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Abstract—Imbalanced data classification problems appear
quite commonly in real-world applications and impose great
challenges to traditional classification approaches which work
well only on balanced data but usually perform poorly on the
minority class when the data is imbalanced. Resampling pre-
processing by oversampling the minority class or downsampling
the majority class helps improve the performance but may
suffer from overfitting or loss of information. In this paper we
propose a novel method called pairwise robust support vector
machine (PRSVM) to overcome the difficulty of imbalanced data
classification. It adapts the non-convex robust support vector
classification loss to the pairwise learning setting. In the training
process, samples from the minority class and the majority class
always appear as pairs. This automatically balances the impact
of two classes. Simulations and real-world applications show that
PRSVM is highly effective.

Index Terms—pairwise robust support vector machine, imbal-
anced data, RSVC loss, pairwise learning

I. INTRODUCTION

Imbalanced data appear ubiquitously in real-word appli-
cations. For instance, in computer-aided medical diagnosis
patients with certain concerned disease such as cancer or
diabetes count only a very small fraction of the screening
population [1]-[4]. For spam detection system, the number
of spam messages is usually far less than useful ones [5].
Intrusion detection requires detecting malicious and unautho-
rized activities that attack computer systems. Although rapid
increase of such attacks has been seen along the popularization
of computers, it is believed they are still “outliers” compared
to normal activities [6].

Classification of imbalanced data is a challenging task.
Approaches that are commonly used and effective on balanced
data, such as support vector machines and logistic regression,
could perform poorly on imbalanced data. One could get small
total classification error as long as they classify data of the
majority class correctly. The accuracy of classification of the
minority class is usually low though more often it is the
concerned class. The reason could be the absolute scarcity
of minority samples [7], inappropriate evaluation method [8],
the high degree of overlap of minority with the majority [9].

Researchers have been paying increasing attentions to the
imbalanced data classification in the past two decades. The
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most common approaches are to preprocess the data via resam-
pling techniques before training. The oversampling approach
resamples or duplicates the minority class so that its sample
size increases to be comparable with majority class [10]-[13]
while the undersampling approach downsamples the majority
class to have size comparable with the minority one [10],
[11], [14], [15]. Training data becomes balanced after prepro-
cessing and therefore traditional classification methods such
as support vector machines and AdaBoost can be efficiently
used. However, these preprocessing tricks have some known
drawbacks: the oversampling method may increase the likeli-
hood of overfitting due to duplicated data. On the contrary,
the undersampling method may cause loss of information
because some useful data present in the majority class might
be eliminated. Moreover, when the minority class is too small,
undersampling method will generate an undersized training
set, which may decrease performance of classifiers. Menardi
and Torelli [16] proposed random over-sampling examples
(ROSE) by a smoothed bootstrap-based technique. It simul-
taneously oversamples the minority class while undersamples
the majority class and more often show slightly better perfor-
mance by reducing information loss and overfitting. In addition
to these preprocessing tricks, researchers had also considered
to modify classification algorithms or data characterizations
to handle imbalanced data. For instance, [17] proposed to
adjust the error costs of different classes in the training of
support vector machines, which places a large error cost
on minority class and a small error cost on majority class
to balance the impact of skewed sample sizes. Later [18]
proposed to combine the different error costs idea from [17]
with synthetic minority oversampling technique from [19]. In
[20] appropriate feature selection was combined with naive
Bayes to handle imbalanced text data.

In this paper we will propose a new imbalanced data
classification approach in the pairwise learning framework.
Pairwise learning arises naturally from the metric learning,
ranking, and information theoretic learning. When applied to
binary classification problems, observations from the minority
class and the majority class always appear as pairs for the loss
evaluation. This automatically balances the impact of the two
classes regardless of their sizes. It avoids the drawbacks of
resampling techniques and therefore is potentially superior.



