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The entanglement entropy of subsystems of typical eigenstates of quantum many-body Hamiltonians
has recently been conjectured to be a diagnostic of quantum chaos and integrability. In quantum chaotic
systems it has been found to behave as in typical pure states, while in integrable systems it has been found
to behave as in typical pure Gaussian states. In this tutorial, we provide a pedagogical introduction to
known results about the entanglement entropy of subsystems of typical pure states and of typical pure
Gaussian states. They both exhibit a leading term that scales with the volume of the subsystem, when
smaller than one half of the volume of the system, but the prefactor of the volume law is fundamentally
different. It is constant (and maximal) for typical pure states, and it depends on the ratio between the
volume of the subsystem and of the entire system for typical pure Gaussian states. Since particle-number
conservation plays an important role in many physical Hamiltonians, we discuss its effect on typical pure
states and on typical pure Gaussian states. We prove that, while the behavior of the leading volume-
law terms does not change qualitatively, the nature of the subleading terms can change. In particular,
subleading corrections can appear that depend on the square root of the volume of the subsystem. We
unveil the origin of those corrections. Finally, we discuss the connection between the entanglement entropy
of typical pure states and analytical results obtained in the context of random matrix theory, as well as
numerical results obtained for physical Hamiltonians.
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L. INTRODUCTION

Entanglement is a defining property of quantum theory,
and plays a crucial role in a broad range of problems in
physics, ranging from the black hole information paradox
[1] to the characterization of phases in condensed matter

systems [2]. Put simply, entanglement refers to quantum
correlations between different parts of a physical system
that cannot be explained classically [3,4]. Over the years, a
wide range of entanglement measures have been devised to
quantify entanglement [5]. Prominent among those are the
bipartite entanglement measures, which involve splitting
the system in two parts.

For the special case of globally pure quantum states
[¥) (our interest here) and a bipartition, the von Neumann
entanglement entropy, also known as the entropy of entan-
glement or just the entanglement entropy, is one of the
simplest measures of quantum entanglement. It vanishes if
and only if there is no quantum entanglement between the
two parts, in which case the state must be a product state.
We study the entanglement entropy in Hilbert spaces with
a tensor product structure H = H4 ® Hp [6]. To compute
the entanglement entropy of subsystem 4 (with volume
V4) of |¥), one traces out the complement subsystem B
(with volume V — V4, where V is the total volume) to
obtain the mixed density matrix g4 = Try, |¥) (¥|. The
entanglement entropy Sy of subsystem 4 is then

Sa = —Tr(p41n pa), (D)
while the nth Rényi entropy is defined as

8P = —In[Tr(p))]. 2)

The second-order Rényi entropy Sf{m has already been
measured in experiments with ultracold atoms in optical
lattices [7,8].

We stress that the focus of this tutorial is in pure quan-
tum states. Quantifying entanglement in globally mixed
states is more challenging. In particular, the von Neumann
and Rényi entanglement entropies are not entanglement
measures for globally mixed states. Several of the bipartite
entanglement measures defined for mixed states (e.g., dis-
tillable entanglement, entanglement cost, entanglement of
formation, relative entropy of entanglement, and squashed
entanglement) reduce to the entanglement entropy when
evaluated on pure states [5].

A. Ground-state entanglement

In general, one is interested in understanding the behav-
ior of measures of entanglement in physical systems, and
in determining what such a behavior can tell us about
the physical properties of the system. Much progress
in this direction has been achieved in the context of
many-body ground states of local Hamiltonians, for which
a wide range of theoretical approaches are available
[2,9-11]. Such ground states usually exhibit a leading
term of the entanglement entropy that scales with the
area, or with the logarithm of the volume, of the sub-
system. Identifying and understanding universal properties
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of the entanglement entropy in ground states of local
Hamiltonians has been a central goal [12—-15].

In one-dimensional systems of spinless fermions or %
spins, the leading (in the volume V) term in the entangle-
ment entropy has been found to distinguish ground states
of critical systems from those of noncritical ones [15-17].
In the former the leading term exhibits a logarithmic scal-
ing with the volume (when described by conformal field
theory, the central charge is the prefactor of the logarithm
[15,16,18]), while in noncritical ground states the leading
term is a constant (which, in one dimension, reflects an
area-law scaling). Subleading terms have also been stud-
ied, specially in the context of states that are physically
distinct but exhibit the same leading entanglement entropy
scaling. An example in the context of quadratic Hamilto-
nians in two dimensions are ground states that are critical
with a pointlike Fermi surface versus noncritical, which
both exhibit a leading area-law entanglement entropy [19—
23]. Remarkably, the subleading term in the former scales
logarithmically with V4 while it is constant for noncriti-
cal ground states [24]. Also, in two-dimensional systems,
critical states described by conformal field theory [25] and
states with a spontaneously broken continuous symmetry
[26,27] have been found to exhibit a universal subleading
logarithmic term.

B. Excited-state entanglement

In recent years, interest in understanding the far-from-
equilibrium dynamics of (nearly) isolated quantum sys-
tems and the description of observables after equilibration
[28-30] have motivated many studies of the entanglement
properties of highly excited eigenstates of quantum many-
body systems (mostly in the context of lattice systems)
[31-64]. Because of the limited suit of tools available
to study entanglement properties of highly excited eigen-
states of model Hamiltonians, most of the results reported
in those works were obtained using exact diagonalization
techniques, which are limited to relatively small system
sizes.

In contrast to the ground states, typical highly excited
many-body eigenstates of local Hamiltonians have a lead-
ing term of the entanglement entropy that scales with
the volume of the subsystem. Also, in contrast to the
ground states, the leading volume-law term exhibits a fun-
damentally different behavior depending on whether the
Hamiltonian is nonintegrable (the generic case for phys-
ical Hamiltonians) or integrable. In the former case the
coefficient has been found to be constant, while in the lat-
ter case it depends on the ratio between the volume of the
subsystem and the volume of the entire system.

Many-body systems that are integrable are special as
they have an extensive number of local conserved quan-
tities [65]. As a result, their equilibrium properties can
in many instances be calculated analytically, and their

near-equilibrium properties can be “anomalous,” e.g., they
can exhibit transport without dissipation (ballistic trans-
port). Also, isolated integrable systems fail to thermalize
if taken far from equilibrium. Interested readers can learn
about the effects of quantum integrability in the collection
of reviews in Ref. [66].

There is a wide range of quadratic Hamiltonians in
arbitrary dimensions (which include a wide range of nonin-
teracting models), e.g., translationally invariant quadratic
Hamiltonians, that can be seen as a special class of inte-
grable models. A class in which the nondegenerate many-
body eigenstates are Gaussian states, while their degener-
ate eigenstates can always be written as Gaussian states.
This means that those many-body eigenstates are fully
characterized by their one-body density matrix or their
covariance matrix. The entanglement entropy of highly
excited eigenstates of some of those “integrable” quadratic
Hamiltonians was studied in Refs. [36,42,44,50,53]. Other
quadratic Hamiltonians in arbitrary dimensions that will
be of interest to us here are quadratic Hamiltonians in
which the single-particle sector exhibits quantum chaos
(to be defined in the next subsections). We refer to such
Hamiltonians as quantum-chaotic quadratic Hamiltonians.
The entanglement entropy of highly excited eigenstates of
quantum-chaotic quadratic Hamiltonians (on a lattice) was
studied in Refs. [61,62]. It was found to exhibit a typi-
cal leading volume-law term that is qualitatively similar to
that found in eigenstates of integrable quadratic Hamilto-
nians (in which the single-particle sector does not display
quantum chaos), such as translationally invariant quadratic
Hamiltonians (on a lattice) [42,50].

In the presence of interactions, many-body integrable
systems mostly exist in one dimension [67,68]. They come
in two “flavors,” Hamiltonians that can be mapped onto
noninteracting ones (a smaller class), and Hamiltonians
that cannot be mapped onto noninteracting ones. Remark-
ably, both “flavors™ have been found to describe pioneering
experiments with ultracold quantum gases in one dimen-
sion [69—85]. The entanglement entropy of highly excited
eigenstates of lattice Hamiltonians that can be mapped
onto noninteracting ones (which exhibit the same lead-
ing volume-law terms as their noninteracting counterparts)
was studied in Refs. [48,50], while the entanglement
entropy of highly excited eigenstates of a Hamiltonian (the
spin-3 XXZ chain) that cannot be mapped onto a noninter-
acting one was studied in Ref. [55]. Remarkably, in all the
quadratic and integrable systems studied so far, the coeffi-
cient of the leading volume-law term of typical eigenstates
has been found to depend on the ratio between the volume
of the subsystem and the volume of the entire system.

Analytical progress understanding the previously men-
tioned numerical results has been achieved in some special
cases. One such case is translationally invariant quadratic
Hamiltonians, or models that can be mapped onto them in
one dimension [67], for which tight bounds were obtained
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for the leading (volume-law) term in the average entan-
glement entropy [42,50], and some understanding was
gained about subleading corrections [48]. This was pos-
sible thanks to the Gaussian nature of the eigenstates.
Another case is nonintegrable models under the assump-
tion that their eigenstates exhibit eigenstate thermalization
[33,45,46,52].

C. Random matrix theory in physics

Random matrix theory has provided a more system-
atic approach to gaining an analytical understanding of the
entanglement properties of many-body eigenstates in non-
integrable models [40,43,63,86—89]. Such an approach is
justified by the fact that many studies (see, e.g., Ref. [29]
for a review) have shown that nonintegrable models
exhibit “quantum chaos.” By quantum chaos what is meant
is that statistical properties of highly excited eigenstates of
such models, e.g., level spacing distributions, are described
by the Wigner surmise [29]. This was conjectured by
Bohigas, Giannoni, and Schmit (BGS) [90] for quantum
systems with a classical counterpart, in which case “quan-
tum chaos” usually occurs when the classical counterparts
are K chaotic, where K stands for Kolmogorov, and it
is the class of systems that exhibit the highest degree of
chaos. Remarkably, even statistical properties of eigenvec-
tors such as the ratio between the variance of the diagonal
and the off-diagonal matrix elements of Hermitian opera-
tors have been shown to agree with random matrix theory
predictions [91-94]. Recently, two of us (M.R. and L.V,, in
collaboration with P. Lydzba) used random matrix theory
in the context of quantum-chaotic quadratic Hamiltonians
to obtain a closed-form expression that describes the aver-
age entanglement entropy of highly excited eigenstates of
quadratic models whose single-particle spectrum exhibits
quantum chaos, such as the three-dimensional Anderson
model [61,62].

The application of random matrix theory to many-body
systems goes back to works by Wigner [95-98] as well as
Landau and Smorodmsky [99] in the 1950s, who aimed
at finding a statistical theory that described the excita-
tion spectra in nuclei for elastic scattering processes. Their
novel idea was that a sufficiently complicated operator like
the Hamilton, or the lattice Dirac operator, can be replaced
by a random matrix (whose entries are, preferably, Gaus-
sian distributed as those are easier to deal with analytically)
with the appropriate symmetries. For this to hold, it is not
important that the physical operator has matrix entries that
are all occupied with nonzero entries. In condensed matter
models [29], as well as in lattice QCD [100—-104], numeri-
cal evidence has shown that very sparse matrices can also
exhibit spectral characteristics of a random matrix with
Gaussian distributed entries. It is the concept of univer-
sality that has made random matrices so versatile. Like
in the central limit theorem, in which an infinite sum of

independently and identically distributed random variables
leads to a Gaussian random variable under very mild con-
ditions, it happens that, for many spectral quantities, it does
not matter how the random matrix is actually distributed.

Over the years, random matrix theory has found many
more applications in physics; for example, the local level
density about Dirac points (also known as hard edges in
random matrix theory) has been used to classify oper-
ators such as Hamiltonians and Dirac operators, and to
discern global symmetries of a system. By global sym-
metries, it is meant those that are described by a linear
involution (operators that square to unity) in terms of uni-
tary and antiunitary operators. Well-known examples in
physics are time reversal, parity, charge conjugation, and
chirality. Global symmetries play a central role when clas-
sifying systems in the context of quantum chaos [105],
in superconductors and topological insulators [106,107],
in quantum-chromodynamics-like theories in the contin-
uum and on a lattice [104,108], and in Sachdev-Ye-Kitaev
(SYK) models [109,110].

D. Local spectral statistics

There are two spectral scales that are usually discussed
in the context of random matrix theory, and to which dif-
ferent kinds of universalities apply. Those are the local and
the global spectral scales.

The microscopic or local spectral scale is given by the
local mean level spacing where the fluctuations of the
individual eigenvalues are resolved. This scale is often of
more physical interest as it analyses the level repulsion of
eigenvalues that are very close to each other. Such a level
repulsion is usually algebraic for very small distances s.
Namely, the level spacing distribution p(s), which is the
distribution of the distance of two consecutive eigenval-
ues, is of the form s# (where B is the Dyson index) for
small distances.

While the symmetry of a Hamiltonian, such as time
reversal, chirality, or charge conjugation, is not very
important for the global spectral scale, it is very important
for the local spectral statistics as it influences the value of
B. Wigner [97] derived the distribution for two-level Gaus-
sian random matrices with Dyson index g = 1, which was
soon generalized to 8 = 2,4,

_ L (CIB+2)/2)%! 4

PO =2 BT D2t
2
Xexp[_ (T[(ﬁ +2)/2]) 52] 5
T+ D)2

with the gamma function I'[x]. This distribution is nowa-
days called Wigner’s surmise. The corresponding random
matrices are known as the Gaussian orthogonal ensem-
ble (GOE; B = 1), the Gaussian unitary ensemble (GUE;
B = 2), and the Gaussian symplectic ensemble (GSE; g =
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4). Those are usually compared with the level spacing dis-
tribution of independently distributed eigenvalues (8 = 0),
which gives the Poisson distribution

p(s)=e", 4)

and with the level spacing distribution of the one-
dimensional quantum harmonic oscillator (also known as
the picket fence statistics), which is a simple Dirac delta
function

p(s) =8(1—s). 5)

All five benchmark distributions are shown in Fig. 1(a).

The use of the Wigner surmise as a diagnostic of quan-
tum chaos and integrability followed fundamental con-
jectures by BGS [90] (mentioned before) and Berry and
Tabor [111], respectively. The latter states that, for an inte-
grable bounded system with more than two dimensions
and incommensurable frequencies of the corresponding
tori, the spectrum should follow the Poisson statistics.
However, both conjectures have to be understood with
the following care as the eigenvalue spectrum must be
prepared appropriately.

(i) The spectrum must be split into subspectra with
fixed “good” quantum numbers such as the spin,
parity, and conserved charges. This requires knowl-
edge of all the symmetries of the model. This
step must be taken since a direct sum of inde-
pendent GUE matrices can yield a level spacing
distribution that resembles the Poisson statistics; see
Fig. 1(b).

(i1) One needs to unfold the spectra, meaning that the
distance between consecutive eigenvalues must be
in average equal to one. This second step is crucial

as only then the level spacing distributions are
comparable and universal statistics can be revealed.
The eigenvalue spectrum of an irregularly shaped
drum, a complex molecule, and that of a heavy
nucleus have completely different energy scales.
After the unfolding of their spectra these scales are
removed and show common behavior. Yet, the pro-
cedure of unfolding is far from trivial for empirical
spectra. There are other means such as the study
of the ratio between the two spacings of three con-
secutive eigenvalues [112]. But this observable also
has its limitations as this kind of “automatic unfold-
ing” only works in the bulk of the spectrum. It fails
at spectral edges and other critical points in the
spectrum.

In the context of the Wigner surmise, we should stress
that even though the statistics of the spectral fluctuations
are well described at the level of the mean level spacing
[113—115] (even beyond the context of many-body sys-
tems; see, e.g., the reviews and books [116—-119] and the
references therein), it was soon realized that there are sta-
tistical properties of the spectral fluctuations of many-body
Hamiltonians that cannot be described using full random
matrices; see Refs. [120—123]. This is due to the fact that
usually only one-, two- and maybe up to four-body inter-
actions represent the actual physical situation. Random
matrices that reflect these sparse interactions are called
embedded random matrix ensembles [116,122,124-126].
In the past decades, they have experienced a revival due
to studies of the SYK model [127-132], and two-body
interactions [133—135]. A full understanding of how these
additional tensor structures, which arise naturally in quan-
tum many-body systems, impact the entanglement of the
energy eigenstates is currently missing.

FIG. 1.
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(a) The level spacing distributions of the Poisson distribution (solid line; g = 0), the Wigner surmise of the GOE (dotted

line; B = 1), of the GUE (dashed line; 8 = 2), of the GSE (dash-dot line; 8 = 4), and the picket fence statistics (vertical line; 8 = 00).
(b) Three Monte Carlo simulations (symbols) of the spacing between eigenvalues (50 - M) and (50 - M + 1) of the direct sum of M
GUE:s with a matrix dimension N = 100 (in total, the matrix dimension is 100¥ x 100M), compared to the Poisson distribution (solid
line), and the Wigner surmise of the GUE (dashed line). The ensemble size is 10° such that the statistical error is about 1%. The bin
size is about (.1, but varies as the unfolding slightly changes their actual value.
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E. Global spectral statistics and eigenvector statistics

The second scale is the macroscopic or global spec-
tral scale, which is usually defined as the average distance
between the largest and the smallest eigenvalues. For this
scale, Wigner [95,98] derived the famous Wigner semi-
circle, which describes the level density of a Gaussian
distributed real symmetric matrix. He was also the first to
show, again under mild conditions, that the Gaussian dis-
tribution of the independent matrix entries can be replaced
by an arbitrary distribution, and nevertheless one still
obtains the Wigner semicircle. One important feature of
this kind of universality is that it does not depend on the
symmetries of the operators. For instance, whether the
matrix is real symmetric, Hermitian, or Hermitian self-
dual has no impact on the level density, which is in all
those cases a Wigner semicircle [136]. The global spec-
tral scale also plays a crucial role in time series analysis
[137] and telecommunications [138], where instead of the
Wigner semicircle the Marcenko-Pastur distribution [139]
describes the level density.

