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Online Learning with Uncertain Feedback Graphs
Pouya M. Ghari, and Yanning Shen, Member, IEEE

Abstract—Online learning with expert advice is widely used in
various machine learning tasks. It considers the problem where
a learner chooses one from a set of experts to take advice and
make a decision. In many learning problems, experts may be
related, henceforth the learner can observe the losses associated
with a subset of experts that are related to the chosen one. In
this context, the relationship among experts can be captured
by a feedback graph, which can be used to assist the learner’s
decision-making. However, in practice, the nominal feedback
graph often entails uncertainties, which renders it impossible to
reveal the actual relationship among experts. To cope with this
challenge, the present work studies various cases of potential
uncertainties and develops novel online learning algorithms to deal
with uncertainties while making use of the uncertain feedback
graph. The proposed algorithms are proved to enjoy sublinear
regret under mild conditions. Experiments on real datasets are
presented to demonstrate the effectiveness of the novel algorithms.

Index Terms—Online Learning, Graphs, Expert Advice, Un-
certainty.

I. INTRODUCTION

Online learning with expert advice considers the case where

there exists a learner and a set of experts, where the learner

interacts with the experts to make a decision [2]. At each time

instant, the learner chooses one of the experts and it takes

the action advised by the chosen expert, then incurs the loss

associated with the taken action. Such framework can be used

to model different learning tasks such as online multi-kernel

learning see e.g., [3], [4]. Conventional online learning literature

mostly focuses on two settings, full information setting [5]±[8]

or bandit setting [8]±[11]. In the full information setting, at each

time instant, the learner can observe the loss associated with all

experts. By contrast, in the bandit setting, the learner can only

observe the loss associated with the chosen expert. However, in

some applications such as the web advertising problem, where

a user clicks on an ad and information about other related ads

is revealed, the learner can make partial observations of losses

associated with a subset of experts. In cases where querying

for advice from expert incurs cost, the learner may choose to

observe the loss of subset of experts, see e.g. [12], [13]. To

cope with this scenario, online learning with feedback graphs

was developed in [14], where partial observations of losses are

modeled using a directed feedback graph. Each node represents

an expert, and an edge from node i to node j exists if the

learner can observe the loss associated with expert j while

choosing expert i. The observations of losses associated with

other experts are called side observations. The full information
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and the bandit settings are both special cases of online learning

with either a fully connected feedback graph or a feedback

graph with only self loops. Given the feedback graph either

before or after decision making, [15] has proposed algorithms

with sub-linear regret bounds. Online learning with feedback

graphs and sleeping experts has been studied in [16] where at

each time instant, a subset of experts may not be available. [17]

has studied the case where there is a dependency between the

feedback graph and expert losses. Moreover, [10] has proposed

an algorithm for bandit setting which obtains sub-linear regret

with respect to the best switching expert selection strategy.

Most of existing works rely on the assumption that the

feedback graph in known perfectly before decision making [15],

[16], [18]±[20], or after decision making [15], [17], [21]±[23].

However, such information may not be available in practice. In

addition, due to possible uncertainty of the environment, the

feedback graph may be uncertain. As an example, consider an

online clothing store that offers discount on an item for new

customers. Suppose there are two brands A and B producing

similar shirts at comparable price. The store has small and

medium sizes of brand A and medium and large sizes shirts of

brand B in stock. Assuming that the store offers discount on

brand B. If the user accepts the offer, and buys a medium size

shirt of brand B, it implies the user is also interested in shirts

of brand A. Moreover, if the user buys a large size of shirt

B, this indicates no interest in shirts of brand A. Otherwise,

if the user declines the offer of brand B, it only shows the

user is not interested in shirts of brand B but no information

is available about the preference of the user on the shirts of

brand A. Considering the case where the exact feedback graph

may not be available, [24] shows that not knowing the entire

feedback graph can make the side observations useless and the

learner may simply ignore them. [25] studies the case where the

exact feedback graph is unknown but is known to be generated

from the ErdÈos-RÂenyi model. However, such assumption may

not be valid in practice. In addition, both [24] and [25] assume

that the loss associated with the chosen expert is guaranteed

to be observed. Moreover, the probabilistic feedback graph

in stochastic setting has been studied in [26] where the loss

of each expert randomly generated using a certain probability

distribution.

The present paper extensively studies the case where the

learner only has access to a feedback graph that may contain

uncertainties, namely nominal feedback graph, and the learner

may not be able to observe the loss associated with the chosen

expert. Moreover, the present paper studies non-stochastic

adversarial online learning problems where at each time instant,

the environment privately selects a loss function. The learner

relies on the nominal feedback graph to choose among experts,

and then incurs a loss associated with the chosen expert. At

the same time, it observes the loss associated with a subset
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of experts resulting from the unknown actual feedback graph.

Furthermore, different from [24] and [25], the present work

does not assume that it is guaranteed that the learner observes

the loss associated with the chosen expert. This is true in, e.g.,

apple tasting problem [27]. The present work studies various

cases of potential uncertainties, and develops novel online

learning algorithms to cope with different uncertainties in the

nominal feedback graph. Regret analysis is provided to prove

that our novel algorithms can achieve sublinear regret under

mild conditions. Experiments on a number of real datasets are

presented to showcase the effectiveness of our novel algorithms.

II. PROBLEM STATEMENT

Consider the case where there exist K experts and the learner

chooses to take the advice of one of the experts at each time

instant t. Let Gt = (V, Et) represent the directed nominal

feedback graph at time t with a set of vertices V , where the

vertex vi ∈ V represents the i-th expert, and there exist an edge

from vi to vj (i.e. (i, j) ∈ Et), if the learner observes the loss

associated with the j-th expert (i.e. ℓt(vj)) with probability

pij while choosing the i-th expert. Let N in
i,t and N out

i,t represent

in-neighborhood and out-neighborhood of vi in Gt, respectively.

Thus, vj ∈ N out
i,t if there is an edge from vi to vj at time t (i.e.

(i, j) ∈ Et). Similarly, vj ∈ N in
i,t if there is an edge from vj to

vi at time t (i.e. (j, i) ∈ Et). The present paper considers non-

stochastic adversarial online learning problems. At each time

instant t, the environment privately selects a loss function ℓt(.)
with ℓt(.) : V → [0, 1], and the nominal feedback graph Gt is

revealed to the learner before decision making. The learner

then chooses one of the experts to take its advice. Then, the

learner will incur the loss associated with the chosen expert.

Let It denote the index of the chosen expert. Note that the

learner observes ℓt(vIt) with probability of pItIt , hence the

loss remains unknown with the probability of 1− pItIt .

The present paper discusses different potential uncertainties

in the feedback graphs, and develops novel algorithms for

online learning with uncertain feedback graph. Specifically, two

cases are discussed: i) online learning with informative proba-

bilistic feedback graph: where the probability pij associated

with each edge is given along with the nominal feedback graph

Gt; and ii) online learning with uninformative probabilistic

feedback graph: where only the nominal feedback graph Gt is

revealed, but not the probabilities.

III. ONLINE LEARNING WITH INFORMATIVE

PROBABILISTIC FEEDBACK GRAPHS

First consider the case where {pij} are given along with

the Gt. This can be the case in various applications. For

instance, consider a network of agents in a wireless sensor

network that cooperate with each other on certain tasks

such as environmental monitoring. Online learning algorithms

distributed over spatial locations have been employed in climate

informatics field [28], [29]. Assume that each agent in the

network keeps updating its local model, and there is a central

unit (learner) wishes to perform a learning task based on models

and data samples distributed among agents. In this case, the

agents in the network can be viewed as experts. Consider

Algorithm 1 Exp3-IP: Online learning with informative

probabilistic feedback graph

Input:learning rate η > 0.

Initialize: wi,1 = 1, ∀i ∈ [K].
for t = 1, . . . , T do

Observe Gt = (V, Et) and choose one of the experts

according to the PMF πt in (3).

Observe {ℓt(vi)}vi∈St
and calculate loss estimate ℓ̂t(vi),

∀i ∈ [K] via (2).

Update wi,t+1, ∀i ∈ [K] via (1).

end for

the case where the learner chooses one of the experts and

sends a request for the corresponding expert advice through

a wireless link. Subset of experts which receive the request,

send their advice to the learner. However, due to uncertainty

in the environment or power limitation, some of the agents

in the network including the chosen one may not detect the

request. Therefore, the learner can only observe the advice of

subset of agents in the network which detect its request. In

this case, the learner can model probable advice that it can

receive from experts with a nominal feedback graph. If learner

knows the characteristics of the environment which is true in

many wireless communication applications, the probabilities

associated with edges in the nominal feedback graph is revealed.

At each time instant t, upon selecting an expert and observing

the losses of a subset of experts, the weights {wi,t}Ki=1 which

indicate the reliability of experts can be updated as follows

wi,t+1 = wi,t exp
(

−ηℓ̂t(vi)
)

, ∀i ∈ [K] (1)

where [K] := {1, . . . ,K} and η is the learning rate. Function

ℓ̂t(vi) denotes the importance sampling loss estimate which

can be obtained as

ℓ̂t(vi) =
ℓt(vi)

qi,t
I(vi ∈ St) (2)

where St represent the set of vertices associated with experts

whose losses are observed by the learner at time instant t. The

indicator function is denoted by I(.) and qi,t is the probability

that the loss ℓt(vi) is observed. Its value depends on the

algorithm, and will be specified later.