II. PAIRWISE ROBUST SUPPORT VECTOR MACHINE

Given a data of n observations (z;,y;),i = 1,...,n, with
z; € RP and y; € {—1,1}, the classification error of a real-
valued classifier f : R? — R is defined by the 0-1 loss:

ZLO—I(yif(xi)) = Zﬂ{y«:f(wf)@}’
i=1 i=1

where Iy is the indicator function taking values 1 when
the condition is true and O otherwise. The optimization of
classification error is known to be NP hard due to discontinuity
of the 0-1 loss. The success of large margin classifiers such
as support vector machines and AdaBoost lies on the use of
surrogate loss. In support vector machines, hinge loss is used:

Lhinge(yf(x)) = (1 - yf(t))-‘r = max((), 1- yf(:['))
Support vector machines were extensively studied and success-
fully used in numerous fields; see e.g. [21]-[23] and references
therein. Though, support vector machines could become less
robust as outliers present. Among various robustification ef-
forts, Feng et al [24] proposed robust support vector classifier
(RSVC), which uses the smooth non-convex surrogate loss

Lesve(yf(x)) = o® (1 — &Xp (%>)
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to replace the hingle loss and handles outliers well, where o is

a tunable parameter. See Fig. 1 for a comparison of the three

loss functions.
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Fig. 1: 0-1 loss, hinge loss, and RSVC loss with ¢ = 1
(scaled so that all three losses have value 1 at yf(z) = 0
for comparison purpose.)

Our approach to handle imbalanced data classification is
motivated by using RSVC loss in pairwise learning framework.
A good real-valued classifier f should produce sign(f(z;))
y; as many as possible. Consequently, for each pair of obser-
vations (z;, ;) and (z;,y;), if y; = 1 and y; = —1, we would
expect f(x;) — f(x;) > 0;if y; = —1 but y; = 1, we expect
f(x;) — f(x;) < 0; when y; = y; we have no expectations.
Using the notation

if y; =-1

—1land y; =1,

1 and y;

if ;
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we should have y;;(f(z;) — f(z;)) > 0. We adapt the RSVC
loss and define the pairwise loss as

1— s ) —
— 52 (1 —exp <( Yij (f(-rzg
o
In this paper we focus on linear classifiers f(z) = w'z+b
with w € RP and b € R. The optimization problem associated
to the pairwise robust support vector classifier is

mini Z o? (1 — exp (
(€3]

=1 jiy; Ay
This can be solved by either the gradient descent algorithm or
iterative least square method.

Note that the intercept b does not appear in (1) because it
is canceled in calculation of the difference f(x;) — f(z;) =
w' (z; — x;). We need to figure out appropriate intercept b
separately. This is done as follows: let w be the solution to
the minimization problem (1). For b € R, let £, (b) and E_(b)
denote the false positive rate (FPR) and false negative rate
(FNR) of the classifier @ 2 + b, respectively. Define

£(b) = max(E (b), £ (b))

fi))i

(1 —yyw ' (z; —x5))3
0—2

and the intercept is estimated by

b= 15161]11135(()).
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We call our method pairwise robust support vector machine
(PRSVM). It has several advantages. First, the impact of the
positive class and negative class is automatically balanced
without need of resampling. This avoids overfitting or loss
of information suffered by resampling techniques. Second, it
inherits the robustness of the RSVC loss.

III. SIMULATIONS AND APPLICATIONS

In this section, simulation studies and real-world appli-
cations are used to illustrate the effectiveness of PRSVM
to handle imbalanced data. We will not only compare it
with three traditional classification methods: support vector
machine (SVM), AdaBoost, and Naive Bayes (NB), but also
compare with the three resampling preprocessing techniques:
Undersampling (US), Oversampling (OS), and Random Over-
Sampling Examples (ROSE).

