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Abstract—Online learning with expert advice is widely used in
various machine learning tasks. It considers the problem where
a learner chooses one from a set of experts to take advice and
make a decision. In many learning problems, experts may be
related, henceforth the learner can observe the losses associated
with a subset of experts that are related to the chosen one. In
this context, the relationship among experts can be captured
by a feedback graph, which can be used to assist the learner’s
decision-making. However, in practice, the nominal feedback
graph often entails uncertainties, which renders it impossible to
reveal the actual relationship among experts. To cope with this
challenge, the present work studies various cases of potential
uncertainties and develops novel online learning algorithms to deal
with uncertainties while making use of the uncertain feedback
graph. The proposed algorithms are proved to enjoy sublinear
regret under mild conditions. Experiments on real datasets are
presented to demonstrate the effectiveness of the novel algorithms.

Index Terms—Online Learning, Graphs, Expert Advice, Un-
certainty.

I. INTRODUCTION

Online learning with expert advice considers the case where
there exists a learner and a set of experts, where the learner
interacts with the experts to make a decision [2]. At each time
instant, the learner chooses one of the experts and it takes
the action advised by the chosen expert, then incurs the loss
associated with the taken action. Such framework can be used
to model different learning tasks such as online multi-kernel
learning see e.g., [3], [4]. Conventional online learning literature
mostly focuses on two settings, full information setting [5]-[8]
or bandit setting [8]-[11]. In the full information setting, at each
time instant, the learner can observe the loss associated with all
experts. By contrast, in the bandit setting, the learner can only
observe the loss associated with the chosen expert. However, in
some applications such as the web advertising problem, where
a user clicks on an ad and information about other related ads
is revealed, the learner can make partial observations of losses
associated with a subset of experts. In cases where querying
for advice from expert incurs cost, the learner may choose to
observe the loss of subset of experts, see e.g. [12], [13]. To
cope with this scenario, online learning with feedback graphs
was developed in [14], where partial observations of losses are
modeled using a directed feedback graph. Each node represents
an expert, and an edge from node ¢ to node j exists if the
learner can observe the loss associated with expert ;7 while
choosing expert ¢. The observations of losses associated with
other experts are called side observations. The full information
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and the bandit settings are both special cases of online learning
with either a fully connected feedback graph or a feedback
graph with only self loops. Given the feedback graph either
before or after decision making, [15] has proposed algorithms
with sub-linear regret bounds. Online learning with feedback
graphs and sleeping experts has been studied in [16] where at
each time instant, a subset of experts may not be available. [17]
has studied the case where there is a dependency between the
feedback graph and expert losses. Moreover, [10] has proposed
an algorithm for bandit setting which obtains sub-linear regret
with respect to the best switching expert selection strategy.

Most of existing works rely on the assumption that the
feedback graph in known perfectly before decision making [15],
[16], [18]-[20], or after decision making [15], [17], [21]-[23].
However, such information may not be available in practice. In
addition, due to possible uncertainty of the environment, the
feedback graph may be uncertain. As an example, consider an
online clothing store that offers discount on an item for new
customers. Suppose there are two brands A and B producing
similar shirts at comparable price. The store has small and
medium sizes of brand A and medium and large sizes shirts of
brand B in stock. Assuming that the store offers discount on
brand B. If the user accepts the offer, and buys a medium size
shirt of brand B, it implies the user is also interested in shirts
of brand A. Moreover, if the user buys a large size of shirt
B, this indicates no interest in shirts of brand A. Otherwise,
if the user declines the offer of brand B, it only shows the
user is not interested in shirts of brand B but no information
is available about the preference of the user on the shirts of
brand A. Considering the case where the exact feedback graph
may not be available, [24] shows that not knowing the entire
feedback graph can make the side observations useless and the
learner may simply ignore them. [25] studies the case where the
exact feedback graph is unknown but is known to be generated
from the Erdos-Rényi model. However, such assumption may
not be valid in practice. In addition, both [24] and [25] assume
that the loss associated with the chosen expert is guaranteed
to be observed. Moreover, the probabilistic feedback graph
in stochastic setting has been studied in [26] where the loss
of each expert randomly generated using a certain probability
distribution.

The present paper extensively studies the case where the
learner only has access to a feedback graph that may contain
uncertainties, namely nominal feedback graph, and the learner
may not be able to observe the loss associated with the chosen
expert. Moreover, the present paper studies non-stochastic
adversarial online learning problems where at each time instant,
the environment privately selects a loss function. The learner
relies on the nominal feedback graph to choose among experts,
and then incurs a loss associated with the chosen expert. At
the same time, it observes the loss associated with a subset



of experts resulting from the unknown actual feedback graph.
Furthermore, different from [24] and [25], the present work
does not assume that it is guaranteed that the learner observes
the loss associated with the chosen expert. This is true in, e.g.,
apple tasting problem [27]. The present work studies various
cases of potential uncertainties, and develops novel online
learning algorithms to cope with different uncertainties in the
nominal feedback graph. Regret analysis is provided to prove
that our novel algorithms can achieve sublinear regret under
mild conditions. Experiments on a number of real datasets are
presented to showcase the effectiveness of our novel algorithms.

II. PROBLEM STATEMENT

Consider the case where there exist K experts and the learner
chooses to take the advice of one of the experts at each time
instant ¢t. Let G, = (V,&;) represent the directed nominal
feedback graph at time ¢ with a set of vertices V, where the
vertex v; € V represents the i-th expert, and there exist an edge
from v; to v; (ie. (¢,7) € &), if the learner observes the loss
associated with the j-th expert (i.e. ¢;(v;)) with probability
p;; while choosing the i-th expert. Let J\/;"t and AP} represent
in-neighborhood and out-neighborhood of v; in G;, respectively.
Thus, v; € NP4 if there is an edge from v; to v; at time ¢ (i.e.
(1,7) € &. Similarly, v; € ./\/'Z‘“t if there is an edge from v; to
v; at time ¢ (i.e. (j,i) € &). The present paper considers non-
stochastic adversarial online learning problems. At each time
instant ¢, the environment privately selects a loss function £(.)
with £;(.) : V — [0,1], and the nominal feedback graph G; is
revealed to the learner before decision making. The learner
then chooses one of the experts to take its advice. Then, the
learner will incur the loss associated with the chosen expert.
Let I; denote the index of the chosen expert. Note that the
learner observes {;(vy,) with probability of py,r,, hence the
loss remains unknown with the probability of 1 — py,7,.

The present paper discusses different potential uncertainties
in the feedback graphs, and develops novel algorithms for
online learning with uncertain feedback graph. Specifically, two
cases are discussed: i) online learning with informative proba-
bilistic feedback graph: where the probability p;; associated
with each edge is given along with the nominal feedback graph
G and ii) online learning with uninformative probabilistic
feedback graph: where only the nominal feedback graph G; is
revealed, but not the probabilities.

III. ONLINE LEARNING WITH INFORMATIVE
PROBABILISTIC FEEDBACK GRAPHS

First consider the case where {p;;} are given along with
the G;. This can be the case in various applications. For
instance, consider a network of agents in a wireless sensor
network that cooperate with each other on certain tasks
such as environmental monitoring. Online learning algorithms
distributed over spatial locations have been employed in climate
informatics field [28], [29]. Assume that each agent in the
network keeps updating its local model, and there is a central
unit (learner) wishes to perform a learning task based on models
and data samples distributed among agents. In this case, the
agents in the network can be viewed as experts. Consider

Algorithm 1 Exp3-IP: Online learning with informative
probabilistic feedback graph
Input:learning rate n > 0.
Initialize: w; ; =1, Vi € [K].
fort=1,...,T do
Observe G, = (V,&:) and choose one of the experts
according to the PMF 7, in (3).
Observe {/;(v;)}y,es, and calculate loss estimate £, (v;),
Vi € [K] via (2).
Update w; 41, Vi € [K] via (1).
end for

the case where the learner chooses one of the experts and
sends a request for the corresponding expert advice through
a wireless link. Subset of experts which receive the request,
send their advice to the learner. However, due to uncertainty
in the environment or power limitation, some of the agents
in the network including the chosen one may not detect the
request. Therefore, the learner can only observe the advice of
subset of agents in the network which detect its request. In
this case, the learner can model probable advice that it can
receive from experts with a nominal feedback graph. If learner
knows the characteristics of the environment which is true in
many wireless communication applications, the probabilities
associated with edges in the nominal feedback graph is revealed.
At each time instant ¢, upon selecting an expert and observing
the losses of a subset of experts, the weights {w; ;}X, which
indicate the reliability of experts can be updated as follows
Wi 141 = Wi, €XP (_nét(vi)) , Vie[K] (D
where [K] :={1,..., K} and 7 is the learning rate. Function
ft(vi) denotes the importance sampling loss estimate which
can be obtained as

(o) = 10

Z(v; € &) 2)
where S; represent the set of vertices associated with experts
whose losses are observed by the learner at time instant ¢. The
indicator function is denoted by Z(.) and g;, is the probability
that the loss ¢;(v;) is observed. Its value depends on the
algorithm, and will be specified later.

