro-
moted to 64-bit registers (using the i64 type in LLVM).
The values in vector registers, however, remain 32-bit
values (e.g., using the <8 x 132> vector type in LLVM).
The result is that the compiler generates unneces-
sary instructions to convert between different

444 uthorized licensed LBSEHinWieddo: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE XplepeerRésiridiotstapph022



element widths and might use extra vector registers
to accommodate widened elements. To avoid this
pitfall, we fix the primary data type for all benchmarks
to use 64-bit values and compile for the RV64 base
ISA. However, to make autovectorization more acces-
sible, LLVM and other compilers should evolve to ele-
gantly handle element size mismatches.

LLVM should infer scalar width from vectorized
data types.

Dynamic Vector Length Scalability

When programming with RVV intrinsics, programmers
can stripmine loops and dynamically adjust the num-
ber of elements handled per iteration:

//dynamic vector length

int hwl = vsetvl(N);

for (int1=0; i <N; i +=hwl){
hwl = vsetvl(N-i);

This adjustment is especially useful in cases where
the loop trip count is not a multiple of the maximum
hardware vector length. However, the LLVM autovec-
torization only executes vector code in the maximum
hardware vector-width, shown using pseudocode:

//maximum hardware vector length
int max_hwl = read_csr_vlen();
for (int 1=0; 1 <N; i +=max_hwl){
if ((N-i)<max_hwl) break; //execute left-
over as scalar code

This can lead to poor scalability, usually with
larger vector units. Figure 2 shows poor scalability
in Jacobi-2-D for the compiler generated autovec-
torized versions since the loop trip count is not
perfectly divisible by vector length (due to a convo-
lution-style computation). We notice no apparent
instruction reduction for both VLA and VLS
autovectorized versions on going from vector
length 16-32 since the scalar overhead of loop
“tails” offsets the instruction savings from the
increased vector length.

LLVM allows predication-based vectorizing of the
loop tail using the flag: -prefer-predicate-over-epilogue=-
predicate-else-scalar-epilogue but this is orthogonal to
dynamic vector length control in RVV and can cause
unnecessary register spilling in larger loops with con-
ditional branches.

Sehutthortzed (iengedr&edimited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IBEEEXplézeo Restrictions apply. 45

COMPILING FOR ACCELERATORS

jacobi-2d_instr_scaling

= —— Scalar

3 —— RIVEC

; —— Auto-vector-VLA-T

.LB 109 —— Auto-vector-VLS-T

&)

2

=

)

£

=

£

©

c

>

o

108 4

T T T T
8 16 32 64

Vector length

FIGURE 2. Dynamic instruction scaling across different hard-
ware vector length in Jacobi-2-D plotted on logscale. The
overhead of running scalar instructions (due to nonscalabil-
ity) increases at higher vector length for compiler generated

code.

LLVM should generate loops that embrace the
scalable vector style: instead of assuming a fixed vec-
tor length and using scalar instructions for loop “tails,”
it should generate code that uses vsetvl to dynamically
adjust the length on every iteration.

Shuffle Pattern Detection

Both Pathfinder and Jacobi-2-D have overlapping
memory access patterns, which is illustrated using a
simplified example as follows:

for (inti=1; 1 <N; i++){
blil=ali-1]1+ali] +alit1];
}

The hand-vectorized code uses RVV shuffle
instructions: vslidelup for a[i-1] and vslideldown for a[i+1]
to shift the values in the vector register of a[i], avoid-
ing redundant memory accesses. Such an optimiza-
tion entails two components for the compiler:

» analyzing overlapping memory access patterns
to remove redundant loads;

» representing shuffle patterns in the IR and
selecting optimal instructions in the backend.

In general, selecting special-purpose vector shuffle
instructions is hard for compilers.” LLVM can analyze
simple recurrence patterns in the absence of aliasing but
fails in more complicated cases like conditional branches
(in Pathfinder) and 2-D array accesses (in Jacobi-2-D). We



COMPILING FOR ACCELERATORS

3.0 29 29 RIVEC

|

B Auto-RVV-VLA
mmm Auto-RVV-VLS
|
|

Auto-RVV-VLA-T
Auto-RVV-VLS-T

2.59

2.0

1.54

1.04

0.5

Relative dynamic vector memory instruction count

0.0-

jacobi-2d

pathfinder

FIGURE 3. Vector memory requests relative to hand-vector-
ized baseline. The transformation allows compiler to reduce
redundant loads in both the autovectorized configurations.

apply transformations from Table 2 to simplify these
applications to the example discussed previously and
assess LLVM performance. The manual transformations
allows the compiler to recognize one (out of the two)
first-order recurrence pattern between a[i]and a[i-11.

LLVM uses a dedicated IR intrisic (11vm.experimental.
vector.splice) for representing this pattern for VLA
configuration, unlike the more standard shufflevector
instruction used for VLS. These instructions are low-
ered to RISC-V shuffle instructions: vslidedown and vsli-
deup, in the backend.