PRSVM is not very sensitive to the choice of the parameter
o. A moderate choice usually give sufficiently good results.
We selected 0 = 1 in all experiments. All other methods
are implemented in R with standard packages. In particular,
for SVM we used the train function in caret package.
For fair comparison, method svmlinear is used to produce
linear classifiers. Other parameters are kept default. AdaBoost
used the function boosting from adabag package. The
number of iterations is set as 200. Naive Bayes used the
function naiveBayes from e1071 package with default
parameters. The implementation of three resampling methods
used the ROSE package. For undersampling and oversampling



methods, the resampling sample size is set as twice of the
amount of minority class or majority class, respectively, so that
the resampling process stops when two classes have the same
size. For ROSE all parameters are set as default. SVM linear
classifier is used to classify data after the data is balanced.

For imbalanced data classification, the overall accuracy does
not make much sense, especially when the majority class
dominates. We will look at the FPR and FNR simultaneously.
A balanced FPR and FNR implies the minority class has been
equally addressed. We also evaluate the area under the ROC
curve (AUC), which is widely accepted as a balanced accuracy
metric for imbalanced data classification problems; see e.g.
[25]. The larger AUC, the better.

A. Simulation studies

We assume the data come from R2. For the positive class,
x; = (zi1, x;2) has both features x;; and x;5 sampled
from normal distribution with mean 3 and variance 1. For
the negative class, both features are sampled from normal
distribution with mean 5 and variance 1. The positive class will
be the minority class. In the experiment, we will first set an
imbalance ratio, that is, the ratio between sample sizes of the
positive class and the negative class, say 1:k with some & > 1.
With training sample size n, we will generate 77 samples for
the positive class and kk—fl samples for the negative class. The
performance of each classifier will then be evaluated on a test
set which contains 1000 samples from the positive class and
1000k samples from the negative class.

To compare the performance of seven methods, we fix the
number of training samples n = 200 and investigate the impact
of imbalance ratio by varying it from 1:2 to 1:4 and then to
1:8. Each experiment is repeated 50 times. The average FPR,
FNR and AUC for the seven classifiers are reported in Table
I. The results indicate that SVM, AdaBoost and Naive Bayes
deteriorate fast as imbalance ratio increases. FNR drops at
the price of increasing FPR and AUC decreases. The three
resampling techniques and PRSVM still give balanced FPR
and FNR and AUC drop is not significant. In all scenarios
PRSVM achieves the largest AUC.

B. Application I: Diabetes Data

Diabetes Data [4] (https://datahub.io/machine-learning/
diabetes) is a multivariate data set with 8 attributes measuring
patients’ medical conditions. The response variable denotes
whether a patient is tested positive (41) or negative (—1) for
diabetes. The data contains 268 positive cases and 500 negative
cases, leading to an imbalance ratio close to 1:2.

We randomly sample 1/3 of positive cases and 1/3 of
negative cases to form a training set so that the the original
imbalance ratio is maintained in the training process. The
remaining cases are used to test the performance of the
seven classifiers. The experiments are repeated 50 times and
the average FPR, FNR and AUC are reported in Table II
Similar to our simulation studies, SVM, AdaBoost and Naive
Bayes have the poorest performance. The three resampling
methods perform better. Although PRSVM has the total error
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TABLE I: Classification performance of seven classifiers on
simulated data with n» = 200 and varying imbalance ratios

Imbalance Ratio | Method FPR FNR AUC
SVM 0.0469  0.1328 0.9102
ADABOOST  0.0724 0.1602  0.8837
NB 0.0486  0.1266 09123

1:2 us 0.0802  0.0845 09177
oS 0.0824  0.0857 09159
ROSE 0.0845  0.0858 09148
PRSVM 0.0814  0.0844  0.9760
SVM 0.0272  0.1910  0.8909
ADABOOST  0.0460 0.2177 0.8682
NB 0.0284 0.1840 0.8938
1:4 us 0.0867 0.0814 09159
oS 0.0754  0.0897 09174
ROSE 0.0848  0.0801 09176
PRSVM 0.0765  0.0907  0.9766
SVM 0.0150 0.2722  0.8564
ADABOOST  0.0287 0.3044 0.8334
NB 0.0160 0.2563  0.8638
1:8 us 0.0800 0.0938 09131
oS 0.0735  0.0961 09152
ROSE 0.0856  0.0841 09152
PRSVM 0.0750  0.0976  0.9763

(FPR+FNR) slightly larger than resampling methods, it has
the best balanced FPR and FNR and highest AUC.