The global scale is always important when considering
the so-called linear spectral statistics, meaning an observ-
able that is of the form Z?;lf(l.j), where the A; are the
eigenvalues of the random matrix. This is the situation that
we encounter when computing the entanglement entropy,
where the A; are the eigenvalues of the density matrix; cf.
Eq. (1). Therefore, we expect that the leading terms in the
entanglement entropy are insensitive to the Dyson index B,
so that the entanglement entropy can serve as an excellent
diagnostic for integrable or chaotic behavior.

A related diagnostic for the amplitude 4 of vector com-
ponents of eigenstates is the Porter-Thomas distribution
[140], which is used to decide whether a state is local-
ized or delocalized. The Porter-Thomas distribution is a
x? distribution,

_ ﬁN B/2 A,B/Z—l ﬁN
1) = (T) TA/2] e"p[_TA]’ ©)

where the normalization of the first moment is chosen to be
equal to 1/N. Note that in the quaternion case one defines
the amplitude as the squared modulus of a quaternion
number. Hence, as a sum of four squared real compo-
nents, similar to the squared modulus of a complex number
(which is the sum of the square of the real and imagi-
nary parts). Actually, the application of random matrices
for computing the entanglement entropy is based on this
idea. We can only replace a generic eigenstate by a Haar-
distributed vector on a sphere after assuming that the state
is delocalized. Unlike the Porter-Thomas distribution, as
previously mentioned, the leading terms in the entangle-
ment entropy are expected to be independent of the Dyson
index B (which has yet to be proved).

The relation between certain quantum informational
questions and random matrix theory also has a long his-
tory, and the techniques developed are diverse (see, e.g.,
the review [141] and Chapter 37 of Ref. [118]). Ques-
tions about generic distributions and the natural generation
of random quantum states have been a focus of attention
[142,143]. The answers to those questions are still debated
as there are several measures of the set of quantum states
and each has its benefits and flaws; for instance, two of
those are based on the Hilbert-Schmidt metric and the
Bures metric [142,144]. Those measures define some kind
of “uniform distribution” on the set of all quantum states
and, actually, generate random matrix ensembles that have
been studied to some extent [142,143,145—149]. In this
tutorial, we encounter one of the aforementioned ensem-
bles, namely, the one related to the Hilbert-Schmidt metric,
which naturally arises from a group action so that the states
are Haar distributed according to this group action.

F. Typicality and entanglement

An important question that one can ask, which relates
to the latest observations made in the context of random
matrix ensembles, is what are the entanglement proper-
ties of typical pure quantum states. This was the earliest
question to be addressed. Following work by Lubkin [150]
and Lloyd and Pagels [151], Page [152] obtained a closed
analytical formula for the average entanglement entropy
(over all pure quantum states) as a function of the sys-
tem and subsystem Hilbert space dimensions. This formula
was rigorously proven later in Refs. [153—155]. In lattice
systems in which the dimension of the Hilbert space per
site is finite, one can show that Page’s formula results in
a “volume-law” behavior, i.e., the entanglement entropy
scales linearly in the volume V4 of the subsystem, Sy o< V4
(for a large system of volume ¥ and a subsystem with
V4 < V/2). The prefactor of this volume law is the same
that was later found in studies of highly excited eigenstates
of nonintegrable Hamiltonians and, separately, within ran-
dom matrix theory. Deviations from Page’s result have
been discussed in the context of highly excited eigenstates
of number-preserving Hamiltonians away from half-filling
[43,46]. The entanglement entropy of pure quantum states
with particle-number conservation was also studied in
Refs. [47,49].

In many physically relevant situations, constraints such
as particle-number conservation are present and, as a
result, the Hilbert space of the system does not factor into
the tensor product of Hilbert spaces of subsystems. Other
notable examples are gauge theories that have a Gauss
constraint, and quantum gravitational systems where the
Hamiltonian itself is a quantum constraint [156]. When
the constraint is additive over subsystems, i.e., of the form
C4 + Cp = 0, one can resolve the Hilbert space as a direct
sum over a tensor product of simultaneous eigenspaces
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of C4 and Cp that solve the constraint. An example of
this phenomenon is the previously mentioned systems
with a fixed total number of particles, where C, is the
number of particles in the subsystem. For this class of
systems, a formula for the typical entanglement entropy
of pure constrained states (and its variance) was obtained
recently by one of us (E.B.) in collaboration with P.
Dona [157].

Another important class of pure states are fermionic
Gaussian states. They are of special interest because, as
mentioned before, the many-body eigenstates of quadratic
Hamiltonians are Gaussian states. In the quantum com-
puting community those states are known as matchgate
states, and they are used to implement classical com-
putations on a quantum computer [158]. The average
entanglement entropy over translationally invariant Gaus-
sian states was studied by four of us (E.B., LH.,, M.R,
and L.V.) in Refs. [42,48,50], where tight bounds were
derived. The average over all fermionic Gaussian states
was studied later by three of us (E.B., L.H., and M.K.)
in Ref. [159], and a closed-form expression was derived
as a function of the total (¥) and the subsystem (¥4) vol-
umes. To leading order in ¥, that expression agreed with
the one previously derived in Ref. [61] for the average
entropy over all eigenstates of particle-number-preserving
random quadratic Hamiltonians that, in turn, was shown
to agree with the average over random quadratic
Hamiltonians without particle-number conservation in

Physical Hamiltonians
N

Ref. [62]. Entanglement entropies of Gaussian states with
particle-number conservation were also studied in Refs.
[86,88] in the context of SYK models. We connect all these
results throughout this tutorial.

G. Outline

We provide a detailed understanding of the behavior of
the entanglement entropy of typical pure quantum states
in (a) the entire Hilbert space (Sec. 1I) and (b) the sub-
set of Gaussian states (Sec. III). Both for pure quantum
states in the entire Hilbert space, and within the subset of
Gaussian states, we consider case (1) in which the num-
ber of particles is not fixed separately from cases (2) in
which it is fixed and (3) in which we take a weighted
sum over all fixed particle-number sectors. Overall, we
thus consider six characteristic ensembles, which we can
compare with the respective typical eigenstate entangle-
ment entropy found in physical Hamiltonians, as illustrated
in Fig. 2. For general states without fixed particle num-
ber, the results for the average over all quantum states
are well known [152], while for general Gaussian states,
the results were recently obtained by three of us (E.B.,
L.H., and M.K.) [159]. For quantum states with a fixed
number of particles, all the results discussed are derived
here (the derivations are explained in detail in the appen-
dices). We identify and explain the qualitative changes that
occur in subleading terms when one fixes the number of

Characteristic ensembles

”(a) Interacting [(b) Quadratic*® ||(

-

a) General pure states

(b) Pure Gaussian states

(1) arbitrary N|| H = Y (ti;ala; Ho = Y (tala;  |[(Sa) full Hilbert space # [(Sa)g  , Gaussian i}igﬁﬂaﬂ;f)ﬂld M
B vV - -
+dialal +He) | +dialal +He.) dimH =2
+ Y (vijmalalalaf
+---+He)+...
(2) fixed N |Hy =Y tyala; |How = Xtijala; [[(Sa)y subspace H™  [(Sa)q y , Ceussian submanifold M
atata dimHN = (V i dim My =2N(V — N)
+ Y (vijmdjajand imH™ = (§)
+---+He)+...
eigenstates of PAIN or PAIG,N with fixed N
—wN —wN
(3) fixed w weighted average over all eigenstates [|(Sa), = x (K)c—z— (Sa)n (SA)G,W =>N (K)e—z— (SA)G,N
of Hy or Hg N
. _ weighted average weighted average
(equal weight corresponds to w = 0) over fixed over fixed
N averages N Gaussian averages

* Numerical results have shown that integrable interacting systems show qualitatively similar behavior [55].

FIG. 2. Physical Hamiltonians versus characteristic ensembles. This tutorial relates the typical entanglement entropy of eigenstates
of physical Hamiltonians (left) to the typical entanglement entropy computed analytically for six characteristic ensembles constructed
from random matrix theory (right). On the left we show four representative physical Hamiltonians, (a) generic interacting and (b)
quadratic, (1) without and (2) with number conservation. On the right we show the six characteristic ensembles, which are obtained
considering three sets of eigenstates [(1) arbitrary N, (2) fixed N, and (3) weighted average] for (a) general pure states and (b) pure

Gaussian states.
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particles in the quantum states. We explore the behav-
ior of the average entanglement entropy as a function
of the system volume V, the subsystem volume ¥V, and
the total number of particles N. We show that general
pure states and Gaussian states share common properties
for f = V,/V « V, but become increasingly distinct as

In Sec. IV, we examine the relation between typical
entanglement entropies in the Hilbert space and typi-
cal entanglement entropies generated by random matri-
ces. In Sec. V, we examine the relation between typical
entanglement entropies in the Hilbert space and typical
entanglement entropies of eigenstates of specific model
Hamiltonians. While we mostly have fermionic lattice sys-
tems (with and without spin) in mind, our results apply to
any fermionic system with a well-defined bipartition, hard-
core bosons, and spin-% systems. In the outlook, we discuss
how the same methods can be used to study regular (soft-
core) bosons, large spins, and systems of distinguishable
particles.

It was recently conjectured that the entanglement
entropy of typical eigenstates of quantum many-body
Hamiltonians can be used as a diagnostic of quantum chaos
and integrability [55]. This conjecture was motivated by
the finding that the leading volume-law term of the entan-
glement entropy in typical eigenstates of an integrable
model that is not mappable onto a noninteracting one
behaves qualitatively (and quantitatively) like in typical
eigenstates of translationally invariant quadratic Hamil-
tonians, and in stark contrast to the behavior in typical
eigenstates of quantum-chaotic Hamiltonians. With that
conjecture in mind, we expect that the analytical expres-
sions derived in the sections to follow can be used as
benchmarks for numerical results obtained for physical
Hamiltonians (and analytical results obtained using dif-
ferent techniques). The entanglement entropy of typical
eigenstates of physical Hamiltonians is complementary to
diagnostics of integrability and quantum chaos currently in
use, such as the previously mentioned Wigner surmise that
is based on the statistical properties of the eigenenergies.

II. GENERAL PURE STATES

We consider the general setting of a system with V
fermionic modes (potentially arranged in a lattice of arbi-
trary dimension) and a bipartition of the system into a
subsystem A4 (with V4 fermionic modes) and its comple-
ment B (with ¥ — V4 fermionic modes). Hence, the Hilbert
space has the structure 'H = H4 ® Hp and dimension
dimH = dydp, where d4y = dim ’H 4 and dg = dim Hp.

This setup can be used in different contexts. For
instance, on a D-dimensional lattice with L sites per space
direction and Ny, fermionic modes per site (representing
internal degrees of freedom, such as spin), the total number

of fermionic modes is
V = LPNip. (7)

For each mode, we can denote the creation (annihilation)
operators as _);:T (ﬁ-), where 1 < i < V. The bipartition with
respect to a subsystem of V; < ¥ modes then yields the
Hilbert space dimensions

dg=2", ap=2""1 (8)
When we fix the subsystem fraction f = V4 /V, our results
hold in full generality for arbitrary space dimensions D and
fermions with an arbitrary spin. They also hold for hard-
core bosons and spin-% systems (which have two states per
lattice site}—but not for (soft-core) bosons for which the
average entanglement entropy diverges due to the infinite
local dimension of the Hilbert space.

We note that, in the Introduction, we referred to V, Vy,
and ¥V — V4 as volumes. We continue to use that termi-
nology in the rest of the tutorial. Readers should keep
in mind that V, V4, and ¥V — V4 quantify the number of
fermionic modes; the volume (or, similarly, the number of
sites) being just one of the possible ways in which this is
achieved.

A. Arbitrary number of particles

A natural approach to gain an understanding of the
entanglement entropy of pure quantum states is to con-
sider randomly chosen vector states |{) € H. Since the
Hilbert space is finite dimensional, the set of all states
describes a hypersphere that is compact. Thus, the uni-
form distribution on this set provides a natural unbiased
probability distribution over pure states [152]. The cor-
responding density operator |¢) (Y| is also called Haar
random as it is equal to the induced Haar measure on the
coset U(dydp)/U(dsdp — 1) with U(d) the d-dimensional
unitary group. This measure is the unique one that is nor-
malized and invariant under unitary transformations. In
practice, we can construct such a state by first fixing a ref-
erence state |Yp) and then defining |V) = U|yp), where
U:H — 'H is a random unitary transformation drawn
from the Haar measure of unitary matrices.

For every such |¢), the bipartite entanglement
entropy with respect to the tensor product decomposition
'H = H4 ® Hp is, once again, defined by

Sa(1¥) = —Tru, (paInpg), with pg = Ty, |¥) (V]

)

where Tryy, refers to the partial trace over the sub-Hilbert
space Hp. We are interested in the average and the variance
of §4 with respect to the statistical ensemble. In Page’s
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setting, the ensemble is given by Haar-random density
operators [¥) (¥|. We can write those quantities as

(S4) = f S4(U o)) du(U), (10)

(ASy)? = f [S4(Ul¥o)) — (SOTPdu(U),  (11)

where dp (U) represents the normalized Haar measure over
the unitary group U(d,dp). The average and variance can
be computed from the joint probability distribution of the
eigenvalues A; of o4, which were derived in Ref. [151], as
S4(1¥) = — X2, &y InGy).

In the case of Page’s setting, where one draws a random
uniformly distributed state |Y) € H, the average entan-
glement entropy (and any other statistical quantities) will
depend only on the dimensions d4 and dp. This shows that
the ensuing statements are independent of any chosen par-
ticle statistics (bosons, fermions) and also not restricted to
the special case of qubit-based (two-state per-site) systems
in the context of which they are usually used. They apply
much more generally.

1. Statistical ensemble of states

Let us outline the derivation of Page’s result in Eq. (23).
The derivation allows us to draw some relations to random
matrix theory, and we use some of the ideas behind it later
when studying fermionic Gaussian states.

Let us consider a general state vector in the tensor space
H = 'H4 ® Hp. Such a vector can always be decomposed
into some factorizing orthonormal basis |a) ® |b) € H:

dy dp

V) =) wala) ® [b) (12)

a=1 b=1

with coefficients w,, € C. As physical state vectors are
normalized, the coefficients satisfy

dy dg

DD wal =1. (13)

a=1 b=1

These coefficients and their distribution contain all the
information about the random pure state and, hence, about
the entanglement entropy. Once we take the partial trace
over the subsystem B, the density operator in system 4 is
explicitly given by

dy dg
Pa= D D WapWhylar) (@l (14)
ayay=1 b=1

The coefficients w,p can be seen as the entries of a dy x dp
complex matrix W. Thence, we can identify the density

operator p; = WW'. The density operator for subsystem
B, when tracing over subsystem A, is given by pgp =
Try, |[¥) (Y] = W' W. This allows us to explicitly see the
duality between the two subsystems, and what changes
when switching from A4 to B. In general, the dimensions
d4 and dp are not equal. Thus, one of the two density oper-
ators always has zero eigenvalues but otherwise comprises
the very same eigenvalues with the same multiplicity as the
other density operator.

Equation (13) implies that the matrix W satisfies
Tr WW' = 1. Page’s setting of uniformly distributed states
means that W is distributed uniformly on the unit sphere
described by this normalization condition. Such a matrix
is a random matrix and the ensemble is known as the fixed
trace ensemble [117]. In quantum information theory, it
has been used in several studies, e.g., such as those in Refs.
[143,145,149,160-162].

With this knowledge at hand, let us compute the entan-
glement entropy, which can be expressed in terms of the
eigenvalues of WW1, i.e., it holds that

S4([¥)) = —Te[WW' In(WW')]
= —Ti[W'win(w'w)]
= S(|¥)). (15)

It is the spectral decomposition theorem that ensures the
symmetry of the entanglement entropy between the two
subsystems. This symmetry always holds.

To compute the ensemble average of S4(]Y)), one
implements the normalization condition in terms of a Dirac
delta function, which can be written as a Fourier-Laplace

transform of the complex Wishart-Laguerre ensemble
[117,136],

Jeasxag AIWIS4(1¥))8(1 — Tr W)
e ixap dIWIS(1 — Tr WWT)

Jeagxap dIW] [, dtS4(13r))e+DA=T W)
fm <dg d[W] fi’ooo dte(1+iH(1-Tr wwt)

(Sq4) = —

]

(16)

where d[W] is the product of all differentials of all matrix
elements of W and W'. The shift of it to 1 + it is impor-
tant since it allows us to rescale WW' — WW' /(1 + i),
which describes a rotation of the integration contours in
the complex plane where the integrand is absolutely inte-
grable. Before rescaling, we use a standard trick to rewrite
the entanglement entropy removing the logarithm:

S40¥)) = =0, Tr(WW*| . (17)

We also use this relation when computing the average
entanglement entropy of fermionic Gaussian states. After
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the aforementioned rescaling of the random matrix W',
the entanglement entropy reads

(S4) = —0c

f_ogo dt(1 + it)~94d8—<(1+i0)
f_mm dt(1 + it)—dadpe(1+iD)
x flCdAng d[w] TI’(W)GQ—TIWWT] s
fch xag A[W]e~ Tewwt E=]'

The first factor can be computed using standard techniques
in complex analysis, yielding

f_oooo df(] + I-t)—dAdB—ee(]+ir) B r[dAdB]

= 19
J25, dt(1l + it)—dadpe(1-+iD I'[d4dp + €] (19)

with I'[x] the gamma function. Once we apply the deriva-
tive in €, we see that the first term of Page’s result (23)
follows from the fixed trace condition. This was also
observed and exploited in the original works in which Eq.
(23) was computed [152,154].