Let At denote the adjacency matrix of the nominal feedback

graph Gt with At(i, j) denoting the (i, j)th entry of At. Let

Xij be a Bernoulli random process with random variables

Xij(t) = 1 with probability pij . When the learner chooses

the i-th expert at time t, the learner observes ℓt(vj) only if

vj ∈ N out
i,t and Xij(t) = 1. Let Ft denote the number of losses

observed by the learner. Due to the stochastic nature of the

observations available to the learner, Ft is a random variable.

Furthermore, let Fi,t denote the expected number of observed

losses if the learner chooses the i-th expert at time t. Thus,

we can write

Fi,t= Et[Ft|It = i, At] =
∑

∀j:vj∈N out
i,t

E[Xij(t)] =
∑

∀j:vj∈N out
i,t

pij .



3

The learner then chooses one expert according to the

probability mass function (PMF) πt := (π1,t, . . . , πK,t) with

πi,t = (1− η)
wi,t

Wt

+ η
Fi,t

∑

j∈Dt
Fj,t

I(vi ∈ Dt) (3)

where Wt :=
∑K

i=1 wi,t, and Dt denotes the dominating set

of graph Gt. Note that a dominating set D of a graph is a

subset of vertices such that there is an edge from at least

one vertex in D to any vertex not in D. It can be observed

from (3) that η controls the trade-off between exploitation and

exploration. With a smaller η, more emphasis is placed on

the first term which promotes exploitation, and the learner

tends to choose the expert with larger wi,t. The second term

allows the learner to select experts in the dominating set Dt

with certain probability independent of their performance in

previous rounds. Based on (3), qi,t in (2) can be computed as

qi,t =
∑

∀j:vj∈N in
i,t

πj,tpji. (4)

The overall algorithm for online learning with uncertain

feedback graph in the informative probabilistic setting, termed

Exp3-IP, is summarized in Algorithm 1. In order to analyze the

performance of Algorithm 1, as well as the ensuing algorithms,

we first preset two assumptions needed:

(a1) 0 ≤ ℓt(vi) ≤ 1, ∀t : t ∈ {1, . . . , T}, ∀i : i ∈ {1, . . . ,K}.

(a2) If (i, j) ∈ Et, the learner can observe the loss associated

with the j-th expert with probability at least ϵ > 0 when it

chooses the i-th expert, and (i, i) ∈ Et, ∀i.
Note that (a1) is a general assumption in online learning

literature e.g., [18]. And (a2) assumes a nonzero probability

of observing (but not guaranteed observation of) the loss

associated with the chosen expert ℓt(vIt). The following

theorem presents the regret bound for Exp3-IP.

Theorem 1. Under (a1), the expected regret of Exp3-IP can

be bounded by

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤ lnK

η
+ η(1− η

2
)T +

η

2

T
∑

t=1

K
∑

i=1

πi,t

qi,t
. (5)

Proof of Theorem 1 is included in Appendix A. It can

be seen from Theorem 1 that the value of πi,t/qi,t plays an

important role in regret bound. Choosing an expert using (3),

it is ensured that every vertex in Dt is chosen by the learner

with non-zero probability. Moreover, since there is at least one

edge from a node in Dt to any node not in Dt, under (a2),

the probability qi,t, ∀i is non-zero. Lower bounding qi,t, (a2)

enables Exp3-IP to achieve sub-linear regret. Building upon

Theorem 1, the ensuing lemma further explores under which

circumstances Exp3-IP can achieve sub-linear regret bound.

Lemma 2. Let the doubling trick (see e.g. [15]) be employed

to determine the value of η and greedy set cover algorithm (see

e.g. [30]) is exploited to derive a dominating set Dt for the

nominal feedback graph Gt. Under (a1) and (a2), the expected

regret of Exp3-IP satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O





√

√

√

√lnK ln(
K

ϵ
T )

T
∑

t=1

α(Gt)

ϵ
+ ln(

K

ϵ
T )



 (6)

where α(Gt) denotes the independence number of the nominal

feedback graph Gt.

Proof of Lemma 2 is included in Appendix B. As it is proved

in Appendix B, the assumption (i, i) ∈ Et, ∀i in (a2) guarantees

that
∑K

i=1
πi,t

qi,t
≤ O

(

α(Gt)
ϵ

ln(KT
ϵ
)
)

(see Lemma 7 and (51)±

(54) in Appendix B). In order to guarantee the regret bound in

(6), it is required that
∑K

i=1
πi,t

qi,t
≤ O

(

α(Gt)
ϵ

ln(KT
ϵ
)
)

holds

true. Therefore, without (a2), the regret bound in (6) cannot be

satisfied. Furthermore, if the learner does not know the time

horizon T before start decision making, doubling trick can

be exploited to determine η. In particular, using the doubling

trick, Exp3-IP adjusts the learning rate η ‘on the fly’ without

knowing the time horizon T . At time instant t, as long as

t
∑

τ=1

(1 +
1

2

K
∑

i=1

πi,τ

qi,τ
) ≤ 2rt (7)

holds true, Exp3-IP employs learning rate η =
√

lnK
2rt+1 , where

rt ≥ 0 is the smallest integer that can satisfy the inequality in

(7). According to (6), Exp3-IP can achieve sub-linear regret.

Furthermore, (6) shows that the regret bound of Exp3-IP

depends on 1
ϵ
. Larger ϵ indicates that the learner is less

uncertain about the nominal feedback graph. In other words

higher confidence of the nominal feedback graph leads to a

tighter regret bound.

Comparison with [15]. Exp3-DOM of [15] deals with

the cases that the feedback graph is certain and re-

vealed to the learner before decision making at each

time instant. In this case, Exp3-DOM achieves regret

of O
(

ln(K)
√

ln(KT )
∑T

t=1 α(Gt) + ln(K) ln(KT )

)

(see

Theorem 8 in [15]). When the graph is certain such that pij = 1
for all (i, j) ∈ E , then ϵ = 1. Therefore, when the graph is

certain and given to the learner, the proposed Exp3-IP achieves

regret of O
(

√

lnK ln(KT )
∑T

t=1 α(Gt) + ln(KT )

)

.

IV. ONLINE LEARNING WITH UNINFORMATIVE

PROBABILISTIC FEEDBACK GRAPHS

The previous section deals with the case where the nominal

feedback graph Gt can be time-variant and probabilities

associated with edges of Gt are revealed. In this section, we

will study the scenario where the nominal feedback graph Gt

is static and is revealed to the learner while the probabilities

{pij} associated with edges are not given, which is called

uninformative probabilistic feedback graph. In this section

the nominal feedback graph is denoted by G = (V, E). In

this case, estimates of probabilities {pij} can be updated and
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employed to assist the learner with future decision making. For

example, consider the problem of online advertisement, where

a website is trying to decide which product to be advertised

via online survey with a multiple choice question. Specifically,

users are asked whether they are interested in certain product

along with possible reasons (cost, color, etc). Note that the

answer to certain product may also indicate the participant’s

potential interest in other products with similar cost or color.

For instance, if the participant indicates that he or she is

interested in the product because of its affordable cost, this

implies potential interest in other products with the same or

lower price. In this case, the relationship among products can

be modeled by a nominal feedback graph, where an edge

exists between two nodes (products) if they share same or

similar attributes (cost, color), which implies that users may be

interested in both products. Such nominal feedback graph can

then be used to assist the website to make a decision on which

product to advertise . However, the actual relationship between

the the user’s interests in the products remains uncertain,

which leads to uncertainty in the nominal feedback graph.

Since attributes (cost, color, etc) of products do not change

over time, the nominal feedback graph is static, while the

probabilities associated with edges in the nominal feedback

graph are unknown. Faced with this practical challenge, two

approaches will be developed in this section, to estimate either

the unknown probability or the importance sampling loss in (2),

which will then be employed to assist the learner’s decision

making.

A. Estimation-based Approach

In the present subsection, we will further explore the general

scenario where the value of pij may vary across edges, while

the nominal feedback graph Gt is static. Since Xij defined

under (2) is a mean ergodic random process [31] in this scenario,

the sample mean of {Xij(t)} converges to pij , i.e., the expected

value of Xij(t). Let Tij,t represent a set collecting time instants

before t when the learner chooses to take the advice of the i-th
expert and there is an edge between vi and vj in the nominal

feedback graph G. In other word, Tij,t can be defined as

Tij,t = {τ |Aτ (i, j) = 1, Iτ = i, 0 < τ < t}. (8)

Based on the above discussion, pij can be estimated as

p̂ij,t =
1

Cij,t

∑

τ∈Tij,t

Xij(τ) (9)

where Cij,t := |Tij,t| is the cardinality of Tij,t. Since Xij is a

mean ergodic Bernoulli random process, p̂ij,t is an unbiased

maximum likelihood (ML) estimator of pij .

Note that a sufficient number of observations of the random

process Xij is needed, in order to provide a reliable estimation

in (9). To this end, the learner performs exploration in the

first KM time instants to ensure that Cij,t ≥ M , ∀(i, j) ∈ Et,
where the value of M is determined by the learner. Specifically,

in the first KM time instants, the learner chooses all experts

in V , one by one M times, i.e. the learner selects expert vk,

Algorithm 2 Exp3-UP: Online learning with uninformative

probabilistic feedback graphs

Input: learning rate η > 0, the minimum number of

observations M , G = (V, E).
Initialize: wi,1 = 1, ∀i ∈ [K], p̂ij,1 = 0, ∀(i, j)∈E .

for t = 1, . . . , T do

if t ≤ KM then

Set k= t−⌊ t
K
⌋K and draw the expert node vk.

else

Select one of the experts according to the PMF πt =
(π1,t, . . . , πK,t) , with πi,t in (10).

end if

Observe {(i, ℓt(vi)) : vi ∈ St} and compute ℓ̃t(vi), ∀i ∈
[K] as in (12).

