Stepwise Debugging for Hardware Accelerators

Griffin Berlstein
Cornell University
USA

Christophe Gyurgyik
Cornell University
USA

ABSTRACT

High-level programming models for hardware design let domain
experts quickly produce specialized accelerators. However, tools
for debugging these accelerators remain tied to low-level hard-
ware description languages (HDLs). High-level descriptions con-
tain control-flow information that is lost in HDL code. We describe
Cider, a stepwise debugger that exploits this information to provide
software-like debugging abstractions for languages that compile to
hardware. Cider uses Calyx, an intermediate language for accelera-
tor generators that preserves control information. Cider provides
breakpoints, watchpoints, state inspection, and source-level posi-
tion mapping. Using case studies that examine one new and two
preexisting accelerator generators, we demonstrate how Cider helps
find and localize previously unreported bugs. By directly simulat-
ing a control-rich representation, Cider avoids wasting effort on
inactive parts of the design and, despite being largely unoptimized,
performs competitively with open-source HDL simulators.

CCS CONCEPTS

« Hardware — Hardware description languages and compi-
lation; Bug detection, localization and diagnosis; Bug fixing
(hardware); « Software and its engineering — Software mainte-
nance tools.

KEYWORDS

Intermediate Language, Accelerator Design, Debugging, Accelera-
tor Simulation

ACM Reference Format:

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson.
2023. Stepwise Debugging for Hardware Accelerators. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS °23), March 25-29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3575693.3575717

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03...$15.00
https://doi.org/10.1145/3575693.3575717

778

Rachit Nigam
Cornell University
USA

Adrian Sampson
Cornell University
USA

1 INTRODUCTION

High-level programming models [13, 15, 23, 24, 31] have brought
accelerator design within reach of domain experts. Debugging these
designs, however, remains challenging. The mainstream option is
register-transfer level (RTL) simulation, which records the values
of every signal in the circuit on every clock cycle [41, 44]. Scanning
through a simulator’s waveform trace is radically different from
using a standard software debugger such as GDB [38]: there is no
“single-stepping” at any granularity other than clock cycles; there
are no breakpoints; and all program state is flattened into wire
signals. Worse, RTL simulators do not relate circuit state back to
the source code in a high-level language. Waveform debugging is
like using a software debugger that can only step through assembly-
level instructions, not source-level statements.

An alternative is to debug programs in the source language’s
semantics—for example, by writing an interpreter or by compiling it
to a software executable and using GDB [34]. High-level execution
can find functional problems, but it cannot help with bugs that only
arise in hardware. These bugs are common [19]. Generating hard-
ware from high-level descriptions is error-prone: compilers must
introduce cycle-level timing, explicit parallelism, custom numerical
representations, and physical resource sharing—all of which affect
correctness.

This paper describes Cider, a debugging framework for program-
ming languages that compile to hardware accelerators. The key
contribution is in implementing a flexible program step abstraction
that can correspond to source-level constructs in high-level lan-
guages. These steps undergird familiar interactive debugging tools,
such as breakpoints, single stepping, and watchpoints, and they
enable source-level stepping.

Our framework needs a program representation that can expose
these coarse-grained program steps while faithfully simulating
hardware-level semantics. Hardware description languages, such as
Verilog [1], Bluespec [33], or Chisel [5], do not suffice because they
have no information about high-level programs’ control flow. By
the time an accelerator compiler has generated Verilog code, all the
control information is encoded as state-machine logic, multiplexer
signaling, and other unstructured hardware. We instead build Cider
on Calyx [32], an existing intermediate language for accelerator
compilers that preserves control information from high-level lan-
guages.

Cider’s insight is that, by using a higher-level representation
rather than an HDL, we can exploit control flow information already
present in accelerators to provide stepwise, source-level debugging
for languages that compile to hardware. Figure 1 depicts Cider and
its relationship to the existing Calyx compiler. Cider executes Calyx

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

High-Level Language

! '

Position
CalyxIL Metadata

Source-Level
Mapping (§6)
v

Interactive
Debugger (§5)

v

Flexible Calyx
Interpreter (§4)

[| e [

Compiler Passes

NALL

Lowered Calyx IL

L Cider (this paper)

’ SystemVerilog

Figure 1: Cider is a stepwise debugger that directly executes
the Calyx intermediate language for hardware accelerator
generation without first compiling to RTL descriptions.

IL directly, without relying on Verilog semantics or simulators, and
uses position metadata to provide source-level debugging.

Cider supports three different user populations. It lets domain
specific language (DSL) developers quickly prototype new compilers
targeting Calyx and can help localize bugs in these compilers. As
compilers mature, developers can add source mapping information
to provide end users with a native debugging experience through
Cider. Finally, Cider can help Calyx compiler engineers localize
bugs in the core compiler toolchain and improve the stability of the
entire ecosystem.

This paper’s key contributions are:

e We design an interpreter for the Calyx intermediate lan-
guage [32] by distilling an (informal) IL-level semantics in-
cluding its undefined behavior. The only previous imple-
mentation of Calyx was a compiler to RTL, which left these
semantic details under-specified.

o Using the interpreter, we implement a debugger that provides
software-like debugging constructs such as single stepping,
breakpoints, watchpoints, and state inspection.

o We build flexible source-level mapping for Cider, which lets
frontends step at the level of source-code constructs.

o We perform two case studies using Cider to debug accelerator
generators: a loop-based imperative language [31] and a
machine learning framework [11].

e We compare Cider’s performance to RTL simulation. Cider
is 4.2x faster than Icarus Verilog [44], an interpreter-based
simulator, and 2.9% slower than Verilator [41], a compilation-
based simulator. Cider’s performance advantage stems from
exploiting control information to avoid wasted effort simu-
lating irrelevant parts of a design.

2 BACKGROUND

This section summarizes the mainstream debugging tools available
to accelerator designers (Section 2.1) and introduces Calyx [32], the
program representation that Cider builds upon (Section 2.2).

779

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

2.1 Abstractions for Debugging Accelerators

The lingua franca for hardware design is register-transfer level
(RTL) descriptions. Programmers can implement computational
accelerators directly in RTL or use higher-level languages that com-
pile to it [15, 23, 31, 46]. Designers can therefore debug accelerators
at two levels of abstraction: at the functional level, before compiling
to RTL; or in RTL, using waveform debugging.

Waveform debugging. RTL code describes how to compute the val-
ues in wires and registers each clock cycle. Designers debug a
hardware design by either simulating it in software [34, 41, 44] or
by running it on an FPGA and recording a subset of the signals
using a logic analyzer [16, 21, 45]. Either route produces a waveform
trace that exhaustively records, on every clock cycle, the value of ev-
ery monitored signal. Waveform viewers [9] let designers visualize
values while zooming and panning through linear time.

Waveforms reflect RTL semantics, so they can be difficult to
associate with bugs that occur in higher-level languages that com-
pile to RTL. They make it hard to temporally localize when a bug
happens because the only notion of time step is a clock cycle—not a
logical program step. They also complicate spatially localizing bugs
because all signals may be equally relevant at any time.

Reacting to this difficulty, tools like Cuttlesim [34] improve post-
compilation RTL debugging by raising the abstractions to the level
of rule-based hardware design languages, such as Kdika [8]. Like
HDLs, these languages and tools are built for hardware designers
and excel at designing arbitrary circuits and CPUs. Our focus in
this paper is instead on high-level algorithmic and domain-specific
languages that aim to let domain experts productively design com-
putational accelerators.

Functional debugging. The alternative to waveform debugging is
executing programs using their high-level language semantics, be-
fore compiling to RTL. For example, high-level synthesis (HLS)
compilers translate C to RTL [20, 46]; designers can debug these C
programs directly with standard tools like GDB [38]. This approach
cannot catch bugs introduced during the compilation to hardware.
While users may hope that hardware compilers are always faith-
ful to language semantics, in practice this is rarely the case. Bugs
pervade even popular commercial HLS tools [19]. Fundamentally,
compilation to RTL needs to introduce hardware-level concerns
that are difficult to fully abstract, such as custom numerical formats
and pervasive fine-grained parallelism. To bridge this semantic gap,
some work has aimed to map waveform data back to high-level
program state [12, 16, 18]. However, these efforts are point solutions
specific to C-based HLS tools—each new compiler must build such
a capability from scratch.

