

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gri�in Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

Figure 1: Cider is a stepwise debugger that directly executes

the Calyx intermediate language for hardware accelerator

generation without �rst compiling to RTL descriptions.

IL directly, without relying on Verilog semantics or simulators, and

uses position metadata to provide source-level debugging.

Cider supports three di�erent user populations. It lets domain

speci�c language (DSL) developers quickly prototype new compilers

targeting Calyx and can help localize bugs in these compilers. As

compilers mature, developers can add source mapping information

to provide end users with a native debugging experience through

Cider. Finally, Cider can help Calyx compiler engineers localize

bugs in the core compiler toolchain and improve the stability of the

entire ecosystem.

This paper’s key contributions are:

• We design an interpreter for the Calyx intermediate lan-

guage [32] by distilling an (informal) IL-level semantics in-

cluding its unde�ned behavior. The only previous imple-

mentation of Calyx was a compiler to RTL, which left these

semantic details under-speci�ed.

• Using the interpreter, we implement a debugger that provides

software-like debugging constructs such as single stepping,

breakpoints, watchpoints, and state inspection.

• We build �exible source-level mapping for Cider, which lets

frontends step at the level of source-code constructs.

• Weperform two case studies using Cider to debug accelerator

generators: a loop-based imperative language [31] and a

machine learning framework [11].

• We compare Cider’s performance to RTL simulation. Cider

is 4.2× faster than Icarus Verilog [44], an interpreter-based

simulator, and 2.9× slower than Verilator [41], a compilation-

based simulator. Cider’s performance advantage stems from

exploiting control information to avoid wasted e�ort simu-

lating irrelevant parts of a design.

2 BACKGROUND

This section summarizes the mainstream debugging tools available

to accelerator designers (Section 2.1) and introduces Calyx [32], the

program representation that Cider builds upon (Section 2.2).

2.1 Abstractions for Debugging Accelerators

The lingua franca for hardware design is register-transfer level

(RTL) descriptions. Programmers can implement computational

accelerators directly in RTL or use higher-level languages that com-

pile to it [15, 23, 31, 46]. Designers can therefore debug accelerators

at two levels of abstraction: at the functional level, before compiling

to RTL; or in RTL, using waveform debugging.

Waveform debugging. RTL code describes how to compute the val-

ues in wires and registers each clock cycle. Designers debug a

hardware design by either simulating it in software [34, 41, 44] or

by running it on an FPGA and recording a subset of the signals

using a logic analyzer [16, 21, 45]. Either route produces awaveform

trace that exhaustively records, on every clock cycle, the value of ev-

ery monitored signal. Waveform viewers [9] let designers visualize

values while zooming and panning through linear time.

Waveforms re�ect RTL semantics, so they can be di�cult to

associate with bugs that occur in higher-level languages that com-

pile to RTL. They make it hard to temporally localize when a bug

happens because the only notion of time step is a clock cycle—not a

logical program step. They also complicate spatially localizing bugs

because all signals may be equally relevant at any time.

Reacting to this di�culty, tools like Cuttlesim [34] improve post-

compilation RTL debugging by raising the abstractions to the level

of rule-based hardware design languages, such as Kôika [8]. Like

HDLs, these languages and tools are built for hardware designers

and excel at designing arbitrary circuits and CPUs. Our focus in

this paper is instead on high-level algorithmic and domain-speci�c

languages that aim to let domain experts productively design com-

putational accelerators.

Functional debugging. The alternative to waveform debugging is

executing programs using their high-level language semantics, be-

fore compiling to RTL. For example, high-level synthesis (HLS)

compilers translate C to RTL [20, 46]; designers can debug these C

programs directly with standard tools like GDB [38]. This approach

cannot catch bugs introduced during the compilation to hardware.

While users may hope that hardware compilers are always faith-

ful to language semantics, in practice this is rarely the case. Bugs

pervade even popular commercial HLS tools [19]. Fundamentally,

compilation to RTL needs to introduce hardware-level concerns

that are di�cult to fully abstract, such as custom numerical formats

and pervasive �ne-grained parallelism. To bridge this semantic gap,

some work has aimed to map waveform data back to high-level

program state [12, 16, 18]. However, these e�orts are point solutions

speci�c to C-based HLS tools—each new compiler must build such

a capability from scratch.

The goal of our work is to provide an infrastructure for debugging

in languages that compile to hardware. We build a core debugging

engine that exploits the control information from a given high-level

language while faithfully executing hardware-level simulation.

2.2 Calyx

Calyx [32] is an intermediate language (IL) for hardware generation.

It combines hardware data�ow and control �ow. Unlike software

ILs [25], it directly represents physical hardware resources; unlike

779

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

1 const step: real = 1.0;

2 fn counter(x: real) {

3 dest = x;

4 for _ in 0..4 { dest += step; }

5 return dest;

6 }

Figure 2: Pseudocode that computes dest = x + 4 × step.

1 component counter(go: 1, x: 32) -> (done: 1) {

2 cells {

3 dest_m = 1D_memory(32, 1);

4 step = constant(32, 32768);

5 acc_r = register(32); idx_r = register(2);

6 fpa = fixed_point_adder(32, 16, 16);

7 add = adder(2);

8 le = less_than_equal_to(2);

9 }

10 wires {

11 group init { ... } // idx_r <- 0, acc_r <- x

12 group incr_idx {

13 add.left = idx_r.out; add.right = 2'd1;

14 idx_r.in = add.out; idx_r.write_en = 1'd1;

15 incr_idx[done] = idx_r.done;

16 }

17 group incr_st {

18 fpa.left = acc_r.out; fpa.right = step.out;

19 acc_r.in = fpa.out; acc_r.write_en = 1'd1;

20 incr_st[done] = acc_r.done;

21 }

22 group upd {

23 dest_m.write_en = 1'd1; dest_m.addr0 = 1'd1;

24 dest_m.in = acc_r.out; upd[done] = dest_m.done;

25 }

26 // Loop condition

27 comb group cond { le.left = idx_r.out; le.right = 2'd3; }

28 }

29 control {

30 seq {

31 init;

32 while le.out with cond {

33 par { incr_idx; incr_st; }

34 }

35 upd;

36 }

37 }

38 }

Figure 3: A Calyx component generated from Figure 2. It uses

a �xed-point approximation of real values with 16 integral

and fractional bits.

hardware ILs [14, 22], it explicitly encodes logical control �ow using

imperative control operators.

This section explains Calyx by showing how it compiles a simple

high-level program. The program in Figure 2 implements a simple

counter that iteratively increments the input, x, by four times the

value of step, here de�ned as 1.0. Figure 3 lists a Calyx implemen-

tation of this function; we introduce its constructs in this section.

Section 3 uses the same example to show how our proposed system,

Cider, enables productive debugging of hardware accelerators.