Update p̂ij,t+1, ∀(i, j) ∈ Et via (9).

Update wi,t+1, ∀i ∈ [K] via (13).

end for

with k = t−
⌊

t
K

⌋

K when t ≤ KM . For t > KM , the learner

draws one of the experts according to the following PMF

πi,t = (1− η)
wi,t

Wt

+
η

|D|I(vi ∈ D), ∀i ∈ [K] (10)

where D denotes a dominating set for the nominal feedback

graph G. In order to obtain a reliable loss estimate to assist the

learner’s decision making, we will approximate the importance

sampling loss estimate in (2) using the estimated probability

p̂ij,t. In this context, the probability of observing ℓt(vi) can

be approximated as

q̂i,t =
∑

∀j:vj∈N in
i,t

πj,t(p̂ji,t +
ξ√
M

) (11)

where ξ ≥ 1 is a parameter selected by the learner. Then the

importance sampling loss estimates can be obtained as

ℓ̃t(vi) =
ℓt(vi)

q̂i,t
I(vi ∈ St). (12)

With the estimates in hand, the weights {wi,t}Ki=1 can be

updated as follows

wi,t+1 = wi,t exp
(

−ηℓ̃t(vi)
)

, ∀i ∈ [K]. (13)

The procedure that the learner chooses among experts when

the probabilities are unknown is presented in Algorithm 2,

named Exp3-UP. The following theorem establishes the regret

bound of Exp3-UP.

Theorem 3. Under (a1), the expected regret of Exp3-UP

satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M + η(1− η

2
)(T −KM)

+

T
∑

t=KM+1

K
∑

i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (14)
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with probability at least

δξ :=
T
∏

t=KM+1

∏

(i,j)∈Et

(

1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)

.

See proof of Theorem 3 in Appendix C. The following

Corollary states conditions under which the regret bound in

(14) holds with high probability, i.e., δξ = 1−O( 1
T
) and the

proof can be found in Appendix D.

Corollary 3.1. If M ≥
(

4ξ ln(KT )
ξ2−ln(KT )

)2

and ξ >
√

ln(KT ),

under (a1) and (a2) the expected regret of Exp3-UP satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O
(

α(G)
ϵ

ln(KT )
√

K ln(KT )T
2
3

)

(15)

with probability at least 1−O( 1
T
).

Note that according to Algorithm 2 and Corollary 3.1,

knowing the value of the time horizon T is required so that

the learner can choose the values for M and ξ to achieve the

sublinear regret bound in (15), which may not be feasible, and

can be resolved by resorting to doubling trick. In this case, if

2b < t ≤ 2b+1 where b ∈ N, the learner performs the Exp3-UP

with parameters

η =

√

lnK

2b+1
(16a)

M =

⌈

2
2(b+1)

3
1√
K

+ ln 4K

⌉

(16b)

ξ =

(

2K
1
4 +

√

4
√
K + 1

)

√

ln(K2b+3). (16c)

When the learner realizes that the value of M needs to be

increased, it then performs exploration to guarantee that at

least M samples of the mean ergodic random process Xij are

observed. The following lemma shows that when doubling trick

is employed, Exp3-UP can achieve sub-linear regret without

knowing the time horizon beforehand, the proof of which is

in Appendix E.

Lemma 4. Assuming that the doubling trick is employed to

determine the value of η, M and ξ at each time instant and the

greedy set cover algorithm is utilized to obtain a dominating

set D of the nominal feedback graph. If T > K, the regret of

Exp3-UP satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O
(

α(G)
ϵ

ln(T ) ln(KT )
√

K ln(KT )T
2
3 +lnT

)

(17)

with probability at least 1−O( 1
K
).

B. Geometric Resampling-based Approach

Another approach to obtain a reliable loss estimate is to

employ geometric resampling. Similar to Exp3-UP, if t ≤ KM
the learner chooses the k-th expert at time instant t where

k = t−⌊t/K⌋K. In this way, it is guaranteed that at least M
samples of the mean ergodic random process Xij are observed.

Based on these observations, a loss estimate is obtained whose

expected value is an approximation of the loss ℓt(vi), ∀i ∈ [K].
At t > KM , the learner draws one of the experts according

to the following PMF

πi,t = (1− η)
wi,t

Wt

+
η

|D|I(vi ∈ D), ∀i ∈ [K] (18)

where D represents a dominating set for G. Furthermore, at

each time instant t > KM , let τ
(t)
i,1 , . . . , τ

(t)
i,M denote the

last M time instants before t at which the i-th expert was

chosen by the learner. If (i, j) ∈ E , the learner observes

Xij(τ
(t)
i,1 ), . . . , Xij(τ

(t)
i,M ) which are samples of the random

process Xij at τ
(t)
i,1 , . . . , τ

(t)
i,M . Let Yij,1(t), . . . , Yij,M (t) denote

a random permutation of Xij(τ
(t)
i,1 ), . . . , Xij(τ

(t)
i,M ). At each

time instant t, the learner draws with replacement M experts

according to PMF {πi,t} in (18) in M independent trials.

Let Pi,1(t), . . . , Pi,M (t) be a sequence of random variables

associated with vi at time instant t where Pi,u(t) = 1 if the

learner draws the i-th expert at the u-th trial and Pi,u(t) = 0
otherwise. Let

Zi,u(t) =
∑

∀j:vj∈N in
i,t

Pj,u(t)Yji,u(t) (19)

for all 1 ≤ u ≤ M . An under-estimate of loss can then be

obtained as

ℓ̃t(vi) = Qi,tℓt(vi)I(vi ∈ St). (20)

where Qi,t := min {{u | 1 ≤ u ≤ M,Zi,u(t) = 1} ∪ {M}},

and the expected value of ℓ̃t(vi) can be written as

Et[ℓ̃t(vi)] =
(

1− (1− qi,t)
M
)

ℓt(vi), (21)

see (101) ± (104) in Appendix F for detailed derivation.

Then, the weights {wi,t}Ki=1 are updated as in (13) using the

loss estimate ℓ̃t(vi) in (20). The geometric resampling based

online expert learning framework (Exp3-GR) is summarized

in Algorithm 3, and Theorem 5 presents its regret bound.

Theorem 5. Under (a1) and (a2), the expected regret of Exp3-

GR is bounded by

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M +

T
∑

t=KM+1

(1− qi,t)
M

+ η(1− η)(T −KM) + η
T
∑

t=KM+1

K
∑

i=1

πi,t

qi,t
. (22)

The proof of Theorem 5 is presented in Appendix F.

Building upon Theorem 5, the following Corollary presents the

conditions under which Exp3-GR can obtain sub-linear regret.

Corollary 5.1. Assume that greedy set cover algorithm is

employed to find a dominating set of the nominal feedback
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Algorithm 3 Exp3-GR: Exp3 with geometric resampling

Input:learning rate η > 0, the minimum number of

observations M , G = (V, E).
Initialize: wi,1 = 1, ∀i ∈ [K].
for t = 1, . . . , T do

if t ≤ KM then

Set k= t−⌊ t
K
⌋K and draw the expert node vk.

else

Select one expert according to PMF πt in (18).

Observe {ℓt(vi) : vi ∈ St} and compute ℓ̃t(vi), ∀i ∈
[K] via (20).

Update wi,t+1, ∀i ∈ [K] via (13).

end if

end for

graph G. If M ≥ |D| lnT

2ηϵ , under (a1) and (a2), Exp3-GR

satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O
(

α(G)
ϵ

ln(KT )
√
KT lnK

)

. (23)

Proof. According to (a2), if (i, j) ∈ E , the learner observes

the loss of the j-th expert when it chooses the i-th expert with

probability at least ϵ. Recalling (18) it can be inferred that

πi,t > η/|D|, ∀i ∈ D. Combining (4) with the fact that for

each vi ∈ V there is at least one edge from D to vi, ∀i ∈ [K],
qi,t can be bounded below as

qi,t >
ηϵ

|D| . (24)

Combining the condition M ≥ |D| lnT

2ηϵ with (24), we have

Mqi,t ≥ 1
2 lnT which leads to e−Mqi,t ≤ 1√

T
. Thus, using

the fact 1 + x ≤ ex, we have

(1− qi,t)
M ≤ e−Mqi,t ≤ 1√

T
. (25)

Hence, the third term in (22), i.e.,
∑T

t=t′ (1− qi,t)
M can be

bounded by O(
√
T ).

Furthermore, consider the case where we have η =

O(
√

K lnK
T

). Therefore, taking into account that greedy set

cover algorithm is used to determine the dominating set, it

can be inferred that |D| = O(α(G) lnK) (see e.g. [15]) based

on which it can be obtained that M = O(α(G)
ϵ
√
K

lnT
√
T lnK),

satisfies the condition M ≥ |D| lnT

2ηϵ . Hence, the expected regret

of Exp3-GR satisfies (23), and the Corollary 5.1 is proved.

Achieving the sub-linear regret in (23) requires that the

learner knows the time horizon T , beforehand which may not

be possible in some cases. When the learner does not know T ,

doubling trick can be utilized to achieve sub-linear regret. The

following Lemma is proved in Appendix G, shows the regret

bound for Exp3-GR when doubling trick is employed to find

values of η and M without knowing the time horizon T . In this

case, at time instant t, when 2b < t ≤ 2b+1, parameters η and

M can be chosen as η =
√

K lnK
2b+1 ,M =

⌈

(b+1)
√
2b−1|D| ln 2

ϵ
√
K lnK

⌉

.

