
THEME ARTICLE: COMPILING FOR ACCELERATORS

Performance Left on the Table: An
Evaluation of Compiler Autovectorization
for RISC-V
Neil Adit and Adrian Sampson , Cornell University, Ithaca, NY, 14850, USA

Next-generation length-agnostic vector instruction set architecture (ISA) designs,

the RISC-V vector extension, and ARM’s scalable vector extension enable software

portability across hardware implementations with different vector engines. While

traditional, fixed-length single-instruction–multiple-data ISA instructions, such as

Intel AVX and ARM Neon, enjoy mature compiler support for automatic

vectorization, compiler support is still emerging for these length-agnostic ISAs.

This work studies the compiler shortcomings that constitute the gap in

autovectorization capabilities between length-agnostic and fixed-length

architectures. We examine LLVM’s support for both the RISC-V vector extension and

traditional vector ISAs. We study a set of synthetic scalar loops to compare the

breadth of support in the two settings, and we examine a real benchmark suite to

compare autovectorized to hand-vectorized RISC-V code. We use both studies to

distill a set of recommendations for engineering improvements and future research

in compilers and programming models for length-agnostic vector programming.

V
ector instructions let software conveniently

exploit data parallelism within commodity

central processing units (CPUs). A new wave of

length-agnostic vector instruction set architectures

(ISAs), led by ARM SVE1 and RISC-V’s vector extension,2

address a main drawback in traditional single-instruc-

tion–multiple-data (SIMD) instruction sets: portability.

Traditional ISAs use fixed-length vectors, tying them to

a specific hardware configuration and requiring recom-

pilation or re-engineering for each new vector engine

width. Length-agnostic code remains portable across

design points and generations of vector engines.

Compiler autovectorization3–5 is a well-studiedway to

alleviate the effort of manual, intrinsic-based program-

ming for a vector ISA. Most research and most compiler

implementations, however, have focused on fixed-length

vector ISAs. This article seeks to understand how auto-

vectorizing compilers need to evolve to fully exploit

length-agnostic ISAs. We perform two empirical evalua-

tions to study compiler autovectorization in the context

of the RISC-V vector (RVV) extension and the LLVM

compiler infrastructure. First, we use a set of synthetic

loops with broad coverage to identify autovectorization

differences between fixed-length and length-agnostic

ISAs. Next, using a set of data-parallel applications with

hand-vectorized implementations, we measure the per-

formance gap between intrinsic-based programming

and compiler autovectorization configurations. To further

understand this gap, we transform the applications’

scalar code to model improvements in the compiler and

programmingmodel andmeasure their impact on closing

in the gap.

THIS ARTICLE SEEKS TOUNDERSTAND

HOWAUTOVECTORIZINGCOMPILERS

NEED TOEVOLVE TOFULLY EXPLOIT

LENGTH-AGNOSTIC ISAs.

We compile a list of proposals in Table 1, based on

the issues we find from both the evaluations and esti-

mate the difficulty of each proposal. We see these

potential improvements as an outline for future work

0272-1732 � 2022 IEEE

Digital Object Identifier 10.1109/MM.2022.3184867

Date of publication 21 June 2022; date of current version

14 September 2022.

September/October 2022 Published by the IEEE Computer Society IEEE Micro 41Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

on rethinking autovectorization in the context of RISC-

V and other scalable vector ISAs.

RELATEDWORK
Maleki et al.6 evaluated compiler autovectorization in

GCC, Intel C Compiler, and IBM’s XLC compilers for 128-

bit fixed-length vector ISAs and proposed an extended

version to the original test suite for vectorizing com-

pilers (TSVC) benchmark.7 Subsequently, additional

compiler evaluations8–10 have focused on advanced

fixed-vector extensions: AVX2 and AVX-512. We focus

on a more recent compiler toolchain for RVV length

agnostic (VLA) and vector length specific (VLS) designs.

Prior work on evaluating next-generation vector

compilers11,12 has focused on comparing ARM SVE

with ARM Neon and Intel AVX fixed-length ISAs. The

prior work’s focus on comparing between compilers

leads them to focus only on the loops that are feasible

to vectorize with current compilers. We evaluate

RISC-V in this article and our goal is not only to bridge

the gap between fixed- and scalable-vector designs

but also to understand the remaining gap with hand-

vectorized code.