Components. Calyx’s analog to a function de�nition is a component,

which encapsulates a set of hardware resources along with a control

�ow description. Components have input and output ports that

de�ne their interface. Our counter component has an input port

corresponding to the example function’s argument, x:

1 component counter(go: 1, x: 32) -> (done: 1)

Every port has a bit width. We implement the pseudocode’s real

type with a 32-bit �xed-point number. Calyx uses one-bit interface

ports go and done to transfer control to and from a component.

Structure. Lines 1 and 3 in Figure 2 declare variables, dest and

step. To implement these in hardware, we need a constant and a

mutable memory. Calyx components instantiate subcomponents in

their cells section (lines 2–9 of Figure 3):

3 dest_m = 1D_memory(32, 1);

4 step = constant(32, 32768);

Here, constant and 1D_memory are components built into Calyx’s

standard library. The step declaration includes a bit width (32) and

a value; the dest_m memory speci�es its element width (32) and

size (1).

Groups. We next implement the for loop on line 4. First, the Calyx

program instantiates two registers to hold the accumulated dest_m

value and the loop counter:

5 acc_r = register(32); idx_r = register(2);

The program also needs machinery to increment and check the

loop-control register idx_r and to perform the �xed-point accu-

mulation:

6 fpa = fixed_point_adder(32, 16, 16);

7 add = adder(2);

8 le = less_than_equal_to(2);

The �xed-point adder controls the numerical representation for

dest_m in the high-level program (here, 16 bits each for the integer

and fraction parts). We also include the add and le comparator

cells to implement the loop’s iteration.

Calyx components de�ne groups which implement logical op-

erations by wiring together their cells. Our example uses a group

incr_st to implement the loop body, dest_m += step:

17 group incr_st {

18 fpa.left = acc_r.out; fpa.right = step.out;

19 acc_r.in = fpa.out; acc_r.write_en = 1'd1;

20 incr_st[done] = acc_r.done;

21 }

Calyx groups consist of simultaneous (unordered) assignments

between ports. This group feeds the �xed-point adder, fpa, with two

inputs: acc_r.out, the current value of the accumulator register,

and step.out, a constant value. It then writes the sum into acc_r

by setting its input port and its write-enable control port, write_en.

The �nal line assigns to a special done signal indicating when the

group’s work has �nished.

The Calyx implementation in Figure 3 includes a similar group

incr_idx to increment the loop index and a combinational (state-

less) group cond that uses the le comparator to check the loop

condition. Finally, the init and upd groups initialize and �nalize

the state for the function. The rest of the Calyx code will use these

small units of computation to implement the example’s logic.

Control. Finally, Calyx components use a control program to orches-

trate the named groups. A component’s control section resembles

an imperative program where the leaf statements are group names.

Our example uses a while statement to implement the loop:

32 while le.out with cond {

33 par { incr_idx; incr_st; }

780

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gri�in Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

The incr_idx and incr_st statements are group activations that

invoke the connections in the group. Calyx includes a par statement

that runs these actions in parallel. The while loop runs until the

cond group produces zero on the le.out port. The full program

sequences loop with the initialization and clean-up groups:

30 seq {

31 init;

32 while ... {...}

35 upd;

36 }

Calyx also has a conditional statement if and a call-like operator

invoke to run subcomponents.

Figure 3 lists the complete example code. The existing Calyx com-

piler translates this code to RTL by implementing state machines

and other control logic to orchestrate the groups’ assignments; for

more detail, see Nigam et al. [32]. Cider debugs Calyx programs

by directly executing their control programs instead of translating

them to hardware.

3 DEBUGGINGWITH CIDER

Figure 3 has a bug. If we use the Calyx compiler to translate it

to Verilog and run it with an RTL simulator [41], it runs forever;

there is an in�nite loop. This section uses this buggy program as

an example to demonstrate the use of our new system, Cider, in an

accelerator debugging work�ow.

The fact that this program runs forever would be immediately

confusing to a user debugging solely from the high-level code in

Figure 2. After all, the only loop in that program is a bounded for

loop! Clearly, there has been an error in translating the high-level

for loop into the Calyx while loop that realizes it. Using Cider, we

can directly observe this problem.

State inspection and watchpoints. Cider includes an interpreter for

the Calyx IL: it can execute the program without compiling it to

RTL code �rst. To start the debugging process, we run the program

using Cider; immediately, we see:

WARN - Integer overflow, source: counter.add

Since Verilog’s integer operators silently allow over�ow, the sim-

ulator issues no warning. Cider, in contrast, implements Calyx’s

semantics, in which implicit over�ow is an error. And since all

components have an explicit name, Cider can report the speci�c

adder that produces the error.

This warning reveals that the two-bit adder responsible for in-

crementing the loop counter is over�owing, though it is not yet

clear whether this over�owed value gets saved in the counter reg-

ister. We can start Cider’s interactive debugger and step through

the program execution to see how the value in idx_r, the loop

counter, changes after each execution of incr_idx, the only group

which uses counter.add. Cider’s watchpoints allow this kind of

inspection:

idx_r.out = [00] // MSB on the left, initial val

> watch after incr_idx with print idx_r.out

> continue

idx_r.out = [01]

idx_r.out = [10]

idx_r.out = [11]

WARN - Integer overflow, source: counter.add

idx_r.out = [00]

Here we see how Calyx groups enable a coarser view of time. Cider

knows what groups are running, which lets users inspect signals

only at computationally relevant points in time. This watch com-

mand instructs Cider to print the value of idx_r.out every time

the group incr_idx �nishes executing (speci�ed by after). The

counter over�ows after being incremented to 112 = 3. On closer in-

spection, we notice that our condition group cond implements the

comparison idx_r.out ≤ 3; however, since the maximum value

representable with two bits is 3, the condition will always hold. To

�x this issue, we can change the counter register idx_r to contain

three bits. The corrected line reads:

5 acc_r = register(32); idx_r = register(3);

This demonstrates the advantage of building debugging abstrac-

tions using coarse-grained (non-cycle-based) temporal schedules.

Users can step over several clock cycles of execution and focus on

speci�c sub-circuits while debugging. In contrast, traditional RTL

simulation works only at the level of clock cycles, forcing users to

untangle logically unrelated signals.

Value representations and breakpoints. After �xing the over�ow, we

execute it again using Verilator. This time, the program �nishes

executing, but the output memory dest_m contains the value 0.

Cider reports this error:

Error (counter.dest_m): Invalid memory access. Given index (1)

but memory has size (1)

Cider’s runtime checks catch an invalid memory access. Again, such

errors are not caught at the RTL level—out-of-bounds indexing

silently yields an unde�ned value. dest_m contains exactly one

element which means the only valid index into it is 0. However, the

upd group attempts to index it using 1:

23 ...; dest_m.addr0 = 1'd1;

While an obvious bug, neither Verilator nor Icarus Verilog catch

it. For example, Verilator speci�es that out-of-bounds accesses are

only checked when the memory size is a power of two [42]. To �x

this, we can change the assignment’s right-hand side to 1'd0.