When the learner realizes that M needs to be increased, it

performs exploration to guarantee that at least M samples of

the mean ergodic random process Xij are observed.

Lemma 6. Employing doubling trick to select η and M at

each time instant, and supposing that a dominating set for the

nominal feedback graph G is obtained using greedy set cover

algorithm, the expected regret of Exp3-GR satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O
(

α(G) lnT
ϵ

ln(KT )
√
KT lnK

)

. (26)

Comparing Lemma 4 with Lemma 6, it can be observed that

Exp3-GR achieves a tighter regret bound with probability 1.

However, note that choosing an appropriate M for Exp3-GR

requires knowing ϵ or a lower bound of ϵ, which may not be

feasible in general, while such information is not required for

Exp3-UP in order to guarantee the regret bound in (17).

Comparison with [25]. Note that while Exp3-GR and Exp3-

Res proposed in [25] both employ the geometric resampling

technique, there exist two major differences: i) Exp3-Res

assumes the actual feedback graph is generated from ErdÈos-

RÂenyi model, and the probabilities of the presence of edges are

equal across all edges, while Exp3-GR considers the unequally

probable case and does not assume that the probabilities of

existence of all edges are equal; and ii) unlike Exp3-Res, Exp3-

GR does not assume that the learner is guaranteed to observe

the loss associated with the chosen expert. Furthermore, it

is useful to compare the regret bound of Exp3-GR with that

of Exp3-Res when the actual feedback graph is generated

from the ErdÈos-RÂenyi model with pij = p, ∀i, j ∈ [K].
In this case, according to Corollary 5.1, Exp3-GR achieves

regret of O
(

ln(KT )
p

√
KT lnK

)

. On the other hand, under

the assumption that p ≥ lnT
2K−2 and knowing that probabilities

associated with all edges are equal, Exp3-Res obtains regret of

O
(√

K2 lnK + T lnK
p

)

. Hence, having access to knowledge

that the probabilities associated with all edges are equal enables

Exp3-Res to achieve tighter regret bound than Exp3-GR in this

special case.

Dependence of loss and feedback graph. The proposed

algorithms Exp3-IP, Exp3-UP and Exp3-GR can also deal

with cases where there is dependence between actual feedback

graphs and losses. Consider the case that the environment

generates (xt, yt) stochastically following certain time-invariant

distribution. The i-th expert obtains the input xt and outputs

the prediction ŷi,t. In this case, the loss ℓt(vi) can measure

the discrepancy between ŷi,t and yt using some metrics such

as squared loss. Furthermore, assume that the actual feedback

graph at time t denoted by Ht depends on xt. In this case, if the

learner knows the possible relations among experts, the learner

can construct the nominal feedback graph G where the existence

of each edge depends on xt. Therefore, the edge between

two vertices exist with some time-invariant probability. Before

decision making the learner is uncertain about xt and as a result

the learner can utilize one of the proposed algorithms Exp3-
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Table I
CUMULATIVE REGRET ON VARIOUS DATASETS AND FULLY CONNECTED

NOMINAL FEEDBACK GRAPH IN EQUALLY PROBABLE SETTING.

Air CCPP Twitter Tom’s

Exp3 47.56 152.34 71.03 45.39

Exp3.G 39.16 122.93 59.72 40.63

Exp3-Res 33.36 100.22 52.64 38.46

Exp3-SET 38.21 122.62 59.28 39.49

Exp3-DOM 39.04 122.16 61.30 41.10

Exp3-IP 33.33 98.22 52.47 37.63

Exp3-UP 35.97 109.87 56.86 38.68

Exp3-GR 33.60 99.91 53.33 38.25

IP, Exp3-UP and Exp3-GR to decide based on the nominal

feedback graph.

V. EXPERIMENTS

Performance of the proposed algorithms Exp3-IP, Exp3-UP

and Exp3-GR are compared with online learning algorithms

Exp3 [9], Exp3.G [18], Exp3-Res [25], Exp3-SET [15] and

Exp3-DOM [15]. Exp3 considers bandit setting, and Exp3-

Res assumes ErdÈos-RÂenyi model for the feedback graph.

Furthermore, Exp3.G and Exp3-DOM treats the nominal

feedback graph Gt as the actual one without considering

uncertainties. Exp3-SET observes the nominal feedback graph

Gt and the loss of out-neighbors of the chosen expert after

decision making. Exp3-SET treats connectivity information

given by Gt associated with nodes other than the chosen one

as certain information without considering the uncertainty.

Note that Exp3-SET observers the actual feedback graph

partially after decision making since Exp3-SET observes the

loss of chosen experts’ out-neighbors. Performance is tested

for regression task on several real datasets downloaded from

the UCI Machine Learning Repository [32]:

Air Quality: This dataset contains 9, 358 responses from

sensors in a polluted area, each with 13 features. The goal is

to predict polluting chemical concentration in the air [33].

CCPP: The dataset has 9, 568 samples, with 4 features such

as temperature, collected from a combined cycle power plant.

The goal is predicting hourly electrical energy output [34].

Twitter: This dataset contains 14, 000 samples with 77 features

including e.g., the length of discussion on a given topic and

the number of new interactive authors. The goal is to predict

average number of active discussion on a certain topic [35].

Tom’s Hardware: The dataset contains 10, 000 samples from

a technology forum with 96 features. The goal is to predict

the average number of display about a certain topic on Tom’s

hardware [35].

Let (xi, yi) and (x̄i, ȳi) be the i-th data sample and the

normalized one, respectively. The data is normalized as

x̄i = xi

maxj ∥xj∥ , ȳi =
yi−minj yj

maxj yj−minj yj
. Therefore, ∥x̄i∥ ≤ 1,

0 ≤ ȳi ≤ 1, ∀i. In the experiments, there are 9 experts

such that each expert is a trained model. In particular, each

expert is trained on 10% of each dataset before the start

online learning task associated with the corresponding dataset.

Among them, 8 experts are trained via kernel ridge regression

such that 5 experts exploit RBF kernels with bandwidth

Table II
CUMULATIVE REGRET ON VARIOUS DATASETS AND

PARTIALLY-CONNECTED NOMINAL FEEDBACK GRAPH P IN UNEQUALLY

PROBABLE SETTING.

Air CCPP Twitter Tom’s

Exp3 47.56 152.97 71.04 45.39

Exp3.G 41.19 128.74 62.21 41.53

Exp3-Res 35.83 109.62 56.55 39.51

Exp3-SET 40.21 129.32 62.22 40.77

Exp3-DOM 41.19 127.84 63.90 41.98

Exp3-IP 32.95 97.37 52.23 37.19

Exp3-UP 38.77 120.97 61.06 40.28

Exp3-GR 33.60 99.59 53.04 38.01

of 10−2, 10−1, 1, 10, 100 while 3 experts employ Laplacian

kernels with bandwidth of 10−2, 1, 100. Moreover, one expert

is a trained linear regression model. Performance of algorithms

are evaluated based on cumulative regret averaged over 20
independent runs. Recall that cumulative regret of an algorithm

is the cumulative difference between the loss of the algorithm

and that of the best expert in hindsight over time. In experi-

ments, squared loss function is employed to measure the loss

of experts. The learning rate η is set to 0.5√
T

for all algorithms.

Note that online learning algorithms may achieve better regret

experimentally with carefully tuned learning rate. However,

for fair comparison, the learning rates of all online learning

algorithms are set to be the same. Parameter M is set as 25
for both Exp3-UP and Exp3-GR and ξ = 1 for Exp3-UP.

We first tested the equally probable setting where the nominal

graph Gt is fully connected and probabilities pij = 0.5, ∀i, j.

Table I lists the regret performance for various datasets. It

can be observed that, knowing the exact probability enables

Exp3-IP to achieve the lowest regret. Moreover, the proposed

Exp3-UP and Exp3-GR obtain lower regret than Exp3.G, Exp3-

SET and Exp3-DOM which treat the nominal feedback graph

as actual one. Note that in this case, the actual feedback graph

is indeed generated from the ErdÈos-RÂenyi model. The regret

of the proposed Exp3-GR is comparable to that of Exp3-Res

while Exp3-Res makes decision under the assumption that

the actual feedback graph is generated from the ErdÈos-RÂenyi

model.

We further tested the unequally probable case, when the

graph is partially connected. In particular, vj ∈ N out
i,t if j is

either the remainder of i − 1, i, i + 1, i + 4 and i + 6 to 9.

Note that if the remainder is zero, it is considered to be 9. The

resulting nominal feedback graph in this case is represented by

P . Therefore, in the nominal feedback graph P , each node has

5 out-neighbors. As an example, out-neighbors of v1 and v8
are illustrated in Figure 1. The probability associated with each

edge is drawn from uniform distribution U [0.25, 0.5]. Table II

lists the cumulative regret of all algorithms for Air Quality,

CCPP, Twitter and Tom’s Hardware datasets. It can be observed

that Exp3-IP obtains the lowest regret. This shows that knowing

the probabilities can indeed help obtain better performance.

Furthermore, it can be observed that Exp3-UP and Exp3-GR

can achieve lower regret in comparison with Exp3 which shows

the effectiveness of using the information given by the uncertain

graph. In addition, lower regret of Exp3-UP and Exp3-GR
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(a) Out-neighbors of v1 in P . (b) Out-neighbors of v8 in P .