The goal of our work is to provide an infrastructure for debugging
in languages that compile to hardware. We build a core debugging
engine that exploits the control information from a given high-level
language while faithfully executing hardware-level simulation.

2.2 Calyx

Calyx [32] is an intermediate language (IL) for hardware generation.
It combines hardware dataflow and control flow. Unlike software
ILs [25], it directly represents physical hardware resources; unlike

Stepwise Debugging for Hardware Accelerators

1 const step:
2 fn counter(x:
3 dest X3

4 for _ 1in 0..4 { dest += step; }
5 return dest;
6

}

real = 1.0;
real) {

Figure 2: Pseudocode that computes dest = x + 4 X step.

component counter(go: 1, x: 32) -> (done: 1) {

1
2 cells {

3 dest_m = 1D_memory(32, 1);

4 step = constant(32, 32768);

5 acc_r = register(32); ddx_r = register(2);

6 fpa = fixed_point_adder (32, 16, 16);

7 add = adder(2);

8 le = less_than_equal_to(2);

9}

10 wires {

1 group init { ... } // idx_r <- 0, acc_r <- x

12 group incr_idx {

13 add.left = ddx_r.out; add.right = 2'd1;

14 idx_r.in = add.out; idx_r.write_en = 1'd1l;

15 incr_idx[done] = idx_r.done;

16 3

17 group incr_st {

18 fpa.left = acc_r.out; fpa.right = step.out;
19 acc_r.in = fpa.out; acc_r.write_en = 1'dl;

20 incr_st[done] = acc_r.done;

21 3

22 group upd {

23 dest_m.write_en = 1'dl; dest_m.addr® = 1'd1;
24 dest_m.in = acc_r.out; upd[done] = dest_m.done;
25 3

26 // Loop condition

27 comb group cond { le.left = idx_r.out; le.right = 2'd3; }
28}

20 control {

30 seq {

31 init;

32 while le.out with cond {

33 par { incr_idx; incr_st; }

34 }

35 upd;

36 3

37}

38 }

Figure 3: A Calyx component generated from Figure 2. It uses
a fixed-point approximation of real values with 16 integral
and fractional bits.

hardware ILs [14, 22], it explicitly encodes logical control flow using
imperative control operators.

This section explains Calyx by showing how it compiles a simple
high-level program. The program in Figure 2 implements a simple
counter that iteratively increments the input, x, by four times the
value of step, here defined as 1.0. Figure 3 lists a Calyx implemen-
tation of this function; we introduce its constructs in this section.
Section 3 uses the same example to show how our proposed system,
Cider, enables productive debugging of hardware accelerators.

Components. Calyx’s analog to a function definition is a component,
which encapsulates a set of hardware resources along with a control
flow description. Components have input and output ports that
define their interface. Our counter component has an input port
corresponding to the example function’s argument, x:

1 component counter(go: 1, x: 32) -> (done: 1)

780

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Every port has a bit width. We implement the pseudocode’s real
type with a 32-bit fixed-point number. Calyx uses one-bit interface
ports go and done to transfer control to and from a component.

Structure. Lines 1 and 3 in Figure 2 declare variables, dest and
step. To implement these in hardware, we need a constant and a
mutable memory. Calyx components instantiate subcomponents in
their cells section (lines 2-9 of Figure 3):

3 dest_m = 1D_memory (32, 1);

4 step = constant(32, 32768);

Here, constant and 1D_memory are components built into Calyx’s
standard library. The step declaration includes a bit width (32) and
a value; the dest_m memory specifies its element width (32) and
size (1).

Groups. We next implement the for loop on line 4. First, the Calyx
program instantiates two registers to hold the accumulated dest_m
value and the loop counter:

5 acc_r idx_r register(2);

register(32);

The program also needs machinery to increment and check the
loop-control register idx_r and to perform the fixed-point accu-
mulation:

6 fp fixed_point_adder (32, 16, 16);

a
7 add adder(2);
8 le = less_than_equal_to(2);

The fixed-point adder controls the numerical representation for
dest_m in the high-level program (here, 16 bits each for the integer
and fraction parts). We also include the add and le comparator
cells to implement the loop’s iteration.

Calyx components define groups which implement logical op-
erations by wiring together their cells. Our example uses a group
incr_st to implement the loop body, dest_m += step:

17 group incr_st {
18 fpa.left = acc_r.out; fpa.right = step.out;
19 acc_r.in = fpa.out; acc_r.write_en 1'd1l;

20 incr_st[done] = acc_r.done;

21 }

Calyx groups consist of simultaneous (unordered) assignments
between ports. This group feeds the fixed-point adder, fpa, with two
inputs: acc_r.out, the current value of the accumulator register,
and step.out, a constant value. It then writes the sum into acc_r
by setting its input port and its write-enable control port, write_en.
The final line assigns to a special done signal indicating when the
group’s work has finished.

The Calyx implementation in Figure 3 includes a similar group
incr_idx to increment the loop index and a combinational (state-
less) group cond that uses the le comparator to check the loop
condition. Finally, the init and upd groups initialize and finalize
the state for the function. The rest of the Calyx code will use these
small units of computation to implement the example’s logic.

Control. Finally, Calyx components use a control program to orches-
trate the named groups. A component’s control section resembles
an imperative program where the leaf statements are group names.
Our example uses a whi le statement to implement the loop:

32 while le.out with cond {
33 par { incr_idx; incr_st; }

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

The incr_idx and incr_st statements are group activations that
invoke the connections in the group. Calyx includes a par statement
that runs these actions in parallel. The while loop runs until the
cond group produces zero on the le.out port. The full program
sequences loop with the initialization and clean-up groups:

30
31

seq {
init;

32 while ... {...}

35 upd;

36 }
Calyx also has a conditional statement i f and a call-like operator
invoke to run subcomponents.

Figure 3 lists the complete example code. The existing Calyx com-
piler translates this code to RTL by implementing state machines
and other control logic to orchestrate the groups’ assignments; for
more detail, see Nigam et al. [32]. Cider debugs Calyx programs
by directly executing their control programs instead of translating
them to hardware.

3 DEBUGGING WITH CIDER

Figure 3 has a bug. If we use the Calyx compiler to translate it
to Verilog and run it with an RTL simulator [41], it runs forever;
there is an infinite loop. This section uses this buggy program as
an example to demonstrate the use of our new system, Cider, in an
accelerator debugging workflow.

The fact that this program runs forever would be immediately
confusing to a user debugging solely from the high-level code in
Figure 2. After all, the only loop in that program is a bounded for
loop! Clearly, there has been an error in translating the high-level
for loop into the Calyx wh1ile loop that realizes it. Using Cider, we
can directly observe this problem.

State inspection and watchpoints. Cider includes an interpreter for
the Calyx IL: it can execute the program without compiling it to
RTL code first. To start the debugging process, we run the program
using Cider; immediately, we see:

WARN - Integer overflow, source: counter.add

Since Verilog’s integer operators silently allow overflow, the sim-
ulator issues no warning. Cider, in contrast, implements Calyx’s
semantics, in which implicit overflow is an error. And since all
components have an explicit name, Cider can report the specific
adder that produces the error.