Finally, the RTL simulation terminates with this output:

"dest_m": [100000000000000000]

The value here is incorrect, but it is hard to tell when reading the

bit-level representation. The value is the �xed-point representation

of 2.0 whereas it should be 4.0. Fortunately, like some waveform

visualizers [9], Cider can reinterpret bit-level values easily.

To debug this incorrect value, we can use breakpoints. Cider sup-

ports breakpoints that stop execution at Calyx groups. We interac-

tively set a breakpoint on the group incr_st, which is responsible

for incrementing the input value:

> break incr_st // set breakpoint on incr_st

> continue // advance until breakpoint

Breaking: counter::incr_st

> print \u.16 acc_r.out

acc_r.out = 0 // before the increment

> step-over incr_st // advance past increment group

> print \u.16 acc_r.out

acc_r.out = 0.5 // should be 1.0!

While the break and continue commands let us control the execution,

step-over lets us skip logical chunks of the execution. There is no

equivalent to step-over in RTL simulation since there is no logical

time step beyond a clock cycle. Cider’s print command supports

781

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 4: The Cider interpreter’s internal state tree.

formatting codes like \u.16 to print as an unsigned �xed-point

valuewith 16 fractional bits.We can see that, after the �rst execution

of incr_st, the value in acc_r is 0.5 instead of 1. The likely suspect

in this case is our �xed-point constant step. We can check this

hypothesis:

> print \u.16 step.out

step.out = 0.5

Writing �xed-point constants using unsigned integers is tricky; in

this case, the step value was incorrectly translated and needs to

be shifted to the right by one. The corrected de�nition is:

4 step = constant(32, 65536);

Cider leverages the high-level control �ow of hardware accelerators

to provide software-like debugging abstractions. Unlike debugging

�ows for RTL or customized accelerator generators, Cider pro-

vides a generic set of tools that interact with time and state in a

coarse-grained way. The key insight is that plain RTL is missing a

representation of an execution schedule that delineates the larger-

than-cycle steps in its execution, and it does not decompose the

hardware into logical groups that permit local reasoning. Break-

points, stepping, and watchpoints in Cider rely on the accelerator’s

own custom notion of granularity: its groups de�ne the units of

work that programmers navigate through while debugging.

4 THE CIDER INTERPRETER

Cider’s execution engine is a new interpreter for Calyx programs.

Its goal is to faithfully implement Calyx’s semantics with a fail-stop

policy for unde�ned behavior (UB). Emitting actionable, timely

errors for UB is critical for surfacing subtle problems to users. This

policy is in contrast with the only other Calyx implementation,

which is a compiler to Verilog that resolves Calyx’s UB in arbitrary

ways to prioritize e�ciency. Implementing this safe interpreter

forced us to design an informal semantics for Calyx independent

of compilation to hardware and make concrete decisions about

ambiguities in the original language description [32].

Our interpreter consists of a structural simulator (Section 4.2),

which executes individual groups in a setup resembling RTL sim-

ulation, and a control simulator (Section 4.3), which executes its

imperative control statements and uses the structural simulator as

a subroutine.

4.1 Environment Model

While software languages often represent their execution environ-

mentwith a call stack, heap, and program counter, circuit simulation

demands di�erent abstractions. Circuits have neither function calls

nor pointers; all state exists in speci�c storage elements and all

wires and ports are in the same execution scope. At every cycle,

values on any wire or port could potentially change. Furthermore,

there are no program counters because connections are always

active, even if quiescent.

Cider’s environment model lies between these two extremes.

As in circuit simulation, the environment contains values for all

ports in the program—there is a mapping from each cell, such as

a register, to its internal state. However, like software simulation,

there is also a program counter and execution stack embodied in

each component’s control schedule.

Figure 4 shows the environment structure: a tree of interpreter

environments where the parent-child relationship is structural con-

tainment. A child node is a subcomponent of the parent node. A

component’s local environment de�nes a mapping from each port

to a value and from each cell to its internal state, if any. The program

counter points to the currently active group in the component’s

control program. The environment handles par blocks by dupli-

cating the program counter and environment mappings, allowing

each “thread” to execute in its own parallel world (Section 4.3).

4.2 Structural Simulation

Cider’s structural simulator is its engine that executes individual

Calyx groups, ignoring control statements. As Figure 3 illustrates,

each group is an unordered set of simultaneous assignments to

ports. Interpreting a group therefore resembles classic RTL simula-

tion [6, 17]: the interpreter can treat the assignments as data�ow

“wires” that propagate values between cells. Structural simulation

takes the form of two nested loops: an inner loop that executes

assignments within a single cycle, and an outer one that iterates

across cycles.

The inner stabilization loop iteratively executes all assignments

until the port values stop changing. Components that represent

combinational logic, such as adders, update their output ports based

on their input ports. Calyx assumes assignments are non-con�icting,

so Cider raises an error if multiple assignments drive the same port

(Section 4.5). When the stabilization loop converges, a clock cycle

has completed and the outer simulation loop progresses, updating

cell state in sequential elements such as registers. The simulation

loop runs until the group’s done condition becomes true. Both loops

recursively evaluate subcomponents, traversing the environment

tree (see Figure 4) to update the state in each cell’s children.

This structural simulation strategy intentionally uses a basic

form of classic hardware simulation for clarity; Cider’s novelty

stems from the way it orchestrates structural simulation through

control. We expect that more advanced hardware simulation tech-

niques could apply analogously to Cider’s structural simulator to

improve its performance [7, 43].

782

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gri�in Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

4.3 Control Simulation

Cider’s control simulator executes Calyx’s control programs (lines

29–35 in Figure 3). It resembles interpreters for any imperative

language and delegates group execution to the structural simulator.

For example, it executes Calyx’s seq statement by recursively exe-

cuting each child statement to update the environment in turn. The

invoke statement transfers control to a subcomponent’s control

program and waits for it to �nish. Other control operators like if

and while work similarly.

The exception is par, which runs several statements in parallel.

The interpreter simulates parallelism by advancing the child state-

ments together, one cycle at a time. The original Calyx paper [32]

left the precise semantics of parallelism largely unde�ned. In prac-

tice, the compiler o�ers no guarantees about the relative timing

between simultaneous arms of a par block. As a result, data races—

two accesses, at least one of which is a write, to the same value in

di�erent arms of a par statement—yield unde�ned behavior. Cider

detects races and yields an error. It executes each child of a par

statement with a separate copy of the initial environment. Figure 4

illustrates a par statement in main.my_mul that yields three of

these “parallel universe” environments. When the par �nishes, it

merges the copies while detecting con�icting updates to signal

errors on races.