TABLE II: Classification performance on Diabetes Data

Method FPR FNR AUC

SVM 0.1217  0.4444  0.7170
ADABOOST  0.1862  0.4228  0.6955
NB 0.1681  0.4124  0.7098
Us 0.2339  0.2950  0.7356
(O] 0.2257  0.3045  0.7349
ROSE 0.2422  0.2994  0.7292
PRSVM 0.2710  0.2863  0.7965

C. Application 1I: Wilt Data

Wilt Data Set [26] is a high-resolution remote sensing data.
It consists of image segments generated by segmenting pan-
sharpened images and contain spectral information from the
Quickbird multispectral image bands and texture information
from the panchromatic image band and was used to detect
diseased trees. There are five features: GLCM-Pan, Mean-
G, Mean-R, Mean-NIR and SD-Pan, meaning GLCM mean
texture (Pan band), mean green value, mean red value, mean
NIR value and standard deviation (Pan band), respectively. The
response variable has two states, “diseased trees” or “other
land cover”.

On the UCI Machine Learning Repository webpage for Wilt
Data (https://archive.ics.uci.edu/ml/datasets/wilt), we down-
loaded a training set of 4339 samples and a test set of 500
samples. They are combined together to form a single data
set. The combined data set contains 261 samples labeled as
“diseased trees” class and 4578 labeled as “other land cover”
class. The imbalance ratio is high and exceeding 1:17.

In our study, we refer to the “diseased trees” as the
positive class and “other land cover” as negative class. We
randomly choose 1/3 of each class to form the training set
and leave the other 2/3 as test set. This process is repeated



50 times. The mean performance metrics of seven classifiers
are reported in Table III. SVM and Naive Bayes perform very
poorly to predict the positive class due to the high imbalance
ratio. Surprisingly AdaBoost works fine and even outperforms
ROSE. All three resampling methods and PRSVM are able
to overcome the highly imbalance problem and provide rea-
sonable prediction for both classes. Oversampling gives the
smallest FPR and FNR while PRSVM has the largest AUC.

TABLE III: Classification performance on Wilt Data

Method FPR FNR AUC

SVM 0.0027  0.8881  0.5546
ADABOOST  0.0048  0.1478  0.8100
NB 0.0915 0.4538 0.7274
Us 0.0939  0.0411  0.9325
(O] 0.0697  0.0489  0.9407
ROSE 02749  0.1193  0.8029
PRSVM 0.0844  0.0567 0.9713

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a new approach, the pairwise
robust support vector machine, for imbalanced data classifica-
tion. It automatically balances the impact of two imbalanced
classes by pairing positive examples with negative ones. Simu-
lations and real-world applications show that our new approach
can effectively reduce the prediction error for the minority
class. Compared with resampling techniques in the literature,
it always has the largest AUC.

There are several open problems remaining for future re-
search. First, we have focused on linear classifier in this
paper. It is necessary to develop nonlinear PRSVM classifiers
using kernel tricks or deep neural networks for nonlinear
data classification which is also common in real applications.
Second, we found through simulations that PRSVM is not very
sensitive to the parameter ¢ and a moderate choice usually
leads to sufficiently good results. We had fixed o 1 in
all our experiments without tuning it for the best results. It
is worth developing tuning strategies that helps improve the
performance. Third, PRSVM shows to have largest AUC in
all our experiments. But its prediction errors, namely FPR
and FNR, are not the smallest. Note that AUC is independent
of intercept while prediction errors do. A plausible conjecture
is our estimation of the intercept is not optimal and a refined
approach is expected. Finally, it would be interesting to explore
the mathematical properties of PRSVM and perform general-
ization analysis to theoretically explain its effectiveness.
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