This warning reveals that the two-bit adder responsible for in-
crementing the loop counter is overflowing, though it is not yet
clear whether this overflowed value gets saved in the counter reg-
ister. We can start Cider’s interactive debugger and step through
the program execution to see how the value in idx_r, the loop
counter, changes after each execution of incr_idx, the only group
which uses counter.add. Cider’s watchpoints allow this kind of
inspection:

idx_r.out = [00] // MSB on the left, dinitial val
> watch after incr_idx with print idx_r.out
> continue
idx_r.out = [01]
idx_r.out = [10]
jdx_r.out = [11]
WARN - Integer overflow, source: counter.add
idx_r.out = [00]

781

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

Here we see how Calyx groups enable a coarser view of time. Cider
knows what groups are running, which lets users inspect signals
only at computationally relevant points in time. This watch com-
mand instructs Cider to print the value of dx_r.out every time
the group incr_1idx finishes executing (specified by after). The
counter overflows after being incremented to 112 = 3. On closer in-
spection, we notice that our condition group cond implements the
comparison idx_r.out < 3; however, since the maximum value
representable with two bits is 3, the condition will always hold. To
fix this issue, we can change the counter register idx_r to contain
three bits. The corrected line reads:

5 acc_r register(32); ddx_r register(3);

This demonstrates the advantage of building debugging abstrac-
tions using coarse-grained (non-cycle-based) temporal schedules.
Users can step over several clock cycles of execution and focus on
specific sub-circuits while debugging. In contrast, traditional RTL
simulation works only at the level of clock cycles, forcing users to
untangle logically unrelated signals.

Value representations and breakpoints. After fixing the overflow, we
execute it again using Verilator. This time, the program finishes
executing, but the output memory dest_m contains the value 0.
Cider reports this error:

Error (counter.dest_m): Invalid memory access. Given index (1)
but memory has size (1)
Cider’s runtime checks catch an invalid memory access. Again, such
errors are not caught at the RTL level—out-of-bounds indexing
silently yields an undefined value. dest_m contains exactly one
element which means the only valid index into it is 0. However, the
upd group attempts to index it using 1:

23 ...; dest_m.addr® = 1'd1l;

While an obvious bug, neither Verilator nor Icarus Verilog catch
it. For example, Verilator specifies that out-of-bounds accesses are
only checked when the memory size is a power of two [42]. To fix
this, we can change the assignment’s right-hand side to 1'de.
Finally, the RTL simulation terminates with this output:

"dest_m": [100000000000000000]

The value here is incorrect, but it is hard to tell when reading the
bit-level representation. The value is the fixed-point representation
of 2.0 whereas it should be 4.0. Fortunately, like some waveform
visualizers [9], Cider can reinterpret bit-level values easily.

To debug this incorrect value, we can use breakpoints. Cider sup-
ports breakpoints that stop execution at Calyx groups. We interac-
tively set a breakpoint on the group incr_st, which is responsible
for incrementing the input value:

> break incr_st // set breakpoint on dncr_st

> continue // advance until breakpoint
Breaking: counter::incr_st
> print \u.16 acc_r.out

acc_r.out = 0 // before the increment
> step-over incr_st // advance past increment group
> print \u.16 acc_r.out

acc_r.out = 0.5 // should be 1.0!

While the break and continue commands let us control the execution,
step-over lets us skip logical chunks of the execution. There is no
equivalent to step-over in RTL simulation since there is no logical
time step beyond a clock cycle. Cider’s print command supports

Stepwise Debugging for Hardware Accelerators

control . 4 L
rp_a;
oo
_bs
}grp_c; P < g
} i |
— _ I |
control { [——— J
par { N Component.out = #
8rP_a;j «_|
grp_b; < i i
main.my_mul main.my_add
P -
}]
R o I R [| St
g I . J ;
[t 7 °

Figure 4: The Cider interpreter’s internal state tree.

formatting codes like \u. 16 to print as an unsigned fixed-point
value with 16 fractional bits. We can see that, after the first execution
of incr_st, the value in acc_r is 0.5 instead of 1. The likely suspect
in this case is our fixed-point constant step. We can check this
hypothesis:

> print \u.16 step.out
step.out = 0.5
Writing fixed-point constants using unsigned integers is tricky; in
this case, the step value was incorrectly translated and needs to
be shifted to the right by one. The corrected definition is:

4 step = constant(32, 65536);

Cider leverages the high-level control flow of hardware accelerators
to provide software-like debugging abstractions. Unlike debugging
flows for RTL or customized accelerator generators, Cider pro-
vides a generic set of tools that interact with time and state in a
coarse-grained way. The key insight is that plain RTL is missing a
representation of an execution schedule that delineates the larger-
than-cycle steps in its execution, and it does not decompose the
hardware into logical groups that permit local reasoning. Break-
points, stepping, and watchpoints in Cider rely on the accelerator’s
own custom notion of granularity: its groups define the units of
work that programmers navigate through while debugging.

4 THE CIDER INTERPRETER

Cider’s execution engine is a new interpreter for Calyx programs.
Its goal is to faithfully implement Calyx’s semantics with a fail-stop
policy for undefined behavior (UB). Emitting actionable, timely
errors for UB is critical for surfacing subtle problems to users. This
policy is in contrast with the only other Calyx implementation,
which is a compiler to Verilog that resolves Calyx’s UB in arbitrary
ways to prioritize efficiency. Implementing this safe interpreter
forced us to design an informal semantics for Calyx independent
of compilation to hardware and make concrete decisions about
ambiguities in the original language description [32].

Our interpreter consists of a structural simulator (Section 4.2),
which executes individual groups in a setup resembling RTL sim-
ulation, and a control simulator (Section 4.3), which executes its

782

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

imperative control statements and uses the structural simulator as
a subroutine.

4.1 Environment Model

While software languages often represent their execution environ-
ment with a call stack, heap, and program counter, circuit simulation
demands different abstractions. Circuits have neither function calls
nor pointers; all state exists in specific storage elements and all
wires and ports are in the same execution scope. At every cycle,
values on any wire or port could potentially change. Furthermore,
there are no program counters because connections are always
active, even if quiescent.

Cider’s environment model lies between these two extremes.
As in circuit simulation, the environment contains values for all
ports in the program—there is a mapping from each cell, such as
a register, to its internal state. However, like software simulation,
there is also a program counter and execution stack embodied in
each component’s control schedule.

Figure 4 shows the environment structure: a tree of interpreter
environments where the parent-child relationship is structural con-
tainment. A child node is a subcomponent of the parent node. A
component’s local environment defines a mapping from each port
to a value and from each cell to its internal state, if any. The program
counter points to the currently active group in the component’s
control program. The environment handles par blocks by dupli-
cating the program counter and environment mappings, allowing
each “thread” to execute in its own parallel world (Section 4.3).

4.2 Structural Simulation

Cider’s structural simulator is its engine that executes individual
Calyx groups, ignoring control statements. As Figure 3 illustrates,
each group is an unordered set of simultaneous assignments to
ports. Interpreting a group therefore resembles classic RTL simula-
tion [6, 17]: the interpreter can treat the assignments as dataflow
“wires” that propagate values between cells. Structural simulation
takes the form of two nested loops: an inner loop that executes
assignments within a single cycle, and an outer one that iterates
across cycles.

The inner stabilization loop iteratively executes all assignments
until the port values stop changing. Components that represent
combinational logic, such as adders, update their output ports based
on their input ports. Calyx assumes assignments are non-conflicting,
so Cider raises an error if multiple assignments drive the same port
(Section 4.5). When the stabilization loop converges, a clock cycle
has completed and the outer simulation loop progresses, updating
cell state in sequential elements such as registers. The simulation
loop runs until the group’s done condition becomes true. Both loops
recursively evaluate subcomponents, traversing the environment
tree (see Figure 4) to update the state in each cell’s children.

This structural simulation strategy intentionally uses a basic
form of classic hardware simulation for clarity; Cider’s novelty
stems from the way it orchestrates structural simulation through
control. We expect that more advanced hardware simulation tech-
niques could apply analogously to Cider’s structural simulator to
improve its performance [7, 43].

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

4.3 Control Simulation

Cider’s control simulator executes Calyx’s control programs (lines
29-35 in Figure 3). It resembles interpreters for any imperative
language and delegates group execution to the structural simulator.
For example, it executes Calyx’s seq statement by recursively exe-
cuting each child statement to update the environment in turn. The
invoke statement transfers control to a subcomponent’s control
program and waits for it to finish. Other control operators like i
and while work similarly.