4.4 Primitive Simulation

Calyx programs can use black-box RTL modules by de�ning their

interfaces using a primitive de�nition. Cider implements high-

level behavioral models for a set of core primitives. These primi-

tives appear at the leaves of the interpreter’s environment tree (see

Figure 4). Primitives interact with the interpreter through combina-

tional and stateful interfaces. The combinational interface interacts

with the stabilization loop to describe how to compute output val-

ues based on input values. The stateful interface lets components

store internal state on iterations of the simulation loop. A single

component may use both interfaces: for example, a memory may

implement combinational reads and sequential writes.

Cider’s primitive models di�er from their Verilog implementa-

tion by prioritizing fail-stop behavior for UB. For example, arith-

metic primitives can signal warnings or errors on numerical over-

�ow. While over�ow has truncation semantics in RTL, it is an error

in Calyx—surfacing these errors can help identify problems with

numerical representations.

4.5 Unde�ned Behavior

Unlike a compiler, a debugger must predictably simulate incorrect

programs. We identify several categories of UB in Calyx and resolve

them predictably to aid debugging.

Undriven signals. Reading a port that has not been written is UB

in Calyx. HDL simulators typically model these undriven signals

with multi-value logic, using special values like “X” or “Z” in place

of concrete 1s and 0s. These special values can have counterintu-

itive semantics [40] and have no source-level interpretation. Cider,

like the Calyx compiler’s existing Verilog backend, uses 0 for all

undriven signals.

Table 1: Commands supported by Cider.

Command Description

break [grp] Create a breakpoint at group
step-over [grp] Advance the execution over a given group
step [n] Advance the execution by = steps (defaults to 1)
watch [grp] [prt] Watch a given group with a print statement
continue Continue till next breakpoint
display Display the full state
print [fmt] Print target value. fmt code describes how to interpret

the value
print-state [fmt] ”
where Displays the current program location. Uses source

metadata if present; otherwise shows Calyx program
(dis)enable Disable/Enable target breakpoint

Parallel con�icts. Calyx has DRF0 semantics [3]: data races between

di�erent arms of a par statement have unde�ned behavior. The

compiler is therefore free to choose any relative timing among

groups of parallel threads, including running them sequentially.

To avoid unpredictable results from racy code, Cider implements

race detection to signal an error when di�erent par arms issue

con�icting assignments to the same signals.

Intra-group con�icts. Calyx de�nes multiple active drivers to the

same port as an unde�ned behavior. This snippet of a Calyx group

contains two guarded Calyx assignments—such assignments are

only active when their conditional is true:

r.in = cond_a ? 32'd5;

r.in = cond_b ? 32'd7;

If cond_a and cond_b are simultaneously true then these two as-

signments will both write distinct values to the same port and Cider

will raise an error.

Loop trip-count bounds. Calyx programs use the attribute @bound

to provide loop trip counts for while statements. This attribute

provides static information about the number of iterations a loop

will conduct, which results in more e�cient Calyx lowering. Dis-

agreements between this annotation and the actual loop logic can

cause miscompilation. Cider validates the loop bound by tracking

the loop iteration count.

Invalid memory indexing. Out-of-bounds memory accesses are UB

in Calyx. Whereas RTL simulators silently yield default values for

invalid indices [2], Cider eagerly signals an error.

5 DEBUGGING INFRASTRUCTURE

We build Cider’s debugging mechanisms on top of its interpreter

from the previous section. Cider can execute any Calyx program,

but is most powerful when debugging high-level Calyx programs—

thosewith complex control programs andmany �ne-grained groups.

Cider exploits this control information in accelerators generated by

higher-level languages and cannot recover this information from

arbitrary RTL code.

5.1 Interactive Steppable Execution

RTL simulators can only advance, or step, the program in clock-

cycle increments, if they support interactive execution at all: wave-

form debugging typically works in batch mode. Cider provides

a more software-like debugging experience with manual control

783

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

over program advancement and commands to display the current

program counters (or source locations, see Section 6). Cider accom-

plishes this with a coarser-grained notion of a program step built

using the control program and group abstraction in Calyx.

Two central constructs in Cider are a step-over command that

advances execution past the current group and a lower-level step

(cycle) for �ner-grained inspection of a group’s execution. Stepping

over lets users examine computation in logical steps that are larger

than a single cycle. Even functionally simple groups can take mul-

tiple cycles: a multiplication, for instance, might take 3 cycles each

time it runs. Being able to step over such a computation means the

user can think of it in terms of input/output behavior—the same

way we think of functions in software—and only resort to cycle-

level timing when necessary. Additionally, users can focus on the

set of active groups to understand where bugs may arise instead of

having to look at the entire state of the circuit every cycle.

This section describes the three debugging mechanisms in Cider

that build on the interpreter and these core constructs: breakpoints,

state inspection, and watchpoints.

5.2 Breakpoints

RTL simulators generally do not support breakpoints since there is

no discrete computational unit to break on. For example, setting a

breakpoint on a line is unlikely to be helpful because, in general,

assignments “run” every cycle. This is true even in the presence of

conditional blocks in RTL, which compile intomultiplexers and thus

always compute all their inputs. Worse, a conditional statement in

a high-level language is unlikely to correspond to an if statement

in Verilog, making the relationship with source code hard to track.

In contrast, Calyx’s groups present a natural opportunity to im-

plement breakpoints since they represent discrete computational

blocks that the control program schedules. Cider supports setting

breakpoints on any group in the Calyx program and provides a

continue command that advances the execution until it hits a break-

point or the end of the program.

Breakpoints and continue let the user skip program segments

that they know to be behaving correctly and keep their attention

on potential error sources. As a result, Cider can reduce the signal-

to-noise ratio in the debugging experience. This listing shows a

simple interaction:

> break conv2d:upd20

> continue

Hit breakpoint: conv2d::upd20

> print-state main.conv2d.k1

k1 = [00000000000000000000000000000000]

> step-over conv2d::upd20

> print-state main.conv2d.k1

k1 = [00000000000000000000000000000001]

This snippet uses a breakpoint and the step-over and print-

state commands on a subcomponent’s group to inspect the state

update it performs. This prints out the internal state associated

with the register k1 in the conv2d component.

Breakpoints are set on component de�nitions—the global decla-

ration of a component’s behavior—rather than instances, akin to

how software debuggers place breakpoints in function de�nitions

rather than speci�c calling contexts. This means that if there are

multiple instances of a single component, any of these instances

will trigger the breakpoint.

5.3 State Inspection

The state of a circuit consists of the bit values on each port and wire.

While some waveform viewers [9] support custom formats, wave-

forms generated by RTL simulations usually make this data avail-

able in the form of unsigned integers in binary, decimal, or hexa-

decimal representations. However, designing high-performance ac-

celerators requires using custom data formats, such as �xed-point

numbers.