Figure 1. Out-neighbors of v1 and v8 are illustrated in partially-connected
nominal feedback graph P .

Table III
CUMULATIVE REGRET ON VARIOUS DATASETS AND

PARTIALLY-CONNECTED CERTAIN NOMINAL FEEDBACK GRAPH P .

Air CCPP Twitter Tom’s

Exp3 46.46 150.23 70.01 45.05

Exp3.G 32.86 96.80 50.52 36.87

Exp3-Res 32.10 98.47 50.68 37.22

Exp3-SET 31.93 97.31 50.24 36.29

Exp3-DOM 32.84 96.39 52.07 37.22

Exp3-IP 33.19 97.37 52.44 36.88

Exp3-UP 35.92 109.93 56.25 38.44

Exp3-GR 33.34 99.08 52.87 37.60

compared to Exp3.G, Expe-SET and Exp3-DOM indicates that

considering the uncertain graph Gt = P as a certain graph

can increase regret. Moreover, it can be observed Exp3-GR

outperforms Exp3-Res when the actual feedback graph is not

generated by ErdÈos-RÂenyi model. It can be observed Exp3-IP

achieves lower regret than Exp3-GR and Exp3-UP, since the

learner has access to the probabilities, while Exp3-UP and

Exp3-GR do not rely on such prior information.

In addition, we tested the performance of algorithms when

the nominal feedback graph P is partially-connected, and

the probability associated with each edge is 1. As it can be

seen from Table III, Exp3.G, Exp3-SET, Exp3-DOM and the

proposed Exp3-IP which utilize the certain feedback graph

obtain lower regret than those of Exp3-UP and Exp3-GR which

treat the certain feedback graph as uncertain one. In fact, Exp3-

UP and Exp3-GR do not know the probability associated with

edges. Furthermore, the regret of Exp3-IP is comparable to

Exp3.G, Exp3-SET and Exp3-DOM.

VI. CONCLUSION

The present paper studied the problem of online learning

with uncertain feedback graphs, where potential uncertainties in

the feedback graphs were modeled using probabilistic models.

Novel algorithms were developed to exploit information

revealed by the nominal feedback graph and different scenarios

were discussed. Specifically, in the informative case, where

the probabilities associated with edges are also revealed, Exp3-

IP was developed. It is proved that Exp3-IP can achieve

sublinear regret bound. Furthermore, Exp3-UP and Exp3-GR

were developed for the uninformative case. It is proved that

Exp3-GR can achieve tighter sublinear regret bound than that

of Exp3-UP when the number of experts is negligible compared

to time horizon, while Exp3-UP requires less prior information

than Exp3-GR. Experiments on a number of real datasets

were carried out to demonstrate that our novel algorithms can

effectively address uncertainties in the feedback graph, and

help enhance the learning ability of the learner.
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APPENDIX

A. Proof of Theorem 1

Recall that Wt =
∑K

i=1 wi,t (below (3)), we have

Wt+1

Wt

=

K
∑

i=1

wi,t+1

Wt

=

K
∑

i=1

wi,t

Wt

exp
(

−ηℓ̂t(vi)
)

. (27)

According to (3), we can write

wi,t

Wt

=
πi,t − ηF̄i,t

1− η
(28)

where F̄i,t =
Fi,t∑

j∈Dt
Fj,t

I(vi ∈ Dt). Substituting (28) into (27)

obtains

Wt+1

Wt

=
K
∑

i=1

πi,t − ηF̄i,t

1− η
exp

(

−ηℓ̂t(vi)
)

. (29)

Using the inequality e−x ≤ 1−x+ 1
2x

2, ∀x ≥ 0, the following

inequality holds

Wt+1

Wt

≤
K
∑

i=1

πi,t − ηF̄i,t

1− η

(

1− ηℓ̂t(vi) +
1

2
(ηℓ̂t(vi))

2

)

. (30)

Taking logarithm of both sides of (30) and using the fact that

1 + x ≤ ex, we have

ln
Wt+1

Wt

≤
K
∑

i=1

πi,t − ηF̄i,t

1− η

(

−ηℓ̂t(vi) +
1

2
(ηℓ̂t(vi))

2

)

. (31)

Summing (31) over time obtains

ln
WT+1

W1

≤
T
∑

t=1

K
∑

i=1

πi,t − ηF̄i,t

1− η

(

−ηℓ̂t(vi) +
1

2
(ηℓ̂t(vi))

2

)

. (32)

Furthermore, the left hand side of (31) can be bounded from

below as

ln
WT+1

W1
≥ ln

wi,T+1

W1
= −η

T
∑

t=1

ℓ̂t(vi)− lnK (33)

where the equality holds due to the fact that W1 =
∑K

j=1 wj,1 = K. Then, (32) and (33) lead to

T
∑

t=1

K
∑

i=1

ηπi,t

(1− η)
ℓ̂t(vi)− η

T
∑

t=1

ℓ̂t(vi)

≤ lnK +
T
∑

t=1

∑

i∈Dt

η2F̄i,t

(1− η)
ℓ̂t(vi)

+

T
∑

t=1

K
∑

i=1

η2
πi,t − ηF̄i,t

2(1− η)
ℓ̂t(vi)

2. (34)

Multiplying both sides of (34) by
(1−η)

η

T
∑

t=1

K
∑

i=1

πi,tℓ̂t(vi)−
T
∑

t=1

ℓ̂t(vi)

≤ lnK

η
+

T
∑

t=1

∑

i∈Dt

ηF̄i,tℓ̂t(vi)

+

T
∑

t=1

K
∑

i=1

η

2
(πi,t − ηF̄i,t)ℓ̂t(vi)

2. (35)

Furthermore, the expected values of ℓ̂t(vi) and ℓ̂t(vi)
2 can be

written as

Et[ℓ̂t(vi)] =

K
∑

j=1

πj,tpji,t
ℓt(vi)

qi,t
= ℓt(vi) (36a)

Et[ℓ̂t(vi)
2
] =

K
∑

j=1

πj,tpji,t
ℓt(vi)

2

q2i,t
=

ℓt(vi)
2

qi,t
≤ 1

qi,t
(36b)

where the inequality in (36b) holds because of (a1) which

implies ℓt(vi) ≤ 1. Taking the expectation of both sides of

(35), we arrive at

T
∑

t=1

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=1

ℓt(vi)

≤ lnK

η
+

T
∑

t=1

K
∑

i=1

ηF̄i,tℓt(vi)
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+

T
∑

t=1

K
∑

i=1

η

2
(πi,t − ηF̄i,t)

1

qi,t
. (37)

Moreover, using the fact that qi,t ≤ 1 we have

η2

2

T
∑

t=1

K
∑

i=1

F̄i,t

qi,t
≥ η2

2

T
∑

t=1

K
∑

i=1

F̄i,t =
η2

2

T
∑

t=1

1 =
η2T

2
. (38)

Furthermore, since based on (a1) ℓt(vi) ≤ 1, the second term

on the RHS of (37) can be bounded by

η

T
∑

t=1

K
∑

i=1

F̄i,tℓt(vi) ≤ η
T
∑

t=1

K
∑

i=1

F̄i,t = η
T
∑

t=1

1 = ηT. (39)

Combining (38), (39) with (37) we have

T
∑

t=1

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=1

ℓt(vi)

≤ lnK

η
+ ηT − η2T

2
+

η

2

T
∑

t=1

K
∑

i=1

πi,t

qi,t
. (40)

By definition, the first term on the RHS of (40) equals to

Et[ℓt(vIt)]. In addition, note that (40) holds for all vi ∈ V ,

hence the following inequality holds

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤ lnK

η
+ η(1− η

2
)T +

η

2

T
∑

t=1

K
∑

i=1

πi,t

qi,t
(41)

which completes the proof of Theorem 1.

B. Proof of Lemma 2

Based on Theorem 1, the upper bound of the expected regret

of Exp3-IP is

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤ lnK

η
+ η(1− η

2
)T +

η

2

T
∑

t=1

K
∑

i=1

πi,t

qi,t
. (42)

Let at each time instant t, Qt is defined as

Qt = 1 +
1

2

K
∑

i=1

πi,t

qi,t
. (43)

Furthermore, let τr be the largest time instant satisfying
∑τr

t=1 Qt ≤ 2r. According to the doubling trick, at τr−1 + 1,

such that
∑τr−1+1

t=1 Qt > 2r−1, the algorithm restarts with

ηr =

√

lnK

2r
. (44)

Also, the algorithm starts with r = 0. Therefore, based on (42)

and (44), it can be concluded that

τr
∑

t=1

πi,tℓt(vi)−min
vi∈V

τr
∑

t=1

ℓt(vi)≤2
√
2r lnK − lnK

2r+1
τr (45)

when 2r−1 <
∑τr

t=1 Qt ≤ 2r. The maximum number of restarts

required is
⌈

log2
∑T

t=1 Qt

⌉

. Moreover, it can be written that

⌈log2

∑T
t=1 Qt⌉
∑

r=0

2
√
2r lnK <

4
√
lnK√
2− 1

√

√

√

√

T
∑

t=1

Qt. (46)

Therefore, based on (42) and considering the fact that the

maximum possible value for incurred loss at each restart is 1,

combining (45) with (46) leads to

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O





√

√

√

√(lnK)
T
∑

t=1

Qt +

⌈

log2

T
∑

t=1

Qt

⌉





=O





√

√

√

√lnK
T
∑

t=1

(1 +
1

2

K
∑

i=1

πi,t

qi,t
) +

⌈

log2

T
∑

t=1

Qt

⌉



 (47)

Based on (a2), we can write pij ≥ ϵ > 0 if (i, j) ∈ Et.
According to (4) and the fact that the i-th expert is chosen by

the learner with probability of πi,t, based on (a2) the inequality

qi,t ≥ πi,tϵ holds. Thus, we have
⌈

log2

T
∑

t=1

Qt

⌉

= O
(

ln

(

K

ϵ
T

))

. (48)

Combining (47) with (48) obtains

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O





√

√

√

√lnK

T
∑

t=1

(1 +
1

2

K
∑

i=1

πi,t

qi,t
) + ln(

K

ϵ
T )



 (49)

In addition, the following Lemma is used as a step stone [15].