The remaining integral over W is an average over the
complex Wishart-Laguerre ensemble [117,136], which is
one of the three classical random matrix ensembles that
also include the Gaussian [117,118,136] and the Jacobi
[136,163] ensembles. Interestingly, it is the Jacobi ensem-
ble that we encounter when studying fermionic Gaussian
states later on.

In the final step, one uses the eigenvalues x1,...,xq, >
0 of W' and expresses the average in terms of the level
density of the Laguerre ensemble. In this step, one needs
to decide whether dy < dp or d4 = dp, as the density is not
analytic at dy = dp. This reflects the fact that either g4 or
pp has exact zero eigenvalues, and it is the source of the
case distinction in Page’s result (23). When assuming that
d4 < dp, the level density is equal to [136]

dy! —de —x
Rl,]_.ag(x) f— mxd,ﬂ dA‘e

x [L(dB dA'H)( )L(dB dAJ(x)

—L{E D@L W], (20)

in terms of the generalized Laguerre polynomials L® (x).

Using the series representation of Lf,dg_d”ﬂ)(x) in Eq.
(18.5.12) of Ref. [164], and the Rodrigues formula for

L%~ (x) in Eq. (18.5.5) of Ref. [164], one can show for
a < b that

o0
f xe+ae—er(Id3—dA+l) (x)LLdB_dAJ (x)dx
0

ZI‘[ctz—H.\H—2]F[as + 1+ 1T e +a +1+ 1]
INi+a+2'Ne+1—n+1J(a—D'1'D!

x (—1)’”, (21)

which is different from the formula used in Ref. [154]. We
use this approach as it parallels our computation for Gaus-
sian states. Putting everything together in Eq. (18), using
the identity

[ d[W Te(WWhyee=TewW!
f d[W]e- Tr Wt

o0
:dAf X Ry Lag(x)dXx,
0
(22)

we arrive at Page’s result in Eq. (23). As we have men-
tioned before, the symmetry in dy and dp reflecting the
symmetry in the two subsystems 4 <> B has to be imple-
mented by hand. The random matrix approach underscores
this loss of analyticity when going over to the generic
nonzero eigenvalues of WW' and selecting the smaller of
the two dimensions.

2. Average and variance

The average entanglement entropy of a uniformly dis-
tributed pure state in H restricted to subsystem A is given
by the Page formula [152]

ds— 1
W(dydp + 1) — W(dp + 1) — “‘M , dy <d,

(Sq) = 229,
W(dydp + 1) — W(dy+ 1) — ———, dy > dp,

2dy
(23)

where W(x) = I'"(x)/ ' (x) is the digamma function. In the
thermodynamic limit ¥ — oo when V,, V — V; — oo also
so that the subsystem fraction

Vi :
=— 24
f=7 24)
is fixed, Page’s formula (23) reduces to
(Sq) =f Vin2 27111 L 027", (25)

where we will be careful to consistently use Landau’s “big
O” and “little 0” notation in this manuscript, such that

fN=00m — Jim ’L —c#£0, (26)
and
f=o0m = JmI—0 )

The first term in Eq. (25) is a volume law: the aver-
age entanglement entropy scales as the minimum between
the volumes V4 = fV and Vg = (1 — f)V. For f # 3, 1 the
second term is an exponentially small correction. In fact,
at fixed f and in the limit ¥ — oo, the second term
—2711=¥1"-1 becomes —%Qr,l;g. We can also resolve pre-
cisely how this Kronecker delta arises in the neighborhood
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(Sa)=aV —b+0(27")
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FIG. 3.

0.0 0.2 0.4 0.6 0.8 10

The average entanglement entropy (S4) = aV — b + o(1) as a function of the subsystem fraction f = V,/V for large V. (a)

Leading-order behavior, also known as the Page curve. (b) The constant correction, which is given by a Kronecker delta — %SJ’J s2- This
Kronecker delta is resolved in (c) by carrying out a double scaling limit V' — oo withf = V/V = % + Af V.

of f = % As it may be difficult to reach exactly f = %
in physical experiments, the more precise statement is
that we see the correction whenever [ = % + O(1/V). For-
mall?/, we can thus resolve the correction term exactly as
27771 for f = 1 + Ay /V, as visualized in Fig. 3.

We find similar Kronecker delta contributions 8 1,2 in
subsequent sections where we discuss the typical entropy
at fixed particle number and in the setting of Gaussian
states. These terms highlight nonanalyticities in the entan-
glement entropy that can be resolved by double scaling
limits. Those “critical points” occur at symmetry points
and along axes. In the present case, this has happened with
the dimensions d4 and dp reflecting whether the density
operator p4 = WW' or pp = WIW contains generic zero
eigenvalues.

The variance of the entanglement entropy of a random
pure state is given by the exact formula (fordy < dp) [157,
165,166]

ds+dp

ASy)? = ——

(ASy) Tudy 1

_ (d4—1)(ds +2dp— 1)
4d%(dydp + 1)

W (dg+ 1) — W (ddy + 1)

, (28)

where W' (x) = dW(x)/dx = d*[InT' (x)]/dx? is the first
derivative of the digamma function. It can be derived using
similar techniques as those outlined above for the average.
In particular, the fixed trace condition can be separated as
before via the trick of the Fourier-Laplace transform, such
that one is left with an average over the complex Wishart-
Laguerre ensemble. The derivation is tedious and lengthy
because one has to deal with double sums, which can be
computed as described in Appendix D [167].

In the thermodynamic limit discussed above, Eq. (28)
reduces to

(AS)? = (% — %3f‘%)2—(1+|1—2r DV 4 o2~ (H+I1=27 DYy,
(29)

This shows that the variance is exponentially small in V.
As a result, in the thermodynamic limit the entanglement
entropy of a typical state is given by Eq. (25) [157].

Anew, one could resolve the variance at the critical
point f = £ via a double scaling limitf = 3 + Ay /V. This
yields (ASy)? = 2="2- 207 1=1(1 — 2214711y

B. Fixed number of particles

Let us go over to a Hilbert space H® with a fixed num-
ber of particles, but still carrying over the idea to draw
states uniformly from the sphere in this Hilbert space. We
further assume that there is a notion of a bipartition into
subsystem 4 and B, such that one can specify for each par-
ticle if it is in subsystem 4 or B. Such a decomposition is
not a simple tensor product anymore, but it is a direct sum
of tensor products

N
H(N) — @ (HE{NAJ ®H‘(BN_NA))' (30}
Ny=0

The direct sum is over the occupation number in 4 (which
labels the center of the subalgebra). Each summand rep-
resents those states where Ny particles are in subsystem
A and N — N4 particles are in subsystem B (assuming
indistinguishable particles).

When Ny is larger than dimension V4 of subsystem 4,
or N — Ny is larger than V' — V, we consider the tensor

product H;N”) ®H‘(9N_N‘J as the empty set and, thence,
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nonexistent. This is the case as, due to Pauli’s exclusion
principle, we cannot put more fermions in the system than
there are quantum states. We also adapt this understanding
for the following discussion where direct sums, ordinary
sums, and products are reduced to the components that are
actually present.

1. Statistical ensemble of states

Let us consider fermionic creation jiT and annihilation
ﬁ operators, which satisfy the anticommutation relations
ifiY =85, (fj} =0 with i,j =1,..., 7. The corre-
sponding number operators are

V Vy
=Y A% Ni=Y_f"% M= Z JAIAE)
i=1 i=1 i=VF4+1
where one can see that
N =N, + Np. (32)

The Hilbert space of the system can be decomposed as a
direct sum of Hilbert spaces at fixed eigenvalue N of N,

,
H=QH = H (33)

i=1 N=0

with H® given by Eq. (30). The dimension of each
N -particle sector is

4
_ ) _
dy =dimH m (34)

It is immediate to check that dim™ = Y h_,dy = 2".

Similarly, one can use the number operators N; and Np
to decompose the Hilbert spaces H 4 and Hp into sectors

V—V4

Va
Hi= P HI., He=PHF?P. (39

Ny=0 Ng=0

Let us stress once again that, while H is a tensor product
over 4 and B,

Vi v
- (®@n)e( @ H)=reH o
i=1 i=V 441

the sector at fixed number N < V4 is not a tensor product.
It is the direct sum of tensor products from Eq. (30). The

corresponding dimensions of the subsystems are

V!
dy(Ny) = di H(N”) _—
4(a) = dim Nal (V2 — N |
(37)
dp(Ng) = dimH® — = Vo) |
e P N[V = V) — Ngl!
One can check that the dimensions add up correctly,
al 4
dy(Ng) dg(N —Ng) = ———— =dy. (38
Z 4(Ny) dp( 1) =15 T—n W (38)

N4=0

The formula for d4, and equivalently that of dp, follows
from a simple counting argument of how many choices
there are to place N4 indistinguishable particles on ¥y
modes. Let us underline that it does not matter what
we label particles and what holes. Note that d4(N,) or
dg(N — Ny4) will vanish for Ny outside of the interval
[max(0,N + V4 — V), min(N, V)], but we will not trun-
cate the sum, as we will soon turn it into a Gaussian
integral.

From these dimensions we can readily read off two exact
symmetries.

(1) It does not matter whether one considers subsys-
tem A or B. One can exchange (d4(Ny), V4, Ny) <
(dp(N — Ny),V—V4,N — Ny). This allows us to
restrict the discussion to V; < V/2. However, the
dimensions of the two Hilbert spaces are exchanged,
which (as we will show) yields nonanalytic points
along V4 = ¥/2 due to the two branches of Page
curve (23).

(i) Additionally, there is a particle-hole symmetry since
it does not matter whether one counts particles or
holes. Actually, the “particles” do not necessarily
need to represent particles but they can be, for
instance, up spins while the “holes” are down spins
(having in mind spin-% systems). Any binary struc-
ture with fermion statistics (meaning Pauli princi-
ple) can be described in this setting. Mathemati-
cally, the particle-hole symmetry is reflected in the
exchange (N,Ny) <& (V—N,V4— N4). We note
that in this case the dimensions are not exchanged
so one does not switch branches in Page curve (23).
Therefore, the symmetry points at N = V/2 will
be analytic, as we will also show. This symmetry
allows us to restrict N < V/2.

In summary, we only need to study the behavior in the
quadrant (V4,N) € (0, V/ 2]%. The remaining quadrants are
obtained by symmetry.

Like in the setting in which we do not fix the parti-
cle number, we can relate the problem to random matrix
theory. Here, we briefly recall the most important
ingredients from Ref. [157]. A state |¢¥) € H™ can be
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again written in a basis. We choose the orthonormal basis
vectors |a,N4) ® |b,N — N,) € HE{N‘) ® H%N_N”) so that
the state vector has the expansion

dy dp

¥) = @ZZw‘”“ la,Na) ® |b,N — Ny),  (39)

N4=0 a=1 b=I

with the abbreviations dy = d4(N4) and dp = dg(N —
Ny4). The normalization is then reflected by the triple sum

dg dp

Z >l =1 (40)

Ny=0 a=1 b=1

The direct sum over N, is important as it tells us that the
density operator p4 = Tryy, |¥) (Y] has a block diagonal
form, namely,

A B
69 3 S WM GO 1N (a2, Nal. (41)
Ny=0ay,ar=1 b=0

(N4q)

Again, we can understand the coefficients w;,*’ € C as

the entries of a d4 x dp matrix WNA. The point is that
those matrices are coupled by condition (40). In Ref. [157]
those matrices were decoupled by understanding their
squared Hilbert-Schmidt norms as probability weights, i.e.,
defining

dy dg
=) Y WP e 0,1] (42)
a=1 b=l

such that fVNA = /PN, Wy,. This notation allows one to
identify the density operator of subsystem 4 with the block
diagonal matrix p4 = diag(poWp W#, ..
illustrated in Fig. 4.

Thus, the entanglement entropy becomes the sum

. ,pNWNWL), as

N
Sa(v)) = Y low, Te(Wy, W5, In[Wy, W, 1)

N4=0
+pn, In(px,)]- (43)

Anew, the symmetry between the two subsystems is
reflected by the spectral decomposition theorem since

it holds that pp = Try, [¥) (V| = diag(nggWg, .o sPN
wh ).

Since the norms are encoded in the probability weights
Pn,» each matrix Wy, WLA independently describes a fixed
trace ensemble, i.e., Tr Wy, WLA = 1. Thus, it can be dealt

with in the same way as in Page’s case, in particular each
of those can be traced back to a complex Wishart-Laguerre

O (a) n=12| |0
0 v

.

V=12 o

(b) n=1/4

FIG. 4. Sketch of the block dimensions of the reduced den-
sity matrix 4 of subsystem A at the subsystem fraction f =
1. (a) Case V=12 at half filling n = §, for which V4 = 6.
The number of particles ranges from Ny = 0 to Ny = 6, with
Ny=3 representlng the largest block. (b) Case V' = 20 at quar-
ter filling n = 4, for which V4 = 10. The number of particles
ranges from Ny =0 to Ny = 5, with Ny = 5 representing the
largest block. The blocks with Ny = Ny = 3 are larger than
the corresponding blocks in subsystem B (not shown in the
figure).

V=20

ensemble of matrix dimension d4 x dp. The probability
weights py, € [0, 1] are also drawn randomly via the joint
probability distribution [157]

N dydg—1
8(1 =3 N,—oPN,) l_[N,, 0PN, _ dPw,

N dqdg—1 :
f5(1 - ZNF(}PNA) l_[NA DPN; " dpn,

(44)

The Dirac delta function enforces condition (40), while the

dgdp—1

factors py’, are the Jacobians for the polar decomposi-

tion of the vectors in H{N") ® H(N 1) into their squared

norm py, and the dlrectlon whlch is encoded in Wy,.
The normalization of the distribution of py, was computed
in Ref. [157] and can be deduced by inductively tracing
the integrals over py, back to Euler’s beta integrals in
Eq. (5.12.1) of Ref. [164].

2. Average and variance

With these definitions and discussions, we are now
ready to state the main result in Eq. (23) of Ref. [157]: the
average entanglement entropy in system 4 of a uniformly
distributed random state in H) is given by

min(N,V4)

dyd
(Sov= D LS+ V(v +1)
Ng=0 N

— W(dydp +1)], (45)
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where dgy = d4(Ny4) and dp = dp(N — N,4) depend on N, according to Eq. (37) and (S,4) refers to Page’s result (23) for
given d, and dp. Equation (45) follows from the average over Wy, WLA in Eq. (43), which are independent fixed trace
random matrices. The prefactor dydp/dy, as well as the additional digamma functions, follow from Euler’s beta integral

in Eq. (5.12.1) of Ref. [164]. In particular, we have used

1 e+dqdp—1
fo Pn, (

I — p, )N~ ds=lgpy

(py,) = T dgdg—1
A fo pNj B (1 _PNA)dN_dAdB_ldeA
_ I'le +d,dp]T'[dy] (46)
 T[d4dp]l'[e + dn] '

for any € > —d,dp. The average on the right-hand side can be obtained by rescaling p; — (1 — pn,)p; for any j # Ny,
which decouples the average over py, with the remaining probability weights p;.

We can write Eq. (45) as

(S = D en,eny,
N4=0

by introducing the quantities

_ dudp

QNA - dN 3
V(dy+1)—Wdp+1)—

PNy, =

W(dy+1)—Wds+1)—

— U(dy + 1) — W(max(dy, dg) + 1) — min (

The function gy, can be understood as a probability distri-
bution of having Ny particles in 4, with the normalization
ZNA o(N4) =1 following from Eq. (38). The function
@n,, when understood as a continuous function, has a
kink at Nit, which refers to the largest integer such that
d4(Nerit) < dp(N — Ngiit). There is only one situation in
which Ny is not well defined, namely, when Vy =N =
V/2 or, equivalently, when f =n = % with f = V,/V and
n = N/V.Then it always holds that d4(N4) = dp(N — Ny)
forall Ny = 0,...,N. In this case, we do not need an Ngg;
as the terms in both sums are the same.

We are unable to evaluate this sum exactly, but we can
expand (Sy4)y in powers of ¥ and approximate the sum by
an integral

N o0
v = 3 avion = [ _e@aetudn+o(0),
N4=0 -

(49)

where o(ny) is the saddle point approximation of Vo, v =
Vdsdp/dy, which represents the probability distribution
for the intensive variable ny = N4/V. This is enough for

(47)
dg—1
= , dy < dp,
d2d31
Iy —
, d d
24, 4 > dp
dq—1 dg—l) (48)
2dp ’ 2dy ' '

computing the leading orders without double scaling. We
find the normal distribution

1 [ 1(n,;—ﬁ,;)2]+ M (50
exp| — = o

o~/2m P 2 o '
with mean n4; = fn and variance o? =f(1—-f)In -
n)/V.

In Appendix A 1b, we carefully analyze the difference
Mgt = At — Ny for ngy = N/ V and find that, for fixed
f < %, one always has dncrir = O(1) and éngie > 0. Thus,

o(ng) =

forf # %, the center of the Gaussian 74 is sufficiently sep-
arated from ncg. This allows us to disregard the second
sum in Eq. (45) as it is exponentially suppressed. In the
case that f > %, we can disregard the first sum because of
the symmetry between the two subsystems 4 and B.
To find the observable ¢(n,) from Eq. (48), we use
Stirling’s approximation
: (dN dN)
W[dy + 1] — W[max(dy,dp) + 1] = Inmin | —, —
dp d4

+o(1). (51)
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(a)

FIG. 5. The leading entanglement entropy s4(f ,n) = limy_, o (S4)y /V from Eq. (54) [see Eq. (66)]. Forn = %, s4(f ,n) coincides
with Page’s result (maximal entanglement). (a) Three-dimensional plot as a function of the subsystem fraction f = V4 /V and the
filling ratio n = N /¥. One can see the mirror symmetries ¥y — V — Vyand N — V' — N. (b) Results at fixed n plotted as functions of
f . The colored lines agree in both plots so that the right one can be seen as sections of the left one along the colored lines.