Cider supports two commands for printing data: print, which

prints out the value on a port, and print-state, which prints

the value stored in stateful primitives like registers. They support

format codes which can reinterpret bit values as unsigned or signed

�xed-point or decimal numbers. These two commands show two

di�erent formats for the same value:

> print \u div.out_quotient

div.out_quotient = 424967279

> print \s div.out_quotient

div.out_quotient = -17

The format codes \u and \s represent data as unsigned or signed

integers. To use a �xed-point format, we can specify the number of

bits in the fractional part. For example, \u.16 formats the port as

an unsigned �xed-point number that uses 16 bits for its fractional

part.

5.4 Watchpoints

Watchpoints are a common command provided by software debug-

ging tools. Unlike breakpoints, watchpoints do not interrupt the

execution of the program and instead just print out the value of a

particular port. Watchpoints are particularly useful when the user

wants to understand how a value changes throughout execution:

> watch incr with print-state \u i

> continue

i = 0 i = 1 i = 2 i = 3 ...

This compressed snippet uses a watchpoint to track the value of a

loop counter over the life of a simple program.

Cider supports watchpoints that trigger at the start or end of a

group’s execution by desugaring them into a breakpoint, print, and

continue command (or a breakpoint, step-over, print, and continue

for watchpoints attached after a given group). Cider provides both

options to streamline the observation of a group’s e�ects. Because

watchpoints track individual ports or cells, they provide a narrow

lens for spatial bug localization, which is ideal for determining if a

speci�c piece of logic is incorrect.

6 SOURCE-LEVEL DEBUGGING

While Cider’s core machinery implements steps at the level of Calyx

IL control statements, it can use these steps to provide source-level

stepping through frontend language constructs. Cider provides a

�exible way to associate Calyx-level positions with source-level

positions. We introduce Cider’s source position tracking using

Dahlia [31], a loop-based imperative language that compiles to

Calyx, as an example.

Figure 5 lists an example Dahlia program that doubles the ele-

ments of an array. We modify the Dahlia compiler to attach source-

position metadata to the IL via Calyx’s metadata attributes. An

attribute @pos(=) marks a control statement with an integer tag =.

784

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gri�in Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

decl x_int: ubit<32>[8];

decl y_int: ubit<32>[8];

// Iteratively double value in array x and write it into y

for (let k: ubit<4> = 0..8) {

y_int[k] := x_int[k] * 2;

}

Figure 5: Dahlia code to double the elements of an array.

We also generate a table that maps each tag to a source position. For

our example, the Dahlia compiler emits this Calyx control program:

control {

seq {

@pos(0) let0;

@bound(8) while le0.out with cond0 {

seq {

@pos(1) upd0;

let1;

upd1;

@pos(0) upd2;

}}}}

And an embedded metadata table:

metadata #{

0: for (let k: ubit<4> = 0..8) {

1: y_int[k] := x_int[k] * 2;

}#

The @pos tags attach a source position number to leaf nodes in the

control program and the metadata table associates each of these

with a source position. Tags need not be unique; in this example,

let0 and upd2 have the same tag because they both map to logic

that realizes the for loop in Figure 5. Some groups are missing @pos

tags because they represent intermediate computations without

direct correspondence in the source code.

Cider’s where command (Table 1) uses the attributes and position

table to display the source location for active control statements:

> where

y_int[k] := x_int[k] * 2;

Multiple locations may be active simultaneously because of paral-

lelism in the design; Cider reports all active positions.

Dahlia’s imperative control maps easily to Calyx’s control op-

erators. To demonstrate Cider’s �exibility, we encode source-level

information for a more esoteric frontend language, the systolic

array generator.

Systolic array generator. Calyx’s systolic array frontend di�ers from

other frontends because its input does not have source positions in a

typical sense. The input is a declarative description of a systolic grid

of processing engines (PEs) that collectively compute a single linear-

algebra operation. Cider’s �exible source-position debugging can

nonetheless convey high-level information about the computation’s

control �ow.

We modify this frontend to generate metadata describing the

progress within each PE. The compiler attaches @pos tags to Calyx

invoke statements that advance PEs. Due to the design’s inherent

parallelism, multiple positions are active at a time:

> where

pe 0,1: running iteration 2

pe 1,0: running iteration 2

pe 0,2: running iteration 2 ...

7 CASE STUDIES

We demonstrate Cider using bugs in two case studies: Section 7.1

uses the preexisting Dahlia-to-Calyx compiler [32], and Section 7.2

uses a new TVM-to-Calyx compiler.

7.1 Dahlia Compiler

Dahlia [31] is a loop-based language that uses a novel type system

to guarantee that the generated hardware does not have con�icting

memory accesses. Like other high-level synthesis tools, Dahlia

supports loop unrolling andmemory partitioning to express DOALL

parallelism. We use the open-source Dahlia-to-Calyx compiler to

study the implementation of Polybench [28] and other kernels

reported in Nigam et al. [32].

Parallel writes to memories. Dahlia’s unroll keyword unrolls loops

to parallelize computation by duplicating hardware. The Calyx

backend for Dahlia relies on the type checker’s guarantee that

unrolled loops do not create memory con�icts. However, when

executing some of the Dahlia benchmarks, Cider discovers this

error:

Error: parallel assignments not disjoint: alpha.addr0

1. [0] 2. [0]

This message indicates a parallel con�ict (Section 4.5), meaning

multiple groups are attempting to write to the same port in parallel.

We can debug this error by looking at individual groups that write

to alpha.addr0. Unlike RTL debugging, we do not have to look at

every assignment to alpha.addr0 since only groups that are in a

parallel statement can cause this error. The two o�ending groups

are these:

group upd31 { alpha.addr0 = 1'd0; .. } // Conflict

group upd32 { alpha.addr0 = 1'd0; .. } // Conflict

control { par {@pos(117) upd31; @pos(117) upd32;} .. }

As Section 4.5 describes, the parallel writes to alpha.addr0 are

illegal. The position tags help identify the corresponding source

line in Dahlia, in turn allowing us to localize and con�rm the bug.1

An alternative to Cider in this case is instrumenting RTL to catch

multiple writes. We implement this strategy also by modifying

the Calyx Verilog backend. While this technique does let Verilog

simulation catch this con�ict, it remains challenging to map it

back to the source-level Dahlia program since parallel assignments

in Verilog do not correspond one-to-one with statements in the

original Dahlia.