Lemma 7. Let G = (V, E) be a directed graph with a set of

vertices V and a set of edges E such that each vertex in V
has a self-loop. Let D ⊆ V be a dominating set for G and

p1, . . . , pK be a probability distribution defined over V , such

that pi ≥ β > 0, for i ∈ D. Then

K
∑

i=1

pi
∑

j:j→i pj
≤ 2α(G) ln(1 +

⌈

K2

β|D|

⌉

+K

α(G) ) + 2|D| (50)

where α(G) represents independence number for the graph G.

Based on Lemma 7 and (a2), we get

K
∑

i=1

πi,t
∑

∀j:j∈N in
i,t

πj,t

<2α(Gt) ln(1 +

⌈

K3

ηϵ

⌉

+K

α(Gt)
) + 2|Dt|. (51)

Considering the fact that qi,t ≥ ϵ
∑

∀j:j∈N in
i,t

πj,t which is

induced by (a2), from (51), it can be inferred that

K
∑

i=1

πi,t

qi,t
<

2α(Gt)

ϵ
ln(1 +

⌈

K3

ηϵ

⌉

+K

α(Gt)
) +

2|Dt|
ϵ

. (52)
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Furthermore, if greedy set cover algorithm by [30] is employed

to obtain the dominating set |Dt|, it can be written that [15]

|Dt| = O(α(Gt) lnK). (53)

Therefore, from (52) we can conclude that

K
∑

i=1

πi,t

qi,t
≤ O

(

α(Gt)

ϵ
ln(

KT

ϵ
)

)

(54)

Combining (49) with (53) and (54), we arrive at

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O





√

√

√

√lnK ln(
K

ϵ
T )

T
∑

t=1

α(Gt)

ϵ
+ ln(

K

ϵ
T )



 (55)

which completes the proof of Lemma 2.

C. Proof of Theorem 3

In order to prove Theorem 3, let’s first consider when

t ≤ KM . When the learner chooses among experts in a

deterministic fashion. The (expected) loss can be written as

Et[ℓt(vi)] = ℓt(vk). Since ℓt(vi) ≤ 1, we have

KM
∑

t=1

Et[ℓt(vi)]−
KM
∑

t=1

ℓt(vi) ≤ (K − 1)M. (56)

On the other hand, for any t > KM , the following equality

holds

Wt+1

Wt

=

K
∑

i=1

wi,t+1

Wt

=

K
∑

i=1

wi,t

Wt

exp
(

−ηℓ̃t(vi)
)

. (57)

Recall (10), we have

wi,t

Wt

=
πi,t − η ˆ̄Fi,t

1− η
(58)

where ˆ̄Fi,t = η
|D|I(vi ∈ Dt). Following similar steps from

(29) to (34), and from (57) and (58) we obtain

T
∑

t=t′

K
∑

i=1

πi,tℓ̃t(vi)−
T
∑

t=t′

ℓ̃t(vi)

≤ lnK

η
+

T
∑

t=t′

K
∑

i=1

η ˆ̄Fi,tℓ̃t(vi)

+
T
∑

t=t′

K
∑

i=1

η

2
(πi,t − η ˆ̄Fi,t)ℓ̃t(vi)

2 (59)

where t′ = KM + 1. In addition, the expected value of ℓ̃t(vi)
and ℓ̃t(vi)

2 at time instant t can be written as

Et[ℓ̃t(vi)] =
∑

∀j:vj∈N in
i,t

πj,tpji
1

q̂i,t
ℓt(vi) =

qi,t
q̂i,t

ℓt(vi) (60a)

Et[ℓ̃t(vi)
2
] =

∑

∀j:vj∈N in
i,t

πj,tpji
1

q̂2i,t
ℓt(vi)

2

=
qi,t
q̂2i,t

ℓt(vi)
2 ≤ qi,t

q̂2i,t
. (60b)

Let eij,t := |p̂ij,t − pij |. According to (11), the probability

that q̂i,t ≥ qi,t is at least
∏

∀j:vj∈N in
i,t

Pr(eij,t ≤ ξ/
√
M) since

the incidents {eij,t ≤ ξ/
√
M , ∀(i, j) ∈ E} are independent

from each other. Let ε denote ξ/
√
M and µi,t :=

1
q̂i,t

− 1
qi,t

,

we have

µi,t =
qi,t − q̂i,t
q̂i,tqi,t

=

∑

∀j:vj∈N in
i,t

πj,t(pji − p̂ji,t − ε)

q̂i,tqi,t

≥ −
∑

∀j:vj∈N in
i,t

2πj,tε

q2i,t
(61)

where the last inequality holds with probability
∏

∀j:vj∈N in
i,t

Pr(eij,t ≤ ε). Therefore, the following inequalities

hold with the probability
∏

∀j:vj∈N in
i,t

Pr(eij,t ≤ ε)

ℓt(vi)−
∑

∀j:vj∈N in
i,t

2πj,tε

qi,t
ℓt(vi) ≤ Et[ℓ̃t(vi)]

=ℓt(vi) + qi,tµi,tℓt(vi) ≤ ℓt(vi) (62a)

Et[ℓ̃t(vi)
2
] ≤ 1

qi,t
. (62b)

Taking expectation of both sides of (59) and combining with

(62), we obtain the following inequality

T
∑

t=t′

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=t′

ℓt(vi)

−
T
∑

t=t′

K
∑

i=1

πi,t

∑

∀j:vj∈N in
i,t

2πj,tε

qi,t
ℓt(vi)

≤ lnK

η
+

T
∑

t=t′

K
∑

i=1

η ˆ̄Fi,tℓt(vi) +
∑

t=t′

K
∑

i=1

η

2
(πi,t − η ˆ̄Fi,t)

1

qi,t

≤ lnK

η
+

T
∑

t=t′

K
∑

i=1

η ˆ̄Fi,t +

T
∑

t=t′

K
∑

i=1

η

2
(πi,t − η ˆ̄Fi,t)

1

qi,t
(63)

which holds with probability at least
∏

(i,j)∈Et
Pr(eij,t′ ≤ ε, . . . , eij,T ≤ ε). Applying the chain

rule for one term in the product, we have

Pr(eij,t′ ≤ ε, . . . , eij,T ≤ ε)

=Pr(eij,t′ ≤ ε)
T
∏

t=t′+1

Pr(eij,t ≤ ε | eij,t−1 ≤ ε, . . . , eij,t′ ≤ ε)

≥
T
∏

t=t′

Pr(eij,t ≤ ε). (64)

In order to obtain the lower bound of the probability Pr(eij,t ≤
εij,t), the Bernstein inequality is employed. To this end consider

the following lemma [36].

Lemma 8. Let ζ1 . . . ζn be independent random variables with

E[ζi] = 0, ∀i : 1 ≤ i ≤ n (65a)

|E[ζmi ]| ≤ m!

2
b2iH

m−2,m = 2, 3, . . . , ∀i : 1 ≤ i ≤ n. (65b)
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Then for x ≥ 0, we have

Pr(|ζ1 + . . .+ ζn| ≥ xBn) ≤ 2 exp(−
x2

2

1 + xH
Bn

) (66)

where B2
n = b21 + . . .+ b2n.

Let θij(t) := Xij(t)−pij , ∀(i, j) ∈ Et. Since Xij(t) follows

Bernoulli distribution with the parameter pij , it can be readily

obtained that E[θij(t)] = 0. Furthermore, for the moment

generating function of θij(t), we have

Mθij(t)(z) = (1− pij)e
−pijz + pije

(1−pij)z. (67)

Therefore, the expected value of θmij (t), m = 2, 3, . . . satisfies

E[θmij (t)] =
dmMθij(t)(z)

dzm
|z=0

= (−pij)
m(1− pij) + (1− pij)

mpij . (68)

From (68), we can conclude that

|E[θmij (t)]| ≤ pij(1− pij) ≤
1

4

≤ m!

8
=

m!