Moreover, it holds for ¥ > 1 and fixed f € (0, 1) that

min (dAd ! , ds 1) =8 12012 +0(1).  (52)
B dy

The Kronecker delta is, in fact, a “relic” of a double scal-
ing limit, see Figs. 3(b) and 3(c) for a similar result in the
context of Page’s setting without fixed particle number. It
can be resolved by assuming that f is close to % but not
exactly at %; see Appendix A. When collecting all terms
up to order O(1), we obtain

@(n4g) = [ngIn(ng) — f In(f) —nIn[(1 —n)/n]
—In(l —n)+ (f —ny)In(f —nyV

1 — 1
+ 3 In [H] -3 r,1/20m,1/2 + 0(1)
(53)

for ny > ny. For ny < ngy, we need to apply the symme-
triesny — n—nygandf — 1 — f in expansion (53).

In the limit ¥ — o0, Gaussian (50) narrows because the
standard deviation scales like o ~ 1/4/V. We can, there-
fore, expand ¢(ny) in powers of (ngy — ny) around the
mean 714. In order to find the average up to a constant order,
it suffices to expand up to the quadratic order and then cal-
culate integral (49). Only for f = %, we have dncit = o(1),
so that we need to take into account the nonanalyticity in
@(n4) introduced by the symmetry when exchanging the
two subsystems. In this case, we integrate two different
Taylor expansions for ngy < n/2 and ny > n/2, which will
introduce a term of order /7, as discussed below.

Combining these results, we arrive at the main result of
this subsection,

(Sa)v =[(n — D In(1 —n) —nIn(@) [V

n(l —n) l—n
- 1 ) 4
| (57 [rnv?
+ In(1 — 1
+j# ) r,1/20n172 +0(1), (54)

valid for f < % The leading, volume-law, term in Eq. (54)
is the same as that obtained in Refs. [43,46] using random
matrix theory, and the same as in Ref. [157] [see Eq. (27)],
where it is interpreted as the typical entanglement entropy
in the (highly degenerate) eigenspace of a Hamiltonian of
the form H = N = N4 + Np. The subleading A/V term was
first discussed in Ref. [43], specifically, it coincides with
the bound for such a term computed at f = % [43]. It is
remarkable that, forn £ %, the constant term is nothing but
that obtained in Ref. [43] within a “mean field” calculation,
while at n = f = % the extra —% correction was found in
Ref. [43] numerically, both for random states as well as for
eigenstates of a nonintegrable Hamiltonian. We had all the
ingredients to guess the general form in Eq. (54). Its actual
derivation with all the details fills several pages, and can be
found in Appendix A. A visualization of the leading term
in Eq. (54) can be found in Fig. 5.

An important question concerns the resolution of the
Kronecker deltas in Eq. (54), which indicate nontrivial
scaling limits. The Kronecker deltas are only obtained
along the critical line f = %, which contains a multicrit-

ical point at n :% when ¥V — 00. One needs to take
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(Sa)y =aV —bV2—c+0O(1)

FIG. 6. The entanglement entropy (S4)y from Eq. (54) as viewed from the contributions of the first three terms in the expansion in
V. (a}Hc) Three-dimensional plots as functions of the subsystem fraction f = V,/V and the filling ratio n = N /V. (d) Resolving the
expansion coefficient b for f = % +Ar/ VVaroundf = %, as given by Eq. (A66), approaching zero for large | A/ |. (e) Resolving the
expansion coefficient ¢ forn = % +A,//Vandf = % + Ag/Varoundf =n= %, as given by Eq. (A68), approaching (2In2 — 1)/4
for large | Ay | or |A,|. We underline that the subleading contributions are multiplied by a minus sign.

the resolution into account because experiments are car-
ried out in finite systems in which f and » can only be
fixed within some experimental resolution. Consequently,
it is important to understand within which margin of error
one needs to choose f and n to observe the correspond-
ing terms. This question can be answered by analyzing
the limit ¥ — oo in the double scaling f = % + VA

and/or n = % + V=P A,. We find that the /¥ correction in

Eq. (54) (for fixed n) becomes visible fora = %, i.e., when-

ever the difference between f and % is of order 1/4/¥ or
smaller. The constant correction requires a more detailed
analysis as it depends on the relative scaling of both f
and n around [ =n = % Subtle cancelations have to be
taken into account as not all sources of correction, such as
Nerit, approximation (51), or the rewriting of the sum as an

(dy+dp)W(dg+1)— (dy+ DV (dy+ 1) —

X:

(da +dp)¥W'(ds+ 1) — (dv + DW'(dv + 1) —

integral, are equally important; see Appendix A. The visu-
alization of the terms in Eq. (54) that include Kronecker
deltas, as well as their scaling, is presented in Fig. 6.

The variance (AS;) = (S2), — (S4) of the entangle-
ment entropy of pure quantum states in H™) can be found
using the result in Eq. (24) of Ref. [157]. When expressed
as a sum over the number of particles Ny it takes the form

N N
1
(ASp)y = T [ z ooy, + xv,) —( z QN,,(ON,,))],
Ny=0

Ny=0
(55)

where oy, and gy, are given in Eq. (48) and xn, is defined
as

(dg—1)(ds+2dp — 1)
Ady

(dp — 1)(dp +2d,— 1)
4d’ ’

] dA SdBa

(36)

d4 > dp.
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As earlier, dy, d4(N4), dpg(N — N4) are understood as
functions of the particle number and are given by Eqgs.
(34) and (37). In the thermodynamic limit ¥ — oo, at
fixed subsystem fraction f = V4/V and fixed particle
density n = N /V, the variance is exponentially small and
its asymptotic scaling can be obtained via the saddle point
methods of Appendix A. In particular, we have

N N 2
3" ol - ( )3 QN,,%)
N,y=0 N4=0

_ f 0 (1) (ng)dn,

oo

oo 2
—( f Q(M)(ﬂ(m)dm) +o(1)

oo

1
Z[f(l —f)—gfsf,uz]
l n
X ( n—

N
1
E ON XNy = Z‘Sf,]ﬂan,ljz +o(1), (58)
Ni=0

2
) n(l1 —=n)V+o(V) (57)

and

where we have used the fact that, for large dimensions,
dys > 1and dgp > 1, x scales as

dy
ar +0(1/d}), dy <dj,
1 +o(1), dy = dp, (59)

dp
77 +0(0/d%), dy> dp.

XNy =

Therefore, the term in brackets in Eq. (55) is of order
V, while the denominator dy + 1 is exponentially large.
Using the Stirling approximation for dy in Eq. (55), we
find that

(AS9) = aV?2e PV 4 o(e7P), (60)

with

2
o= «/ﬁ[f(l - - %f‘&,m](ln 1 i )

n
x [n(1 — )% + o(1), (61)
B=-—nlnn— (1 —n)in(l — n).

This means that the average entanglement entropy in
Eq. (54) is also the typical entanglement entropy of pure
quantum states with N fermions, namely, the overwhelm-
ing majority of pure quantum states with N fermions have
the entanglement entropy in Eq. (54).

3. Weighted average and variance

Having computed the average entanglement entropy of
pure states with N particles, next we can compute the aver-
age over the entire Hilbert space. A subtlety is that the
system is in either of the Hilbert spaces Hy, but we do not
know in which one. Therefore, while the distribution of the
pure states with a fixed particle number is given quantum
mechanically, meaning uniformly distributed over a unit
sphere, we additionally have a classical probability for the
particle number N.

With this in mind, we can average over (S4)y within
each sector with N particles weighted by its Hilbert space
dimension dy from Eq. (34). More generally, we can intro-
duce a weight parameter w and a probability Py of finding
N particles:

1
Py = sze—wN ) (62)
Here Z = Z;=0 dve™N = (1 +e™)" normalizes the
distribution. The average filling fraction n can be expressed
in terms of the weight parameter w as

n= Py = (63}

N=0
with half-filling 7 = % corresponding to equiweighted sec-
tors, i.e., w = 0. The variance of the filling fraction,

4 N 2 h(1 — )
(An)* = PN(— - ﬁ) =— 7 (64)
2Py 7

can be obtained easily by noting that Py is a binomial
distribution.

We calculate the average entanglement entropy at fixed
weight parameter w,

,
(Sady =Y Pn (Sady » (65)
N=0

up to constant order in ¥ by expanding (S4)y around n
and then using the known variance (An)?. Since (Sa)y is
analytic as a function of N (for f < %) and does not have
any discontinuities in its derivatives, it suffices to expand
its leading order (linear in ¥) around 7 as

sqn,f)=[(n—1)In(1 —n) —ninn]f
=[(n—1)In(1 —n) —nlnalf

_ . f(m—n)?
+f In[(1 — 7)) /7] — T
+o(n —n)3, (66)

and calculate its expectation value with respect to the
binomial distribution. Using ((n — n)?) = o2, we find the
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constant correction —f /2, which cancels the identical term
in Eq. (54). Terms of order ¥'/? and #° can be directly eval-
uated at n = n, where the binomial distribution is centered,
because its finite width on those terms will only contribute
corrections of subleading order O(1). Hence, the resulting
average is equal to

(Sa), = [(ﬁ —1)In(1 — 7i) — ﬁln(ﬁ)]ﬂ/
- -
B #M(z:fr i) ln( _ n)'@,]/gﬁ

In(1—f) 2
+ Tf = —8r1285,172 + o(D),

(67)

where n = 1/(1 + ") was computed in Eq. (63). A peda-
gogical derivation of Eq. (67) can be found in Appendix
A 2. Interestingly, Eq. (67) can be summarized by the
simple relation (S4),, = (S4)y=w —f/2 + o(1) except at
f=n= %, where the Kronecker delta from Eq. (54) leads
to additional integrals, as explained in Appendix A 2.

For w=0 with h = %, Eq. (67) describes the average
entanglement entropy of uniformly weighted eigenstates of
the number operator (with respect to the Haar measure).
This average was computed in Ref. [49] as (S4),—p =
SYIn2 +1In(1 —f)/2 — 25¢ 12/, which coincides with
Eq. (67) for 7t = 5.

Similarly, one can compute the variance of the weighted
entanglement entropy

V V 2
(AS)% =) Pn(S{n — ( ZPMSA)N)
N=0 N=0

2
=l —ﬁ)(ln )fV+o(V). (68)

1—n
Note that, while the variance (AS)}E\‘r at a fixed number of
particles is exponentially small at large V, the weighted
variance (AS)?2 scales linearly in ¥ because of the o1
variance (An)~ in the filling fraction. Forf # Oand n # 0,
the leading-order term only vanishes at n = % However,
we always have limy_, oo (ASq)w/ (S4),, = 0, i.e., the rel-
ative standard deviation vanishes in the thermodynamic
limit, so that the average entanglement entropy (S4),
and the fypical eigenstate entanglement entropy always
coincide.

III. PURE FERMIONIC GAUSSIAN STATES

In this section, we define fermionic Gaussian states and
calculate the average and variance of the entanglement
entropy for this family of states. Following Ref. [159], we
do this first for pure fermionic Gaussian states, for which
the number of particles is not fixed. Next, we derive new
results for fermionic Gaussian states with a fixed number

of particles. In both cases we mimic the idea of a uniformly
distributed state. This works because in both cases there is
a natural action of a compact group and the set is given by
a single orbit of this group action. Thus, one can choose the
unique Haar measure to generate an ensemble of fermionic
Gaussian states.

It may be natural to ask whether the same analysis could
also be carried out for bosonic Gaussian states. Unfor-
tunately, the answer is in the negative. The ensemble of
bosonic Gaussian states is noncompact with unbounded
entanglement entropy since the corresponding invariance
group is a noncompact one. So any group invariant average
would diverge. Moreover, the only bosonic Gaussian state
that has a fixed particle number is the vacuum with zero
particles and zero entanglement. To circumvent the prob-
lem, one could fix the average number of particles. Then,
the corresponding manifold would be again compact and
one can average over all those Gaussian states (in a simi-
lar spirit as in Refs. [168,169]), but the resulting analysis
would be rather different from our approach here. It may
be possible to use a duality between bosonic and fermionic
entanglement entropy of Gaussian states [170] for this, but
we will not carry out this analysis here.

A. Definition of fermionic Gaussian states

Instead of starting with pure fermionic Gaussian states,
it is easier to begin with mixed Gaussian states because the
pure ones can be understood as limits of this definition. We
choose a Majorana basis {};};=1,..2v in the 2¥_dimensional
Hilbert space H since the corresponding ensemble is easier
to describe. This Majorana basis satisfies the anticom-
mutation relation {y;, yx} = djx, meaning that they create
a Clifford algebra and can be chosen to be Hermitian,
ij =¥;. Moreover, it holds that Tr([], y;,) = 0 with
Jir € {l,..., ¥V} and any positive integer m whenever there is
a y; that does not appear in this product with an even order.
Otherwise, it holds that Tr([ ), ¥;,) = £2"~™/2, which is
up to a factor 2-"/? the dimension of the representation of
the Clifford algebra as well as the dimension of the Hilbert
space H.

A Gaussian state is then any density operator of the form

py) = (Y gy 1) ep(=r'0y)
Trexp(— ij,}:;:] gwyive)  Trexp(=yTQy)

(69)

with the Majorana operator-valued column vector y =
1, ..., y)f. This form gives the Gaussian states their
name. The Hermiticity of o(y) implies that the coefficient
matrix Q = {gjx}j 4=1,..2v, needs to be Hermitian, while
the anticommutation relations of the Majorana basis allows

030201-18



VOLUME-LAW ENTANGLEMENT ENTROPY...

PRX QUANTUM 3, 030201 (2022)

us to set the real symmetric part to zero. Indeed, due to

Zq,k}m qu+ D @ —vn)

Jj.k=1 1<j<k=<2V

= qu + ) (-

1<j<k=<2V

9%5)Y; vk, (70)

we see that the diagonal part of Q only yields a con-
stant while the symmetric one drops out. Thence, the
coefficient matrix is a 2V x 2V imaginary antisymmet-
ric matrix Q = —Q* = —Q". Such a matrix can be block
diagonalized by an orthogonal matrix M € O(2V). In par-
ticular, it holds that Q0 = MTdiag(JLlrg, . AyT2)M, with
the second Pauli matrix 7; and A; > 0. Introducing n =
M, ..., ngy)T = My, whose entries create another Majo-
rana basis, the expression simplifies because of yTQy =
—2i Z;;l Ajm;_11M2;. We can readily compute the expo-
nent

,
exp[—y'Qy] = [ J(cosh(a;) + 2isinh(3;)ny _1n),
j=l1
(71)
and the normalization
V
Trexp[—y Qy] = 2" [ cosh(x)). (72)

j=1
Summarizing, any Gaussian state has the compact form

.
p(y) = 27" JI1 + 2itanhGy)my 1my],  (73)
j=1

where the A; are the singular values and the 7; are the
Majorana basis in the corresponding eigenbasis of the
matrix Q.

Gaussian states satisfy the Wick-Iserlis theorem, mean-
ing that all moments can be expressed in terms of the first
and second moments. Since the first moments vanish for
fermions, all the information of a fermionic Gaussian state
is encoded in the covariance matrix. When subtracting the
identity and multiplying by the imaginary unit, we obtain
the symplectic form

—iJ =Trn [ (vy' = 3120)]
ay
= M" Try [1_[ (E +itanh(A;)m; 1 7?2;) (' — ]le)]M
=1
(74)

We have emphasized that the trace is only over the Hilbert
space ‘H and not over the indices of the Majorana basis,

which explains why we could take the orthogonal matrix
M out the trace. The shift by half of the identity matrix
%]lgy only subtracts the diagonal terms y = 2, which
do not contain any information. The symmetrles of the
Majorana basis tell us that the symplectic form J is real
antisymmetric. In a straightforward computation one can
show that

Ay ;o1
Try l_[ 5 +itanh()ny—imy )’ — 5 1oy
j=1
= diag[tanh(A{)12, ..., tanh(Ay)12]. (75)

Therefore, the eigenvalues of J are equal to =ix; =

Zitanh(};), and the link between Q and J is given by the
bijective relation

J = itanh(Q). (76)

As we can go back and forth between these two matrices,
p(y) is fully determined by J so that it is suitable to adopt
the notation A(J). For instance, we can express the von
Neumann entropy in terms of J because of

— Tr[4(J) In p(J)]

v
1 1
=Tr [l_[ (2 + ix; Mo — 1?32;) Z In ( + ix; Uzk—mzk)]

=1
y
= Zs(x;c) = TI’.S‘(ij) (??}
k=1
with [171-173]

() ()5,

(78)

With the help of the von Neumann entropy, it is straight-
forward to identify the pure fermionic Gaussian states.
Those are given when all eigenvalues are equal to X =
+1. Indeed a density operator of the form s =

2V = 1(1 & 2in;_1my;) satisfies the necessary and suf-
ficient condition for pure states (in combination with
positive semidefiniteness and the normalized trace), i.e.,

,
P2y =27 [t £ 2imyamy)?
j=1
V
= Z_Vl_[(l = 2img;_1my5)
j=1

= 5(). (79)

The corresponding normalized state vector of ) =
[/} {(J| is denoted by |J) and it is only determined up
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to a complex phase. The set of all real antisymmetric
matrices J with eigenvalues =i is described by {J =
MTJoM| M € O2V) and J; = ity @ 1y}. This gives a nat-
ural parametrization of pure fermionic Gaussian states,
which will be our starting point in Sec. [11 B.

B. Arbitrary number of particles

We first focus on the family of pure fermionic Gaussian
states in which one does not fix the particle number, i.e.,
we include Gaussian states that consist of a superposition
of states with different total particle number.