The exception is par, which runs several statements in parallel.
The interpreter simulates parallelism by advancing the child state-
ments together, one cycle at a time. The original Calyx paper [32]
left the precise semantics of parallelism largely undefined. In prac-
tice, the compiler offers no guarantees about the relative timing
between simultaneous arms of a par block. As a result, data races—
two accesses, at least one of which is a write, to the same value in
different arms of a par statement—yield undefined behavior. Cider
detects races and yields an error. It executes each child of a par
statement with a separate copy of the initial environment. Figure 4
illustrates a par statement in main.my_mul that yields three of
these “parallel universe” environments. When the par finishes, it
merges the copies while detecting conflicting updates to signal
errors on races.

4.4 Primitive Simulation

Calyx programs can use black-box RTL modules by defining their
interfaces using a primitive definition. Cider implements high-
level behavioral models for a set of core primitives. These primi-
tives appear at the leaves of the interpreter’s environment tree (see
Figure 4). Primitives interact with the interpreter through combina-
tional and stateful interfaces. The combinational interface interacts
with the stabilization loop to describe how to compute output val-
ues based on input values. The stateful interface lets components
store internal state on iterations of the simulation loop. A single
component may use both interfaces: for example, a memory may
implement combinational reads and sequential writes.

Cider’s primitive models differ from their Verilog implementa-
tion by prioritizing fail-stop behavior for UB. For example, arith-
metic primitives can signal warnings or errors on numerical over-
flow. While overflow has truncation semantics in RTL, it is an error
in Calyx—surfacing these errors can help identify problems with
numerical representations.

4.5 Undefined Behavior

Unlike a compiler, a debugger must predictably simulate incorrect
programs. We identify several categories of UB in Calyx and resolve
them predictably to aid debugging.

Undriven signals. Reading a port that has not been written is UB
in Calyx. HDL simulators typically model these undriven signals
with multi-value logic, using special values like “X” or “Z” in place
of concrete 1s and 0s. These special values can have counterintu-
itive semantics [40] and have no source-level interpretation. Cider,
like the Calyx compiler’s existing Verilog backend, uses 0 for all
undriven signals.

783

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

Table 1: Commands supported by Cider.

Command Description

break [grp]
step-over [grp]

Create a breakpoint at group
Advance the execution over a given group

step [n] Advance the execution by n steps (defaults to 1)

watch [grp] [prt] Watch a given group with a print statement

continue Continue till next breakpoint

display Display the full state

print [fmt] Print target value. fmt code describes how to interpret
the value

»

print-state [fmt]

where Displays the current program location. Uses source
metadata if present; otherwise shows Calyx program
(dis)enable Disable/Enable target breakpoint

Parallel conflicts. Calyx has DRF0 semantics [3]: data races between
different arms of a par statement have undefined behavior. The
compiler is therefore free to choose any relative timing among
groups of parallel threads, including running them sequentially.
To avoid unpredictable results from racy code, Cider implements
race detection to signal an error when different par arms issue
conflicting assignments to the same signals.

Intra-group conflicts. Calyx defines multiple active drivers to the
same port as an undefined behavior. This snippet of a Calyx group
contains two guarded Calyx assignments—such assignments are
only active when their conditional is true:

r.in
r.in

cond_a ? 32'd5;
cond_b ? 32'd7;

If cond_a and cond_b are simultaneously true then these two as-
signments will both write distinct values to the same port and Cider
will raise an error.

Loop trip-count bounds. Calyx programs use the attribute @bound
to provide loop trip counts for while statements. This attribute
provides static information about the number of iterations a loop
will conduct, which results in more efficient Calyx lowering. Dis-
agreements between this annotation and the actual loop logic can
cause miscompilation. Cider validates the loop bound by tracking
the loop iteration count.

Invalid memory indexing. Out-of-bounds memory accesses are UB
in Calyx. Whereas RTL simulators silently yield default values for
invalid indices [2], Cider eagerly signals an error.

5 DEBUGGING INFRASTRUCTURE

We build Cider’s debugging mechanisms on top of its interpreter
from the previous section. Cider can execute any Calyx program,
but is most powerful when debugging high-level Calyx programs—
those with complex control programs and many fine-grained groups.
Cider exploits this control information in accelerators generated by
higher-level languages and cannot recover this information from
arbitrary RTL code.

5.1 Interactive Steppable Execution

RTL simulators can only advance, or step, the program in clock-
cycle increments, if they support interactive execution at all: wave-
form debugging typically works in batch mode. Cider provides
a more software-like debugging experience with manual control

Stepwise Debugging for Hardware Accelerators

over program advancement and commands to display the current
program counters (or source locations, see Section 6). Cider accom-
plishes this with a coarser-grained notion of a program step built
using the control program and group abstraction in Calyx.

Two central constructs in Cider are a step-over command that
advances execution past the current group and a lower-level step
(cycle) for finer-grained inspection of a group’s execution. Stepping
over lets users examine computation in logical steps that are larger
than a single cycle. Even functionally simple groups can take mul-
tiple cycles: a multiplication, for instance, might take 3 cycles each
time it runs. Being able to step over such a computation means the
user can think of it in terms of input/output behavior—the same
way we think of functions in software—and only resort to cycle-
level timing when necessary. Additionally, users can focus on the
set of active groups to understand where bugs may arise instead of
having to look at the entire state of the circuit every cycle.

This section describes the three debugging mechanisms in Cider
that build on the interpreter and these core constructs: breakpoints,
state inspection, and watchpoints.

5.2 Breakpoints

RTL simulators generally do not support breakpoints since there is
no discrete computational unit to break on. For example, setting a
breakpoint on a line is unlikely to be helpful because, in general,
assignments “run” every cycle. This is true even in the presence of
conditional blocks in RTL, which compile into multiplexers and thus
always compute all their inputs. Worse, a conditional statement in
a high-level language is unlikely to correspond to an 5 f statement
in Verilog, making the relationship with source code hard to track.

In contrast, Calyx’s groups present a natural opportunity to im-
plement breakpoints since they represent discrete computational
blocks that the control program schedules. Cider supports setting
breakpoints on any group in the Calyx program and provides a
continue command that advances the execution until it hits a break-
point or the end of the program.

Breakpoints and continue let the user skip program segments
that they know to be behaving correctly and keep their attention
on potential error sources. As a result, Cider can reduce the signal-
to-noise ratio in the debugging experience. This listing shows a
simple interaction:

> break conv2d:upd20
> continue
Hit breakpoint: conv2d::upd20
> print-state main.conv2d.kl
ki = []
> step-over conv2d::upd20
> print-state main.conv2d.kl
ki = [

000000000000000000000000000001]

This snippet uses a breakpoint and the step-over and print-
state commands on a subcomponent’s group to inspect the state
update it performs. This prints out the internal state associated
with the register k1 in the conv2d component.

Breakpoints are set on component definitions—the global decla-
ration of a component’s behavior—rather than instances, akin to
how software debuggers place breakpoints in function definitions
rather than specific calling contexts. This means that if there are
multiple instances of a single component, any of these instances
will trigger the breakpoint.

784

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

5.3 State Inspection

The state of a circuit consists of the bit values on each port and wire.
While some waveform viewers [9] support custom formats, wave-
forms generated by RTL simulations usually make this data avail-
able in the form of unsigned integers in binary, decimal, or hexa-
decimal representations. However, designing high-performance ac-
celerators requires using custom data formats, such as fixed-point
numbers.

Cider supports two commands for printing data: print, which
prints out the value on a port, and print-state, which prints
the value stored in stateful primitives like registers. They support
format codes which can reinterpret bit values as unsigned or signed
fixed-point or decimal numbers. These two commands show two
different formats for the same value:

> print \u div.out_quotient
div.out_quotient = 424967279
> print \s div.out_quotient
div.out_quotient = -17
The format codes \u and \s represent data as unsigned or signed
integers. To use a fixed-point format, we can specify the number of
bits in the fractional part. For example, \u. 16 formats the port as
an unsigned fixed-point number that uses 16 bits for its fractional
part.