EXPERIMENTAL SETUP
Our experiments use a recent source version of LLVM

Clang 15.0.0.13 We evaluate autovectorization for RVV

and AVX-512 extensions. All configurations—scalar,

hand-vector, and autovector—are compiled with -Ofast

flag, which enables math library approximations in addi-

tion to -O3 optimizations. The scalar and hand-vector

configurations are compiled with -fno-vectorize, -fno-slp-

vectorize to disable any compiler autovectorization. The

autovector configuration for AVX-512 is also compiled

with -fveclib=libmvec which allows LLVM to vectorize

math lib calls using GLIBC vectormath library.

Autovectorized versions can have three configura-

tions:RVV-VLS, RVV vector length agnostic (RVV-VLA),

and Intel AVX-512. The LLVM compilation flag for VLA

is -scalable-vectorization=on, VLS is -riscv-v-vector-bits-

min=N, where N determines the fixed vector width and

AVX-512 is -mavx512f -mavx512 cd, which enables fixed vec-

tor length of 512 bits.

We extend the gem5 simulator14 to support RISC-V

vector instructions to evaluate performance. We use

the Atomic CPU model to measure dynamic instruc-

tion-based statistics. We profile dynamic instruction

count for AVX-512 natively on Intel Xeon Gold 6230

using perf and compare the autovectorized instruction

speedup to RISC-V counterparts.

SYNTHETIC LOOP STUDY
We first study the breadth of LLVM’s support for

autovectorization for RISC-V using the TSVC bench-

mark. We compile all 151 loops from the TSVC bench-

mark and measure autovectorization differences

between RVV VLS and VLA configurations. We use

the instruction count speedup as a metric for com-

piler vectorization performance and define it for a

configuration, c as

speedupc ¼

Dynamic instruction count of scalar config

Dynamic instruction count of config, c

RVV-VLS autovectorizes 13 loops in addition to

82 loops vectorized in both configurations. Among the

82 commonly vectorized loops, RVV-VLS and RVV-VLA

have a geometric average of 7� and 6.3� instruction

count speedup, respectively, over the scalar version

for a vector length of 8 but have a few loops with dif-

ferences in instruction selection. In addition, 13 loops

are only autovectorized in RVV-VLS configuration

because they need compile-time fixed vector length

for vectorization passes. We discuss these cases in

the following and propose relevant solutions, also

summarized in Table 1(A).

› Instruction selection differences: VLS configura-

tion can select strided loads (vlse), whereas VLA

relies on the more general indexed loads (vluxei)

for memory access pattern like as follows:

for(int i = 0; i < N; i+=2){

a[i] = a[i - 1] + b[i];

}

TABLE 1.Wepropose solutions for compiler autovectorization

issues and rate the difficulty from a compiler’s standpoint,

ranging from well-defined engineering fixes (e) to compiler (c)

and programmingmodel (p) research problems.

Proposals Difficulty

A

Standardize IR representation (C) ? ? ?

Runtime vector-length-based analysis (E) ?

Multilength SLP vectorization (E) ? ?

Vector reduction in dynamic loop (E) ?

B

Math library vectorization for RISC-V (E) ?

Infer scalar width from vector code (C) ? ?

Dynamic vector length scalability (C) ? ? ?

Shuffle pattern detection (C) ? ? ?

Algorithmic loop fusion (P) ? ? ? ? ?

Vectorizing specific loops (C,P) ? ? ? ?

Tune algorithm to march (P) ? ? ? ? ?

Notes: The proposals are grouped (A,B) based on the two evaluation

benchmarks.

42 IEEE Micro September/October 2022

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

This is due to an underlying compiler representa-

tion issue for length agnostic ISAs. In general, the

offsets of a gather instruction and shuffle masks

cannot be represented as a numerical array since

vector length is unknown for VLA, which hampers

the backend instruction selection procedure.

Standardize IR representation and backend

passes for gathering offsets and shuffle masks to

be length agnostic.

› Loop carried dependence analysis: To vectorize a

loop, dependence width should be greater than

vector length. However, vector length is unknown

for VLA at compile-time but could be speculated.15

Dynamically check hardware supported vector

length to conditionally execute vector code.