1. Statistical ensemble of states

As we have seen in the previews subsection, all pure
fermionic Gaussian states can be described by their sym-
plectic form J =i (J|yy' — 1y|J) = MTJoM, with an
orthogonal matrix M € O(2V) and the symplectic unit
Jo = itz @ 1y, which is essentially a canonical embedding
of the second Pauli matrix 7, in the 2V-dimensional space
and defines a complex structure; see Refs. [159,172,173].
One can render the relation between pure states and real
antisymmetric matrices J with eigenvalues i, i.e., JZ =
—1,p, to a one-to-one correspondence when dividing all
orthogonal matrices out of O(2F) that commute with Jj.
These matrices build a subgroup that is the real rep-
resentation of the unitary group U(¥V) (the direct sum
of the fundamental and antifundamental representations).
Thence, the set of all pure fermionic Gaussian states can be
identified with the coset O(2V)/U(V), which is V(V — 1)
dimensional.

There is a natural O(2F) group action on the pure
states by J — MTJM that corresponds to the change
of an orthonormal Majorana basis. Therefore, adopting
Page’s idea of a uniform distribution that is given by a
group action, we assume that the ensemble of random
pure fermionic Gaussian states is created by the normal-
ized Haar distribution on O(2¥)/U(V). Practically, this
can be realized by drawing a Haar-distributed orthogonal
matrix M € O(2¥), and considering the pure state corre-
sponding to the real antisymmetric matrix J = MTJoM;
see Ref. [159].

When restricting a pure fermionic Gaussian state F18))
to a subsystem 4 with a (d4 = 2"4)-dimensional Hilbert
space H4, one obtains a mixed Gaussian state. The corre-
sponding symplectic form can be obtained by a projection
of the matrix J. Without loss of generality, we assume that
Yy =W,y )t is an orthonormal Majorana basis only
acting nontrivially on 4 but has a trivial action on the
other Hilbert space Hp. Defining I, as the projection of
a 2V vector onto the first 2V components, it holds that
y = 14y and the new symplectic form corresponding to

the state p4(J) = Try, p(J) is

Ja = Try, [pa) (77" — 312v,)]
=T, Try [ (vy' — 31op) |1

= I,JT7. (80)
Hence, the new covariance matrix is only an orthogonal
projection of the old one onto its upper left 2V, x 2V
block. Surely, it can be any diagonal block or even a more
complicated embedding of this 2V, x 2V, matrix Jy in
J. However, the group invariant generation of the pure
fermionic Gaussian states tells us that all these embeddings
are equivalent. Physically, this means that all these subsys-
tems of H = H4 ® Hp are essentially the same once the
dimension d is fixed. We have already seen this picture in
Page’s setting.

In Ref. [159], it was shown that the random matrix
Jy = MuMTJ,MTTY with a Haar distributed M € O(2V)
has a joint probability density of its eigenvalues
idiag(x172, . ..,xy,T2) of the form

V4
Px)=N]]e —x)* ] —xH"  @81)
=1

Jj<k I

with NV the normalization. Here, we already see that it is
crucial to assume that Vy < V/2; otherwise, we need to
consider the density operator pp(J) = Try ’ p(J). Indeed,
it is again the same symmetry between subsystems 4 and
B that is still true here, and the breakdown of analytic-
ity is due to some eigenvalues, either of p4(J) or fp(J)
being exactly zero. Those eigenvalues are related to the
eigenvalues of J4 or, equivalently, Jp that are exactly =i.

The main idea that enters the computation of the
joint probability distribution (81) is Proposition A.2 of
Ref. [174], which shows what the eigenvalues of a corank-
2 projection of a real antisymmetric matrix are. Then, one
needs only repetitively apply this proposition, leading to
the distribution above.

One important ingredient in the computation is that all
k-point correlation functions can be expressed in terms of
a single kernel function K (x,x;) as [175]

Ri(xy,...,xp) =

Va! ! :
Vi—h! f_l D1 f_] ey, P ()

= det[K (x7, %) 1j=1,...k- (82)

In the mathematical branch of random matrix theory, this
structure is known as a determinantal point process [176].
The average and variance of the entanglement entropy can
then be traced back to an integral of the one-point function
Ri(x) and the two-point correlation function Ra(x1,x2),
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respectively. In general, higher cumulants of the entangle-
ment entropy are averages of specific k-point correlation
functions.

Distribution (81) is shared with the unitary Jacobi
ensemble [136,163], which is a truncation of a Haar-
distributed unitary matrix. Despite the fact that the eigen-
value statistics is the same with a unitary Jacobi ensemble,
the eigenvector statistics is different. This can be readily
seen in that the eigenvectors of the unitary Jacobi ensem-
ble must be U(V) invariant, while in the present case they
are only O(2V) invariant.

2. Average and variance

Our goal is again to compute the mean and variance of
the entanglement entropy of subsystem 4,

(Si)o = f S (MM (M), (83)

(ASy)E = f Sa(IMIM™"Y) — (Sa))2du (M),  (84)

where Sy (|J)) = Trs(iJ4) [see Eq. (78)] and du(M) now
represents the Haar measure over the orthogonal group.
Computing the average entanglement entropy over all
Gaussian states was the main technical achievement of
Ref. [159]. It was facilitated by recent results in random
matrix theory [174], from which one can deduce what the
joint probability distribution of the singular values J are.
For this, we make repetitive use of Proposition A.2 of
Ref. [174] by always projecting away two rows of matrix
J; firstto [J]y_1, then [J]y_2, until we arrive at [J]n,. This
yields for x = (xi,...,xn,) the distribution

detX)? (!
P = ‘:,A,) (Hc;‘(l—x?m‘*), (85)
AU

where we have the Ny x N matrix X and ¢; given by

Xy = pj_1(x) = PyoY (),
o — 222027 + M)
T2 +20) (4 +2A + 1)

(86)

(87)

with A = Np — N4 = 0. The k-point correlation functions
from Eq. (82) are fully encoded by K(x,,x;), which is
given by the k x k matrix (with @a,b = 1,...,k) given by
[136]

Ny—1

X (1 _x2)ﬂ{2
(x,y) = g YY), Yikx) = Nl (),

(88)

with fol Vi (X)Y(x)dx = 8. The average entanglement
entropy can be written in terms of the one-point function,

1
(Si)o = A Ry ()s(x)dx

=V-Hven+ (3 +vi—-Vwer-2vy
+ G =V)V) - I -V -Vi  (89)

where the details can be found in Appendix C 1. Anew, the
symmetry V4 <> V — V4 is not reflected in this result and
needs to be introduced by hand. The origin of this breaking
in the analytical result is, as in Page’s setting, one of the
two density operators p4 and pp has an exact number of
zero modes. The result corresponds to this system without
these generic zero modes. This selection is a nonanalytical
step. Indeed, there is a nonanalytic kink at V4 = V/2 (first
derivative jumps there). However, it is difficult to see when
plotting the result even for moderately small V (say of the
order 10). The reason is that this kink vanishes like 1/72,
so that it is only of the order of 1% when V' = 10.
Forf =V, /V < l, the thermodynamic limit reads

Sa)g =Vl(n2 = Df +(f = Din(l =f)]

+3f +1In(1—)+001/P), (90)

whose leading-order term was found earlier in Ref. [61]
to give the average eigenstate entanglement entropy of
number-preserving random quadratic Hamiltonians. This
match is not a coincidence, as discussed in Sec. [II C 3.

Interestingly, result (90) glued to its reflection f —
1 —f at f = 5 is 2 times differentiable at / = 7. Thus,
the nonanalyticity is hardly visible. Starting with the third
derivative one can actually see the breaking of analyticity.
We note that, in contrast to the case of general pure states
considered by Page, in Eq. (90) there is no Kronecker delta
contribution at f* = 3.

The variance (AS,)? can be computed from the matrix
representation of the entanglement entropy function s(x)
with respect to the function ¥;(x):

1
sy = [ s 0 v ©1)
-1
In full analogy to the calculation in Ref. [159], we find that

1
(ASy)%: = f s2(x)K (x,x)dx
-1

1
- f s()s () K, xa)dx

1
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1
= f s(x1)s(x2)K (x1,x2)[8(x1 — x2)

1
— K (x1,x2)]d%x

Va—1

1
= fls(m)s(xz)[ Z %&f(xl)lfff(xz)]
- i=0

x [ > %(xl)rm—(xz)]d?x
j=Va

VA—I [e. 4]

=2 D5

i=0 j=F4

(92)

The variance of the entanglement entropy for a pure
fermionic Gaussian state was computed to leading order
in Ref. [159] and is given in

+/%+In(1 —
(ASA)E;:f i 2“( /)

+o(l).  (93)

We present a systematic derivation in Appendix C 2 based
on certain integrals of Jacobi polynomials. Using the tech-
niques of Refs. [149,177], we expect that the variance can
be calculated in a closed compact form for fixed V as an
expression in terms of digamma functions, analogous to
Eq. (89). In fact, Huang and Wei [178] conjectured such
an analytical formula.

C. Fixed number of particles

We consider fermionic Gaussian states with a fixed
particle number N, i.e., the intersection of the family of
fermionic Gaussian states and the Hilbert space H™).

For this, it is useful to change from the basis of Majo-
rana operators y; to the basis of creation and annihilation

operators. This basis, {_ﬁ = (l/ﬁ)(nj_l +iyy), f;T =

(1/\/5)(}'2}_1 — iy2;)}i=1,...,v, will be helpful when study-
ing Gaussian states with fixed particle numbers. Those are
given by three 7 /4 rotations of the form

-

ioee oS D) = Qe T =TT (99)
with

T ="/ exp [ — i%rg, ® ]lV] exp[— i%n ® ]ly],
(95)

and 1) and 13 being the first and third Pauli matrices.
Hence, the symplectic form becomes a complex structure

in this basis that is given by

J =iTTry [p)(yy' — 110)]T

:f(<5' i) =1 ) AT —f}*ﬁ*iﬂ)
AR A -
(96)

where we have used the anticommutation relation
(/1Y = 84 and {fi.fi} = 1f,7./,7} = 0. The transforma-
tion of J — J is a unitary transformation.

For fermionic Gaussian states with a fixed number
of particles, the off-diagonal blocks in Eq. (96) van-
ish because those contain expectation values of opera-
tors that change the particle number. Thus, we are left
with the eigenvalues of the two V-by-V matrices Fj; =
—iIf" =) and Gy = iU =54
These two matrices are intimately related via F = —GT
due to the anticommutation relations. Actually, it is also
a direct consequence of the anti-Hermiticity and the 71 ®
1y antisymmetry of J = —J' = —(1; ® 1p)J (11 @ 1y).
Therefore, when ix; is an eigenvalue of the anti-Hermitian
V x V matrix F, then —ix; has to be an eigenvalue of G.
There are no additional symmetries of F' and G, meaning
that they can be arbitrary Hermitian matrices. Only their
singular values are bounded to be inside the interval [0, 1]
because this is already the case for the complex structure
J that is inherited from the positive semidefiniteness of
state p.

Using the canonical commutation relations, it holds that

Fy =2iJIf,"fiW) —i8; = G O7)

This equation relates ' and G to the one-body reduced den-
sity matrix that is defined as Cj; = (J m*ﬁ |./}. Indeed, the
matrix C is Hermitian,

(y =C = WY = Uiy =G (98)
and positive semidefinite,
,

> ufi 1)

j=1

V 2
vicv = )" Gyofy = >0. (99

=1

Moreover, its trace is fixed, TrC = {J| Zji]f;’ff;- |Jy =

/ W [/} = N, in an eigenspace of the total number opera-
tor N. Hence, after a proper normalization one can interpret
C as a density matrix.

1. Statistical ensemble of states

We have seen that, for a pure fermionic Gaussian state,
the eigenvalues of J must be +i or invariantly written
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J? = —1,p. Therefore, the eigenvalues of sub-blocks F
and G are also +i when we assume a fixed particle num-
the same canonical anticommutation relations and span-
ning the same space of creation operators as the original
basis {f'; }i=1,...,¥, can be chosen in the construction of F and
G. The set of these bases of creation operators is given by

the action of the unitary group U(V), i.e., (fA’T, . ,_f’V) =
¢,",... ./, U with U € U(P). As each basis is bijectively
related to a pure state p = |J) (J|, the set of all pure
fermionic Gaussian states with a fixed particle number N
can be generated by F = UtFyU and G = UTGyU*, where
Fy and Gy are diagonal matrices with &7 on their diagonal.
One can bring the number of eigenvalues with +i and —i
in connection with the fixed number of particles N when

tracing the matrix F, yielding

>

TrF = 2i<J
j=1

J) — iV =—i(V —2N). (100)

Thus, Fjy can be chosen as Fy = idiag(1ly, —1y_y), and,
equivalently, Gy = idiag(—1y, 1y_yn). Similarly, we can
write the one-body reduced density matrix C = UTCoU
with Cy = diag(1y,0,...,0) that comprises ¥ — N zeros,
and where the subscript highlights the number of particles.

The group action of U(F) on pure fermionic Gaus-
sian states with a fixed particle number again suggests
the notion of a uniform distribution. Hence, we gener-
ate the state ensemble by parameterizing the associated
complex structure asJ = idiag(UT[2CN —1,JU, U1y —
2Cy|U*) with a Haar distributed U € U(V).

When we consider a subsystem consisting of the first
V, sites, we need to restrict J to the 2V, x 2V, matrix
Jy4, in which both F and G are restricted to the left upper
V4 x V4 blocks. This choice, as before, results in no loss of
generality since the Haar-distributed matrix U covers any
other kind of orthogonal projection. That the restriction
to a sub-block is indeed directly related to the restric-
tion of a subsystem follows along the same lines as in
the case without a fixed particle number. One needs to
compute the covariance matrix that is given by the anni-
hilation and creation operators that only act nontrivially
in the Hilbert space H 4, which is again equivalent with a
projection J4 = diag(Fy4, G4) and, thus, Fy = ﬁAFﬁf; and
Gy = ﬁAGﬁi, where ﬁA projects onto the first ¥4 rows.

Instead of using the spectrum Zix of Jy, it is some-
times convenient to use the eigenvalues y of the V4 x V4
restricted one-body reduced density matrix Cy = n,C f[f;
It still holds that J4 = idiag(2C4 — 1y,, 1y, — 2Cy4). This
implies that, for the entanglement entropy, we have
Trs(iJ) = 2Trs(2C4 — 1y,) based on Eq. (97). In terms
of eigenvalues this reads s(x) = s(2y — 1). The entangle-
ment entropy per volume s(2y — 1) vanishes for y =0

and y =1, due to s(£1) = 0. Therefore, the entangle-
ment entropy Sy is invariant under changing the number
of eigenvalues O or 1 in Cy.

The generation of Cy is then given by a Haar-random
unitary ¥ x ¥ matrix U and the matrix product

Ca = [Ulysn [ Ul (101)

where [Uly,.n is the V4 x N upper left sub-block of
the matrix U. The matrix [Ul]y, .y is also known as the
truncated unitary ensemble or simply the unitary Jacobi
ensemble in random matrix theory [136,163]. It appears
in several contexts such as quantum transport [179] and
quantum scattering [180], as it can be seen as a sub-block
of an § matrix.

Let us summarize the symmetries of the above setting.

(i) The particle-hole symmetry, which is given by N <>
V — N, is reflected when replacing C = U'CyU —
1y — C = U'(1ly — Cy)U. Exploiting the symme-
try s(x) = s(—x), it holds that

Trs(I1,[2C — 1,]1,) = Trs(I,[2(1y — C)
— 1y111y), (102)

which underlines this symmetry.

(i) There is again a symmetry between subsystems 4
and B. Anew, it is not immediate as the selection is
always given by the smallest of the two complemen-
tary diagonal blocks [one of size V4 x V4 and of size
(V—=Vy) x (V—V4)] of C. These are anew given
by having a density matrix without zero modes.
Thus, we actually expect to put this symmetry in by
hand as before.

(ii1) Surprisingly, this manual implementation of the
exchange of subsystems is not really needed for
fermionic Gaussian states as there is another, more
subtle symmetry that relates to the number of exact
eigenvalues at +i of the symplectic form J,. This is
manifested in an additional particle-subsystem sym-
metry V4 <> N. Its mathematical origin is that the
spectra of [(}] V4 xN[(ﬁ]Nx Vy and [UT]NX V4 [(}] VyxN
only differ by the number of zero eigenvalues, which
correspond to exact eigenvalues =i of J4. Physi-
cally, this means that there are fermionic modes in
the eigenbasis of J, that only act on H, and do
not act on the sub-Hilbert space Hp. The particle-
subsystem symmetry also needs to be introduced
by hand as the calculation requires that Cy4 has no
generic zero eigenvalues. Therefore, we can expect
a breaking of analyticity at the symmetry axes
N =V4 and N =V — V4 because of the particle-
hole symmetry N <> V'— N. One consequence of
the particle-subsystem symmetry is that the symme-
try axis defined by V4 = V/2 must have the same
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FIG. 7. [lllustration of the symmetries of the average entan-

glement entropy (S4)gy as a function of V4 and N. When we
compute the average (S4)¢,, as a function of (w, V4, V), we are
effectively integrating against the density function g,,(N) at fixed
V4, which is approximately a Gaussian (plus corrections) cen-
tered at the expectation value N = Ve~ /(1 + e ). Transitions
are characterized by an enhanced correction of order 1 /Y to
(S4) G, and occur whenever N = ¥, as this is the point where
the increasingly narrow Gaussian is integrated against two dif-
ferent analytic functions on either side of its peak (due to the
particle-subsystem symmetry). The function (S4}gy is analyt-
ical across the subsystem and particle-hole symmetries (dashed
lines), but not across particle-subsystem symmetries (solid lines).

analyticity properties as the symmetry axis N =
V/2. This is the reason why the implementation of
the symmetry between the two subsystems is not
needed.

The three symmetries create the overall symmetry group
Lo x T x Ty ~ Zy @ Z4, which can be visualized by the
respective mirror axes. The latter product Z) ® Z4 reflects
the fact that there is a finite rotation group Z4 and a point
reflection group Z,, which commute. When we compute
(Sa}gn inEq. (113) for V4 < N < N /2, we only compute
it on one eighth of the available parameter space. Using the
above symmetries, one can easily deduce (S4)gy for any
other values of V4 and N. We illustrate the symmetries and
the respective transitions in Fig. 7.