2

(

1

2

)2

× 1m−2,m = 2, 3, . . . (69)

Thus, letting bi =
1
2 , H = 1 in Lemma 8 and combining with

(69), the following inequality can be obtained

Pr



|
∑

τ∈Tij,t

θij(τ)| ≥
ξCij,t√

M





=Pr



|
∑

τ∈Tij,t

Xij(τ)− pij | ≥
ξCij,t√

M





≤2 exp

(

− 2ξ2
Cij,t

M

1 + 4ξ√
M

)

= 2 exp

(

− 2ξ2Cij,t

M + 4ξ
√
M

)

(70)

which leads to

Pr(eij,t ≥ ε) ≤ 2 exp

(

− 2ξ2Cij,t

M + 4ξ
√
M

)

(71)

Therefore, (63) holds with probability at least

δξ =

T
∏

t=t′

∏

(i,j)∈Et

(

1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)

. (72)

Since
∑

∀j:vj∈N in
i,t

πj,t ≤ 1 and ε = ξ√
M

, the following

inequality holds

T
∑

t=t′

K
∑

i=1

πi,t

∑

∀j:vj∈N in
i,t

2πj,tε

qi,t
=

T
∑

t=t′

K
∑

i=1

πi,t

∑

∀j:vj∈N in
i,t

2πj,t
ξ√
M

qi,t

≤
T
∑

t=t′

K
∑

i=1

2πi,tξ

qi,t
√
M

. (73)

Using (73) and the fact that 1
qi,t

≥ 1, (63) can be rewritten as

T
∑

t=t′

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=t′

ℓt(vi)

≤ lnK

η
+

T
∑

t=t′

η(1− η

2
) +

T
∑

t=t′

K
∑

i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (74)

Combining (74) with (56) results in following inequality

T
∑

t=1

Et[ℓt(vIt)]−
T
∑

t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M + η(1− η

2
)(T −KM)

+

T
∑

t=t′

K
∑

i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (75)

which holds with probability at least δξ and the proof of

Theorem 3 is completed.

D. Proof of Corollary 3.1

The proof of Corollary 3.1 will be built upon the following

Lemma.

Lemma 9. Let ζ1, . . . , ζN (N > 1) be a sequence of real

positive numbers such that ∀i : 1 ≤ i ≤ N , 0 < ζi < 1 and

∀n : 1 ≤ n ≤ N ,
∑n

i=1 ζi < 1. Then, it can be written that

N
∏

i=1

(1− ζi) > 1−
N
∑

i=1

ζi (76)

Proof. We prove this Lemma using mathematical induction.

Firstly, Consider (76) for N = 2

(1− ζ1)(1− ζ2) = 1− ζ1 − ζ2 + ζ1ζ2 > 1− ζ1 − ζ2. (77)

Assuming that (76) holds for N = n. Then, based on (77) we

have for N = n+ 1

n+1
∏

i=1

(1− ζi)

=

(

n
∏

i=1

(1− ζi)

)

× (1− ζn+1) > (1−
n
∑

i=1

ζi)(1− ζn+1)

>1−
n+1
∑

i=1

ζi. (78)

Hence, (76) also holds for N = n+1, and Lemma 9 is proved

by induction.

Assuming M satisfies

M ≥
(

4ξ ln(KT )

ξ2 − ln(KT )

)2

. (79)

Hence, (79) can be re-written as

1

K2T 2
≥ exp(− 2ξ2

√
M√

M + 4ξ
) ≥ exp(− 2ξ2Cij,t

M + 4ξ
√
M

) (80)

where the second inequality holds since Cij,t ≥ M . Let

t′ = KM + 1. Note that the regret bound in (14) holds with

probability at least δξ in (72). According to Lemma 9, we can

obtain the following inequality

δξ =

T
∏

t=t′

∏

(i,j)∈Et

(

1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)
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>1−
∑

(i,j)∈Et

T
∑

t=t′

2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

). (81)

Combining (80) with (81) obtains

δξ ≥ 1− 2(T −KM)|E|
K2T 2

(82)

where |E| denotes the cardinality of the E . Since G does not

change over time, |E| is a constant. According to (82), it can be

readily obtained that when (79) holds, the regret bound in (14)

holds with probability at least of order 1 − O( 1
T
). Consider

the case where the learner sets η, M and ξ as follows

η = O(

√

lnK

T
) (83a)

M = O(
1√
K

T
2
3 ) (83b)

ξ = O(K
1
4

√

ln(KT )). (83c)

Putting η, M and ξ in (83) into (14) and based on Lemma

7, it can be concluded that the expected regret of Exp3-UP

satisfies

T
∑

t=1

Et[ℓt(vIt)]−
T
∑

t=1

ℓt(vi)

≤O
(

α(G)
ϵ

ln(KT )(
√
T lnK +

√

K ln(KT )T
2
3 )

)

(84)

with probability at least 1−O( 1
T
).

E. Proof of Lemma 4

In this section, doubling trick technique is employed such

that Exp3-UP can achieve sub-linear regret. If 2b < t ≤ 2b+1,

the value of the learning rate ηb, Mb and ξb are

ηb =

√

lnK

2b+1
(85a)

Mb =

⌈

2
2(b+1)

3
1√
K

+ ln 4K

⌉

(85b)

ξb =

(

2K
1
4 +

√

4
√
K + 1

)

√

ln(K2b+3) (85c)

When the learner realizes that t > 2b+1, the algorithm restarts

with ηb+1, Mb+1 and ξb+1. The algorithm starts with b =
⌈log2 K⌉. Therefore, when t < 2⌈log2 K⌉, the value of ηb,
Mb and ξb are set with respect to b = ⌈log2 K⌉. Let Mi

denotes a set which includes the time instants when the learner

chooses the i-th expert in a deterministic fashion for exploration.

Specifically, when at time instant τ , the learner chooses the

i-th expert for exploration without using the PMF in (10), the

time instant τ is appended to Mi. At each restart the learner

chooses the experts one by one for the exploration until the

condition |Mi| ≥ Mb, ∀i ∈ [K] is satisfied. Then, the learner

chooses among experts according to PMF in (10) using the

learning rate ηb. Therefore, based on Theorem 3, for each b,
the algorithm satisfies

Tb
∑

t=2b+1

Et[ℓt(vIt)]−
Tb
∑

t=2b+1

ℓt(vi)

≤ lnK

ηb
+ (K − 1)(Mb −Mb−1)

+ ηb(1−
ηb
2
)(Tb − 2b −K(Mb −Mb−1))

+

Tb
∑

t=2b+1

K
∑

i=1

πi,t

qi,t
(
2ξb√
Mb

+
ηb
2
) (86)

with probability at least δb where it can be expressed as

δb =

Tb
∏

t=t′
b

∏

(i,j)∈Et

(

1− 2 exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

)

)

(87)

where Tb denote the greatest time instant which satisfies 2b <
Tb ≤ 2b+1 and t′b can be written as

t′b = min(Tb−1 +K(Mb −Mb−1) + 1, Tb). (88)

Note that Mb−1 = 0 when b = ⌈log2 K⌉. Since for each b,
Mb and ξb in (85) meet the following condition

Mb ≥
(

4ξb ln(4KTb)

ξ2b − ln(4KTb)

)2

, (89)

it can be concluded that the following inequality holds true

1

16K2T 2
b

≥ exp(− 2ξ2b
√
Mb√

Mb + 4ξb
)

≥ exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

), (90)

and as a result according to Lemma 9 we can write

δb > 1−
∑

(i,j)∈Et

Tb
∑

t=t′
b

2 exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

). (91)

Combining (90) with (91), it can be concluded that

δb > 1−max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

). (92)

Therefore, for each b from (86), (92) and Lemma 7 it can be

inferred that

Tb
∑

t=2b+1

Et[ℓt(vIt)]−
Tb
∑

t=2b+1

ℓt(vi) ≤ O(ω) (93)

where ω := α(G)
ϵ

ln(KTb)(
√
Tb lnK +

√

K ln(KTb)T
2
3

b )
holds with probability at least 1−O( 1

Tb
). Summing (93) over

all possible values of b, from b := ⌈log2 K⌉ to ⌈log2 T ⌉ and

taking into account that the maximum value of the loss at each

restart is 1, we arrive at

T
∑

t=1

Et[ℓt(vIt)]−
T
∑

t=1

ℓt(vi)

≤
⌈log2 T⌉
∑

b=⌈log2 K⌉
O (ω) + ⌈log2 T ⌉ − ⌈log2 K⌉

≤O(ω lnT ) +O(lnT ) (94)

which holds with probability at least

∆ =

⌈log2 T⌉
∏

b=⌈log2 K⌉

(

1−max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

)

)

. (95)
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When b = ⌈log2 K⌉, we have Tb ≥ 2K. Furthermore, when

⌈log2 K⌉ < b ≤ ⌊log2 T ⌋, it can be concluded that Tb = 2Tb−1.

Therefore, we can write

⌊log2 T⌋
∑

b=⌈log2 K⌉
max(0,

(Tb − t′b)|ETb
|

8K2T 2
b

)

<

⌊log2 T⌋
∑

b=⌈log2 K⌉

1

8Tb

≤ 1

8K
(

⌊log2 T⌋
∑

b=⌈log2 K⌉
(
1

2
)b−⌈log2 K⌉)

=
1

8K
(2− (

1

2
)⌊log2 T⌋−⌈log2 K⌉). (96)

Based on (96) and under the assumption that T > K, we find

⌈log2 T⌉
∑

b=⌈log2 K⌉
max(0,

(Tb − t′b)|ETb
|

8K2T 2
b

)

<
1

8K
(2− (

1

2
)⌊log2 T⌋−⌈log2 K⌉) +

1

8T
<

3

8K
. (97)

Thus, ∆ meet the conditions in the Lemma 9 and it can be

inferred that

∆ >1−
⌈log2 T⌉
∑

b=⌈log2 K⌉
max(0,

(Tb − t′b)|ETb
|

8K2T 2
b

) ≥ 1−O(
1

K
).

Therefore, in this case, Exp3-UP satisfies

T
∑

t=1

Et[ℓt(vIt)]−
T
∑

t=1

ℓt(vi)

≤O
(

α(G)
ϵ

ln(T ) ln(KT )(
√
T lnK +

√

K ln(KT )T
2
3 )

)

with probability at least 1−O( 1
K
). This completes the proof

of Lemma 4.