› SLP vectorization: Merging a fixed number of

instructions based on vector length.

Emit SLP vectorized code for cost-effective

vector widths and dynamically execute one of

them based on hardware vector length.

› Product reductions: Final reduction across vec-

tor register needs to be unrolled by the factor of

vector length.

Perform vector register reduction in a loop.

› Reverse loop traversal: Vector memory requests

need register reversal but the shuffling cost is

undefined for VLA RISC-V backend.

Define the reversal cost for RISC-V backend.

APPLICATION BENCHMARK
STUDY

To complement the synthetic loop study in the previ-

ous section, we alsomeasure real benchmarks. For this

study, we need a benchmark suite with existing hand-

vectorized implementations for RISC-V. As far as we

are aware, only one such suite exists: RiVec.16 We

extend the benchmark suite to work with the upstream

LLVM repository, which now supports RVV v1.0.

We begin by comparing the performance of the hand-

vectorized and autovectorized versions of the bench-

marks, unmodified. This initial measurement reflects the

performance gap on a current LLVMwith no programmer

cooperation whatsoever. To understand the makeup of

this gap,we then conduct a series of experiments tomea-

sure the influence of compiler optimizations, programmer

effort, or changes in the programmingmodel. Each exper-

iment carefully modifies the autovectorized source code

in a specificway to approximate the impact of a potential

change. Table 2 lists the modifications for each applica-

tion. We use these experiments to quantify the potential

impact of an improvement in compilation or program-

ming for vector ISAs.

Unmodified Code
Figure 1(a) compares the dynamic instruction count

speedup over scalar code on corresponding ISAs

(RVV or AVX-512), of the hand-vectorized and com-

piler-generated configurations at a hardware vector

length of 8.

Streamcluster: The compiler can effectively auto-

vectorize the critical function: dist which has a

streaming regular access pattern and a reduction

operation. Figure 1(a) shows that the compiler auto-

vectorized configurations have an even lower ins-

truction overhead (better speedup!) than the hand-

vector counterpart. The hand-vectorized configura-

tion uses vector control instructions within the

loop for dynamic vector length scalability (discu-

ssed in detail later), which increases the overall

instruction overhead.

Blackscholes: It is embarrassingly parallel but the

RISC-V autovectorized versions (RVV-VLA and RVV-

VLS) have no speedup over the scalar version. The

compiler is unable to vectorize math function calls

rendering a scalar code for the RVV-VLA configura-

tion. In the RVV-VLS configuration, the compiler

serially unrolls math function calls to process them

on the scalar machine before switching back to

vector computation resulting in expensive register

spilling and high instruction overhead. However, the

compiler can use the GLIBC vector math library for

AVX-512, which results in a 9.3� speedup over the

scalar version.

Jacobi-2-D, Pathfinder: All the autovectorized con-

figurations vectorize the applications to get compa-

rable speedup to the hand-vectorized version.

However, the autovector configurations fail to

TABLE 2. RiVec benchmark transformations to aid compiler

autovectorization for an objective performancemeasurement.

Name Suite Transformations

Blackscholes PARSEC Skip math function

Canneal PARSEC Loop fusion

Jacobi-2-D PolyBench Restrict to nonaliasing

memory;

Simplify 2-D access

Pathfinder Rodinia Restrict to nonaliasing

memory;

Simplify memory access

pattern

Particle filter Rodinia –

Streamcluster PARSEC –

Swaptions PARSEC Skip math function; inline

function calls; loop

interchanging

September/October 2022 IEEE Micro 43

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

identify data reuse patterns leading to redundant

memory accesses.

Particlefilter, Swaptions: For these benchmarks, the

compiler is unable to autovectorize critical sections

resulting in minimal speedup over scalar code.

Table 1(B) summarizes the areas of improvement

needed to improve the performance of the compiler

autovectorized code when compared to the hand-

vector version. We discuss these gaps in detail using

the context of the evaluation results.

Vector Math Libraries
For some benchmarks, we find that a significant

impediment to compiler autovectorization in RISC-V is

the use of math function (libm) calls in otherwise vec-

torizable code. An inner loop may be easily paralleliz-

able but contain a call to a scalar log10, for example,

that prevents LLVM from vectorizing the entire loop.