Let A; denote the adjacency matrix of the nominal feedback
graph G; with A;(¢, j) denoting the (i, j)th entry of A;. Let
X;; be a Bernoulli random process with random variables
Xi;(t) = 1 with probability p;;. When the learner chooses
the i-th expert at time ¢, the learner observes ¢;(v;) only if
v; € NP§ and X;;(t) = 1. Let F; denote the number of losses
observed by the learner. Due to the stochastic nature of the
observations available to the learner, F}; is a random variable.
Furthermore, let F; ; denote the expected number of observed
losses if the learner chooses the ¢-th expert at time ¢. Thus,
we can write

Fiu=EJR|L=iA)= Y EX;®l= Y pi
Vj:vjENz’,”tl Vj:vje./\/’f,“é



The learner then chooses one expert according to the

probability mass function (PMF) 7, := (m1,,...,Tk,) With
Wi ¢t Fi
Tt = (]. — ) + 7771'('[]1 € Dt) (3)
Wt ZjG'Dt F,

where W, = ZlK:l w; ¢, and D, denotes the dominating set
of graph G;. Note that a dominating set D of a graph is a
subset of vertices such that there is an edge from at least
one vertex in D to any vertex not in D. It can be observed
from (3) that 7 controls the trade-off between exploitation and
exploration. With a smaller n, more emphasis is placed on
the first term which promotes exploitation, and the learner
tends to choose the expert with larger w; ;. The second term
allows the learner to select experts in the dominating set D;
with certain probability independent of their performance in
previous rounds. Based on (3), ¢; ¢ in (2) can be computed as

>

Vjivj ENg'?t

Gt = Tj,tPji- @

The overall algorithm for online learning with uncertain
feedback graph in the informative probabilistic setting, termed
Exp3-IP, is summarized in Algorithm 1. In order to analyze the

performance of Algorithm 1, as well as the ensuing algorithms,

we first preset two assumptions needed:

@) 0</l(v) <1l vt:te{l,...,T},Vi:ie{l,...,K}.
(a2) If (3,7) € &, the learner can observe the loss associated
with the j-th expert with probability at least ¢ > 0 when it
chooses the i-th expert, and (,4) € &, Vi.

Note that (al) is a general assumption in online learning
literature e.g., [18]. And (a2) assumes a nonzero probability
of observing (but not guaranteed observation of) the loss
associated with the chosen expert ¢;(v;,). The following
theorem presents the regret bound for Exp3-IP.

Theorem 1. Under (al), the expected regret of Exp3-IP can
be bounded by

T T
> Eilli(vr,)] - min > (i)
t=1 t=1
T K
In K n n Tt
<7 _ 1 9
=T +5> > = ®)
n t=1 =1 q ?

Proof of Theorem 1 is included in Appendix A. It can
be seen from Theorem 1 that the value of m;;/¢;; plays an

important role in regret bound. Choosing an expert using (3),

it is ensured that every vertex in D; is chosen by the learner
with non-zero probability. Moreover, since there is at least one

edge from a node in D, to any node not in D,, under (a2),

the probability ¢; ¢, Vi is non-zero. Lower bounding g¢; ¢, (a2)
enables Exp3-IP to achieve sub-linear regret. Building upon
Theorem 1, the ensuing lemma further explores under which
circumstances Exp3-IP can achieve sub-linear regret bound.

Lemma 2. Let the doubling trick (see e.g. [15]) be employed
to determine the value of n and greedy set cover algorithm (see
e.g. [30]) is exploited to derive a dominating set D, for the

nominal feedback graph G;. Under (al) and (a2), the expected
regret of Exp3-IP satisfies

T T
> Eyfli(vr,)) - mnin > (i)
t=1 T =1

<0

T
K in(X7 Za ) (&) 6)

€ €
t=1

where a(Gy) denotes the independence number of the nominal

feedback graph G;.

Proof of Lemma 2 is included in Appendix B. As it is proved
in Appendix B, the assumption (4,4) € &, Vi in (a2) guarantees
that S5 | <o @ ln(¥)> (see Lemma 7 and (51)-
(54) in Appéhdix B). In order to guarantee the regret bound in
(6), it is required that 27 1 ’;: <0 (a(gt) In ( )) holds
true. Therefore, without (a2), the regret bound in (6) cannot be
satisfied. Furthermore, if the learner does not know the time
horizon T' before start decision making, doubling trick can
be exploited to determine 7). In particular, using the doubling
trick, Exp3-IP adjusts the learning rate n ‘on the fly’ without
knowing the time horizon 7'. At time instant ¢, as long as

t
1 Ti,r

14+ - < 2m 7

; (145 Z o) (7)

holds true, Exp3-IP employs learning rate n = 217f+1, where

r¢ > 0 is the smallest integer that can satisfy the inequality in
(7). According to (6), Exp3-IP can achieve sub-linear regret.
Furthermore, (6) shows that the regret bound of Exp3-IP
depends on % Larger € indicates that the learner is less
uncertain about the nominal feedback graph. In other words
higher confidence of the nominal feedback graph leads to a
tighter regret bound.

Comparison with [15]. Exp3-DOM of [15] deals with
the cases that the feedback graph is certain and re-
vealed to the learner before decision making at each
time instant. In this case, Exp3-DOM achieves regret

of O (In(K)\/In(KT) Y1, a(G:) + n(K)In(KT) ) (see

Theorem 8 in [15]). When the graph is certain such that p;; = 1
for all (i,j) € &, then € = 1. Therefore, when the graph is
certain and given to the learner, the proposed Exp3-IP achieves

regret of O (\/anln(KT) S a(G) + 1n(KT)>

IV. ONLINE LEARNING WITH UNINFORMATIVE
PROBABILISTIC FEEDBACK GRAPHS

The previous section deals with the case where the nominal
feedback graph G, can be time-variant and probabilities
associated with edges of G; are revealed. In this section, we
will study the scenario where the nominal feedback graph G;
is static and is revealed to the learner while the probabilities
{pi;} associated with edges are not given, which is called
uninformative probabilistic feedback graph. In this section
the nominal feedback graph is denoted by G = (V,€). In
this case, estimates of probabilities {p;;} can be updated and



employed to assist the learner with future decision making. For
example, consider the problem of online advertisement, where
a website is trying to decide which product to be advertised
via online survey with a multiple choice question. Specifically,
users are asked whether they are interested in certain product
along with possible reasons (cost, color, etc). Note that the
answer to certain product may also indicate the participant’s
potential interest in other products with similar cost or color.
For instance, if the participant indicates that he or she is
interested in the product because of its affordable cost, this
implies potential interest in other products with the same or
lower price. In this case, the relationship among products can
be modeled by a nominal feedback graph, where an edge
exists between two nodes (products) if they share same or
similar attributes (cost, color), which implies that users may be
interested in both products. Such nominal feedback graph can
then be used to assist the website to make a decision on which
product to advertise . However, the actual relationship between
the the user’s interests in the products remains uncertain,
which leads to uncertainty in the nominal feedback graph.
Since attributes (cost, color, etc) of products do not change
over time, the nominal feedback graph is static, while the
probabilities associated with edges in the nominal feedback
graph are unknown. Faced with this practical challenge, two
approaches will be developed in this section, to estimate either
the unknown probability or the importance sampling loss in (2),
which will then be employed to assist the learner’s decision
making.