F. Proof of Theorem 5

Since Exp3-GR chooses the experts one by one for the

exploration at the first KM time instants, Et[ℓt(vi)] = ℓt(vk)
and (56) hold true. In addition, for t > KM we have

Wt+1

Wt

=

K
∑

i=1

wi,t+1

Wt

=

K
∑

i=1

wi,t

Wt

exp
(

−ηℓ̃t(vi)
)

. (98)

According to (18),
wi,t

Wt
can be expressed as

wi,t

Wt

=
πi,t − η

|D|I(vi ∈ D)

1− η
. (99)

Following similar steps performed to obtain (35) from (27)

and (28), given (98) and (99) we get

T
∑

t=t′

K
∑

i=1

πi,tℓ̃t(vi)−
T
∑

t=t′

ℓ̃t(vi)

≤ lnK

η
+

T
∑

t=t′

∑

i∈D

η

|D| ℓ̃t(vi)

+

T
∑

t=t′

K
∑

i=1

η

2
(πi,t −

η

|D|I(vi ∈ D))ℓ̃t(vi)
2 (100)

where t′ = KM + 1. According to (20), expected value of

loss estimate ℓ̃t(vi) can be expressed as

Et[ℓ̃t(vi)] =
∑

∀j:vj∈N in
i,t

πj,tpjiEt[Qi,t]ℓt(vi)

= qi,tEt[Qi,t]ℓt(vi) (101a)

Et[ℓ̃t(vi)
2
] =

∑

∀j:vj∈N in
i,t

πj,tpjiEt[Q
2
i,t]ℓt(vi)

2

= qi,tEt[Q
2
i,t]ℓt(vi)

2. (101b)

Note that the expected values depend on random variable

{Zi,u(t)}Mu=1 in (19), where Pi,u(t) and Yij,u(t), ∀i ∈ [K],
∀(i, j) ∈ Et are independent Bernoulli random variables with

parameters πi,t and pij , respectively. Therefore, {Zi,u(t)}Mu=1

are also Bernoulli random variables with expected value

Et[Zi,u(t)] = Et





∑

∀j:vj∈N in
i,t

Pj,u(t)Yji,u(t)





=
∑

∀j:vj∈N in
i,t

Et[Pj,u(t)]Et[Yji,u(t)]

=
∑

∀j:vj∈N in
i,t

πj,tpji = qi,t. (102)

In other words, Zi,u(t) is a Bernoulli random variable whose

value is 1 with probability qi,t. The expected value of Qi,t and

Q2
i,t can henceforth be written as

Et[Qi,t] =

M
∑

u=1

uqi,t(1− qi,t)
u−1 +M(1− qi,t)

M

=
1− (Mqi,t + 1)(1− qi,t)

M

qi,t
+M(1− qi,t)

M

=
1− (1− qi,t)

M

qi,t
(103a)

Et[Q
2
i,t] =

M
∑

u=1

u2qi,t(1− qi,t)
u−1 +M2(1− qi,t)

M

=
2− 2(1− qM+2

i,t )

q2i,t
− 1 + (2M + 3)(1− qi,t)

M+1

qi,t

− (M + 1)2(1− qi,t)
M +M2(1− qi,t)

M

=
2− 2(1− qM+2

i,t )

q2i,t
− 1 + (2M + 3)(1− qi,t)

M+1

qi,t

− (2M + 1)(1− qi,t)
M . (103b)

Combining (101) with (103), we arrive at

Et[ℓ̃t(vi)] = qi,t
1− (1− qi,t)

M

qi,t
ℓt(vi) (104a)

=
(

1− (1− qi,t)
M
)

ℓt(vi) ≤ ℓt(vi)

Et[ℓ̃t(vi)
2
] =

(

2− 2(1− qM+2
i,t )

qi,t
− 1

)

ℓt(vi)
2 (104b)

+ (2M + 3)(1− qi,t)
M+1ℓt(vi)

2

− qi,t(2M + 1)(1− qi,t)
M ℓt(vi)

2 ≤ 2

qi,t
.
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Combining (100) and (104), it can be concluded that

T
∑

t=t′

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=t′

ℓt(vi)−
T
∑

t=t′

K
∑

i=1

πi,t(1− qi,t)
M ℓt(vi)

≤ lnK

η
+

T
∑

t=t′

K
∑

i=1

η

2
(πi,t −

η

|D|I(vi ∈ D))
2

qi,t

+

T
∑

t=t′

∑

i∈D

η

|D|ℓt(vi). (105)

According to (a1) ℓt(vi) ≤ 1 and using the fact that 2
qi,t

≥ 2,

(105) can be further bounded by

T
∑

t=t′

K
∑

i=1

πi,tℓt(vi)−
T
∑

t=t′

ℓt(vi) (106)

≤ lnK

η
+

T
∑

t=t′

(1− qi,t)
M +

T
∑

t=t′

∑

i∈D

η − η2

|D| +

T
∑

t=t′

K
∑

i=1

η
πi,t

qi,t

=
lnK

η
+

T
∑

t=t′

(1− qi,t)
M+ η(1− η)(T −KM) + η

T
∑

t=t′

K
∑

i=1

πi,t

qi,t
.

Note that when t > t′, we have Et[ℓt(vIt)] =
∑K

i=1 πi,tℓt(vi).
Combining (56) with (106) leads to

T
∑

t=1

Et[ℓt(vIt)]−
T
∑

t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M +

T
∑

t=t′

(1− qi,t)
M

+ η(1− η)(T −KM) + η

T
∑

t=t′

K
∑

i=1

πi,t

qi,t
(107)

which completes the proof of Theorem 5.

G. Proof of Lemma 6

In this section, the doubling trick is employed to choose η
and M when the learner does not know the time horizon T
beforehand. At time instant t, when 2b < t ≤ 2b+1, ηb and

Mb the are chosen as

ηb =

√

K lnK

2b+1
,Mb =

⌈

(b+ 1)
√
2b−1|D| ln 2

ϵ
√
K lnK

⌉

. (108)

When t > 2b+1 holds true, the algorithm restarts with ηb+1

and Mb+1. The algorithm starts with b = 0. At each restart,

the algorithm chooses the experts one by one for exploration

until the condition that each expert is chosen at least Mb times

is met. Then, the learner uses the last Mb observed samples

from each expert to perform geometric resampling. In this case,

for each b, Exp3-GR satisfies

Tb
∑

t=2b+1

Et[ℓt(vIt)]− min
vi∈V

Tb
∑

t=2b+1

ℓt(vi) (109)

≤ lnK

ηb
+ (K − 1)(Mb −Mb−1) +

Tb
∑

t=t′
b

(1− qi,t)
Mb

+ ηb(1− ηb)(Tb − 2b −K(Mb −Mb−1)) + ηb

Tb
∑

t=t′
b

K
∑

i=1

πi,t

qi,t

where Tb denote the greatest time instant which satisfies 2b <
Tb ≤ 2b+1 and t′b can be expressed as in (88). Note that when

b = 0, we have Mb−1 = 0. Taking into account that the

maximum loss at each restart is 1, summing (109) over all

possible values for b obtains

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤⌈log2 T ⌉+
⌊log2 T⌋
∑

b=0

lnK

ηb
+ (K − 1)M

+

⌊log2 T⌋
∑

b=0

ηb(1− ηb)(Tb − 2b −K(Mb −Mb−1))

+

⌊log2 T⌋
∑

b=0

ηb

Tb
∑

t=t′
b

K
∑

i=1

πi,t

qi,t
+

⌊log2 T⌋
∑

b=0

Tb
∑

t=t′
b

(1− qi,t)
Mb (110)

where M is the number of samples for each expert when b =
⌊log2 T ⌋ which are used for geometric resampling. According

to (108) and the fact that D is obtained using the greedy set

cover algorithm, we have

M = O
(

α(G)
ϵ
√
K

lnT
√
T lnK

)

. (111)

Furthermore, for each b, the inequality qi,t > ηbϵ
|D| holds.

Therefore, according to (108), we can write Mbqi,t >
b+1
2 ln 2.

Thus, it can be concluded that (1−qi,t)
Mb ≤ e−Mbqi,t < 1√

2b+1

from which we obtain

⌊log2 T⌋
∑

b=0

Tb
∑

t=t′
b

(1− qi,t)
Mb <

⌊log2 T⌋
∑

b=0

Tb − 2b√
2b+1

≤
⌊log2 T⌋
∑

b=0

√
2b−1

≤
√
2T − 1

2−
√
2
. (112)

In addition, based on the Lemma 7, it can be written that

⌊log2 T⌋
∑

b=0

ηb

Tb
∑

t=t′
b

K
∑

i=1

πi,t

qi,t

≤
⌊log2 T⌋
∑

b=0

√

K lnK

2b+1
(Tb − 2b)O

(

α(G)
ϵ

ln(KT )

)

≤⌈log2 T ⌉
√
2b−1K lnKO

(

α(G)
ϵ

ln(KT )

)

=O
(

α(G)
ϵ

(lnT ) ln(KT )
√
KT lnK

)

. (113)

Therefore, combining (110) with (111), (112) and (113), it can

be inferred that Exp3-GR satisfies

T
∑

t=1

Et[ℓt(vIt)]− min
vi∈V

T
∑

t=1

ℓt(vi)

≤O
(

α(G) lnT
ϵ

ln(KT )
√
KT lnK

)

(114)

which completes the proof of Lemma 6.