5.4 Watchpoints

Watchpoints are a common command provided by software debug-
ging tools. Unlike breakpoints, watchpoints do not interrupt the
execution of the program and instead just print out the value of a
particular port. Watchpoints are particularly useful when the user
wants to understand how a value changes throughout execution:

> watch incr with print-state \u i
> continue

i=e di=1 di=2 i-=3

This compressed snippet uses a watchpoint to track the value of a
loop counter over the life of a simple program.

Cider supports watchpoints that trigger at the start or end of a
group’s execution by desugaring them into a breakpoint, print, and
continue command (or a breakpoint, step-over, print, and continue
for watchpoints attached after a given group). Cider provides both
options to streamline the observation of a group’s effects. Because
watchpoints track individual ports or cells, they provide a narrow
lens for spatial bug localization, which is ideal for determining if a
specific piece of logic is incorrect.

6 SOURCE-LEVEL DEBUGGING

While Cider’s core machinery implements steps at the level of Calyx
IL control statements, it can use these steps to provide source-level
stepping through frontend language constructs. Cider provides a
flexible way to associate Calyx-level positions with source-level
positions. We introduce Cider’s source position tracking using
Dahlia [31], a loop-based imperative language that compiles to
Calyx, as an example.

Figure 5 lists an example Dahlia program that doubles the ele-
ments of an array. We modify the Dahlia compiler to attach source-
position metadata to the IL via Calyx’s metadata attributes. An
attribute @pos (n) marks a control statement with an integer tag n.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

decl x_int: ubit<32>[8];
decl y_int: ubit<32>[8];

// Iteratively double value in array x and write it into y
for (let k: ubit<4> = 0..8) {

y_int[k] := x_int[k] * 2;
}

Figure 5: Dahlia code to double the elements of an array.

We also generate a table that maps each tag to a source position. For
our example, the Dahlia compiler emits this Calyx control program:

control {
seq {
@pos(0) leto;
@bound(8) while le@.out with cond® {
seq {
@pos (1) updo;
letl;
updl;
@pos(0) upd2;
3133}

And an embedded metadata table:

metadata #{

0: for (let k: ubit<4> =
iLg y_int[k]
T#

0..8) {
:= x_int[k] * 2;

The @pos tags attach a source position number to leaf nodes in the
control program and the metadata table associates each of these
with a source position. Tags need not be unique; in this example,
let0 and upd2 have the same tag because they both map to logic
that realizes the for loop in Figure 5. Some groups are missing @pos
tags because they represent intermediate computations without
direct correspondence in the source code.

Cider’s where command (Table 1) uses the attributes and position
table to display the source location for active control statements:

> where

y_int[k] := x_int[k] * 2;

Multiple locations may be active simultaneously because of paral-
lelism in the design; Cider reports all active positions.

Dahlia’s imperative control maps easily to Calyx’s control op-
erators. To demonstrate Cider’s flexibility, we encode source-level
information for a more esoteric frontend language, the systolic
array generator.

Systolic array generator. Calyx’s systolic array frontend differs from
other frontends because its input does not have source positions in a
typical sense. The input is a declarative description of a systolic grid
of processing engines (PEs) that collectively compute a single linear-
algebra operation. Cider’s flexible source-position debugging can
nonetheless convey high-level information about the computation’s
control flow.

We modify this frontend to generate metadata describing the
progress within each PE. The compiler attaches @pos tags to Calyx
invoke statements that advance PEs. Due to the design’s inherent
parallelism, multiple positions are active at a time:

> where
pe 0,1:
pe 1,0:
pe 0,2:

running iteration 2
running iteration 2
running iteration 2 ...

785

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

7 CASE STUDIES

We demonstrate Cider using bugs in two case studies: Section 7.1
uses the preexisting Dahlia-to-Calyx compiler [32], and Section 7.2
uses a new TVM-to-Calyx compiler.

7.1 Dahlia Compiler

Dahlia [31] is a loop-based language that uses a novel type system
to guarantee that the generated hardware does not have conflicting
memory accesses. Like other high-level synthesis tools, Dahlia
supports loop unrolling and memory partitioning to express DOALL
parallelism. We use the open-source Dahlia-to-Calyx compiler to
study the implementation of Polybench [28] and other kernels
reported in Nigam et al. [32].

Parallel writes to memories. Dahlia’s unroll keyword unrolls loops
to parallelize computation by duplicating hardware. The Calyx
backend for Dahlia relies on the type checker’s guarantee that
unrolled loops do not create memory conflicts. However, when
executing some of the Dahlia benchmarks, Cider discovers this
error:

Error: parallel assignments not disjoint: alpha.addr0
1. [e] 2. [0]

This message indicates a parallel conflict (Section 4.5), meaning
multiple groups are attempting to write to the same port in parallel.
We can debug this error by looking at individual groups that write
to alpha.addro. Unlike RTL debugging, we do not have to look at
every assignment to alpha.addro since only groups that are in a
parallel statement can cause this error. The two offending groups
are these:

group upd3l { alpha.addr® = 1'd0; .. } // Conflict

group upd32 { alpha.addr® = 1'd0; .. } // Conflict

control { par {@pos(117) upd31l; @pos(117) upd32;} .. }
As Section 4.5 describes, the parallel writes to alpha.addro are
illegal. The position tags help identify the corresponding source
line in Dahlia, in turn allowing us to localize and confirm the bug.!

An alternative to Cider in this case is instrumenting RTL to catch

multiple writes. We implement this strategy also by modifying
the Calyx Verilog backend. While this technique does let Verilog
simulation catch this conflict, it remains challenging to map it
back to the source-level Dahlia program since parallel assignments
in Verilog do not correspond one-to-one with statements in the
original Dahlia.

Parallel scheduling bugs. Next, we found a bug in the implementa-
tion of a softmax kernel in the Calyx test suite:
Error: parallel assignments not disjoint: x_0.1n
1. [0000] 2. [1101]
Cider detects another parallel write bug which is, surprisingly, not
caught by the above Verilog-level checks:
par {
letl;
seq { let2;
while lel.out with condl { seq { upd0®; updl; }}}}
The groups letl and upd1 write different values to the same regis-
ter x_0. Verilog simulation checks do not catch this bug because
the particular compilation strategy used by the compiler schedules

Uhttps://github.com/cucapra/dahlia/issues/384

https://github.com/cucapra/dahlia/issues/384

Stepwise Debugging for Hardware Accelerators

the two groups in a non-conflicting manner; any change to the
compilation scheme might trigger the run-time assertion. This is
the key difference between Cider’s checks and the checks in Calyx’s
RTL backend—the latter can only find problems in a particular RTL
realization of a Calyx program, while the former operates with
Calyx’s semantics.

7.2 TVM-to-Calyx Compiler

TVM [11] is an open-source machine learning compiler. We built a
TVM-to-Calyx compiler to test Cider’s efficacy at debugging large
accelerators. Our compiler generates Dahlia kernels from TVM’s
Relay IR [36], lowers them to Calyx, and stitches them together
to implement complete neural networks. This frontend generates
large, fixed-function implementations of DNNs. We do not claim
that the accelerators are competitive or even practical to realize on
an FPGA; we focus here on their correctness in simulation.

For our case study, we simulate a TVM implementation of the
LeNet network [26] compiled to Calyx. GPU-based execution of
this kernel uses floating-point operations that are too expensive for
FPGAs; we instead use a fixed-point approximation. Because of this
representation mismatch, we expect the Calyx program’s output to
differ numerically from TVM’s, which makes silently propagating
RTL bugs hard to recognize and localize. While our quick spot tests
on a few inputs with the Calyx code seem to work, our experience
with the Dahlia case study suggests that RTL semantics are too
relaxed to catch subtle bugs. We instead use Cider to catch possible
problems in the design.