A. Estimation-based Approach

In the present subsection, we will further explore the general
scenario where the value of p;; may vary across edges, while
the nominal feedback graph G, is static. Since X;; defined
under (2) is a mean ergodic random process [31] in this scenario,
the sample mean of {X;(¢)} converges to p;;, i.e., the expected
value of X;;(t). Let 7;;+ represent a set collecting time instants
before ¢ when the learner chooses to take the advice of the i-th
expert and there is an edge between v; and v; in the nominal
feedback graph G. In other word, 7;;; can be defined as

Tijt = {71A-(i,j) =1, I; =i,0 < 7 < t}. (8)
Based on the above discussion, p;; can be estimated as
. 1
bige=g— >, Xi(7) ©)
ijt

TETij,t

where Cj;+ := |T;j+| is the cardinality of 7;; . Since X;; is a
mean ergodic Bernoulli random process, p;; ¢ is an unbiased
maximum likelihood (ML) estimator of p;;.

Note that a sufficient number of observations of the random
process X;; is needed, in order to provide a reliable estimation
in (9). To this end, the learner performs exploration in the
first K'M time instants to ensure that Cy;, > M, V(i,7) € &,
where the value of M is determined by the learner. Specifically,
in the first KM time instants, the learner chooses all experts
in V, one by one M times, i.e. the learner selects expert vy,

Algorithm 2 Exp3-UP: Online learning with uninformative
probabilistic feedback graphs
Input: learning rate n > 0, the minimum number of
observations M, G = (V, ).
Initialize: Wi 1 = 1, Vie [K], ]3@‘71 =0, V(Z,]> et.
fort=1,...,7 do
if ¢t < KM then
Set k=t—|+ ] K and draw the expert node vj.

else
Select one of the experts according to the PMF m, =
(7T17t7 ce ,ﬂ-K,t) , with T ¢ in (10).
end if
Observe {(i,4:(v;)) : v; € S;} and compute £;(v;), Vi €
[K] as in (12).

Update ]A?ij7t+1, V(Z,]) e & via (9).
Update w; 141, Vi € [K] via (13).
end for

with k =t —| % | K when t < KM. For t > KM, the learner
draws one of the experts according to the following PMF

mig = (1—n)

Wi, ¢ n .

W, + |D|I(vZ € D),Vi € [K]
where D denotes a dominating set for the nominal feedback
graph G. In order to obtain a reliable loss estimate to assist the
learner’s decision making, we will approximate the importance
sampling loss estimate in (2) using the estimated probability
Dij¢- In this context, the probability of observing ¢;(v;) can
be approximated as

(10)

Git = Z ¢ (Djie + \/fﬂ) (11

Vi eN,
where £ > 1 is a parameter selected by the learner. Then the
importance sampling loss estimates can be obtained as

~ _ Zt (Ul)

l(vi) = —

G I(UZ‘ S St)

(12)
With the estimates in hand, the weights {w;;}X; can be
updated as follows

Wi t41 = W;  €XP (—ngt(vi)) , Vie[K]. (13)

The procedure that the learner chooses among experts when
the probabilities are unknown is presented in Algorithm 2,
named Exp3-UP. The following theorem establishes the regret
bound of Exp3-UP.

Theorem 3. Under (al), the expected regret of Exp3-UP
satisfies

T T
; E¢ [l (vr,)] — 5% ; Ly (vi)

In K n

§T+(K—1)M+77(1—§)(T—KM)

T K

Tit, 2
DD RIET)

t= K M41 =1 Tt

(14)



with probability at least

O = H 11 (1—2cxp

t=KM+1 (i.5) €&,

_28%Cije )>
M+46VM°)

See proof of Theorem 3 in Appendix C. The following
Corollary states conditions under which the regret bound in
(14) holds with high probability, i.e., § =1 — O(%) and the
proof can be found in Appendix D.

2
Corollary 3.1. If M > (%) and € > \/In(KT),

under (al) and (a2) the expected regret of Exp3-UP satisfies
T T
E — mi i
Z il (vr,)] g}elngt(vz)
<(9< (9) n(KT lenKTT)

with probability at least 1 — O(7).

15)

Note that according to Algorithm 2 and Corollary 3.1,
knowing the value of the time horizon 7' is required so that
the learner can choose the values for M and & to achieve the
sublinear regret bound in (15), which may not be feasible, and
can be resolved by resorting to doubling trick. In this case, if
20 <t < 2%+ where b € N, the learner performs the Exp3-UP
with parameters

K
n= \/—;H (16a)
20041 1
M= |23 —— +In4dK 16b
{ = +1In -‘ (16b)
€ = <2Ki +\/4AVE + 1) In(K20+3). (16¢)

When the learner realizes that the value of M needs to be
increased, it then performs exploration to guarantee that at
least M samples of the mean ergodic random process X;; are
observed. The following lemma shows that when doubling trick
is employed, Exp3-UP can achieve sub-linear regret without
knowing the time horizon beforehand, the proof of which is
in Appendix E.

Lemma 4. Assuming that the doubling trick is employed to
determine the value of n, M and £ at each time instant and the
greedy set cover algorithm is utilized to obtain a dominating
set D of the nominal feedback graph. If T > K, the regret of
Exp3-UP satisfies

T T
> Eilti(vr,)] min, ACH
<0 (O‘(? In(T) In(KT)/K In(KT)T3 +1n1> (17)

with probability at least 1 — O(% ).

B. Geometric Resampling-based Approach

Another approach to obtain a reliable loss estimate is to
employ geometric resampling. Similar to Exp3-UP, if ¢t < KM
the learner chooses the k-th expert at time instant ¢ where

k=t—|t/K]| K. In this way, it is guaranteed that at least M
samples of the mean ergodic random process X;; are observed.
Based on these observations, a loss estimate is obtained whose
expected value is an approximation of the loss ¢;(v;), Vi € [K].
At t > KM, the learner draws one of the experts according
to the following PMF

mie=(1— ) (v; € D), Vie K] (18)

IDI
where D represents a dominating set for G. Furthermore, at
each time instant ¢ > KM, let T(t) ce Z(t]@ denote the
last M time instants before ¢ at Wthh the ¢-th expert was
chosen by the learner. If (i,j) € &, the learner observes
Xij(ri(,tl)), . .,Xij(ri(’tjv)[) which are samples of the random

process X;; at Ti(ﬁ), e Z(t]@ Let Y;;1(¢),...,Yi; m(t) denote
o X (T ) 1r)- At each

a random permutation of X;;(7, i(_l)), .
time instant ¢, the learner draws with replacement M experts
according to PMF {m;,} in (18) in M independent trials.
Let P;1(t),..., P m(t) be a sequence of random variables
associated with v; at time instant ¢ where P; , () = 1 if the
learner draws the ¢-th expert at the u-th trial and P; ,(t) =0
otherwise. Let

Ziah) = 3 Pru(t)Yyiult)

Vi, € ./\/""

(19)

for all 1 < w < M. An under-estimate of loss can then be
obtained as

Et(vi) = Qq;,tét(v,-)l(vi S St)

where Qi = min {{u|1<u< M, Z,(t) = 1} U{M}},
and the expected value of ¢;(v;) can be written as

E[le(vs)] = (1= (1= qio)™) b (vy),

see (101) — (104) in Appendix F for detailed derivation.
Then, the weights {w;;}/, are updated as in (13) using the
loss estimate Kt(vz) in (20). The geometric resampling based
online expert learning framework (Exp3-GR) is summarized
in Algorithm 3, and Theorem 5 presents its regret bound.

(20)

21

Theorem 5. Under (al) and (a2), the expected regret of Exp3-
GR is bounded by

T T
E — mi )
tz:; t[ét(vlt)] Eleuézgt(vz)
In K
<22 L (K- 1)M + Z (1—q;0)"
n t=KM+1

K

+n(1—=n)(T — KM) +n Z Zm’t.

t= M1 =1 Tt

(22)

The proof of Theorem 5 is presented in Appendix F.
Building upon Theorem 35, the following Corollary presents the
conditions under which Exp3-GR can obtain sub-linear regret.