Parallel scheduling bugs. Next, we found a bug in the implementa-

tion of a softmax kernel in the Calyx test suite:

Error: parallel assignments not disjoint: x_0.in

1. [0000] 2. [1101]

Cider detects another parallel write bug which is, surprisingly, not

caught by the above Verilog-level checks:

par {

let1;

seq { let2;

while le1.out with cond1 { seq { upd0; upd1; }}}}

The groups let1 and upd1 write di�erent values to the same regis-

ter x_0. Verilog simulation checks do not catch this bug because

the particular compilation strategy used by the compiler schedules

1https://github.com/cucapra/dahlia/issues/384

785

https://github.com/cucapra/dahlia/issues/384

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the two groups in a non-con�icting manner; any change to the

compilation scheme might trigger the run-time assertion. This is

the key di�erence between Cider’s checks and the checks in Calyx’s

RTL backend—the latter can only �nd problems in a particular RTL

realization of a Calyx program, while the former operates with

Calyx’s semantics.

7.2 TVM-to-Calyx Compiler

TVM [11] is an open-source machine learning compiler. We built a

TVM-to-Calyx compiler to test Cider’s e�cacy at debugging large

accelerators. Our compiler generates Dahlia kernels from TVM’s

Relay IR [36], lowers them to Calyx, and stitches them together

to implement complete neural networks. This frontend generates

large, �xed-function implementations of DNNs. We do not claim

that the accelerators are competitive or even practical to realize on

an FPGA; we focus here on their correctness in simulation.

For our case study, we simulate a TVM implementation of the

LeNet network [26] compiled to Calyx. GPU-based execution of

this kernel uses �oating-point operations that are too expensive for

FPGAs; we instead use a �xed-point approximation. Because of this

representation mismatch, we expect the Calyx program’s output to

di�er numerically from TVM’s, which makes silently propagating

RTL bugs hard to recognize and localize. While our quick spot tests

on a few inputs with the Calyx code seem to work, our experience

with the Dahlia case study suggests that RTL semantics are too

relaxed to catch subtle bugs. We instead use Cider to catch possible

problems in the design.

Source locations. First, we extend the TVM backend to generate

source location information to aid debugging. The compiler gener-

ates a new component for each TVM operation and uses the invoke

operator to call them in the main component. Since each invoke

has a direct correspondence in the TVM source, we attach a unique

@pos tag for each one:

control {

@pos(0) invoke conv2d_1x20x24x24_(..)(..);

@pos(1) invoke bias_add_1x20x24x24_(..)(..); .. }

And generate the corresponding metadata table:

metadata #{

0: let %x: Tensor[...] = nn.conv2d(%data, ...);

1: let %x1: Tensor[...] = nn.bias_add(%x, ...); }#

Out-of-bounds access. Cider immediately reports an out-of-range

memory access when we run the kernel:

Error (main.data): Invalid memory access. Given index (0, 1, 0,

0) but memory has dimension (1, 1, 28, 28)

The error states that in a four-dimensional memory, the second

dimension has size 1 but is being accessed with an out-of-bounds

index 1. Unlike RTL simulators, Cider treats this as a hard error

(Section 4.5). The debugger points to the main.data memory cell,

which is only used by the �rst component, a two-dimensional

convolution kernel.

The likely cause of this bug is an invalid loop nest. We investigate

the second index to the memory, which is driven by a loop counter

called k1. Setting a watchpoint at the beginning of the appropriate

inner loop, we see:

> watch conv2d::let16 with print-state \u conv2d.k1

> continue

k1 = 0

k1 = 1 // Should not occur

Error: ...

Cider shows us that the inner loop runs multiple times, causing the

index to over�ow. We investigate the loop-entry condition which,

checks if the value of k1 is less than or equal to const30.out:

> print \u conv2d.const30.out

const30.out = 19

The TVM-to-Calyx compiler generates incorrect loop bounds, run-

ning 20 times instead of once. We track the bug back to a function

that incorrectly takes a default value instead of computing the loop

bound for the convolution kernel. After �xing this bug in the TVM

compiler, this inner loop only runs once, and the error disappears.

Fixed-point over�ow. Rerunning the LeNet kernel through Cider

reports a new warning:

WARN - Overflow in fixed-point multiplier:

81117.5903007190208882 to 15581.5902862548828125

source: softmax.pow1.mul

All numerical approximation should be explicit—it should not arise

from implicit over�ow. This is a hardware-speci�c bug; it does not

arise in the original (�oating-point) TVM code.

In this case, the warning comes from an exponentiation compo-

nent in the �nal softmax layer. The component computes 4G , and it

over�ows on large inputs G . We �x the bug by modifying the soft-

max kernel to normalize the inputs it provides to the exponentiation

component. In pseudocode:

def softmax(v: List[float]): List[float]

e = exp(v - max(v))

return e / sum(e)

Numerical approximation is crucial for high-performance hardware

accelerators but challenging to debug for traditional RTL simulators.

They cannot quickly localize such problems because the same �xed-

point multiplier could be time-multiplexed and used by multiple

parts of the circuit. Additionally, they silently propagate over�ow

errors since they do not consider over�ows anomalous. By imple-

menting Calyx’s higher-level semantics, Cider imposes stronger

restrictions on program behavior to aid design of computational

accelerators.

8 PERFORMANCE EVALUATION

Performance is important for a productive debugging work�ow. To

complement our qualitative case studies that demonstrate Cider’s

ability to help �nd bugs, this section quantitatively measures its

performance. We answer these questions:

• Does simulating Calyx programs with high-level control

�ow improve performance?

• How does Cider compare to state-of-the-art RTL simulators?

• Can Cider scale up to large accelerator designs?

We compare Cider against two open-source RTL simulators: Veri-

lator [41] and Icarus Verilog [44]. Verilator simulates Verilog pro-

grams by �rst compiling them to C++, whereas Icarus Verilog acts

as an interpreter. Cider is not heavily optimized and does not seek

to outperform these RTL simulators; our evaluation seeks to under-

stand the fundamental performance impact of exploiting control

information.

786

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

9 RELATED WORK

The mainstream tools for debugging hardware designs are register-

transfer level (RTL) simulation [41, 44, 47] and waveform visualiza-

tion [9]. As Section 2.1 describes, RTL simulation produces detailed,

cycle-by-cycle traces for every signal in a design. This granularity

can make it di�cult to reconstruct the logic of a high-level acceler-

ator description, which is Cider’s focus. Cider’s primary di�erence

is in the way it exploits coarse-grained temporal information that

can illuminate when and where a bug arises.

Some work accelerates simulation using �eld-programmable

gate arrays (FPGAs) by incorporating special debugging logic such

as scan chains [39] or using vendor-speci�c tools to monitor FPGA

execution [21, 45]. Recent work [4, 37] addresses the latency of

FPGA compilation using a JIT-like method where designs start in

software simulation and then migrate individual modules to faster

FPGA emulation. While FPGA-accelerated debugging is fast, it still

works on RTL descriptions and does not map to high-level language

semantics.