Source locations. First, we extend the TVM backend to generate
source location information to aid debugging. The compiler gener-
ates a new component for each TVM operation and uses the invoke
operator to call them in the main component. Since each invoke
has a direct correspondence in the TVM source, we attach a unique
@pos tag for each one:

control {
@pos(0) invoke conv2d_1x20x24x24_(..)(..);
@pos(1l) invoke bias_add_1x20x24x24_(..)(..); .. }

And generate the corresponding metadata table:

metadata #{
0: let %x: Tensor[...] =
1: let %x1: Tensor[...] =

nn.conv2d(%data,
nn.bias_add(%x,

0008
coo)§ D

Out-of-bounds access. Cider immediately reports an out-of-range
memory access when we run the kernel:
Error (main.data): Invalid memory access. Given index (0, 1, 0,
0) but memory has dimension (1, 1, 28, 28)

The error states that in a four-dimensional memory, the second
dimension has size 1 but is being accessed with an out-of-bounds
index 1. Unlike RTL simulators, Cider treats this as a hard error
(Section 4.5). The debugger points to the main.data memory cell,
which is only used by the first component, a two-dimensional
convolution kernel.

The likely cause of this bug is an invalid loop nest. We investigate
the second index to the memory, which is driven by a loop counter
called k1. Setting a watchpoint at the beginning of the appropriate
inner loop, we see:

> watch conv2d::letl6 with print-state \u conv2d.kl

786

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

> continue

kl =0
ki =1 // Should not occur
Error: ...

Cider shows us that the inner loop runs multiple times, causing the
index to overflow. We investigate the loop-entry condition which,
checks if the value of k1 is less than or equal to const30.out:

> print \u conv2d.const30.out
const30.out = 19
The TVM-to-Calyx compiler generates incorrect loop bounds, run-
ning 20 times instead of once. We track the bug back to a function
that incorrectly takes a default value instead of computing the loop
bound for the convolution kernel. After fixing this bug in the TVM
compiler, this inner loop only runs once, and the error disappears.

Fixed-point overflow. Rerunning the LeNet kernel through Cider
reports a new warning:

WARN - Overflow in fixed-point multiplier:
81117.5903007190208882 to 15581.5902862548828125
source: softmax.powl.mul
All numerical approximation should be explicit—it should not arise
from implicit overflow. This is a hardware-specific bug; it does not
arise in the original (floating-point) TVM code.

In this case, the warning comes from an exponentiation compo-
nent in the final softmax layer. The component computes e*, and it
overflows on large inputs x. We fix the bug by modifying the soft-
max kernel to normalize the inputs it provides to the exponentiation
component. In pseudocode:

def softmax(v: List[float]):

e = exp(v - max(v))
return e / sum(e)

List[float]

Numerical approximation is crucial for high-performance hardware
accelerators but challenging to debug for traditional RTL simulators.
They cannot quickly localize such problems because the same fixed-
point multiplier could be time-multiplexed and used by multiple
parts of the circuit. Additionally, they silently propagate overflow
errors since they do not consider overflows anomalous. By imple-
menting Calyx’s higher-level semantics, Cider imposes stronger
restrictions on program behavior to aid design of computational
accelerators.

8 PERFORMANCE EVALUATION

Performance is important for a productive debugging workflow. To
complement our qualitative case studies that demonstrate Cider’s
ability to help find bugs, this section quantitatively measures its
performance. We answer these questions:

e Does simulating Calyx programs with high-level control
flow improve performance?

e How does Cider compare to state-of-the-art RTL simulators?

e Can Cider scale up to large accelerator designs?

We compare Cider against two open-source RTL simulators: Veri-
lator [41] and Icarus Verilog [44]. Verilator simulates Verilog pro-
grams by first compiling them to C++, whereas Icarus Verilog acts
as an interpreter. Cider is not heavily optimized and does not seek
to outperform these RTL simulators; our evaluation seeks to under-
stand the fundamental performance impact of exploiting control
information.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

10?

Interpreter (lowered) Simulation

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

Icarus Simulation
Verilator Simulation

.
‘2

Icarus Compilation
Verilator Compilation

=
A

10!

=
2

Icarus Simulation
Verilator Simulation

.
B

=
<

Normalized Simulation Time
Normalized Simulation Time

.
o

100

2MM
3MM
ATAX
BICG
LU
LUDCMP
MVT
SYMM
SYR2K
2MM
3MM
ATAX

DOITGEN
BICG

NTT 32
NTT 64
TCAM 32
TCAM 64
DURBIN
GEMM
GEMVER
GESUMMV
SYRK
TRISOLV
TRMM
Cholesky
Gramschmidt
NTT 32
NTT 64
TCAM 32
TCAM 64
DOITGEN

Benchmark program

(a) Simulating lowered programs

DURBIN

GEMM
GEMVER
GESUMMV

Benchmark program

(b) Simulation time (RTL simulators)

-
°

Normalized End-to-end time

LU
.
2

LUDCMP
LU

MVT
SYMM
SYR2K
SYRK
TRISOLV
TRMM
Cholesky
Gramschmidt
2MM
3MM
ATAX
BICG
DOITGEN
GEMM
GEMVER
LUDCMP
MVT
SYMM
SYR2K
SYRK
TRISOLV

GESUMMV
TRMM

NTT 32

NTT 64
TCAM 32
TCAM 64
DURBIN
Cholesky
Gramschmidt

Benchmark program

(c) End-to-end execution (RTL simulators)

Figure 6: Performance study for Cider. Simulation times are normalized to Cider simulation on high-level Calyx programs.

We also compare Cider when running high-level vs. low-level
Calyx programs. The existing open-source Calyx compiler [32]
lowers the control-heavy Calyx programs emitted by compiler
frontends to a control-free form that closely resembles RTL (see
Figure 1). Comparing these two forms lets us directly measure
the performance impact of Calyx’s control information that is lost
during compilation to RTL.

Our benchmarks consist of the Polybench kernels [28] written
in Dahlia [31], a Calyx implementation of a ternary content ad-
dressable memory (TCAM) for packet processing, and code from
a Calyx-generating Number Theoretic Transform (NTT) compiler
frontend. The NTT and TCAM variants have one program with
32 elements/writes and one with 64. We run each benchmark ten
times and take the average.

We run all experiments on a server with 512 GB of RAM, dual-
socket Xeon Gold 6230 processors for a total of 20 cores at 2.10 GHz,
running Ubuntu 20.04 LTS. We use g++ 7.5.0, Icarus Verilog v11.0,
and Verilator v4.220. We run the simulators with their default op-
tions, so Verilator produces a single-threaded C++ program. Cider
does not produce a trace, so we configure the simulators to behave
accordingly. We compile Verilator with the --trace flag but run
without setting Verilated: : traceEverOn so it does not generate
a trace. We implement Cider in Rust and compile it with rustc 1.60.0
(7737e0b5c¢); it is also single-threaded.

8.1 Benefits of High-Level Control

Figure 6a compares Cider’s execution time when running high-
level Calyx programs, as emitted by frontends, against the same
programs when compiled to fully structural (RTL-like) Calyx code.
Cider can exploit control information in high-level programs that is
lost in the equivalent lowered code, which forces Cider to simulate
the entire design on every cycle. High-level simulation is 20X faster
on average than structural simulation. For our benchmark with
the largest control program, NTT-64, high-level simulation is 124X
faster.

8.2 Comparison to Verilog Simulation

Figure 6b shows the simulation time only (not counting startup
time) for Verilator and Icarus Verilog normalized against Cider.

787

Table 2: LeNet execution time and slowdown w.r.t. Verilator.

Tool Compilation (sec.) ~ Simulation (min.) Slowdown
Icarus 0.3 215.04 +£1.89 27.9%
Cider — 26.05 £ 0.06 3.4%
Verilator 16.5 7.71 £ 0.008 —

Icarus Verilog is an interpreter, like Cider, and therefore starts
up quickly but simulates large designs less efficiently. Verilator
translates Verilog to C++ and relies on a standard C++ compiler,
so it incurs a long startup time but simulates more efficiently. In
simulation only, Verilator outperforms Cider by 2.9x while Cider
outperforms Icarus Verilog by 4.2x. For the largest benchmark,
NTT-64, Verilator is 1.4X faster than Cider and Cider is 59x faster
than Icarus Verilog.