Corollary 5.1. Assume that greedy set cover algorithm is
employed to find a dominating set of the nominal feedback



Algorithm 3 Exp3-GR: Exp3 with geometric resampling
Input:learning rate n > 0, the minimum number of
observations M, G = (V,€).

Initialize: w; ; = 1, Vi € [K].
fort=1,...,T do
if ¢t < KM then
Set k=t— L%JK and draw the expert node vy.
else
Select one expert according to PMF 7, in (18).
Observe {;(v;) : v; € S;} and compute /4 (v;), Vi €
[K] via (20).
Update w; ¢11, Vi € [K] via (13).
end if
end for

DT " nder (al) and (a2), Exp3-GR

graph G. If M > e

satisfies

<0 <a(€g) In(KT)VEKT In K) . (23)
Proof. According to (a2), if (i,j) € &, the learner observes
the loss of the j-th expert when it chooses the i-th expert with
probability at least e. Recalling (18) it can be inferred that
e > n/|D|, ¥i € D. Combining (4) with the fact that for
each v; € V there is at least one edge from D to v;, Vi € [K],
i+ can be bounded below as

Qi > (24)

ne
ID|
Combining the condition M > ‘Dz‘# with (24), we have
Mg > LInT which leads to e M4t < ﬁ Thus, using

the fact 1 + x < e, we have
_Ma: 1
(1 - Qi,t)M <e Mg < ﬁ
Hence, the third term in (22), i.e., ZtT:t, (1 —gi )™ can be

bounded by O(v/T).
Furthermore, consider the case where we have 1 =

(25)

O(y/&2E). Therefore, taking into account that greedy set
cover algorithm is used to determine the dominating set, it
can be inferred that |D| = O(a(G) In K) (see e.g. [15]) based

on which it can be obtained that M = O(% InTVvTInK),

satisfies the condition M > M. Hence, the expected regret

of Exp3-GR satisfies (23), and E?he Corollary 5.1 is proved. [

Achieving the sub-linear regret in (23) requires that the
learner knows the time horizon 7', beforehand which may not
be possible in some cases. When the learner does not know 7',
doubling trick can be utilized to achieve sub-linear regret. The
following Lemma is proved in Appendix G, shows the regret
bound for Exp3-GR when doubling trick is employed to find
values of n and M without knowing the time horizon 7. In this

case, at time instant ¢, when 2° < ¢ < 2b+1 parameters 7 and
KinK 77— "(b+1)\/2b*1\D|1n2—‘
2b+1 - .

M can be chosen as 7 = NiaTy
€ n

When the learner realizes that M needs to be increased, it
performs exploration to guarantee that at least M samples of
the mean ergodic random process X;; are observed.

Lemma 6. Employing doubling trick to select n and M at
each time instant, and supposing that a dominating set for the
nominal feedback graph G is obtained using greedy set cover
algorithm, the expected regret of Exp3-GR satisfies

T T
> Edte(vr,)] - mmin PRACH
t=1 =1

<0 (a(g)lnTln(KT)\/KTan) . (26)

€

Comparing Lemma 4 with Lemma 6, it can be observed that
Exp3-GR achieves a tighter regret bound with probability 1.
However, note that choosing an appropriate M for Exp3-GR
requires knowing € or a lower bound of €, which may not be
feasible in general, while such information is not required for
Exp3-UP in order to guarantee the regret bound in (17).
Comparison with [25]. Note that while Exp3-GR and Exp3-
Res proposed in [25] both employ the geometric resampling
technique, there exist two major differences: i) Exp3-Res
assumes the actual feedback graph is generated from Erdos-
Rényi model, and the probabilities of the presence of edges are
equal across all edges, while Exp3-GR considers the unequally
probable case and does not assume that the probabilities of
existence of all edges are equal; and ii) unlike Exp3-Res, Exp3-
GR does not assume that the learner is guaranteed to observe
the loss associated with the chosen expert. Furthermore, it
is useful to compare the regret bound of Exp3-GR with that
of Exp3-Res when the actual feedback graph is generated
from the Erdés-Rényi model with p;; = p, Vi,j € [K].
In this case, according to Corollary 5.1, Exp3-GR achieves
regret of O (@ VKTIn K ) On the other hand, under

the assumption that p > ;;}TQ and knowing that probabilities

associated with all edges are equal, Exp3-Res obtains regret of

O(/K2InK + % . Hence, having access to knowledge
that the probabilities associated with all edges are equal enables
Exp3-Res to achieve tighter regret bound than Exp3-GR in this
special case.

Dependence of loss and feedback graph. The proposed
algorithms Exp3-IP, Exp3-UP and Exp3-GR can also deal
with cases where there is dependence between actual feedback
graphs and losses. Consider the case that the environment
generates (X¢, y;) stochastically following certain time-invariant
distribution. The ¢-th expert obtains the input x; and outputs
the prediction §; ;. In this case, the loss ¢;(v;) can measure
the discrepancy between ¢; , and y, using some metrics such
as squared loss. Furthermore, assume that the actual feedback
graph at time ¢ denoted by #H; depends on x;. In this case, if the
learner knows the possible relations among experts, the learner
can construct the nominal feedback graph G where the existence
of each edge depends on x;. Therefore, the edge between
two vertices exist with some time-invariant probability. Before
decision making the learner is uncertain about x; and as a result
the learner can utilize one of the proposed algorithms Exp3-



Table I
CUMULATIVE REGRET ON VARIOUS DATASETS AND FULLY CONNECTED
NOMINAL FEEDBACK GRAPH IN EQUALLY PROBABLE SETTING.

Air CCPP Twitter  Tom’s
Exp3 47.56  152.34 71.03 45.39
Exp3.G 39.16 122.93 59.72 40.63
Exp3-Res 33.36  100.22 52.64 38.46
Exp3-SET 38.21 122.62 59.28 39.49
Exp3-DOM  39.04 122.16 61.30 41.10
Exp3-IP 33.33 98.22 52.47 37.63
Exp3-UP 35.97 109.87 56.86 38.68
Exp3-GR 33.60 99.91 53.33 38.25

IP, Exp3-UP and Exp3-GR to decide based on the nominal
feedback graph.

V. EXPERIMENTS

Performance of the proposed algorithms Exp3-IP, Exp3-UP
and Exp3-GR are compared with online learning algorithms
Exp3 [9], Exp3.G [18], Exp3-Res [25], Exp3-SET [15] and
Exp3-DOM [15]. Exp3 considers bandit setting, and Exp3-
Res assumes Erdos-Rényi model for the feedback graph.
Furthermore, Exp3.G and Exp3-DOM treats the nominal
feedback graph G; as the actual one without considering
uncertainties. Exp3-SET observes the nominal feedback graph
G: and the loss of out-neighbors of the chosen expert after
decision making. Exp3-SET treats connectivity information
given by G; associated with nodes other than the chosen one
as certain information without considering the uncertainty.
Note that Exp3-SET observers the actual feedback graph
partially after decision making since Exp3-SET observes the
loss of chosen experts’ out-neighbors. Performance is tested
for regression task on several real datasets downloaded from
the UCI Machine Learning Repository [32]:

Air Quality: This dataset contains 9,358 responses from
sensors in a polluted area, each with 13 features. The goal is
to predict polluting chemical concentration in the air [33].
CCPP: The dataset has 9, 568 samples, with 4 features such
as temperature, collected from a combined cycle power plant.
The goal is predicting hourly electrical energy output [34].
Twitter: This dataset contains 14, 000 samples with 77 features
including e.g., the length of discussion on a given topic and
the number of new interactive authors. The goal is to predict
average number of active discussion on a certain topic [35].
Tom’s Hardware: The dataset contains 10,000 samples from
a technology forum with 96 features. The goal is to predict
the average number of display about a certain topic on Tom’s
hardware [35].

Let (x;,y;) and (X;,¥;) be the i-th data sample and the
normalized one, respectively. The data is normalized as

Xi = o Ui = e oo Therefore, [|x;]| < 1,
max; llx;1> max; y; —min; y;
0 < y; < 1, Vi. In the experiments, there are 9 experts

such that each expert is a trained model. In particular, each
expert is trained on 10% of each dataset before the start
online learning task associated with the corresponding dataset.
Among them, 8 experts are trained via kernel ridge regression
such that 5 experts exploit RBF kernels with bandwidth

Table II
CUMULATIVE REGRET ON VARIOUS DATASETS AND
PARTIALLY-CONNECTED NOMINAL FEEDBACK GRAPH P IN UNEQUALLY
PROBABLE SETTING.