Recently, Ma et al. [29] taxonomized RTL bugs found in open-

source Verilog code and proposed instrumentation techniques to

help detect these patterns. These bugs and tools re�ect mistakes

in manual RTL design, whereas this paper focuses on supporting

high-level languages that generate hardware. Ma et al.’s tools focus

on detecting particular bug patterns rather than on general-purpose

interactive exploration.

Cuttlesim [34] implements software-like debugging for Kôika [8],

a Bluespec-like HDL, by generating human-readable C code and

relying on an o�-the-shelf software debugger. It lets programmers

observe the application of Kôika’s rules, which are sub-cycle units

of hardware logic. Cider, in contrast, focuses on stepping through

Calyx’s control operators, which are much higher level and can

encapsulate many clock cycles. Whereas Kôika and Cuttlesim are

suited to manually designing arbitrary hardware such as processors,

Calyx and Cider focus on debugging computational accelerators

that are automatically generated from high-level languages.

HGDB [48] uses RTL simulation to provide source-level debug-

ging for RTL generators such as Chisel [5]. Like Cuttlesim, HGDB

focuses on low-level RTL design, not on high-level languages with

software-like control �ow.

Some tools for high-level synthesis (HLS) C-to-RTL compilers

share Cider’s goal of source-level debugging. Proposals include gen-

erating special cycle-level models as part of HLS compilation [12,

30], instrumenting the generated RTL to output position informa-

tion [10, 16, 27], or pushing source position information through

the compiler stack [18]. Such tools are tied to speci�c HLS input

languages; they do not provide a �exible framework for debug-

ging arbitrary input languages. Because they rely on imperative

input languages, they are poorly suited to more unconventional

domain-speci�c frontends like Calyx’s systolic array generator.

10 CONCLUSION

A new generation of higher-level programming models should

inspire modern tooling that raises the level of abstraction for de-

velopment, debugging, and deployment of hardware accelerators.

Traditional HDL tools are not up to the challenge. The CIRCT

project [35] for incubating an ecosystem of interoperable hardware

generation IRs has recently included a Calyx MLIR dialect as one

of the steps in their compilation �ow from high-level machine

learning programs to hardware. This both broadens the ecosystem

that can take advantage of Cider and suggests a wide audience for

similar tools. Cider shows how tools can exploit the computational

structure that undergirds accelerators to organize time and infor-

mation and thus build better mechanisms for understanding their

execution.

ACKNOWLEDGMENTS

We thank Andrii Iermolaiev, YoungSeok Na, and Alma Thaler for

their contributions to the implementation of Cider’s interpreter.

Alexa VanHattum, Drew Zagieboylo, Owolabi Legunsen, and Ryan

Doenges generously provided feedback on early drafts of this paper.

We also thank the anonymous reviewers and our shepard for their

feedback.

This work was supported in part by the Center for Applications

Driving Architectures (ADA), one of six centers of JUMP, a Semi-

conductor Research Corporation program co-sponsored by DARPA.

It was also supported by the Intel and NSF joint research center

for Computer Assisted Programming for Heterogeneous Architec-

tures (CAPA). Support also included the Google Research Scholar

Program and NSF awards #1845952, #1723715, and #2124045.

A ARTIFACT APPENDIX

A.1 Abstract

This artifact consists of one piece of software, the Cider Interpreter

and Debugger for Calyx, alongside data and helper scripts. The

artifact is archived at: https://zenodo.org/record/7222728

We have also published a pre-built Docker image with all the

requisite dependencies.

A.2 Artifact check-list (meta-information)
• Binary: All binaries are included in the Docker image.

• Run-time environment: Requires Docker or the following in a

Unix environment:

– rustc 1.60.0

– Verilator 4.220

– Icarus Verilog 11.0

– Dahlia from commit fa7abb016b

– Calyx (fud, futil, and interp) from commit 195b0a5eca

– Python 3, including pip

A full package list is in the artifact’s README.

• Metrics: Execution time

• Output: The �gures shown in the paper

• Experiments: Scripts are provided for running the experiments

• How much disk space required?: 40 GB

• How much time is needed to prepare work�ow?: 1 hour

• Howmuch time is needed to complete experiments?: 24–36

hours

A.3 Description

A.3.1 How to Access. The artifact is available in two forms:

• A Docker image with all artifacts installed

• Source code, from a GitHub repository

The instructions for both approaches are online at:

https://github.com/cucapra/cidr-evaluation

788

https://zenodo.org/record/7222728
https://github.com/cucapra/dahlia/tree/fa7abb016b3fa9ee4b46e2a64e1be29bd889f45e
https://github.com/cucapra/calyx/tree/195b0a5ecaf39e85ab1dd4439601e7ed14f178ef
https://github.com/cucapra/cidr-evaluation

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gri�in Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

To install locally and run the scripts, follow the instructions in

the README.md �le at the root of the repository.

A.4 Installation

For non-containerized installation, follow the instructions in the

README referenced above. Or, use the Docker image linked there.

A.5 Evaluation and expected results

This artifact seeks to reproduce the benchmark results discussed

in our performance evaluation as well as the debugging process in

Section 3. These are:

• Benchmark Data and Graph Generation: Generate the

graphs found in the paper using pre-supplied data:

– Core benchmark graphs (Figure 6)

– LeNet comparison (Table 2)

• Benchmark Correctness for each Simulator

• Data Collection

– Collect timing data for the full benchmark suite

– Generate new graphs and tables from the collected data

• Optional: Interactive Debugging with Cider.

– Debug the sample program with Cider (Section 3)

A.6 Methodology

Submission, reviewing, and badging methodology.

REFERENCES
[1] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE Std

1364-2005 (Revision of IEEE Std 1364-2001) (2006).
[2] Accellera. 2004. SystemVerilog 3.1a Language Reference Manual.
[3] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering—a New De�nition. In

International Symposium on Computer Architecture (ISCA).
[4] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining simulation and

hardware execution for e�cient FPGA debugging. In International Symposium
on Field-Programmable Gate Arrays (FPGA).

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a Scala embedded language. In Design Automation Conference (DAC).

[6] Zeev Barzilai, J Lawrence Carter, Barry K Rosen, and Joe D Rutledge. 1987. HSS–a
high-speed simulator. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (1987).

[7] Scott Beamer and David Donofrio. 2020. E�ciently exploiting low activity factors
to accelerate RTL simulation. In Design Automation Conference (DAC).

[8] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[9] Anthony Bybell. 2021. GTKWave. http://gtkwave.sourceforge.net.
[10] Nazanin Calagar, Stephen D. Brown, and Jason H. Anderson. 2014. Source-

level debugging for FPGA high-level synthesis. In International Conference on
Field-Programmable Logic and Applications (FPL).

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing
compiler for deep learning. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[12] Young-Kyu Choi, Yuze Chi, Jie Wang, and Jason Cong. 2020. Flash: Fast, parallel,
and accurate simulator for HLS. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2020).

[13] J. Cong and J. Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD).