We hypothesize that Cider’s performance advantage over Icarus
Verilog stems from its ability to skip executing inactive parts of the
program. High-performance RTL simulators also avoid re-executing
subcircuits whose inputs do not change, but this change tracking
comes with its own overheads that Cider can sidestep.

However, an accurate reflection of a programmer’s experience
must incorporate startup time. Modular compilation often does not
help with high-level accelerator generators, which typically regen-
erate the entire RTL design on every change. Figure 6¢ shows the
end-to-end running time, counting both compilation and simulation
time. In all cases, Cider finishes simulation before Verilator finishes
compilation. On average, Cider’s simulation is 53X faster than Veri-
lator’s compilation phase. This short end-to-end loop makes Cider
helpful for fast design iteration.

8.3 Scalability: LeNet Benchmark

In our final quantitative study, we measure how well Cider scales
to larger accelerator designs. We run the LeNet benchmark from
our TVM-to-Calyx compiler case study (Section 7.2), which is 3,598
lines of high-level Calyx across 17 components. Table 2 summa-
rizes the execution time for this benchmark under the three tools:
Cider is 8.3 faster than Icarus Verilog, while Verilator outperforms
Cider by 3.4X. Verilator’s up-front compilation pays off, but Cider’s
advantage over Icarus Verilog suggests that high-level control in-
formation still significantly reduces the total work required.

Stepwise Debugging for Hardware Accelerators

9 RELATED WORK

The mainstream tools for debugging hardware designs are register-
transfer level (RTL) simulation [41, 44, 47] and waveform visualiza-
tion [9]. As Section 2.1 describes, RTL simulation produces detailed,
cycle-by-cycle traces for every signal in a design. This granularity
can make it difficult to reconstruct the logic of a high-level acceler-
ator description, which is Cider’s focus. Cider’s primary difference
is in the way it exploits coarse-grained temporal information that
can illuminate when and where a bug arises.

Some work accelerates simulation using field-programmable
gate arrays (FPGAs) by incorporating special debugging logic such
as scan chains [39] or using vendor-specific tools to monitor FPGA
execution [21, 45]. Recent work [4, 37] addresses the latency of
FPGA compilation using a JIT-like method where designs start in
software simulation and then migrate individual modules to faster
FPGA emulation. While FPGA-accelerated debugging is fast, it still
works on RTL descriptions and does not map to high-level language
semantics.

Recently, Ma et al. [29] taxonomized RTL bugs found in open-
source Verilog code and proposed instrumentation techniques to
help detect these patterns. These bugs and tools reflect mistakes
in manual RTL design, whereas this paper focuses on supporting
high-level languages that generate hardware. Ma et al.’s tools focus
on detecting particular bug patterns rather than on general-purpose
interactive exploration.

Cuttlesim [34] implements software-like debugging for Koika [8],
a Bluespec-like HDL, by generating human-readable C code and
relying on an off-the-shelf software debugger. It lets programmers
observe the application of Koika’s rules, which are sub-cycle units
of hardware logic. Cider, in contrast, focuses on stepping through
Calyx’s control operators, which are much higher level and can
encapsulate many clock cycles. Whereas Koika and Cuttlesim are
suited to manually designing arbitrary hardware such as processors,
Calyx and Cider focus on debugging computational accelerators
that are automatically generated from high-level languages.

HGDB [48] uses RTL simulation to provide source-level debug-
ging for RTL generators such as Chisel [5]. Like Cuttlesim, HGDB
focuses on low-level RTL design, not on high-level languages with
software-like control flow.

Some tools for high-level synthesis (HLS) C-to-RTL compilers
share Cider’s goal of source-level debugging. Proposals include gen-
erating special cycle-level models as part of HLS compilation [12,
30], instrumenting the generated RTL to output position informa-
tion [10, 16, 27], or pushing source position information through
the compiler stack [18]. Such tools are tied to specific HLS input
languages; they do not provide a flexible framework for debug-
ging arbitrary input languages. Because they rely on imperative
input languages, they are poorly suited to more unconventional
domain-specific frontends like Calyx’s systolic array generator.

10 CONCLUSION

A new generation of higher-level programming models should
inspire modern tooling that raises the level of abstraction for de-
velopment, debugging, and deployment of hardware accelerators.
Traditional HDL tools are not up to the challenge. The CIRCT
project [35] for incubating an ecosystem of interoperable hardware

788

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

generation IRs has recently included a Calyx MLIR dialect as one
of the steps in their compilation flow from high-level machine
learning programs to hardware. This both broadens the ecosystem
that can take advantage of Cider and suggests a wide audience for
similar tools. Cider shows how tools can exploit the computational
structure that undergirds accelerators to organize time and infor-
mation and thus build better mechanisms for understanding their
execution.

ACKNOWLEDGMENTS

We thank Andrii Iermolaiev, YoungSeok Na, and Alma Thaler for
their contributions to the implementation of Cider’s interpreter.
Alexa VanHattum, Drew Zagieboylo, Owolabi Legunsen, and Ryan
Doenges generously provided feedback on early drafts of this paper.
We also thank the anonymous reviewers and our shepard for their
feedback.

This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semi-
conductor Research Corporation program co-sponsored by DARPA.
It was also supported by the Intel and NSF joint research center
for Computer Assisted Programming for Heterogeneous Architec-
tures (CAPA). Support also included the Google Research Scholar
Program and NSF awards #1845952, #1723715, and #2124045.

A ARTIFACT APPENDIX
A.1 Abstract

This artifact consists of one piece of software, the Cider Interpreter
and Debugger for Calyx, alongside data and helper scripts. The
artifact is archived at: https://zenodo.org/record/7222728

We have also published a pre-built Docker image with all the
requisite dependencies.

A.2 Artifact check-list (meta-information)

e Binary: All binaries are included in the Docker image.

¢ Run-time environment: Requires Docker or the following in a
Unix environment:

— rustc 1.60.0

- Verilator 4.220

- Icarus Verilog 11.0

- Dahlia from commit fa7abb016b

- Calyx (fud, futil, and interp) from commit 195b0a5eca

- Python 3, including pip

A full package list is in the artifact’s README.

Metrics: Execution time

Output: The figures shown in the paper

Experiments: Scripts are provided for running the experiments
How much disk space required?: 40 GB

How much time is needed to prepare workflow?: 1 hour
How much time is needed to complete experiments?: 24-36
hours

A.3 Description
A3l

e A Docker image with all artifacts installed
e Source code, from a GitHub repository

How to Access. The artifact is available in two forms:

The instructions for both approaches are online at:
https://github.com/cucapra/cidr-evaluation

https://zenodo.org/record/7222728
https://github.com/cucapra/dahlia/tree/fa7abb016b3fa9ee4b46e2a64e1be29bd889f45e
https://github.com/cucapra/calyx/tree/195b0a5ecaf39e85ab1dd4439601e7ed14f178ef
https://github.com/cucapra/cidr-evaluation

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

To install locally and run the scripts, follow the instructions in

the README . md file at the root of the repository.

A.4 Installation

Fo
RE

r non-containerized installation, follow the instructions in the
ADME referenced above. Or, use the Docker image linked there.

A.5 Evaluation and expected results

This artifact seeks to reproduce the benchmark results discussed

in

our performance evaluation as well as the debugging process in

Section 3. These are:

e Benchmark Data and Graph Generation: Generate the
graphs found in the paper using pre-supplied data:
— Core benchmark graphs (Figure 6)
— LeNet comparison (Table 2)
e Benchmark Correctness for each Simulator
e Data Collection
— Collect timing data for the full benchmark suite
— Generate new graphs and tables from the collected data
e Optional: Interactive Debugging with Cider.
— Debug the sample program with Cider (Section 3)

A.6 Methodology

Sul

bmission, reviewing, and badging methodology.

REFERENCES

[1

[12

(13

[14

] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) (2006).