The eigenvalue distribution of iF is given by the uni-
tary Jacobi ensemble, as discussed in Refs. [136,181]. This
distribution has the form

Va
Px) =N —x? T](1 +x)" "1 = x4V,

Jj<k i=1
(103)

We can rewrite this probability distribution as

Vy—1
[1¢'a-xma +xj+l)ﬂ],

j=0

Pkx) =

(detX)?
V4! [

(104)

where we have the V4 x V4 matrix X and ¢; given by

Xy =py1(6) = PP (x), (105)
2248+ (G 4 a)! (G + B)! .
Cj = T - ) (106)
Y+a+B+1 (G+a+ B!
with
a=V-N=>0, (107)
B=V—-N—-V4=>0, (108)

and PP (z) the Jacobi polynomials. We can define the
function

1
VG

which allows us to express the level density and the two-
point kernel as

Y () = —P*P (v), (109)

Vi—1

Rix) = ) ¥}, (110)
i=0

Vi—1

K@y) =) $ix)v().

i=0

(111)

Equation (82) underlines that the kernel is a centerpiece
in the general spectral statistics of determinantal point
processes, as it is here.

The above analytical preparations are our starting point
for the computations that are performed in Appendix D and
whose results are summarized in Sec. 111 C 2.

2. Average and variance

The average entanglement entropy over all pure
fermionic Gaussian states with total particle number N

and a subsystem volume V4 out of a total volume ¥ (with
Vi< N <V/2)is

1
(Sthen = Vs f R0 e (112)

with s(x) from Eq. (78) and R;(x) is the one point func-
tion. The evaluation of this integral is explained in detail
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n=105
n =04
n =103
n=02
n=_01

Comparison with Fig, 5(b)

FIG. 8. The leading order of the entanglement entropy Sf(f ,n) = limy_, o (S4)gn /V from Eq. (114) [see also Eq. (D28)]. One
can see the mirror symmetries Vy —- V— V4 N - V—N,and Vy — N. For n = %, sf(f, n) coincides with the formula derived
in Refs. [61,159]. (a) Three-dimensional plot as a function of the subsystem fraction f = V4/V and the filling ratio n = N/V. One
can see the mirror symmetries Vy — V— ¥V, and N — V — N. (b) Results at fixed » plotted as functions of f. The inset shows that
sf(f,n} ~ 54(f,n) with s4(f ,n) = limy_, o (S4) /¥ [meaning Eq. (66) in Page’s setting] as f — 0. As before, the colored curves are

the same in the left and right plots.

in Appendix D 1. We obtain

V. NV,
(Saow =1= 21+ V) = —ZUN) + V()

+www—m+(n— W

x (V—Vi+1) (113)

for Vy <N <V/2, where ¥(x) =I"(x)/T"(x) is the
digamma function. All other values of N and V4 can be
computed by using the fact that the entanglement entropy
is symmetricunder N - V—-N,V; - V-V and N <
V4. Let us emphasize that Eq. (113) is already symmetric
under N — V — N. This will play an important role when
identifying /¥ contributions for averages at fixed weight
parameter w.

If we define n =N/V and f = V4/V, we can expand
this formula in ¥ to find the thermodynamic limit

Sadey =1(f = DIn(1 —f)+f[(n—1)In(l —n)
—nlnn— 1]V
SO —f +n(l-n)]l

—3
TS a T O

where we assume that f <n < % One can use the sym-
metries discussed in Fig. 7 to find (S4)gy for the other

parameters. We note that the leading orders for f < % and

n= %read
Sa)gy=yp=[n2-1)f +(¢ — DIn(l =)V
G- 1 3
Py toe )

Remarkably, the leading-order in ¥V is the same as
that found in Ref. [61] for the average over eigen-
states of number-conserving random Hamiltonians, and
in Ref. [159] for the ensemble of all fermionic Gaussian
states. Why this is no coincidence will become apparent in
Sec. II1C3. In Fig. 8, we visualize our analytical results
for the leading order of (S4)g n-

We compute the variance (AS,)¢ v using the same strat-
egy as Eq. (93) based on s;; from Eq. (C12), where ¥;(x)
now comes from Eq. (109). In Appendix D 2, we study the
asymptotics of s;; around the leading contribution sy, _1 y,
in the limit ¥ — o0 at a fixed subsystem fraction f =
V4/V and particle number n = N /V. We find that

(ASD%Ly =In(1—f)+f +f2+f@n—1)In (%_ 1)

+f(f —1)(n—Dnln’ (% — 1) +o(1)
(116)

for 0 <f <n< % We visualize this result in Fig. 9.

At n= %, the expression above simplifies to

limy_ oo (ASDE v (f-3) =f +f2+In(1 —f), which is
exactly twice the variance (93) found for the entanglement
entropy of all fermionic Gaussian states [159].
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[].i%,u,J

FIG. 9. The leading order of the standard deviation (AS4)gy of the entanglement entropy S, from Eq. (116). (a) Three-dimensional
plot as a function of the subsystem fraction f = F;/V and the filling ratio n = N /V. (b) Results at fixed n plotted as functions of f .
The colored curves in the right plot are the sections with the same color in the left plot.

3. Weighted average and variance

Following the definitions in Sec. I B3, we can define
the weighted average entanglement entropy of Gaussian
states

V
(Soew= Y Pn (o,
N=0

(117)

where Py is a function of w as defined in Eq. (62), and
produces an average filling ratio n = N/V=1/(1+¢€%)
[see Eq. (63)]. In the thermodynamic limit, ¥ — 0o, we
can approximate the binomial distribution by a continuous
probability distribution g,.(n), which approaches a Gaus-
sian plus corrections (see Appendix D 2a) that becomes
increasingly peaked atn = n.

When we average over all Gaussian states with a fixed
number of particles, a natural weight is given when w = 0,

i.e., we weigh each particle-number sector by its Hilbert
space dimension Qy. If we would draw a random eigen-
state of a random quadratic number-conserving Hamilto-
nian (see Sec. [V A), the resulting eigenstate entanglement
entropy will thus correspond to w = 0. The leading-order
average for eigenstates of such Hamiltonians was derived
in Ref. [61], and was later shown numerically [62] and
analytically [159] to coincide with the leading-order aver-
age over eigenstates of random quadratic Hamiltonians
without number conservation or, equivalently, over all
fermionic Gaussian states. The present calculation explains
these coincidences by showing explicitly how the average
at w =0 corresponds to the peak of the binomial dis-
tribution at n =h = %, so at leading order (S4)g—0 =
(Sa)g + 01).

We calculate the binomial average over N analytically
up to order 1/¥ in Appendix D 2 a. The resulting leading-
order behavior, as a function of  and f°, is given by

[(F = 1)In(l —f )+ [Gi— 1) In(1 — i) — 1 — Ay —L
-2 1 . 2 .,
+m?+O(I/V), ) f <n=s,
[(f—l)ﬁln(l—f)—ﬁ(l+flnf)+(ﬁ—l)ln(l—ﬁ)]V—;
a(l—f +fH1 _
Sha=| o+ O, i<f<h s
2 _ o L A= 1
17 l1)1;(1 lf) ra+rmoy-5a 2oL -

+ _ 3/2 = 1
—24(ll_f)V+O(ll/V :, N f=n<3
e ly— L 1_ 3/2 -1

In2 Z]V R oo At RIS f=h=1
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FIG. 10. The subsystem entanglement entropy (Sy);, from Eq. (119) as viewed from the contributions of the first three terms in
the expansion in V. (a){c) Three-dimensional plots as functions of the subsystem fraction f = V4/V and the filling ratio n = N/V.
(d) Resolving b forn = % + Az//Vandf = % +As/ JVaroundf =n = %, as given by Eq. (D34). (e) Resolving discontinuities of

cforn=f + A;/+/Varoundf =n < %givenbyEq. (D44).

forf,n < % To O(1/+/7), the above results can be recast in the following compact equation:

Saew=[p_=DIn(l —p_) + p_[(Ly=DIn(l —py) =1 — py Inp JIV

7 o [FA=f)
T2 +5f’”( 187

with gy = max(f ,n) and u_ = min(f", n). Equation (119)
is visualized in Figs. 10(a)-10(c). Note that (S4)¢,, sat-
isfies the particle-subsystem symmetry # <> f only up to
1/4/V, which is not surprising considering that this sym-
metry is only exact for averages at fixed N. We compared
our analytical results with those of numerical calculations.
In Fig. 11, we show some of the finite-size scaling analyses
that we carried out.

We note that the asymptotic behavior of the aver-
age entanglement entropy (Sy4)¢,, (f) is characterized by
a nonanalytic behavior along the symmetry axes f =n
and f = 1 — n. This gives rise to distinct corrections in
the thermodynamic limit. Most importantly, we have an
enhancement of order 1 /\/I_" whenever f =n and, in
particular, at f =hn = % These regimes are due to the
various symmetries of the average entanglement entropy
(S4)g,nv as a function of V4 and N. In particular, there is
the aforementioned particle-subsystem symmetry, which
states that (S4)gy is invariant under interchanging N <

1 1 1
+3 — + 0(_)
f"%\/z—n)ﬁ v

(119)

V4. This symmetry has to be put in by hand and results
in Kronecker deltas as in Page’s setting, although there
the Kronecker deltas resulted from a different symme-
try. In Appendix D2 ¢, we resolve the Kronecker deltas
in Eq. (119) by studying the asymptotics for either 1 =
f +A;/Jizf or =%+ As/A/Vand f =5+ Ar/VV.
The resulting expressions (D35) and (D43) are visualized
in Figs. 10(d) and 10(e).

When computing the average entanglement entropy
(S4) G,w from Eq. (D26) for weight parameter w and subsys-
tem size V4 < V/2, one expects transitions to occur when-
ever the expectation value N=Va=Ve™/(1+e™)
crosses a symmetry axis, where there is a discontinuity in
the third derivative of (S4) ¢ y. Interestingly, we only have
atransitionatin =f (e, N = Vy)andn =f = %, but not
atn =% (i.e., N = V/2) due to the fact that Eq. (113) is
symmetric in N <> ¥ — N, so that our function (Ss)¢y is
analytic across the particle-hole symmetry. The reason for
this is that (S4) gy has continuous derivatives up to order
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FIG. 11. Asymptotics of (S4)¢,,- We compare the exact values of the average entanglement entropy (S4) ¢, computed numerically
by evaluating the sum in Eq. (117) using Eq. (114) for ¥ < 2000, with the asymptotic results, Eq. (118), i.e., we show the difference

638 L = (S4)gw — (S A)g,}w’ where (S, A}g,)w corresponds to expansion (118) up to order 1/V. In particular, one can see that the next order
is 1/V32if f =, and 1/V? otherwise.

three at n = %, so that we would not see a transition if we Finally, let us also comment about the leading order of

only expand up to order 1/V. However, we expect that the  the variance at fixed weight parameter w. The leading-

fifth-order term of sff(f ,n) = limy_oc (S4)gn /V[seealso  order contribution is due to the variance (An)? in the num-

Eq. (D28)] expanded in powers of (n — n) will contribute  ber of particles, Eq. (64). As a result, while the variance

a square root enhancement of order ¥—/2 for n = % at fixed particle number is O(1), Eq. (116), the variance at
fixed w scales linearly with the volume

_ 2
_ _ n _

(ASD3,, = ”(1_")[1“(1—5)]fzy+”m’ f=n (120)
i1 =AU —f)In(l =f) +£ Inf +In(l =PV +0(), f >

with [ < % Note that, at w = 0 (corresponding to n = %), A. Random many-body Hamiltonians

the leading-order O(¥) term vanishes. In general, we have Ensembles (1a), (2a), and (3a) can be realized using

limy_, 00 (AS4)Gw/ (Sa)G, = 0, which shows that in the  ejgenstates (even only ground states) of random Hamil-

thermodynamic limit the average (118) also gives the  tonians that are traditional random matrices. The ensu-

typical value of the entanglement entropy. ing Hamiltonians give an exact correspondence to Page’s
setting, i.e., the averages and variances will agree at
all orders (meaning even at finite V) when the respec-
tive random Hamiltonian satisfies the properties discussed

IV. EXACT RELATION TO RANDOM next.

HAMILTONIANS We first consider case (la), for which the number of
particles is not fixed. The state vector in this case explores
the entire sphere of the Hilbert space H. Thus, any ran-
dom Hamiltonian that creates a Haar-distributed random
state vector is suitable. For instance, let us study the
random-matrix Hamiltonian

So far, we have focused on ensembles of quantum states
and computed statistical properties of the entanglement
entropy with respect to the following six ensembles: (1a)
random states, (2a) random states with fixed total particle
number, (3a) weighted averages over random states with
fixed total particle number, (1b) random fermionic Gaus- ¥
sian states, (2b;) random fermionic Gausgian states with j_}la — Z Cex [ve) (03], (121)
fixed total particle number, and (3b) weighted averages
over random fermionic Gaussian states with fixed total
particle number. In this section, we shift the focus from  where [v;) is an orthonormal basis of the Hilbert space
ensembles of quantum states to random Hamiltonians, and Cy, is a Haar-distributed random matrix. To get Haar-
their eigenstates, and their dynamics. distributed eigenvectors, the diagonalization C = UTEU

K.a=1
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must involve random matrices U drawn from the Haar
measure of U(2"), while the distribution of the eigenval-
ues appearing in the diagonal matrix E can be arbitrary. A
simple, and one of the most common examples of such a
distribution for C is given by the GUE [117,118,136],

2V
NN 8 B8 1 2
P(Hy) =277 m exp [ -3 21—1 1Ceal ]

F—1 2F—1 fr2
B

(122)

To relate the Hamiltonian H), to many-body Hamiltoni-
ans, we rewrite it as a polynomial in fermionic creation
and annihilation operators,

H, _Z Z St . J;gfl & (123)
f—0j|, 1”_
with {&},21 o= Gs-- oS- fi)). The coeffi-

(f)

cients¢; ', satisfy symmetries that reflect the anticommu-

tation relations, {fk,f';} = {f;,f?} =0 and {fk,f;*} = &y,
and the Hermiticity of ﬁla, and the fact that in each sum
over c}lJ there are exactly / operators involved that
cannot be reduced to a smaller order of a many-body
interaction. Exploiting the unitary matrix 7 in Eq. (95),
in particular going into a Majorana basis, shows that
“}(? b= ZfIV = lc}? i 1_[I | Tiuk, is totally skew sym-
metric in the indices and is real when /(I — 1)/2 is even
and imaginary when /(I — 1)/2 is odd.

The statistical distribution of the coefficients C(D s
determined by the distribution of matrix Cy,,. The best way
to see this is to go into the Majorana basis 1, ..., y2r via
relation (94). Then, one needs to take into account the nor-
malization yjz = %]lgv to determine this distribution, which
leads to

2V V—i—1
CRES ) e—

I=1 1=j<--<ji=l

_ )
xexp[ 2V I lﬂl U ,;,|2]-

(124)

To derive this result, one needs to use the fact that the
trace of a product of y; is only nonvanishing when each
y; appears with an even number in this product.

The statistical properties of the entanglement entropy in
eigenstates of the random Hamiltonian ﬁla are described
exactly by the results of Sec. Il A since the Hamiltonian
is invariant under the conjugations of the unitary group
U(2"). Hence, its eigenstates are uniformly distributed
over the unit sphere in . We emphasize that this Hamil-
tonian is not parity preserving such that the superselection
rule (either only even or odd powers in £;) does not apply.

SYK models [127,128] are related to this construction.
For the g-body SYK (or in short SYKg), one sets c}? 0=
0 for all I # g, and chooses the Gaussian distribution for
c}f) g AS We have done here. For a fixed g, these mod-
els have more symmetries than we have by adding up all
q. Thus, they reflect all kinds of random matrix symme-
try classes (actually one can find all ten classes of the
Altland-Zirnbauer classification [106,182]) and follow the
Bott periodicity [183] in ¥ and g; see Refs. [109,110].
When mixing SYKg with different ¢’s, it is likely that in
the large-¥ limit one ends up in the same class as our ran-
dom Hamiltonian ﬁ’la. However, for a fixed g, it might
happen that the subleading orders differ from our results.

We turn now to case (2a), in which we need to imple-
ment number conservation in the random Hamiltonian.
Based on the direct sum decomposition (31) of the Hilbert
space, we define an orthonormal basis |vaN )} of the N-
particle Hilbert space H™) of dimension dy given in
Eq. (34). To parallel (2a), we consider a random-matrix
Hamiltonian in this particle sector given by

dy
HY =3 ¢ ™) o], (125)
K=l

where the Hermitian matrix CV) = {C‘,&T Yea=l,.dy 1S
assumed to be a U(dy) group invariant random matrix,
i.e., it can be diagonalized, c™ — U'EU, via a Haar-
distributed unitary matrix U € U(dy). Anew, the GUE is
a simple example of such a distribution [in particular,
Eq. (122) with 27 replaced by dy], but the class is more
general and does not constrain the diagonal matrix E that
comprises the energies.

As before, we want to express the Hamiltonian I;"lf‘:r)
in terms of a polynomial in fermionic creation and anni-
hilation operators. This cannot be done without adding
an orthogonal projection onto the Hilbert space with N
particles. Instead of ﬁg), we consider the direct sum

Hyap3a = g(:r) (126)

2 o2t
st':_fi LR ]

fVT). While an arbitrary random Hamiltonian ﬁg) has

which is now expressible in terms of (f1,...

di, degrees of freedom, the random Hamiltonian ﬁgaﬂa
has Y y_od3 = (%/V)
script already indicates that this random Hamiltonian also
describes case (3a), where one averages over states with
different particle numbers.