[14] Ross Daly, Lenny Truong, and Pat Hanrahan. 2018. Invoking and Linking Gener-
ators from Multiple Hardware Languages using CoreIR. In Second Workshop on
Open-Source EDA Technology (WOSET).

[15] David Durst, Matthew Feldman, Dillon Hu�, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan.
2020. Type-Directed Scheduling of Streaming Accelerators. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

[16] Je�rey Goeders and Steven JE Wilton. 2014. E�ective FPGA debug for high-level
synthesis generated circuits. In International Conference on Field-Programmable
Logic and Applications (FPL).

[17] Craig Hansen. 1988. Hardware logic simulation by compilation. In Design Au-
tomation Conference (DAC).

[18] K Scott Hemmert, Justin L Tripp, Brad L Hutchings, and Preston A Jackson.
2003. Source level debugger for the Sea Cucumber synthesizing compiler. In
Field-Programmable Custom Computing Machines (FCCM). IEEE.

[19] Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021.
An Empirical Study of the Reliability of High-Level Synthesis Tools. In Field-
Programmable Custom Computing Machines (FCCM).

[20] Intel. 2021. Intel High Level Synthesis Compiler. Retrieved January 16, 2021
from https://www.altera.com/products/design-software/high-level-design/intel-
hls-compiler/overview.html

[21] Intel. 2021. Intel Signal Tap II. Retrieved November 19, 2021
from https://www.intel.com/content/www/us/en/programmable/quartushelp/
13.0/mergedProjects/program/ela/ela_view_using.htm

[22] Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

[23] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A language and compiler for application
accelerators. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[24] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming In-
frastructure for Software-De�ned Recon�gurable Computing. In International
Symposium on Field-Programmable Gate Arrays (FPGA).

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO).

[26] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation (1989).

[27] LegUp developers. 2015. LegUp High-Level Synthesis: Debugging. http://legup.
eecg.utoronto.ca/docs/4.0/debug.html

[28] Louis-Noel Pouchet. 2021. PolyBench/C: The Polyhedral Benchmark Suite. Re-
trieved January 16, 2021 from http://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/

[29] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and
Baris Kasikci. 2022. Debugging in the Brave New World of Recon�gurable Hard-
ware. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[30] Maxeler. 2021. MaxCompiler. Retrieved November 19, 2021 from https://www.
maxeler.com/products/software/maxcompiler/

[31] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable Ac-
celerator Design with Time-Sensitive A�ne Types. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[32] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A compiler
infrastructure for accelerator generators. In ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).

[33] Rishiyur Nikhil. 2004. Bluespec System Verilog: E�cient, correct RTL from high
level speci�cations. In Conference on Formal Methods and Models for Co-Design
(MEMOCODE).

[34] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, and Adam Chlipala. 2021.
E�ective simulation and debugging for a high-level hardware language using
software compilers. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[35] The CIRCT project. 2022. CIRCT. Retrieved October 26th, 2022 from https:
//circt.llvm.org/

[36] Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Logan Weber, Josh Pollock,
Luis Vega, Ziheng Jiang, Tianqi Chen, Thierry Moreau, and Zachary Tatlock. 2019.
Relay: A high-level compiler for deep learning. arXiv preprint arXiv:1904.08368
(2019).

[37] Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-in-time
compilation for Verilog: A new technique for improving the FPGA program-
ming experience. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[38] The GNU Project. 2021. GDB: The GNU Project Debugger. Retrieved November
17, 2021 from https://www.gnu.org/software/gdb/

789

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://gtkwave.sourceforge.net
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/program/ela/ela_view_using.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/program/ela/ela_view_using.htm
http://legup.eecg.utoronto.ca/docs/4.0/debug.html
http://legup.eecg.utoronto.ca/docs/4.0/debug.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.maxeler.com/products/software/maxcompiler/
https://www.maxeler.com/products/software/maxcompiler/
https://circt.llvm.org/
https://circt.llvm.org/
https://www.gnu.org/software/gdb/

Stepwise Debugging for Hardware Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[39] Anurag Tiwari and Karen A Tomko. 2003. Scan-chain based watch-points for
e�cient run-time debugging and veri�cation of FPGA designs. In Proceedings of
the ASP-DAC Asia and South Paci�c Design Automation Conference.

[40] Mike Turpin. 2003. The Dangers of Living with an X (bugs hidden in your Verilog).
In Boston Synopsys Users Group Meeting (14).

[41] Veripool. 2021. Verilator. https://www.veripool.org/wiki/verilator.
[42] Veripool Inc. 2021. Verilator array out of bounds behavior. https://github.com/

verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
[43] L-T Wang, Nathan E Hoover, Edwin H Porter, and John J Zasio. 1987. SSIM: A

software levelized compiled-code simulator. In Design Automation Conference
(DAC).

[44] Stephen Williams. 2021. Icarus Verilog. Retrieved November 8, 2021 from
http://iverilog.icarus.com/

[45] Xilinx Inc. 2021. ChipScope Integrated Logic Analyzer. Retrieved November 17,
2021 from https://www.xilinx.com/products/intellectual-property/chipscope_ila.
html

[46] Xilinx Inc. 2021. Vivado Design Suite User Guide: High-Level Syn-
thesis. UG902 (v2017.2) June 7, 2017. Retrieved January 16, 2021
from https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/
ug902-vivado-high-level-synthesis.pdf

[47] Xilinx Inc. 2021. Vivado Design Suite User Guide: Synthesis. UG901 (v2017.2) June
7, 2017. Retrieved November 19, 2021 from https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf

[48] Keyi Zhang, Zain Asgar, and Mark Horowitz. 2022. Bringing Source-Level De-
bugging Frameworks to Hardware Generators. In Design Automation Conference
(DAC).

Received 2022-07-07; accepted 2022-09-22

790

https://www.veripool.org/wiki/verilator
https://github.com/verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
https://github.com/verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
http://iverilog.icarus.com/
https://www.xilinx.com/products/intellectual-property/chipscope_ila.html
https://www.xilinx.com/products/intellectual-property/chipscope_ila.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Abstractions for Debugging Accelerators
	2.2 Calyx

	3 Debugging with Cider
	4 The Cider Interpreter
	4.1 Environment Model
	4.2 Structural Simulation
	4.3 Control Simulation
	4.4 Primitive Simulation
	4.5 Undefined Behavior

	5 Debugging Infrastructure
	5.1 Interactive Steppable Execution
	5.2 Breakpoints
	5.3 State Inspection
	5.4 Watchpoints

	6 Source-Level Debugging
	7 Case Studies
	7.1 Dahlia Compiler
	7.2 TVM-to-Calyx Compiler

	8 Performance Evaluation
	8.1 Benefits of High-Level Control
	8.2 Comparison to Verilog Simulation
	8.3 Scalability: LeNet Benchmark

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology

	References