Air CCPP Twitter  Tom’s
Exp3 47.56  152.97 71.04 45.39
Exp3.G 41.19 128.74  62.21 41.53
Exp3-Res 35.83  109.62 56.55 39.51
Exp3-SET 40.21  129.32 62.22 40.77
Exp3-DOM  41.19 127.84  63.90 41.98
Exp3-IP 32.95 97.37 52.23 37.19
Exp3-UP 38.77 12097  61.06 40.28
Exp3-GR 33.60 99.59 53.04 38.01

of 1072,1071,1,10,100 while 3 experts employ Laplacian
kernels with bandwidth of 10~2, 1, 100. Moreover, one expert
is a trained linear regression model. Performance of algorithms
are evaluated based on cumulative regret averaged over 20
independent runs. Recall that cumulative regret of an algorithm
is the cumulative difference between the loss of the algorithm
and that of the best expert in hindsight over time. In experi-
ments, squared loss function is employed to measure the loss
of experts. The learning rate 7 is set to % for all algorithms.
Note that online learning algorithms may achieve better regret
experimentally with carefully tuned learning rate. However,
for fair comparison, the learning rates of all online learning
algorithms are set to be the same. Parameter M is set as 25
for both Exp3-UP and Exp3-GR and ¢ = 1 for Exp3-UP.

We first tested the equally probable setting where the nominal
graph G, is fully connected and probabilities p;; = 0.5, V4, j.
Table I lists the regret performance for various datasets. It
can be observed that, knowing the exact probability enables
Exp3-IP to achieve the lowest regret. Moreover, the proposed
Exp3-UP and Exp3-GR obtain lower regret than Exp3.G, Exp3-
SET and Exp3-DOM which treat the nominal feedback graph
as actual one. Note that in this case, the actual feedback graph
is indeed generated from the Erdos-Rényi model. The regret
of the proposed Exp3-GR is comparable to that of Exp3-Res
while Exp3-Res makes decision under the assumption that
the actual feedback graph is generated from the Erdos-Rényi
model.

We further tested the unequally probable case, when the
graph is partially connected. In particular, v; € J\/;O‘t“ if jis
either the remainder of 1 — 1, 4,4+ 1,7 +4 and 7 + 6 to 9.
Note that if the remainder is zero, it is considered to be 9. The
resulting nominal feedback graph in this case is represented by
‘P. Therefore, in the nominal feedback graph P, each node has
5 out-neighbors. As an example, out-neighbors of v; and wvg
are illustrated in Figure 1. The probability associated with each
edge is drawn from uniform distribution ¢/[0.25, 0.5]. Table II
lists the cumulative regret of all algorithms for Air Quality,
CCPP, Twitter and Tom’s Hardware datasets. It can be observed
that Exp3-IP obtains the lowest regret. This shows that knowing
the probabilities can indeed help obtain better performance.
Furthermore, it can be observed that Exp3-UP and Exp3-GR
can achieve lower regret in comparison with Exp3 which shows
the effectiveness of using the information given by the uncertain
graph. In addition, lower regret of Exp3-UP and Exp3-GR
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(a) Out-neighbors of v1 in P. (b) Out-neighbors of vg in P.
Figure 1. Out-neighbors of v1 and vg are illustrated in partially-connected
nominal feedback graph P.

Table III
CUMULATIVE REGRET ON VARIOUS DATASETS AND
PARTIALLY-CONNECTED CERTAIN NOMINAL FEEDBACK GRAPH P.

Air CCPP Twitter  Tom’s
Exp3 46.46  150.23 70.01 45.05
Exp3.G 32.86 96.80 50.52 36.87
Exp3-Res 32.10 98.47 50.68 37.22
Exp3-SET 31.93 97.31 50.24 36.29
Exp3-DOM  32.84 96.39 52.07 37.22
Exp3-IP 33.19 97.37 52.44 36.88
Exp3-UP 35.92  109.93 56.25 38.44
Exp3-GR 33.34 99.08 52.87 37.60

compared to Exp3.G, Expe-SET and Exp3-DOM indicates that
considering the uncertain graph G; = P as a certain graph
can increase regret. Moreover, it can be observed Exp3-GR
outperforms Exp3-Res when the actual feedback graph is not
generated by Erdos-Rényi model. It can be observed Exp3-1P
achieves lower regret than Exp3-GR and Exp3-UP, since the
learner has access to the probabilities, while Exp3-UP and
Exp3-GR do not rely on such prior information.

In addition, we tested the performance of algorithms when
the nominal feedback graph P is partially-connected, and
the probability associated with each edge is 1. As it can be
seen from Table III, Exp3.G, Exp3-SET, Exp3-DOM and the
proposed Exp3-IP which utilize the certain feedback graph
obtain lower regret than those of Exp3-UP and Exp3-GR which
treat the certain feedback graph as uncertain one. In fact, Exp3-
UP and Exp3-GR do not know the probability associated with
edges. Furthermore, the regret of Exp3-IP is comparable to
Exp3.G, Exp3-SET and Exp3-DOM.

VI. CONCLUSION

The present paper studied the problem of online learning
with uncertain feedback graphs, where potential uncertainties in
the feedback graphs were modeled using probabilistic models.
Novel algorithms were developed to exploit information
revealed by the nominal feedback graph and different scenarios
were discussed. Specifically, in the informative case, where
the probabilities associated with edges are also revealed, Exp3-
IP was developed. It is proved that Exp3-IP can achieve
sublinear regret bound. Furthermore, Exp3-UP and Exp3-GR
were developed for the uninformative case. It is proved that
Exp3-GR can achieve tighter sublinear regret bound than that
of Exp3-UP when the number of experts is negligible compared

to time horizon, while Exp3-UP requires less prior information
than Exp3-GR. Experiments on a number of real datasets
were carried out to demonstrate that our novel algorithms can
effectively address uncertainties in the feedback graph, and
help enhance the learning ability of the learner.
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APPENDIX
A. Proof of Theorem 1

Recall that W; = Zfil w;¢ (below (3)), we have

W, w; K w,
t+1 Z ittl W eXp (—Tlft(vi))- 27)
According to (3), we can write
Wit Tt — "7Fi t
3 — ) 3 28
where F; ; = %I(vl € D;). Substituting (28) into (27)
€Dy J.t
obtains ’
W, K ri—nF,
t+1 i,t — i,t n
-y L ’ il (v; ) 29
Wr & 1oy eXp( nta(vi) 29

Using the inequality e™® < 1 —=z+ 22, Vz > 0, the following
inequality holds

Wi
Wy
K —
T — NF 5 1, - 9
< 9 9 . . _ . .
< P (1w + 30 0)?) G0

Taking logarithm of both sides of (30) and using the fact that
1+ 2 <e”, we have

Wi
Wi

K it —nFiy - 1, - 9
< Z ﬁ —nl(vi) + g(ﬁgt(vi)) .
i=1

Summing (31) over time obtains

In

€1y

m%
1
T K _
Tie — N, 1«
<Zzt1_nt< nét(vz)+2(n€t(vi))2>. (32)
=1 i=1

Furthermore, the left hand side of (31) can be bounded from
below as

W- w
T+1 >1I1 zT+1 o

1
nW1_

—InK

(33)

left 1)2

where the equality holds due to the fact that W; =
>, wj1 = K. Then, (32) and (33) lead to

T K 0 T )
33 ) —n )
t=1 i=1 t=1
T ~
SWK 4303 )
t=11€D;
T K T 77
+Zzn2 Lt ;tét(vl)Q. (34)
t=11i=1
Multiplying both sides of (34) by 1=
T K R T R
Z Z'/Ti,tgt(vi) - Zet(vz)
t=11=1 t=1
In K )
Si + Z Z an tgt(vz)
n t=14€D,
T K n R
a 1.t T Fz g 7 35
+;;2(W,t nFi ) (v;) (35)