Both Blackscholes and Swaptions have such function

calls in the critical sections of the code.

To measure the performance impact of this limita-

tion, we construct special versions of the two affected

benchmarks that “factor out” the influence of these

math functions. In both the hand-vectorized and auto-

vectorized versions, we replace the problematic math

functionswith no-ops. The resulting comparison approxi-

mates the remaining performance gap if the compiler

could perfectly autovectorize codewithmath functions.

Figure 1(a) shows the results all transformed

benchmarks: in Blackscholes, factoring out math func-

tions closes the gap entirely, but autovectorization for

Swaptions is still limited by other factors (discussed

ahead). The autovectorized configurations after trans-

forming Blackscholes, have over 11� speedup com-

pared to the 6.8� speedup for the hand-vector

counterpart. This margin is due to better fused-

instruction selection and loop invariant optimization

by the compiler. However, since math lib calls take

a major fraction of the code execution, the hand-

vectorized version might have glossed over these

optimizations.

These advantages show that the compiler does a

good job at instruction selection and optimizations, for

simple compute patterns. Moreover, autovectorization

can take advantage of the boring, fiddly optimizations

and let programmers focus on the bigger picture.

LLVM should support autovectorizing code with

libm calls by replacing them with calls to a vectorized

math library for RISC-V.

Vector-ScalarWidth Mismatch
The RISC-V vector extension (RVV) and AVX ISA allows a

flexible element width in vector registers, in contrast

to the fixed-width scalar registers defined by the base

RISC-V ISA. This flexibility can cause problems when

code has interactions between scalar and vector values.

If an application uses 32-bit values everywhere but is

compiled for RV64, then the scalar values will be pro-

moted to 64-bit registers (using the i64 type in LLVM).

The values in vector registers, however, remain 32-bit

values (e.g., using the<8 x i32> vector type in LLVM).

The result is that the compiler generates unneces-

sary instructions to convert between different

FIGURE 1. Dynamic instruction count speedup over the scalar version using a vector length of 8. Transformations for the auto-

vector configurations are based on Table 2, whereas the serial and RiVec versions are transformed to skip math functions only.

(a) Unmodified benchmarks. (b) Transformed benchmarks (labeled as �T).

44 IEEE Micro September/October 2022

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

element widths and might use extra vector registers

to accommodate widened elements. To avoid this

pitfall, we fix the primary data type for all benchmarks

to use 64-bit values and compile for the RV64 base

ISA. However, to make autovectorization more acces-

sible, LLVM and other compilers should evolve to ele-

gantly handle element size mismatches.

LLVM should infer scalar width from vectorized

data types.

Dynamic Vector Length Scalability
When programming with RVV intrinsics, programmers

can stripmine loops and dynamically adjust the num-

ber of elements handled per iteration:

//dynamic vector length

int hwl = vsetvl(N);

for (int i = 0; i < N; i += hwl){

hwl = vsetvl(N-i);

...

}

This adjustment is especially useful in cases where

the loop trip count is not a multiple of the maximum

hardware vector length. However, the LLVM autovec-

torization only executes vector code in the maximum

hardware vector-width, shown using pseudocode:

//maximum hardware vector length

int max_hwl = read_csr_vlen();

for (int i = 0; i < N; i += max_hwl){

if ((N-i)<max_hwl) break; //execute left-

over as scalar code

...

}

This can lead to poor scalability, usually with

larger vector units. Figure 2 shows poor scalability

in Jacobi-2-D for the compiler generated autovec-

torized versions since the loop trip count is not

perfectly divisible by vector length (due to a convo-

lution-style computation). We notice no apparent

instruction reduction for both VLA and VLS

autovectorized versions on going from vector

length 16–32 since the scalar overhead of loop

“tails” offsets the instruction savings from the

increased vector length.

LLVM allows predication-based vectorizing of the

loop tail using the flag: -prefer-predicate-over-epilogue=-

predicate-else-scalar-epilogue but this is orthogonal to

dynamic vector length control in RVV and can cause

unnecessary register spilling in larger loops with con-

ditional branches.