Another subtle point is that particle-number conserva-
tion does not allow any odd powers of these operators nor

degrees of freedom. The sub-
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does it allow an unbalanced number of creation and annihi-
lation operators. Thus, the general form of Haa 3, is given
by

“ﬁ;Tﬁ.«"‘ﬁm

(127)

4 4
£ _ U] l
Hpaj3a = Z Z LTI )

=0 Jy gy e ky=1

which, by construction, commutes with the particle-
number operator. The coefficients c}? Jrki.k are totally
skew symmetric in the first / indices as well as skew sym-

metric in the last / ones. To ensure the Hermiticity of

I;"ga;ga, it holds that the (;/) x (;/) matrix C? created by

0]
G ek

that the degrees of freedom given by all

& for a fixed [ is Hermitian. It is simple to check

G

ok for all /

add up to the formerly obtained (%/V)
The statistical distribution of the coefficients C}Il)--:fhkl---kf
is determined by the distribution of the matrices C™) for

: : (U]
all N. Since the coeflicients Cir iy ks

binations of matrix elements of all 6‘0),...,@”, their
distributions will in general be coupled despite the fact that
one can choose the distributions of C™) to be completely
independent and not identical.

As mentioned before, the simplest choice are GUEs in
C™ with the same variance, which yields

are linear com-

- AdetX 1 .
P(Haapsa) = Z37i—ppy P [ ~3 TrHZEa,/Sa]-’ (128)

where £ = (2;;) The matrix ¥ is £ x £ dimensional, with
matrix entries Eﬁ--ﬂf.’--JLM k]l equal to (12 (m))?
Tr[fj;---j};ﬁ;---ﬁlfkr---j}(;fﬂn---f,,:l]withl,m =0,....V
and 1 <jj<---<ji<V, 1<j/<---<j/<V, 1<
ki < - <hky<Vaswellasl <k} <--- <k, <V.Itis
very sparse because the trace is only nonvanishing when
each f; appears as often as its Hermitian conjugate ﬁT,
and it might happen that there are operators that annihilate
each other, such a.sf;2 = (ﬁf)2 = 0. Thence, ¥ only con-
tains entries equal to 225 (11)?>(m!)? withan L € {0,...,V}.
The factor 1 /:rrfzf 2 reflects the number of total degrees of

freedom while 1/ 22" results from the counting of how
many real coefficients exist, namely, 1V=0 (;/) =2". The

simplest nontrivial example is obtained for V' = 2 where X
is equal to

(129)

E S o e B e Y S SN
B—_0 oM
oo = o o o
(=R T ]
oo o =M
S = N T T SN S

with the ordering of the coefficients (¢, c{'], ¢}, 51, ¢33,

c%) 12)- This example underscores how intertwined the cor-

relations of the coefficients cj{? Jiky..ky €an become if one
wants to write the exact realization of cases (2a) and (3a) in
terms of annihilation and creation operators. Thence, from
a practical point of view, it is simpler to generate these
random Hamiltonians in terms of the independent GUE
generated coefficients (mfg)

When focusing on a certain particle-number sector, the
statistical properties of the entanglement entropy in eigen-
states of ﬁzaﬂa are described exactly by the results of
Sec. I B, meaning case (2a). When considering all sec-
tors, we have case (3a). For distribution (128), picking any

N

to find a state in the sector H¥), which corresponds to a
weighted average with w = 0. Implementing a weighted
average with w > 0 is also possible, but must be largely
done by hand, i.e., we would organize the eigenstates of a
random Hamiltonian based on their particle number and
then choose one at random using the statistical weight
encoded by w.

Many-body interacting Hamiltonians studied in nuclear
physics [113-115,120-122] are related to these kinds
of Hamiltonian. They, as well as the SYK models, are

called embedded random matrices [116,123—126]. For

: Ttoni 0] =
instance, for a g-body Hamiltonian, we set ¢;’ , =

0 for all /# g and choose the above Gaussian distri-
bution for C}?..,f;,k k- As for case (la) and SYKg for a
fixed g, the many-lbody Hamiltonian may satisfy additional
global symmetries so that subleading terms may deviate
from our results. However, we expect that a mixture of
g-body interactions should speed up the convergence to the

leading-order result in the thermodynamic limit ¥V — 0.

eigenstate is equally likely, this yields the weight (V

B. Random quadratic Hamiltonians

Case (1b) for random pure fermionic Gaussian states

is obtained from A, by setting all coefficients CE?,___‘I-; =

0 whenever [ #2 in Eq. (123); the resulting random
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quadratic Hamiltonian reads

2V
M=) cV&& (130)

ij=1

with coefficients cg) drawn from a probability distribu-
tion that depends only on matrix invariants of TC)TT

Then the invariance under O(2V) is guaranteed, which is
needed for the uniformly distributed pure fermionic Gaus-
sian states that are the eigenvectors of this Hamiltonian.
The Gaussian choice as the distribution of the coefficients

c,@ is equal to

N 2V @ 2
Py = [ = "=, a3n

1<j1<jp <2V

when starting from the distribution of ﬁla. Since C)
is unitarily equivalent to the real antisymmetric 2V x 2V
matrix 2TCTT, which can be seen in the Majorana basis,
the Gaussian ensemble is also known as the Gaussian real
antisymmetric ensemble [117] or GAOE in Ref. [104] (it
also has other acronyms such as BdG-S in Ref. [109] or
class BD in Refs. [106,182] as it is not as canonical as the
GUE). We would like to emphasize that the real antisym-
metry of TCTT is the reason why there is no minus sign
in the exponent of the distribution, i.e., Tr(TCy) T‘T)2 < 0.
When going over from the coefficients E:(fJ

i
basis to c}? in the creation-annihilation basis, we need to

in the Majorana

employ TTT = 1; ® 1y/2 and properly normalize the dis-
tribution (multiplying it by the Jacobian), which gives rise
to a factor 2=""=1_ Then, the distribution is

2V(V—])(V—3)f2

P(Hp) = T

exp[2" 7 Tr(Cpy [ ® 1¥])°].
(132)

Certainly, the factors of 2 can be absorbed when choosing
a general standard deviation for the Gaussian ensemble.

The eigenvectors of H 1 are Haar distributed with
respect to the group O(2F), as discussed in Ref. [173],
though they are slightly rotated by the unitary matrix
V2T see Eq. (95). The eigenstates of this Hamiltonian are
fermionic Gaussian states, and the statistical properties of
the entanglement entropy in these eigenstates are described
exactly by the results of Sec. III B.

For cases (2b) and (3b), we can repeat the fixed-particle-
number steps for random quadratic Hamiltonians, specifi-
cally, we set C}Il)--:fhkl---kf =0foralll# 1inEq. (127). The
most general quadratic fermionic Hamiltonian that com-
mutes with the total number operator N defined in Eq. (31)

can be written as

,
~ - 2 ~ -~
Howpn =Y eG4

L=l

(133)

with the coefficients E:g) drawn from an ensemble that is
invariant under the conjugate action of U(¥); in particular,
the Hermitian random matrix C = {E:g)},";zl,___,y and UCU'
with an arbitrary fixed U € U(¥) are equally distributed.
The simplest example for such a distribution is a V' x V'
GUE. That one agrees with a quadratic particle-number-
conserving SYK model in its Dirac fermion formulation
(the Dirac SYK2 model for short), which is a free ran-
dom Hamiltonian. The volume-law coefficient s§(f ,n) =
limy_, o0 (S4)gn /V [see Eq. (115)], was first conjectured
in the context of quadratic Hamiltonians whose single-
particle eigenstates can be well approximated by eigen-
states of random matrices [61].

In general, all eigenstates of nondegenerate quadratic
random Hamiltonians of this U(F) invariance are Gaus-
sian states. Note that degenerate eigenspaces will contain
superpositions of Gaussian states, which are not Gaussian
themselves. For most random Hamiltonians, the subset of
degenerate Hamiltonians is a set of measure zero, so it can
be ignored.

Anew, we have treated cases (2b) and (3b) with a sin-
gle Hamiltonian. For the former case, one needs to restrict
the Hamiltonian eigenstates to the sector with N parti-
cles, while for the latter case, one needs to compute the
weighted average over all eigenstates. For the average over
all sectors, we again pick an arbitrary eigenstate of the
Hamiltonian Hpp/3p. A random many-body eigenstate of
this Hamiltonian will be in the sector with N particles with

probability 27 so a fypical eigenstate will have the

Vv
¥
entanglement entropy (Sy4) g,—o found in Eq. (118). If one
restricts the analysis to eigenstates with N particles then
the statistical properties of the entanglement entropy are
described exactly by the results of Sec. 111 C 2.

In Fig. 12, we show numerical results for the average
entanglement entropy of the particle-number-conserving
SYK2 model (133). The numerical results in Fig. 12(a)
behave as expected from the analytical predictions for the
volume-law contribution (118) as a function of ¥V, and the
ones in Fig. 12(b) behave as expected from the analytical
predictions for the subleading terms given in Eq. (118). In
the simulations, the average is carried out over all sectors
with a fixed particle number, where the weight is given by
the dimension of the sector. This corresponds to w = 0 or,
equivalently, n = %

C. Dynamical averages

Another important application of our results concerns
the study of quantum many-body stochastic dynamics
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FIG. 12. Finite-size scaling of the average entanglement
entropy difference for random quadratic fermionic Hamiltoni-
ans. (a) Plot of ‘SSGw—o = {SA}Gw—o S, where (SA)E'JO,L:u is the
volume-law term in Eq. (118) and S denotes the numerical results
for eigenstates of the particle-number conserving SYK2 model
at n = %, versus 1/V at subsystem fractions (from bottom to
top)f = 0.1,0.2,0.3,0.4,0.5. Horizontal lines are constants f /2.
(b) Plot of :SSS 1‘»—0 = (S A}Gw—o — S versus 1/4/7 at subsystem
fractions f = 0.4 and 0.5, where (S4)&)_o = (S4) oo —f /2.
The lines are the second subleading terms from Eq. (118).
Specifically, the solid line (corresponding to f = 0.5) is the func-
tion —1/ (34/27)(1 /JV), and the dashed line (corresponding
to f = 0.4) is the function —f (f — 2)/[12(f — 1)](1/V). The
numerical results for § are from Ref. [61].

[184]. We consider a time-dependent random Hamiltonian
(with or without particle conservation) for which the time
derivative C, v OF cff) of the coefficient matrices are delta

correlated in time, i.e., for which we have

(C,u.v(t) C’ro (t’)) .8 ya(t - t/)-» (134}

(2 @) eQ (@) oyt —1). (135)
If we evolve an initial quantum state (Gaussian for a
quadratic Hamiltonian and with fixed particle number
when it is a particle-conserving Hamiltonian), the time
evolution leads to an ergodic exploration of the respec-
tive space of states considered in (1a), (1b), (2a), and (2b),
provided that the strength y of the fluctuations is suf-
ficiently large in the thermodynamic limit. Indeed, it is
known from the Brownian motion on the unitary group
U(d) (see Ref. [185] for the random matrix version and
Ref. [186] for the corresponding eigenvalues) that there is
a phase transition at a critical value ferit = ferie(d) ¢ d when
the matrix size d goes to infinity. In Ref. [186] it was found
that the level density of such a unitary random matrix does
not have the entire complex unit circle as a support. We
presume that this has a direct consequence for the states,
too, since they have been constructed via the natural group
action on the states.

This implies that the time evolution will only uniformly
sample the full ensemble of states with respect to the

Haar measure when the time is sufficiently large com-
pared to the underlying group dimension, which is U(2")
or @N oU(dy) for the Page setting and O(2V) or U(V) for
pure fermionic Gaussian states without and with particle-
number conservation, respectively. Then, the asymptotic
time average of the entanglement entropy will coincide
with the respective averages computed in the previous sec-
tions. Moreover, we also expect that the standard deviation
gives a good approximation of the expected fluctuations
about this average over time.

Again, this analysis applies to both general and
quadratic Hamiltonians. The latter corresponds to the
quantum simple symmetric exclusion process introduced
in Refs. [187,188], for which the statistical properties of
the Renyi entropies were studied in Ref. [181].

V. RELATION TO PHYSICAL HAMILTONIANS

The goal of this section is to contrast the results for
the entanglement entropies from Secs. II and III to those
in eigenstates of physical Hamiltonians on a lattice. For
the latter, we mostly have in mind local Hamiltonians
with short-range hoppings and interactions (involving only
a few neighboring lattice sites). Results for interacting
Hamiltonians are discussed in Sec. V A, while results for
quadratic (noninteracting) Hamiltonians are discussed in
Secs. VB and VC.

A. Quantum-chaotic interacting model

We focus on a model of interacting hard-core bosons in
a one-dimensional (1D) lattice with V sites, as described
by the Hamiltonian

v v
Hycs = —1 Z(BLIEJI + 5I51+1) —h Z(!;L_QS! + f?jfmz)
=1 =1

v y
+ "N Zﬁfﬁm + Zﬁfﬁm,
- =1

(136)

where EJI (f)g) creates (annihilates) a boson at site / and 71y =
5}.6{ is the site occupation operator. The operators SI and
5; satisfy the commutation relations [f)j, f)k] = [f;.f, f);] =0
and [EJJ , 5k] = 8, supplemented by a hard-core constraint
(E;u)2 (\b’r)2 = 0 on physical states, which tells us that in
physical states there can be at most one boson in a lattice
site.

Implementing this constraint is subtle; see Refs. [189,
190]. We cannot assume the relation (\b;)2 (E;'T-)2 =0in

an operator way as otherwise one finds that the algebra
is zero. One needs to interpret this constraint as follows:
(#|(by)2|m) = (| (b])2|m) = O for physical states |7i) and
[m), which are only given by the occupation numbers
n=(n,...,np),m=(my,...,my) € {0, l}V. The crucial
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FIG. 13. Average entanglement entropy density S/[(¥/2) In 2] (filled symbols) of the eigenstates of the quantum-chaotic interacting
Hamiltonian in Eq. (136), which is particle-number conserving, as a function of the subsystem fraction f = V4 /V. The average is
carried out over the central 20% of the eigenstates. Open symbols (overlapping with the filled ones) depict the corresponding exact
result for general pure states, given by (S4)y from Eq. (45) for the same filling and system size, while the lines are the thermodynamic
limit results from Eq. (54). The particle filling » and the number of lattice sites V are (a) n = % and V=22 and (b)n = é and V = 30.

point is that virtual states are allowed to have more than
one boson on a site. For instance, for the expectation value
in a single site (¥ = 1), it holds that

(0122(512)0) = (0]1251|0) = 2, (137)

where we have exploited [b, (b")2] = 2b" and b |0) = 0. If
one wants to replace the creation and annihilation operators
by the regular spin operators in slg(2), one first needs to
normal order the operators via the standard bosonic com-
mutation relations, meaning that the creation operators 5:
need to be placed to the left and the annihilation operators
Bj to the right, and then replace them by spin operators.
Mathematically, this means that each operator has to be
dealt with in the infinite-dimensional Fock space, but at
the end this space is projected onto the subspace with zero
or one boson per site. This recipe naturally follows from
how expectation values need to be calculated to describe
the results of measurements in bosonic systems with very
large on-site interactions [189,190].

Model (136) contains both nearest-neighbor and the
next-nearest-neighbor hoppings and interactions, it is
translationally invariant, and conserves the total number
of hard-core bosons. When written in terms of % spins,

Hamiltonian (136) is known as the (extended) spin-% XXZ
chain. It has been of much interest to the condensed matter
and mathematical physics communities, and been used to
describe the behavior of solid-state materials [67].
Hamiltonian (136) is integrable when f, = V> = 0, inde-
pendently of the values of #; and V. Then, it can be solved
exactly using a Bethe ansatz [67]. When f, # 0 and/or
V, # 0 (for t; # 0 and V; # 0), Hamiltonian (136) is non-
integrable. In the thermodynamic limit, one expects such a
nonintegrable Hamiltonian to exhibit many-body quantum

chaos, namely, one expects the distribution of the spac-
ings of nearest-neighbor levels of the many-body energy
spectrum to be described by the Wigner-Dyson statistics
of random matrix theory [29,191-193]. This is why in the
nonintegrable regime we refer to Hamiltonian (136) as a
quantum-chaotic interacting Hamiltonian.

In finite (and relatively small, tens of sites) systems, i.e.,
those that can be solved using full exact diagonalization
(as we do here), there is a crossover regime between inte-
grability and quantum chaos as the magnitude of #; and/or
V2 depart from zero (for t; ~ V1 # 0) [191-195]. In such
a crossover regime, for small values of #, and/or V; rela-
tive to £ ~ V1, the statistical properties of the many-body
energy spectrum cannot be described by classical random
matrix ensembles. When ¢, t,, Vi, and ¥V, are all sim-
ilar in magnitude, full exact diagonalization calculations
in Refs. [191,193] showed that Hamiltonian (136) exhibits
many-body quantum chaos. To be in this quantum chaotic
regime, in the calculations reported here we set ) =t = 1
and Vi =V, =1.1.

The entanglement entropy of eigenstates of Hycg in
Eq. (136) was calculated using full exact diagonalization
after resolving all the symmetries of the model. The aver-
age entanglement entropy S was computed over the central
20% of the energy eigenstates (from all symmetry sectors;
see Ref. [43] for details). Figure 13 shows the behavior
of the average entanglement entropy density S/[(V/2) In2]
as a function of the subsystem fraction . Two remarkable
features of those numerical results are as follows. (i) They
are nearly identical for the Hamiltonian eigenstates (filled
symbols) and the result from Eq. (45). The small differ-
ences between them are quantified in Fig. 14. (ii) The
deviations of § from the maximal entanglement entropy
(shaded region) due to subleading terms may be substantial
in finite systems, and they depend strongly on the particle
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FIG. 14. Finite-size scaling of the average entanglement
entropy difference (S4)y — S versus 1/V, at the subsystem frac-
tion f = % Here (S4)y is given by Eq. (45) and S denotes
the numerical results for the eigenstates of the quantum-chaotic
interacting Hamiltonian in Eq. (136), averaged over the central
20% of the energy spectrum. The particle fillings n are (a) n = %
and (b)n = %. The solid line in (a) shows a fit of a function a; /V
to the numerical results at V' > 14, with a; = 1.65. The dashed
line in (b) depicts 1/V behavior and is plotted as a guide to the
eye.

filling n [compare the results for n = % in Fig. 13(a) and
for n = £ in Fig. 13(b)].