Furthermore, the expected values of 4 (v;) and /;(v;)? can be
written as

) = Et(Ul)

E 71-] tpjzt »

le(v;)?
E Zﬂ—j tPjit q2 =

7,t Qi,t

(36a)

b (Ui)Q < i
qit

(36b)

where the inequality in (36b) holds because of (al) which
implies ¢;(v;) < 1. Taking the expectation of both sides of
(35), we arrive at

T K
DD marke(vi) -
t=1 i=1

T K

S% + Z Z nF; 10 (v;)

N t=1 i=1

1
&
[~



T K
+ 3D e —nFi) —. (37)
t=1 1=1 it
Moreover, using the fact that ¢;; < 1 we have
n? T K 77 T K n? T 2T
EPRITEEPNNLE P

Furthermore, since based on (al) ¢;(v;) < 1, the second term

on the RHS of (37) can be bounded by

nZZFnet v;) <UZZFL1: —nZl =nT. (39)

t=11=1 t=11i=1
Combining (38), (39) with (37) we have

(40)

By definition, the first term on the RHS of (40) equals to

E¢[¢:(vr,)]- In addition, note that (40) holds for all v; € V,

hence the following inequality holds

T T

;Et[@(vlt)} - in th(vl)

In K n n I E o
<—— 41— )T+ =+ —t 41
<= - +n1-3) +2ZZ% (41)

1
which completes the proof of Theorem 1.

B. Proof of Lemma 2

Based on Theorem 1, the upper bound of the expected regret
of Exp3-IP is

ZEt L (vy,)] mln Zﬁt (vs)

<%+)1—7 Qiiwt (42)
- 26 dis
Let at each time instant ¢, (); is defined as
Q=1+5 Z”” (43)

ta

Furthermore, let 7, be the largest time instant satisfying
Z” @Q: < 2". According to the doubling trick, at 7,._; + 1,
such that ZTT Ll Q; > 271, the algorithm restarts with

In K

2r
Also, the algorithm starts with » = 0. Therefore, based on (42)
and (44), it can be concluded that

Tr
Z 7,10 (Vi) mm Z £y (v;) <227 In 7'
t=1

Nr = (44)

T oor+l (45)

when 2771 < >~ @, < 2". The maximum number of restarts
required is {logg Zle Qt—‘ . Moreover, it can be written that

|—10g2 Zf:l Qt—|

>

r=0

4\/1nK
V2 —
Therefore, based on (42) and considering the fact that the

maximum possible value for incurred loss at each restart is 1,
combining (45) with (46) leads to

T T
; B[l (vr,)] — 511611‘1} ; £y (v;)

2V/2rIn K < (46)

<0

T T
(In K) Z Q¢ + {log2 Z Qt—‘
t=1 t=1

K

=0

l\.')\»—l

T
Png > Qtl @7)
t=1

Based on (a2), we can write p;; > ¢ > 0 if (4,5) € &.
According to (4) and the fact that the ¢-th expert is chosen by
the learner with probability of 7; ;, based on (a2) the inequality
gi,+ > mi € holds. Thus, we have

a K
’VlogQ Y e =0 (m (ET)) . (48)
t=1
Combining (47) with (48) obtains
T T
tz::l B[l (vr,)] — min ; i (vi)
<0 1nKZ (1+ = Z )+1n(KT) (49)
- (h t

In addition, the following Lemma is used as a step stone [15].

Lemma 7. Let G = (V,E) be a directed graph with a set of
vertices V and a set of edges & such that each vertex in V
has a self-loop. Let D C V be a dominating set for G and
P1,-..,PK be a probability distribution defined over V, such
that p; > 8 > 0, for i € D. Then

< 20(G) In(1 + B

Z > a(9)

where a(G) represents independence number for the graph G.

K? —‘ —|—K
) +2|D| (50)

J: ]—>sz

Based on Lemma 7 and (a2), we get
K
Tt

)

i=1 Zw:je/v,gp Tyt

K3
)+ K

Considering the fact that ;¢ > €3 ;¢ A, Tj.¢ Which is
induced by (a2), from (51), it can be inferred that

<20(Gt) In(1 + ) + 2| Dyl (31)

K K? K
Tt 204(gt) [ ne —‘ T 2|Dt|

— In(1 . 52
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Furthermore, if greedy set cover algorithm by [30] is employed
to obtain the dominating set |D;|, it can be written that [15]

|D:| = O(a(G:) In K). (53)
Therefore, from (52) we can conclude that
K
> <0( G BT )) (54)
=1 qzt €
Combining (49) with (53) and (54), we arrive at
ZEt [l:(vr,)] — mln Zét v;)
T
<o | mrm® Yy = ) | 1, KT) (55)

€
t=1

which completes the proof of Lemma 2.

C. Proof of Theorem 3

In order to prove Theorem 3, let’s first consider when
t < KM. When the learner chooses among experts in a
deterministic fashion. The (expected) loss can be written as
E¢[l:(v;)] = 4+ (vg). Since Et(vi) <1, we have

KM
pRAACH Z (vi) < (
=1

On the other hand, for any ¢ > K M, the following equality
holds

—1)M. (56)

W, K w K
t+1 i t+1 it =
= - = . —n/ i) |- 57
Wi ; Wi ;Wt ( nt(v)) o7
Recall (10), we have
Wit Tt — 1714%‘2» t
—_— = 58
W, = (58)
where }%‘i’t = %‘I(vi € D,). Following similar steps from
(29) to (34), and from (57) and (58) we obtain
T K } T
Z Z i1l (Vi) — Z Ci(vi)
t=t’ i=1 t=t
T K
In K
<L —|— Z Z’I’]FZ tgt ’UZ
t=t/ i=1
+ th ; (i = 1F30) (1)’ (59)

where ¢ = KM + 1. In addition, the expected value of ACH)
and /;(v;)? at time instant ¢ can be written as

Eifli(vi)] = )

Vi GNg'jt
Vjw;eN®,

ZQZtét( ) S({%f
7,t 7,t

1 i)
Wj,tpjiqut(vi) =& "2, (v;) (60a)

2,t z,t

1
Tj,0ji =5~ Lo (03)?
it

Ei [l (vi) ] =

(60b)

Let €;5+ 1= |pij¢ — pij|- According to (11), the probability
that g; ; > ¢, ¢ is at least HV] vy ENI, Pr(e;;: < &/vV M) since
the incidents {e;;; < {/VM, V(i,j) € £} are 1ndependent

from each other. Let ¢ denote &/VM and p;y = % - t,
we have ’ '

Qi — Gist ZW:UJENQH e (pji = Pjie —€)

'[,L,'7t = = - - ~
' qi,tqit i tqit
2jsentn, 2T
_ = 2” (61)
it

where the last inequality holds with probability

HVJ oy N, Pr(e;;+ < ¢). Therefore, the following inequalities
hold with the probability []y;.,,. N, Pr(eij < ¢)

2 _
L) — Y T2 () < Eifly(v))]
Vlj:vjENliTt it
=0 (vs) + e pti 1l (Vi) < Ce(v;) (62a)
~ 2 1

T Gt
Taking expectation of both sides of (59) and combining with
(62), we obtain the following inequality

T K T
Z Zﬂi,tgt(vi) - Z@(’Ui)

t=t’ i=1 t=t’

t=t" i=1 Vi eN,

27Tj,t5

i U
qit t( )

MK o

<—+ZZT}FM& V; Jrzz Wlt*Uth)
t=t’ i=1 t=t' i=1
T K

1“K+zznm+zz (mie = nFro)

t=t" i=1 t=t’ i=1
which holds with probability at least
H(i,j)e& Pr(e;jv <e,...,e;57 <¢€). Applying the chain
rule for one term in the product, we have

(63)

PI‘(BMW S Eyev ey €i5,T S E)
T
=Pr(ejjp < E)pr(ezj,t <eleji-1<e .60 <€)
t=t’+1
T
> [ Pr(eijue <o) (64)
t=t/

In order to obtain the lower bound of the probability Pr(e;;; <
€ij,¢), the Bernstein inequality is employed. To this end consider
the following lemma [36].