LLVM should generate loops that embrace the

scalable vector style: instead of assuming a fixed vec-

tor length and using scalar instructions for loop “tails,”

it should generate code that uses vsetvl to dynamically

adjust the length on every iteration.

Shuffle Pattern Detection
Both Pathfinder and Jacobi-2-D have overlapping

memory access patterns, which is illustrated using a

simplified example as follows:

for (int i = 1; i < N; i++) {

b[i] = a[i-1] + a[i] + a[i+1];

}

The hand-vectorized code uses RVV shuffle

instructions: vslide1up for a[i-1] and vslide1down for a[i+1]

to shift the values in the vector register of a[i], avoid-

ing redundant memory accesses. Such an optimiza-

tion entails two components for the compiler:

› analyzing overlapping memory access patterns

to remove redundant loads;

› representing shuffle patterns in the IR and

selecting optimal instructions in the backend.

In general, selecting special-purpose vector shuffle

instructions is hard for compilers.17 LLVM can analyze

simple recurrence patterns in the absence of aliasing but

fails in more complicated cases like conditional branches

(inPathfinder) and 2-D array accesses (in Jacobi-2-D). We

FIGURE 2. Dynamic instruction scaling across different hard-

ware vector length in Jacobi-2-D plotted on logscale. The

overhead of running scalar instructions (due to nonscalabil-

ity) increases at higher vector length for compiler generated

code.

September/October 2022 IEEE Micro 45

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

apply transformations from Table 2 to simplify these

applications to the example discussed previously and

assess LLVM performance. The manual transformations

allows the compiler to recognize one (out of the two)

first-order recurrence pattern between a[i] and a[i-1].

LLVM uses a dedicated IR intrisic (llvm.experimental.

vector.splice) for representing this pattern for VLA

configuration, unlike the more standard shufflevector

instruction used for VLS. These instructions are low-

ered to RISC-V shuffle instructions: vslidedown and vsli-

deup, in the backend.

Figure 3 shows the decrease in memory requests in

the transformed autovector configurations for both

benchmarks. Since the compiler is partially successful

in reducing redundant memory loads, the transformed

autovector configurations still produces 2.5� and 1.3�

higher memory requests compared to the hand-vector-

ized version for Jacobi-2-D andPathfinder, respectively.

In some cases, the shuffling patterns across vector

elements form the core of critical loops. Particlefilter

is one such case, where the computed pattern is

expressed using a sophisticated instruction vfirst,

designed to select the first nonzero vector element.

Hence, the compiler fails to vectorize the critical sec-

tions of the benchmark leading to poor performance.

LLVM needs to improve shuffle pattern analysis for

generic and backend-specific patterns and use gener-

alizable mask representation for VLA configuration.

Algorithm-Driven Loop Fusion
A lot of intrinsic-based vector programming comes

down to customizing algorithms to achieve better per-

formance for a given configuration.

The hand-vector version of Canneal uses loop fusion,

among other techniques, to improve vectorization. A sim-

plified code block fromCanneal is shown as follows:

for (int i = 0; i < fanin; ++i){

a = a + fanin_val[i];

}

for (int i = 0; i < fanout; ++i){

a = a + fanout_val[i];

}

Since the loops are restricted by graph fan-in and

fan-out degrees, even at large data simulations, the

loop bounds can be smaller than the hardware vector

length. In such cases, fusing the loops can provide effi-

cient vectorization opportunities to scale to larger

hardware vector lengths. However, loop fusion is not

trivial and requires setting up combined arrays to facil-

itate it. We perform this transformation, inspired by

the hand-vectorized version, for the compiler autovec-

torization configurations:

for (int i = 0; i< fanin+fanout; ++i){

a = a + all_val[i]; // has both fanin, fanout nodes

}

This algorithmic transformation allows autovector-

ized code to run vector instructions at the maxi-

mum supported hardware vector length and close

the gap with hand-vectorized version, as shown in

Figure 1(b).

The future programming model for vectorization

should be able to guide programmers toward transfor-

mations, such as loop fusion.

Vectorizing Specific Loops
In general, LLVM’s autovectorization focuses on

vectorizing the innermost loop in each loop nest. In

situations where interchanging loops are not trivial,

the compiler might fail to see vectorization oppor-

tunities or vectorize irrelevant loops. This effect

arises at various places in Swaptions.