] Accellera. 2004. SystemVerilog 3.1a Language Reference Manual.

] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering—a New Definition. In
International Symposium on Computer Architecture (ISCA).

] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining simulation and
hardware execution for efficient FPGA debugging. In International Symposium
on Field-Programmable Gate Arrays (FPGA).

] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: constructing
hardware in a Scala embedded language. In Design Automation Conference (DAC).

] Zeev Barzilai,] Lawrence Carter, Barry K Rosen, and Joe D Rutledge. 1987. HSS-a
high-speed simulator. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (1987).

1 Scott Beamer and David Donofrio. 2020. Efficiently exploiting low activity factors
to accelerate RTL simulation. In Design Automation Conference (DAC).

] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

] Anthony Bybell. 2021. GTKWave. http://gtkwave.sourceforge.net.

] Nazanin Calagar, Stephen D. Brown, and Jason H. Anderson. 2014. Source-
level debugging for FPGA high-level synthesis. In International Conference on
Field-Programmable Logic and Applications (FPL).

] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing
compiler for deep learning. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

] Young-Kyu Choi, Yuze Chi, Jie Wang, and Jason Cong. 2020. Flash: Fast, parallel,
and accurate simulator for HLS. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2020).

] J. Cong and J. Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD,).

] Ross Daly, Lenny Truong, and Pat Hanrahan. 2018. Invoking and Linking Gener-
ators from Multiple Hardware Languages using CorelR. In Second Workshop on
Open-Source EDA Technology (WOSET).

789

[15]

[16

(17]

[18

=
2

[20

[21

[22]

~
=

[24

[25

[30

[31

[32

[33

[34

[35

[36

(37

[38

Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson

David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan.
2020. Type-Directed Scheduling of Streaming Accelerators. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).
Jeffrey Goeders and Steven JE Wilton. 2014. Effective FPGA debug for high-level
synthesis generated circuits. In International Conference on Field-Programmable
Logic and Applications (FPL).

Craig Hansen. 1988. Hardware logic simulation by compilation. In Design Au-
tomation Conference (DAC).

K Scott Hemmert, Justin L Tripp, Brad L Hutchings, and Preston A Jackson.
2003. Source level debugger for the Sea Cucumber synthesizing compiler. In
Field-Programmable Custom Computing Machines (FCCM). IEEE.

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021.
An Empirical Study of the Reliability of High-Level Synthesis Tools. In Field-
Programmable Custom Computing Machines (FCCM).

Intel. 2021. Intel High Level Synthesis Compiler. Retrieved January 16, 2021
from https://www.altera.com/products/design-software/high-level-design/intel-
hls-compiler/overview.html

Intel. 2021. Intel Signal Tap II Retrieved November 19, 2021
from https://www.intel.com/content/www/us/en/programmable/quartushelp/
13.0/mergedProjects/program/ela/ela_view_using.htm

Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A language and compiler for application
accelerators. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming In-
frastructure for Software-Defined Reconfigurable Computing. In International
Symposium on Field-Programmable Gate Arrays (FPGA).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO).

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation (1989).

LegUp developers. 2015. LegUp High-Level Synthesis: Debugging. http://legup.
eecg.utoronto.ca/docs/4.0/debug.html

Louis-Noel Pouchet. 2021. PolyBench/C: The Polyhedral Benchmark Suite. Re-
trieved January 16, 2021 from http://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and
Baris Kasikei. 2022. Debugging in the Brave New World of Reconfigurable Hard-
ware. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Maxeler. 2021. MaxCompiler. Retrieved November 19, 2021 from https://www.
maxeler.com/products/software/maxcompiler/

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable Ac-
celerator Design with Time-Sensitive Affine Types. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A compiler
infrastructure for accelerator generators. In ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).
Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, correct RTL from high
level specifications. In Conference on Formal Methods and Models for Co-Design
(MEMOCODE).

Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, and Adam Chlipala. 2021.
Effective simulation and debugging for a high-level hardware language using
software compilers. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

The CIRCT project. 2022. CIRCT. Retrieved October 26th, 2022 from https:
//circtllvm.org/

Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Logan Weber, Josh Pollock,
Luis Vega, Ziheng Jiang, Tiangi Chen, Thierry Moreau, and Zachary Tatlock. 2019.
Relay: A high-level compiler for deep learning. arXiv preprint arXiv:1904.08368
(2019).

Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-in-time
compilation for Verilog: A new technique for improving the FPGA program-
ming experience. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

The GNU Project. 2021. GDB: The GNU Project Debugger. Retrieved November
17, 2021 from https://www.gnu.org/software/gdb/

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://gtkwave.sourceforge.net
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/program/ela/ela_view_using.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/program/ela/ela_view_using.htm
http://legup.eecg.utoronto.ca/docs/4.0/debug.html
http://legup.eecg.utoronto.ca/docs/4.0/debug.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.maxeler.com/products/software/maxcompiler/
https://www.maxeler.com/products/software/maxcompiler/
https://circt.llvm.org/
https://circt.llvm.org/
https://www.gnu.org/software/gdb/

Stepwise Debugging for Hardware Accelerators

[39]

[40]

[41]
[42]

[43]

[44]

Anurag Tiwari and Karen A Tomko. 2003. Scan-chain based watch-points for
efficient run-time debugging and verification of FPGA designs. In Proceedings of
the ASP-DAC Asia and South Pacific Design Automation Conference.

Mike Turpin. 2003. The Dangers of Living with an X (bugs hidden in your Verilog).
In Boston Synopsys Users Group Meeting (14).

Veripool. 2021. Verilator. https://www.veripool.org/wiki/verilator.

Veripool Inc. 2021. Verilator array out of bounds behavior. https://github.com/
verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
L-T Wang, Nathan E Hoover, Edwin H Porter, and John J Zasio. 1987. SSIM: A
software levelized compiled-code simulator. In Design Automation Conference
(DAC).

Stephen Williams. 2021. Icarus Verilog. Retrieved November 8, 2021 from
http://iverilog.icarus.com/

790

[45

[46

[47

]

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Xilinx Inc. 2021. ChipScope Integrated Logic Analyzer. Retrieved November 17,
2021 from https://www.xilinx.com/products/intellectual-property/chipscope_ila.
html

Xilinx Inc. 2021. Vivado Design Suite User Guide: High-Level Syn-
thesis. UG902 (v2017.2) Fune 7, 2017. Retrieved January 16, 2021
from https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/
ug902-vivado- high-level-synthesis.pdf

Xilinx Inc. 2021. Vivado Design Suite User Guide: Synthesis. UG901 (v2017.2) June
7, 2017. Retrieved November 19, 2021 from https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf

Keyi Zhang, Zain Asgar, and Mark Horowitz. 2022. Bringing Source-Level De-
bugging Frameworks to Hardware Generators. In Design Automation Conference
(DAC).

Received 2022-07-07; accepted 2022-09-22

https://www.veripool.org/wiki/verilator
https://github.com/verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
https://github.com/verilator/verilator/blob/master/docs/guide/languages.rst#array-out-of-bounds
http://iverilog.icarus.com/
https://www.xilinx.com/products/intellectual-property/chipscope_ila.html
https://www.xilinx.com/products/intellectual-property/chipscope_ila.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug901-vivado-synthesis.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Abstractions for Debugging Accelerators
	2.2 Calyx

	3 Debugging with Cider
	4 The Cider Interpreter
	4.1 Environment Model
	4.2 Structural Simulation
	4.3 Control Simulation
	4.4 Primitive Simulation
	4.5 Undefined Behavior

	5 Debugging Infrastructure
	5.1 Interactive Steppable Execution
	5.2 Breakpoints
	5.3 State Inspection
	5.4 Watchpoints

	6 Source-Level Debugging
	7 Case Studies
	7.1 Dahlia Compiler
	7.2 TVM-to-Calyx Compiler

	8 Performance Evaluation
	8.1 Benefits of High-Level Control
	8.2 Comparison to Verilog Simulation
	8.3 Scalability: LeNet Benchmark

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology

	References