Lemma 8. Let (1 ..., be independent random variables with

ElG]=0,Vi:1<i<n
E[G"]| <

(65a)

|
%b?H’”_z,m —92,3,...,¥i:1<i<mn. (65b)



Then for x > 0, we have

|8

(66)

Pr(|¢1+... 4+ Cu| = 2By) < 2exp(—

1+%)

where B2 = b3 + ...+ b2.
Let Oij (t) = Xij (t) —Pij» V(Z, j) € &;. Since Xij (t) follows
Bernoulli distribution with the parameter p;;, it can be readily

obtained that E[f;;(t)] = 0. Furthermore, for the moment
generating function of 6;;(t), we have

My, (1)(2) = (1 = pij)e 7% 4 pye ™)z (67)
Therefore, the expected value of 0?]? (t), m=2,3,... satisfies
. d™ M, 1)(2)
]E[oij ()] = 7(123,” |-=0
= (=pij)" (L = pij) + (1 = piz) " pij- (68)
From (68), we can conclude that
E[75 O] < pij (1= pij) < §
cm_mifl 2><1m—2 —2.3 (69)
) - 2 2 y T = 24,9,...

Thus, letting b; = % H =1 in Lemma 8 and combining with
(69), the following inequality can be obtained

§Cij¢
> 0i(n)| > =
TETij.t M
ECijt
> Xi(r) —piyl > 22
TE€Tij.t M
9¢2Cist 262,
<2exp (—éﬁ/[f) = 2exp (_M) (70)
1+ T M+ 46V M
which leads to
262054 >
Pr(e;;+ >¢) < 2exp | ———" 71
Therefore, (63) holds with probability at least
26%Cijt )
1—2exp( g, . 72
H 11 ( PN aevar) 72

t=t’ (i,j)EE

Since Yy enm Tt < 1 and € = the following

&
: VM’
inequality holds

T K 27Tjt€ 27rj_,t\/%
VEZISIEN t=t"i= V].UJE/\/M
<ii 2mik (73)
_t:t/ i=1 Qi,t\/ﬂ

Using (73) and the fact that q% > 1, (63) can be rewritten as

T K T
SN miili(vi) =Y li(vi)

t=t’ i=1 t=t’

T
In K W,
<—+Zn +ZZ 5 +2) (74)
t=t' = i=1 t
Combining (74) with (56) results in following inequality
T
Z Et Zt 'UIt Z Le(vy)
t=1
In K
gnT + (K — )M +n(1 - 5)(T — KM)
2
n Z Z T, t 5 2) (75)
it im1 s t

which holds with probability at least ¢ and the proof of
Theorem 3 is completed.

D. Proof of Corollary 3.1

The proof of Corollary 3.1 will be built upon the following
Lemma.

Lemma 9. Let (1,...,(n (N > 1) be a sequence of real
positive numbers such that Vi : 1 <i < N, 0< (; <1 and
Vn:1<n<N, Z?_l (; < 1. Then, it can be written that

H 1 - CL >1- Z Cl
=1
Proof. We prove this Lemma using mathematical induction.

Firstly, Consider (76) for N = 2

1-C)1-¢C)=1-G—-G+0e>1-0G—C. (T7)

Assuming that (76) holds for N = n. Then, based on (77) we
have for N =n +1

(76)

n+1
H(l - Gi)
(H 1_47, ) 1_Cn+1)> (1_Z<i)(1_4n+1)
=1 i=1
n+1

(78)

>1-) G
=1

Hence, (76) also holds for N = n+ 1, and Lemma 9 is proved

by induction. O
Assuming M satisfies
4€(KT) \°
M> ——7— . 79
> (# hwn) 7
Hence, (79) can be re-written as
1 262V M 262Cj 4
> ex exp(————— 80
a7z 2 (= \ﬁ+4£) p( M+45\/M) (80)

where the second inequality holds since C;, > M. Let
t' = KM + 1. Note that the regret bound in (14) holds with
probability at least d¢ in (72). According to Lemma 9, we can
obtain the following inequality

11 11

t=t’ (i,j)€E,

_28%Cij )>

1—2exp(
( p(= M + 4V M



25 C’L t
-y Z 2exp(— YT (81)
(4,5)EE: t=t/ M+4€
Combining (80) with (81) obtains
2(T — KM)|E|
ezl gae (82

where |£| denotes the cardinality of the £. Since G does not
change over time, |£] is a constant. According to (82), it can be
readily obtained that when (79) holds, the regret bound in (14)
holds with probability at least of order 1 — O(7). Consider
the case where the learner sets 7, M and & as follows

n=(9(\/§)

(83a)

L 2
M = O(WT ) (83b)
¢ = O(K7\/In(KT)). (83¢)

Putting 1, M and £ in (83) into (14) and based on Lemma
7, it can be concluded that the expected regret of Exp3-UP
satisfies

T
> Edlbe(vr,)] -

<0 <0‘(€g> In(KT)(VTIn K + \/K1n(KT)T§)) (84)

~~
HMH
I
S
—
S

with probability at least 1 — O().

E. Proof of Lemma 4

In this section, doubling trick technique is employed such
that Exp3-UP can achieve sub-linear regret. If 2° < ¢ < 2b+1,
the value of the learning rate n;,, M} and &, are

In K
=1/ 9641 (85a)
20041 1
My =273 —— +1IndK 85b
: { VK W (80
& = <2Ki +\/4VEK + 1) In(K20+3) (85¢)

When the learner realizes that t > 20t the algorithm restarts
with 7p41, Mpy1 and &p4q1. The algorithm starts with b =
[logy, K|. Therefore, when ¢ < 2M1°82 K1 the value of 7,
My, and &, are set with respect to b = [log, K. Let M,
denotes a set which includes the time instants when the learner

chooses the ¢-th expert in a deterministic fashion for exploration.

Specifically, when at time instant 7, the learner chooses the
i-th expert for exploration without using the PMF in (10), the
time instant 7 is appended to M. At each restart the learner
chooses the experts one by one for the exploration until the
condition |M;| > My, Vi € [K] is satisfied. Then, the learner
chooses among experts according to PMF in (10) using the
learning rate 1. Therefore, based on Theorem 3, for each b,
the algorithm satisfies

Ty
> Eillu(or)] -

t=2b41

Ty
DAY

t=2b+41

In K
<2 (K-
U

+77b(1— %)(Tb—zb—

t=2041 i=1

1)(Mp — My_q)

K(My, — My—1))

(86)

with probablhty at least §;, where it can be expressed as

H H <1—2exp 2£§Oij’t

=t (i)ees My + 4/ My
where T}, denote the greatest time instant which satisfies 2° <
T, < 2b+1 and t’ can be written as

tb = min(Tb_1 + K(Mb — Mb—l) + 1,Tb).

Note that M;_; = 0 when b = [log, K. Since for each b,
Mj and &, in (85) meet the following condition

4&, 1n(4KTb)
My = (55 - ln(4KTb)) ’

it can be concluded that the following inequality holds true

) e

(88)

(89)

7>exp(772£l3 My )
16K2Tl72 - v My + 4&,
26 Cij

> e 90

> exp( Mb+4£b\/m)’ (90)

and as a result according to Lemma 9 we can write

Z i 263 Cijit
o >1— 2exp(———b "0 ), 1)
()€€ t=t) My + 4&/M,
Combining (90) with (91), it can be concluded that
(Ty — 13|, |
dp > 1 — max(0, 8K72Tb2b) 92)

Therefore, for each b from (86), (92) and Lemma 7 it can be
inferred that

Ty
Z E.[¢¢(vr,)]

t=20+41

where w = 2D n(KT) (VT K + /K(KTp)T})
holds with probab111ty at least 1 — O(2). Summing (93) over
all possible values of b, from b := ﬂog2 K to [logy, T'] and
taking into account that the maximum value of the loss at each
restart is 1, we arrive at

Z li(vi) < O(w)

t=2b+41

(93)

T T
Z]Et[gt(’l)[t)] — th v
t=1 t=1
[log, T']
< Z O (w) + [logy T — [log, K
b=[log, K1
<O(wInT)+ O(InT) 94)
which holds with probability at least
[log, T']
(Ty — )|, |

b=[log, K|



When b = [log, K|, we have T, > 2K. Furthermore, when

[logy K| < b < |log, T, it can be concluded that T, = 273 1.
Therefore, we can write
[log, T
22 maX(O (Tb — tg)|€Tb ‘ )
J 22
b=[log, K SRET,
[log, T'] 1 1 [log, T'] 1
< X ogpsgrl X @)
b=[log, K1 " b=[log, K
1 1
:87{(2_ (E)LlongJ—ﬂogzKT). (96)
Based on (96) and under the assumption that 7' > K, we find
[log, T']
Zz HlELX(O (Tb — t;y)|€Tb| )
T 8K2T?
b=[log, K| b
1 1 1 3
I _ (Z\llogy T|—[logy K| _
<8K(2 (2) )+8T<8K ©7

Thus, A meet the conditions in the Lemma 9 and it can be
inferred that

[log, T'

>

b=[log, K

(To — t3)[Em, | 1

A>1— max(0, K212 )>1-0(—=

K)'

Therefore, in this case, Exp3-UP satisfies

Z]Et[ﬁt(vlt)] - Zﬁt(v
(

<0 (C@ In(T) In(KT

Y(WTInK + /K 1n(KT)T§)>

with probability at least 1 — O(% ). This completes the proof
of Lemma 4.