One such instance, after interchanging loops and

simplifying 2-D accesses, looks like this

for (int i = 0; i < N; ++i){

int sum = 0;

for(int j = 0; j < M; ++j){

sum += a[j][i];

}

b[i] = c[i] + sum;

}

FIGURE 3. Vector memory requests relative to hand-vector-

ized baseline. The transformation allows compiler to reduce

redundant loads in both the autovectorized configurations.

46 IEEE Micro September/October 2022

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

In the benchmark: M ¼ 3, so just vectorizing the

inner loop is not very useful. In addition, even if the

inner loop were not vectorizable, the compiler would

give up and not look at broader vectorization opportu-

nities that might be visible to the programmer. The

hand-vectorized version can vectorize the outer loop,

which is much more scalable due to the larger loop

trip count (known to the programmer) and results in

simpler unit-strided vector memory accesses. This

strategy allows the hand-vector version to scale well

with increasing hardware vector length. The autovec-

torized versions fall short due to focusing on inner-

most loops by default.

LLVM autovectorizer should support outer-loop

vectorization. However, identifying scalable loops for

vectorizing requires simultaneous loop interchanging

optimizations and cost analysis, which can be hard for

compilers and should be offloaded to programmers.

Adapt Algorithms to the

Microarchitecture
In the previous code example, the variableN is used as a

blocking parameter for better caching in the serial ver-

sion of the code. The hand-vector code changes the

algorithm to set the variable to the hardware vector

length using vector intrinsics. This unique feature of vec-

tor-length agnostic ISAs like RVV allows the algorithm to

automatically adapt to differentmicroarchitectures.

While high-level algorithmic changes are out of

scope for a traditional C compiler, they represent an

opportunity for higher-level languages and DSLs that

compile to vector ISAs.18

Future work should explore programming models

that make this kind of algorithmic parameterization

available to programmers without requiring manual

tuning of hardware intrinsics.

NEXT-GENERATION VECTOR ISAs

PORTEND A NEW ERA FOR

MAINSTREAM PARALLEL

PROGRAMMINGMODELS. THEIR

POPULAR UPTAKE, HOWEVER,

REQUIRES MOVING BEYONDMANUAL

INTRINSIC-BASED PROGRAMMING.

CONCLUSION
Next-generation vector ISAs portend a new era for

mainstream parallel programmingmodels. Their popular

uptake, however, requiresmoving beyondmanual intrin-

sic-based programming. The goal should be to let pro-

grammers express high-level parallelism strategies

while letting the compiler focus on what compilers do

well: selecting instructions, scheduling computations,

and removing redundancy. To this end, we first show

areas of improvement that allow emerging ISAs to lever-

age the autovectorization abilities of the more mature

fixed-vector counterparts. Subsequently, we delve into

the newer compiler and programming model areas,

which can aid autovectorization techniques to match

hand-vectorized code.

ACKNOWLEDGMENTS
Our results use a gem5 simulator implementing RISC-

V vector extension that was originally written by

Khalid Al-Hawaj and Tuan Ta. In addition, we thank

Christopher Batten, Khalid Al-Hawaj, and Tuan Ta for

the valuable discussions throughout the project. We

also thank the entire CAPRA research group at Cornell

for their feedback and support.

This work was supported in part by the Intel and

NSF joint research center for Computer Assisted Pro-

gramming for Heterogeneous Architectures (CAPA), in

part by the NSF under Awards 1845952 and 1723715,

and in part by Air Force Research Laboratory (AFRL)

and Defense Advanced Research Projects Agency

(DARPA) under Grant Agreement FA8650-18-2-7863.

The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. The views

and conclusions contained herein are those of the

authors and should not be interpreted as necessarily

representing the official policies or endorsements,

either expressed or implied, of Air Force Research Lab-

oratory (AFRL) and Defense Advanced Research Proj-

ects Agency (DARPA) or the U.S. Government.

REFERENCES
1. N. Stephens et al., “The arm scalable vector extension,”

IEEEMicro, vol. 37, no. 2, pp. 26–39, Mar./Apr. 2017.