Figure 3 shows the decrease in memory requests in
the transformed autovector configurations for both
benchmarks. Since the compiler is partially successful
in reducing redundant memory loads, the transformed
autovector configurations still produces 2.5x and 1.3x
higher memory requests compared to the hand-vector-
ized version for Jacobi-2-D and Pathfinder, respectively.

In some cases, the shuffling patterns across vector
elements form the core of critical loops. Particlefilter
is one such case, where the computed pattern is
expressed using a sophisticated instruction vfirst,
designed to select the first nonzero vector element.
Hence, the compiler fails to vectorize the critical sec-
tions of the benchmark leading to poor performance.

LLVM needs to improve shuffle pattern analysis for
generic and backend-specific patterns and use gener-
alizable mask representation for VLA configuration.

Algorithm-Driven Loop Fusion

A lot of intrinsic-based vector programming comes
down to customizing algorithms to achieve better per-
formance for a given configuration.

The hand-vector version of Canneal uses loop fusion,
among other techniques, to improve vectorization. A sim-
plified code block from Canneal is shown as follows:

for (int 1=0; i < fanin; ++i){
a=a+fanin_val[il;

}

for (int i =0; i < fanout; ++i){
a=a+ fanout_val[il;

}

Since the loops are restricted by graph fan-in and
fan-out degrees, even at large data simulations, the
loop bounds can be smaller than the hardware vector
length. In such cases, fusing the loops can provide effi-
cient vectorization opportunities to scale to larger
hardware vector lengths. However, loop fusion is not
trivial and requires setting up combined arrays to facil-
itate it. We perform this transformation, inspired by
the hand-vectorized version, for the compiler autovec-
torization configurations:

for (int i =0; i< fanin+fanout; ++i){
a=a+tall_val[i]; // has both fanin, fanout nodes

3

This algorithmic transformation allows autovector-
ized code to run vector instructions at the maxi-
mum supported hardware vector length and close
the gap with hand-vectorized version, as shown in
Figure 1(b).

The future programming model for vectorization
should be able to guide programmers toward transfor-
mations, such as loop fusion.

Vectorizing Specific Loops
In general, LLVM's autovectorization focuses on
vectorizing the innermost loop in each loop nest. In
situations where interchanging loops are not trivial,
the compiler might fail to see vectorization oppor-
tunities or vectorize irrelevant loops. This effect
arises at various places in Swaptions.

One such instance, after interchanging loops and
simplifying 2-D accesses, looks like this

for (int1=0; 1 <N; +1i){
int sum=0;
for(int j=0; j <M; ++j){
sum +=a[j1[i];
}
b[i]=c[i] + sum;

3

46Authorized licensed LEsEHiMieddo: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE XplypeerResiricionstappR022



In the benchmark: M = 3, so just vectorizing the
inner loop is not very useful. In addition, even if the
inner loop were not vectorizable, the compiler would
give up and not look at broader vectorization opportu-
nities that might be visible to the programmer. The
hand-vectorized version can vectorize the outer loop,
which is much more scalable due to the larger loop
trip count (known to the programmer) and results in
simpler unit-strided vector memory accesses. This
strategy allows the hand-vector version to scale well
with increasing hardware vector length. The autovec-
torized versions fall short due to focusing on inner-
most loops by default.

LLVM autovectorizer should support outer-loop
vectorization. However, identifying scalable loops for
vectorizing requires simultaneous loop interchanging
optimizations and cost analysis, which can be hard for
compilers and should be offloaded to programmers.

Adapt Algorithms to the
Microarchitecture
In the previous code example, the variable N is used as a
blocking parameter for better caching in the serial ver-
sion of the code. The hand-vector code changes the
algorithm to set the variable to the hardware vector
length using vector intrinsics. This unique feature of vec-
tor-length agnostic ISAs like RVV allows the algorithm to
automatically adapt to different microarchitectures.

While high-level algorithmic changes are out of
scope for a traditional C compiler, they represent an
opportunity for higher-level languages and DSLs that
compile to vector ISAs.™®

Future work should explore programming models
that make this kind of algorithmic parameterization
available to programmers without requiring manual
tuning of hardware intrinsics.

NEXT-GENERATION VECTOR ISAs
PORTEND A NEW ERA FOR
MAINSTREAM PARALLEL
PROGRAMMING MODELS. THEIR
POPULAR UPTAKE, HOWEVER,
REQUIRES MOVING BEYOND MANUAL
INTRINSIC-BASED PROGRAMMING.

Next-generation vector ISAs portend a new era for
mainstream parallel programming models. Their popular

Sehutthortzed (iengedrZedimited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IBEEEXplézeo Restrictions apply. 47

COMPILING FOR ACCELERATORS

uptake, however, requires moving beyond manual intrin-
sic-based programming. The goal should be to let pro-
grammers express high-level parallelism strategies
while letting the compiler focus on what compilers do
well: selecting instructions, scheduling computations,
and removing redundancy. To this end, we first show
areas of improvement that allow emerging ISAs to lever-
age the autovectorization abilities of the more mature
fixed-vector counterparts. Subsequently, we delve into
the newer compiler and programming model areas,
which can aid autovectorization techniques to match
hand-vectorized code.