F. Proof of Theorem 5

Since Exp3-GR chooses the experts one by one for the
exploration at the first K M time instants, E¢[¢(v;)] = £t (vg)
and (56) hold true. In addition, for ¢ > KM we have

K
Wit Wi 141 (
Wi _ 7y (v; ) 08
=) et th W), ©8)
According to (18), If/{,’: can be expressed as
. it — 51 L(v; € D)
Tit 11 . (99)

Wt 1—7]

Following similar steps performed to obtain (35) from (27)
and (28), given (98) and (99) we get

T
Z Z 7Tz tgt Uz Z ‘et (vz)

t=t’ i=1 t=t’

h’lK 22%5 ’U,L

t=t’ i€D

+ZZ

t=t’ i=1

(100)

7rzt

where ¢ = KM + 1. According to (20), expected value of
loss estimate ¢;(v;) can be expressed as

B[l (v:)] = Z 7,105 Ee [Qi,¢]Ce (v;)
Vj:UjEN;':t
= qi,tE¢[Qi 4]0t (vi)
> mapi Bl Q7 )l (v:)?
Vj:”jeNzi“,f,

= q;,¢E¢ [sz,t]gt(vi)2~

Note that the expected values depend on random variable
{Z; )Y, in (19), where P;,(t) and Yi;.(t), Vi € [K],
(i,4) € & are independent Bernoulli random variables with

(101a)

(101b)

parameters m; ; and p;;, respectively. Therefore, {Z; ., (t) M
are also Bernoulli random variables with expected value
EfZiuw® =B | D Piul®)Yjiul)
Vi ENP,
= Y B[P u()B[Yiw (D))
Vjivj eNtiljt
= ) TP = i (102)

Vjivj GN’;%

In other words, Z;,,(t) is a Bernoulli random variable whose
value is 1 with probability g; ;. The expected value of ); ; and
Qf,t can henceforth be written as

Ei Qi = Z ug; (1 —qig)" '+ M(1— Qi,t)M

u=1

1— (Mg +1)(1—q )M

_1-(Mgiz +1)(1 —gi) M1 =g )M
qit

1—(1— g )M

el Gl M (103a)

qit

M
E.[Q7,] = Z Wi (1 —qig)" "+ M*(1— i)™
u=1

2—2(1—¢M*?)

G ) 14+ (@M +3)(1— g )M
qi,t qit
= (M +1)%(1 = g )™ + M*(1 — ¢; o)™

_2-20—g ) 14 (M 4 3)(1— g M
qi7t di,t
- (2M +1)(1 = gi )™ (103b)
Combining (101) with (103), we arrive at
. 1—(1—qg )M
Ei[ls(vi)] = qit ( . it) Le(vy) (104a)
2,
= (1 -(1-g t)M) Li(vi) < Ly(vy)
_ 2 —2(1—¢M+2
B[l (v)"] = <(qqt) — 1) £(v;)®>  (104b)
it
+ (2M +3)(1 — q;. )M (v)?
— ¢ t(2M +1)(1 — Qi,t)Mft(Ui)2 < G
it



Combining (100) and (104), it can be concluded that

Zzﬂztft Uz th Uz szt qlt Et(”i)
t=t’ i=1 t=t’ t=t’ i=1
T K
In K n n 2
<— 4+ (mip — —ZI(v; € D))—
T2 g
a n
£ Y ) (105)
t=t' i€D
According to (al) ¢;(v;) <1 and using the fact that ql - > 2,
(105) can be further bounded by
T K T
Z Zﬂ'i,tgt(vi) — Zﬁt(vl) (106)
t=t’ i=1 t=t’
R MEYREED 9 SLeS Dol
o o) D]
t:t’ t=t' i€D t=t’ i=1
mK ™
=—+> (=g n(l—n)(T - KM) +nZZ 4t
K-y =t =1 it

Note that when ¢ > ¢/, we have E;[¢;(vy,)] = Zfil 74,401 (V;).
Combining (56) with (106) leads to

T T
> Eill(vr,)] = > (i)
t=1 t=1
In K d
<S——+(K-1)M+Y (1—g)"
n t=t’
F(l—n)(T — KM)+q Z Z 7; i (107)
t=t/ =1 10t

which completes the proof of Theorem 5.

G. Proof of Lemma 6

In this section, the doubling trick is employed to choose 7
and M when the learner does not know the time horizon T’
beforehand. At time instant ¢, when 2° < t < 2b*1 p, and
M, the are chosen as

KhnK b+ 1)v20-1|D|In 2
m= | g, — | GV IDIRZ | g
26+ evKInK

When t > 2b*1 holds true, the algorithm restarts with 7,
and Mpy. The algorithm starts with b = 0. At each restart,
the algorithm chooses the experts one by one for exploration
until the condition that each expert is chosen at least M, times
is met. Then, the learner uses the last M} observed samples
from each expert to perform geometric resampling. In this case,
for each b, Exp3-GR satisfies

Tb Tb
> Eilba(or)) - min > b(vi) (109)
t=2b41 t=20+41
In K I
SW + (K = 1)(My— My1) + Y (1—qi)™

t=t]

+ (L — mp) (T — 2° — K (M — My_1) +mZZT
t=t/ i=1 it

where T}, denote the greatest time instant which satisfies 20 <
T, < 20*1 and t;, can be expressed as in (88). Note that when
b = 0, we have M,_; = 0. Taking into account that the
maximum loss at each restart is 1, summing (109) over all
possible values for b obtains

T
E, [0 0o(v:
Z lle(vr,)] {fgr;; o(v3)
[log, T
In K
<[logy T+ > == (K- 1)M
b—0 Ul
|log, T']
+ > (L= m) (T — 2" — K (M, — M,_1))
b=0
[log, T T, K log, T'] T
+ Z %ZZ M (110)
t=t] i=1 it = t= t’

where M is the number of samples for each expert when b =
|log, T'| which are used for geometric resampling. According
to (108) and the fact that D is obtained using the greedy set
cover algorithm, we have

M = 0( ()mTW) (111)

i

Furthermore, for each b, the inequality ¢;; > lng holds.
Therefore, according to (108), we can write Myq; ; > ~5= Lln2.
Thus, it can be concluded that (1—g; ()M < e~ Mvaie < \/;ﬁ
from which we obtain

(1= qi)™ < < 2b-1
b=0 t=t} b=0 20+ b=0
v2T —1
< . (112)
22

In addition, based on the Lemma 7, it can be written that

[log, T'] Ty

>y

b=0 t=t} i=1
L10g2TJ
,/KQEIK T, — 20 < A9y, (KT)>
< [log, T] VP IK m KO (a@ mgm)
=0 ( (Eg) (InT) ln(KT)\/KTan) .

Therefore, combining (110) with (111), (112) and (113), it can
be inferred that Exp3-GR satisfies

T
; E¢[l:(vr, )] gnéré Z L (v;)
<0 (OW In(KT)VEKT In K)
€

(113)

(114)

which completes the proof of Lemma 6.