2. RISC-V2021, “Working draft of the proposed RISC-V V

vector extension,” 2021. [Online]. Available: https://

github.com/riscv/riscv-v-spec

3. S. Larsen and S. Amarasinghe, “Exploiting superword

level parallelism with multimedia instruction sets,” in

Proc. ACM SIGPLAN Conf. Program. Lang. Des.

Implementation, 2000, pp. 145–156.

4. D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization

of interleaved data for SIMD,” in Proc. ACM SIGPLAN

Conf. Program. Lang. Des. Implementation, 2006,

pp. 132–143.

September/October 2022 IEEE Micro 47

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

5. D. Nuzman and A. Zaks, “Outer-loop vectorization:

Revisited for short simd architectures,” in Proc. Int.

Conf. Parallel Archit. Compilation Techn., 2008, pp. 2–11.

6. S. Maleki et al., “An evaluation of vectorizing

compilers,” in Proc. Int. Conf. Parallel Archit.

Compilation Techn., 2011, pp. 372–382.

7. D. Callahan, J. J. Dongarra, and D. Levine, “Vectorizing

compilers: A test suite and results,” in Proc. 1988 ACM/

IEEE Conf. Supercomputing, vol. I, 1988, pp. 98–105.

8. M. Rajan, D.W. Doerfler,M. Tupek, and S. Hammond, “An

investigation of compiler vectorization on current and

next-generation Intel processors using benchmarks and

Sandia’s Sierra applications,” inCray User Group, 2015.

9. O. V. Moldovanova and M. G. Kurnosov, “Auto-

vectorization of loops on Intel 64 and Intel Xeon Phi:

Analysis and evaluation,” in Proc. Int. Conf. Parallel

Comput. Technol., 2017, pp. 143–150.

10. S. Siso, W. Armour, and J. Thiyagalingam, “Evaluating

auto-vectorizing compilers through objective

withdrawal of useful information,” ACM Trans. Archit.

Code Optim., vol. 16, no. 4, pp. 1–23, 2019.

11. A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A

performance analysis of vector length agnostic code,”

in Proc. Int. Conf. High Perform. Comput. Simul., 2019,

pp. 159–164.

12. A. Poenaru and S. McIntosh-Smith, “Evaluating the

effectiveness of a vector-length-agnostic instruction

set,” in Proc. Eur. Conf. Parallel Process., 2020,

pp. 98–114.

13. LLVM, “The LLVM compiler infrastructure,” Apr. 2022.

[Online]. Available: https://github.com/llvm/llvm-

project/commit/e70533ae6c57756111689abf7826a

3c632255866

14. N. Binkert et al., “The gem5 simulator,” SIGARCH

Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

15. M. H. Sujon, R. C. Whaley, and Q. Yi, “Vectorization past

dependent branches through speculation,” in Proc.

22nd Int. Conf. Parallel Archit. Compilation Techn.,

2013, pp. 353–362.

16. C. Ramírez, C. A. Hern�andez, O. Palomar, O. Unsal, M.

A. Ramírez, and A. Cristal, “A RISC-V simulator and

benchmark suite for designing and evaluating vector

architectures,” ACM Trans. Archit. Code Optim., vol. 17,

no. 4, pp. 1–30, 2020.

17. A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and

A. Sampson, “Vectorization for digital signal

processors via equality saturation,” in Proc. 26th ACM

Int. Conf. Archit. Support Program. Lang. Oper. Syst.,

2021, pp. 874–886.

18. J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F.

Durand, and S. Amarasinghe, “Halide: A language and

compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines,” ACM

Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

NEIL ADIT is a Ph.D. student in the Department of Electrical

and Computer Engineering, Cornell University, Ithaca, NY,

14850, USA. His research interests include compilers and vec-

tor architectures. Contact him at na469@cornell.edu.

ADRIAN SAMPSON is on the faculty of the Department of

Computer Science at Cornell University, Ithaca, NY, 14850,

USA, where he designs and programs computers. Contact

him at asampson@cs.cornell.edu.

48 IEEE Micro September/October 2022

COMPILING FOR ACCELERATORS

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2023 at 23:41:44 UTC from IEEE Xplore. Restrictions apply.