Our results use a gem5 simulator implementing RISC-
V vector extension that was originally written by
Khalid Al-Hawaj and Tuan Ta. In addition, we thank
Christopher Batten, Khalid Al-Hawaj, and Tuan Ta for
the valuable discussions throughout the project. We
also thank the entire CAPRA research group at Cornell
for their feedback and support.

This work was supported in part by the Intel and
NSF joint research center for Computer Assisted Pro-
gramming for Heterogeneous Architectures (CAPA), in
part by the NSF under Awards 1845952 and 1723715,
and in part by Air Force Research Laboratory (AFRL)
and Defense Advanced Research Projects Agency
(DARPA) under Grant Agreement FA8650-18-2-7863.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Proj-
ects Agency (DARPA) or the U.S. Government.

1. N.Stephenset al., “The arm scalable vector extension,”
IEEE Micro, vol. 37, no. 2, pp. 26-39, Mar./Apr. 2017.

2. RISC-V2021, "Working draft of the proposed RISC-V V
vector extension,” 2021. [Online]. Available: https://
github.com/riscv/riscv-v-spec

3. S.Larsen and S. Amarasinghe, “Exploiting superword
level parallelism with multimedia instruction sets,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2000, pp. 145-156.

4. D.Nuzman, . Rosen, and A. Zaks, "Auto-vectorization
of interleaved data for SIMD," in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2006,
pp. 132-143.



COMPILING FOR ACCELERATORS

1.

12.

13.

D. Nuzman and A. Zaks, "Outer-loop vectorization:
Revisited for short simd architectures,” in Proc. Int.
Conf. Parallel Archit. Compilation Techn., 2008, pp. 2-11.
S. Maleki et al., “An evaluation of vectorizing
compilers,” in Proc. Int. Conf. Parallel Archit.
Compilation Techn., 2011, pp. 372-382.

D. Callahan, J. J. Dongarra, and D. Levine, "Vectorizing
compilers: A test suite and results,” in Proc. 1988 ACM/
IEEE Conf. Supercomputing, vol. |, 1988, pp. 98-105.

M. Rajan, D. W. Doerfler, M. Tupek, and S. Hammond, “An
investigation of compiler vectorization on current and
next-generation Intel processors using benchmarks and
Sandia's Sierra applications,” in Cray User Group, 2015.
0. V. Moldovanova and M. G. Kurnosov, “Auto-
vectorization of loops on Intel 64 and Intel Xeon Phi:
Analysis and evaluation,” in Proc. Int. Conf. Parallel
Comput. Technol., 2017, pp. 143-150.

. S.Siso, W. Armour, and J. Thiyagalingam, “Evaluating

auto-vectorizing compilers through objective
withdrawal of useful information,” ACM Trans. Archit.
Code Optim., vol. 16, no. 4, pp. 1-23, 2019.

A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A
performance analysis of vector length agnostic code,”
in Proc. Int. Conf. High Perform. Comput. Simul., 2019,
pp. 159-164.

A. Poenaru and S. MclIntosh-Smith, “Evaluating the
effectiveness of a vector-length-agnostic instruction
set,” in Proc. Eur. Conf. Parallel Process., 2020,

pp. 98-114.

LLVM, “The LLVM compiler infrastructure,” Apr. 2022.
[Onlinel. Available: https://github.com/llvm/llvm-
project/commit/e70533ae6¢57756111689abf7826a
3c632255866

15.

16.

17.

18.

. N. Binkert et al., “The gem5 simulator,” SIGARCH

Comput. Archit. News, vol. 39, no. 2, pp. 1-7, 2011.

M. H. Sujon, R. C. Whaley, and Q. Yi, “Vectorization past
dependent branches through speculation,” in Proc.
22nd Int. Conf. Parallel Archit. Compilation Techn.,
2013, pp. 353-362.

C. Ramirez, C. A. Hernandez, O. Palomar, O. Unsal, M.
A. Ramirez, and A. Cristal, “A RISC-V simulator and
benchmark suite for designing and evaluating vector
architectures,” ACM Trans. Archit. Code Optim., vol. 17,
no. 4, pp. 1-30, 2020.

A.VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and

A. Sampson, “Vectorization for digital signal
processors via equality saturation,” in Proc. 26th ACM
Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
2021, pp. 874-886.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F.
Durand, and S. Amarasinghe, “Halide: A language and
compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” ACM
Sigplan Notices, vol. 48, no. 6, pp. 519-530, 2013.

NEIL ADIT is a Ph.D. student in the Department of Electrical
and Computer Engineering, Cornell University, Ithaca, NY,

14850, USA. His research interests include compilers and vec-

tor architectures. Contact him at na469@cornell.edu.

ADRIAN SAMPSON is on the faculty of the Department of
Computer Science at Cornell University, Ithaca, NY, 14850,

USA, where he designs and programs computers. Contact

him at asampson@cs.cornell.edu.

48Authorized licensed LBEHimvieddo: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from |IEEE Xplynee rRestriclionskappRl022