Figure 13 also mirrors the finite-size effects observed in
the asymptotic expansion (54), illustrated in Fig. 6. The
vertical (double arrow) difference at f = % refers to the
next-to-leading-order finite-size correction of the entan-
glement entropy density, which is O(1/¥) for n = % and

O(1/+/V) for n # 5. The horizontal (double arrow) differ-
ence refers to the spread of the Kronecker delta &y, for
finite systems, which is O(1/¥) for n = § and O(1/+/7)
for n # % We resolved them in Figs. 6(e) and 6(d),
respectively.

Next, we resolve to which degree the average entangle-
ment entropy S of Hamiltonian eigenstates agrees with the
analytical predictions from Sec. 1, in particular with (S)x
in Eq. (45). In Fig. 14, we plot the finite-size scaling of
(S4)n — §. In all cases under consideration, the differences
appear to vanish in the thermodynamic limit. This suggests
that not only the volume-law contribution of Eq. (45), but
also subleading terms including the O(1) terms correctly
predict the eigenstate entanglement entropies of quantum-
chaotic interacting Hamiltonians. The differences between
the latter and Eq. (45) appear to scale algebraically as
1/V*, with £ = O(1). The numerical results suggest that
t=1atn= % [see the solid line in Fig. 14(a)], while
they are not conclusive at n = }r [the dashed line in Fig.
14(b) depicts 1/V behavior and is plotted as a guide to the
eye]. We note that, in Fig. 14, (S;)y — S > 0, implying
that the asymptotic entanglement entropy is approached
from below as the system size increases.

B. Quantum-chaotic quadratic model

Next, we focus on a quadratic model, namely, a model
whose Hamiltonian is bilinear in fermionic creation and

annihilation operators. We explore how well the results for
fermionic Gaussian states from Sec. III predict the behav-
ior of the entanglement entropy in eigenstates of a particle-
number-conserving quadratic model that exhibits single-
particle quantum chaos. By single-particle quantum chaos
we mean that the statistical properties of the single-particle
energy spectrum are described by the Wigner-Dyson statis-
tics of random matrix theory. Hence, we refer to this model
as a quantum-chaotic quadratic model [62]. This is to be
contrasted to the model in Sec. V A, which exhibits many-
body quantum chaos, and to which we referred to as a
quantum-chaotic interacting model.

A well-known quadratic model that exhibits single-
particle quantum chaos is the 3D Anderson model below
the localization transition. The Hamiltonian of this model
reads

N Atba oAta w
_ t t o '
Haoa = =13 G0+ )+ 5 e (138)

(i)

where the first sum runs over nearest-neighbor sites on
a cubic lattice. The operator ﬁT (f;) creates (annihilates)

a spinless fermion at site j, and #; :fftf; is the site
occupation operator. The operators _);';T and f; satisfy the

standard anticommutation relations {f},f;} = {f;T, f;T} =
0 and {ﬁ,f:} = éi. The single-site occupation energies
g € [—1,1] are independently and identically distributed
random numbers drawn from a box distribution. The
3D Anderson model exhibits a delocalization-localization
transition at the critical disorder W, & 16.5 (see, e.g., Refs.
[196-199] for reviews). Our focus here is on disorder
strengths well below this transition, W <« W.. We stress
that, when referring to single-particle quantum chaos in
the context of the 3D Anderson model (138), we have in
mind the fixed Hilbert space H; as the model of a single
particle.

Even though it has been known for decades that the
single-particle spectral properties of the 3D Anderson
model in the delocalized regime are well described by
the Wigner-Dyson statistics [200-202], the entanglement
entropy of energy eigenstates was studied only recently
[62]. The latter study showed that the volume-law con-
tribution of typical many-body eigenstates is accurately
described by the volume-law term of the asymptotic
expression in Eq. (90) for n = %, which is the same as

that in Eq. (118) for n = % This result suggests that the
leading (volume-law) term in the eigenstate entanglement
entropy of the 3D Anderson model deep in the delocal-
ized regime is universal. In the main panel of Fig. 15,
we plot the average eigenstate entanglement entropy den-
sity §/[(V/2) In2] of randomly selected eigenstates as a
function of the subsystem fraction f. The results show
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FIG. 15. Average entanglement entropy density S/[(¥/2) In2]
in the 3D Anderson model (138) at n = % Main panel: plot of
S/[(V/2)In2] versus f at disorder strength W = 1, in a cubic
lattice with ¥ = 8000 sites (symbols). The results are obtained
by averaging over 100 randomly selected many-body eigenstates
and ten Hamiltonian realizations. The solid line is the corre-
sponding thermodynamic limit result for fermionic Gaussian
states given by (S4)gw—o0 in Eq. (118). Inset: plot of 8sg,—0 =
((S4)Gwe0 — 8)/[(V/2) In2] versus 1//V atf = 3, for W =1
and 3, where (S4)g=0 corresponds to the fermionic Gaussian
states [Eq. (117)] at w = 0 and the same V as S. The results for
S are obtained by averaging over 102 to 10* randomly selected
many-body eigenstates and over 5 to 500 Hamiltonian realiza-
tions. Lines are linear fits ag + a;/+/¥ to the results for V>
2000. We get ag = 2.4 x 10~* and a; = 0.03 for W = 1 (solid
line), and ap = 3.0 x 10~* and @) = 0.10 for W =3 (dashed
line). The numerical results for § are from Ref. [62].

remarkable agreement with the corresponding thermody-
namic limit expression for the weighted average entangle-
ment entropy over fermionic Gaussian states (Sy)gw—o in
Eq. (118).

In spite of the latter agreement, we note that the average
entanglement entropy over fermionic Gaussian states does
not describe the first subleading term of the average entan-
glement entropy in the 3D Anderson model. As shown in
the inset of Fig. 15, the first subleading term in the lat-
ter model scales o< o/V at f = % No such term appears in
(S4)ew=0 in Eq. (118). The fact that, for the 3D Ander-
son model, the subleading O(\/I_/) term is not described
by Eq. (118) is in stark contrast to what we found in Sec.
V A for a quantum-chaotic inferacting model. In the latter
case, subleading terms that are O(1) or greater in the phys-
ical model are properly described by the average (S4)n in
Eq. (45). Hence, the origin of the O(+/¥) contribution to
the entanglement entropy of eigenstates in the 3D Ander-
son model remains an open question. Such a contribution
is not present in our analytical calculations of the averages
over Gaussian states.

C. Translationally invariant noninteracting fermions

Next, we consider a paradigmatic quadratic model that
does not exhibit quantum chaos at the single-particle level.
Namely, translationally invariant noninteracting fermions,

for which the Hamiltonian is a sum of hopping terms over
nearest-neighbor sites [the first term in Eq. (138)]. For
simplicity, we focus on the 1D case

,
D D A R AN (139)
i=1

with periodic boundary conditions, fy+1 = f] The single-
particle eigenenergies of the model in Eq. (139) are given
by the well-known expression €, = —2 cos(2n/V) with
n=20,1,...,¥V—1, which makes apparent that the sta-
tistical properties of the single-particle spectrum are not
described by the Wigner-Dyson statistics.

The average eigenstate entanglement entropy of the
model in Eq. (139) was studied in Ref. [42] (before the
universal predictions for the quantum-chaotic quadratic
models and the fermionic Gaussian states were derived).
The numerical calculations in Ref. [42] were carried out
by averaging the entanglement entropy over the full set
of 2” many-body eigenstates. Remarkably, the numerical
results were found to converge rapidly to the thermo-
dynamic limit result, as shown for the case of f :%
in the inset of Fig. 16. Thanks to that scaling, we find
the volume-law coefficient s7° of the average entangle-
ment entropy St =s¥Vy4In2 at f = 1 to high numerical
accuracy, s3° = 0.5378(1), which is consistent with the
result reported in Ref. [42]. This is to be contrasted to the
volume-law coefficient SOG?»:O of fermionic Gaussian states
(S4) =0 :s‘é’wzoVA In2 from Eq. (118), which yields
SGw=o = 0.5573. We then see that s7° and s77,,_ are close
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FIG. 16. Average entanglement entropy density S/[(¥/2) In2]
of translationally invariant noninteracting fermions in a one-
dimensional lattice, described by the Hamiltonian in Eq. (139).
Main panel: plot of S/[(V/2)In2] versus f in the lattice with
¥V = 36 sites. The results are obtained by averaging over all 2"
many-body eigenstates. The solid line is the corresponding ther-
modynamic limit result for fermionic Gaussian states given by
(84)Gw=0 in Eq. (118). Inset: plot of 8s7 = (ST — 8)/([F/2]In2)
versus 1/Vatf = %, where St/([V/2]1n2) = 0.5378. The solid
line shows the function a/V?, with a = 0.23 and ¢ = 1.96. The
numerical results for § are from Ref. [42].
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TABLE I. Overview of the results discussed in this tutorial. We list the main results, indicate up to which order in ¥ we derived
the respective expressions (and if there exists an exact formula), and where the respective formulas can be found (equations, figures,
references). Most results for fixed particle number are new, but if special cases or the leading-order term were already known before,
we cite the relevant works after the equation in the main text.

(a) General pure states (b) Pure fermionic Gaussian states

(1)No  (S4) =aV—b+0Q2") & exact — (25), Fig. 3, [152] (S4) = aV + b+ O(1/V) & exact — (89), Fig. 8, [159]
partiﬁle (AS)? = ae PV 4 o(eF) — (29), [165] (AS)% =a+o(1) — (93), [159]
(2)“1Lrl§.=:§r (Sq)y =aV —bJ/V—c+o0(1) — (54),Fig. 6 (Si)gn =aV —b/V+O(1/V?) & exact  — (90)
partiﬁle (AS)} = alPPe BV — (60) (ASp%y =a+o(l) — (116), Fig. 9
(3)nllrlﬂe§r (Se), =aV+b+c/V+o(l) — (67 (Sa)gw =aV+b+c/V+d/V+o(1/V) — (118), Fig. 10
weight (ASy)? = aV +o(V) — (68) (ASp)E,, =aV+o(V) — (120)

but different. The full curve for St as a function of f,
for ¥ =36, is shown in Fig. 16 together with the full
curve for (S4)gw=0 from Eq. (118). They are clearly dif-
ferent and, given the abovementioned fast convergence of
the numerical results with ¥, we expect the differences to
remain in the thermodynamic limit. The exact analytical
form of the Sr(f) curve for translationally invariant free
fermions remains elusive, but tight bounds have already
been calculated [50].

We conclude by noting that, for the translationally
invariant quantum-chaotic interacting model studied in
Sec. V A, the average eigenstate entanglement entropy is
accurately described by the corresponding entanglement
entropy of general pure states. The role of Hamiltonian
symmetries in the average entanglement entropy of energy
eigenstates in quantum-chaotic interacting and quantum-
chaotic quadratic models remains an important question to
be explored in future studies.

VI. SUMMARY AND OUTLOOK

In this section, we briefly summarize the key results
discussed in this tutorial, and give an outlook of where
we envision the methods introduced to be applica-
ble. We also mention some open questions in the
context of the entanglement entropy of typical pure
states.

A. Summary

We provided a pedagogical introduction to the current
understanding of the behavior of the entanglement entropy
of pure quantum states. We derived analytical expressions
for the average entanglement entropy of general and Gaus-
sian states, and considered states with and without a fixed
number of particles. A comprehensive summary of the
results discussed can be found in Table I, where we con-
trast results for: (1) arbitrary particle number, (2) fixed
particle number N, and (3) fixed weight parameter w for

both (a) general pure states and (b) Gaussian states. This
yields the six state ensembles (1a) through (3b).

For both Gaussian and general pure states, the leading-
order behavior (Sy4) at half-filling N = V/2 coincides with
the full average without fixing the total particle number,
while the next-to-leading-order terms differ. For general
pure states, we confirmed an additional contribution pro-
portional to /¥ at f = % in Eq. (54), previously found
in Ref. [43]. For Gaussian states, we derived the exact
formula, which does not contain such a term and has a
next-to-leading-order term of order 1/V [Eq. (114)]. How-
ever, we did find a contribution of order l/\/I_/ in the
asymptotic average (S4)g, at fixed w with f =n, ie,
whenever the subsystem fraction f equals the average
filling ration = (N/V) = 1/(1 + e*).

We traced back these contributions to the nonanalytic
behavior of the average entanglement entropy as a func-
tion of the subsystem fraction f and the filling ratio n.
In the case of Gaussian states, we identified the additional
particle-subsystem symmetry n <> f, which is responsible
for the 1/+/¥ term. From a mathematical perspective, the
origin of the V7V term in (S4) n 1s therefore the same as
that of the I/ﬁ’ term in (S4)¢ . namely, both calcula-
tions involve the average of a nonanalytic function with
respect to an approximately Gaussian statistical distribu-
tion. Square root powers of V appear exactly when the
mean of the Gaussian lies in a neighborhood of the non-
analyticity, i.e., there is a jump in one of the function’s
derivatives.

Finally, we connected the results obtained for the aver-
age entanglement entropy in the six ensembles of states
mentioned before to the average entanglement entropy
in eigenstates of specific random matrices and of phys-
ical Hamiltonians. Maybe the most surprising result in
the context of quantum-chaotic interacting Hamiltonians
is that not only does the leading term in the average agree
with the corresponding ensemble average, but also sub-
leading terms that are O(1) or larger in the volume, e.g.,
O(+/V). Why this is so is a question that deserves to be
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further explored. Equally intriguing is to understand why
the same is not true in the case of quantum-chaotic
quadratic Hamiltonians.

B. Outlook

Looking forward, an important question is how general
are the methods and results discussed here. We focused on
fermionic systems, for which we can compare general pure
states with Gaussian pure states, and unveiled the effect
of fixing the total particle number. Our results for general
pure states apply equally to hard-core bosons and spin-%
systems. In the latter, the total magnetization plays the role
that the total particle number plays in fermionic and hard-
core boson models.

1. Typical eigenstate entanglement entropy as a
diagnostic of quantum chaos and integrability

As mentioned in the Introduction, a novel picture that
the recent numerical studies such as those discussed in
Sec. V have started to consolidate is that typical many-
body eigenstates of quantum-chaotic interacting Hamilto-
nians have similar entanglement properties as typical pure
states in the Hilbert space. In parallel, typical many-body
eigenstates of quantum-chaotic quadratic Hamiltonians
have similar entanglement properties as typical Gaussian
pure states. We quantified how similar they are by show-
ing that typical eigenstates of a specific quantum-chaotic
interacting Hamiltonian exhibit O(1) and greater terms in
the entanglement entropy that are the same than in typi-
cal pure states in the Hilbert space. For typical many-body
eigenstates of quantum-chaotic quadratic Hamiltonians,
we showed that the O(V,) term is the same as in typ-
ical Gaussian pure states. These statements (for Vy =
JfV < V/2) are true independently of whether one deals
with states in which the number of particles is fixed or
not.

In the context of Hamiltonians that do not exhibit
many-body quantum chaos, namely, in which the many-
body level spacing distributions are not described by
the Wigner surmise [29], we showed that typical many-
body energy eigenstates of translationally invariant non-
interacting fermions exhibit an O(V,4) term that behaves
qualitatively similar (but is not equal) to that obtained
for typical Gaussian pure states, namely, the prefactor
of such a term is a function of the subsystem frac-
tion f. The same behavior was found in Ref. [553]
for the typical entanglement entropy of many-body
eigenstates of the integrable spin-% XXZ chain. This
is fundamentally different from what happens in typi-
cal many-body eigenstates of quantum-chaotic interact-
ing Hamiltonians, in which the prefactor is maximal
(it depends only on the filling n) as in typical pure
states.

Hence, as conjectured in Ref. [55], the entanglement
entropy of typical many-body energy eigenstates can be
used to distinguish models that exhibit many-body quan-
tum chaos (whose level spacing distributions are described
by the Wigner surmise, and are expected to thermal-
ize when taken far from equilibrium [29]) from those
that do not. This is a welcome addition to the toolbox
for identifying quantum chaos as it relies on the prop-
erties of the eigenstates as opposed to the properties of
the eigenenergies. Other entanglement-based diagnostics
of quantum chaos and integrability have been proposed
in recent years, among them are the operator entangle-
ment growth [203—-205]; the diagonal entropy [206,207],
the mutual information scrambling [204], and entangle-
ment revivals [208] after quantum quenches; the ftri-
partite operator mutual information [209,210]; and the
entanglement negativity between two subsystems in a
tripartition of many-body energy eigenstates [211].

It is important to emphasize that an advantage of using
the entanglement properties of energy eigenstates, instead
of the properties of the eigenenergies, is that one does not
need to resolve all the symmetries of the model nor does
one need to do an unfolding of the spectrum, which are
of paramount importance to identify quantum chaos using
the eigenenergies, as discussed in Sec. I D. In addition, in
comparison to some of the entanglement diagnostics that
were mentioned above, one does not need to study dynam-
ics. Further works are needed on interacting integrable
models to establish whether the leading term of the entan-
glement entropy of typical many-body energy eigenstates
is universal or not, and to understand the nature of the
subleading terms. So far, results are available only for the
integrable spin-% XXZ chain [55].

2. Beyond qubit-based systems

The analytical tools introduced and explained in this
tutorial can be used beyond the fermionic systems we stud-
ied (and beyond the spin-% and hard-core boson systems
we mentioned), and facilitate the study of bosonic systems
with a fixed particle number. To be concrete, a bosonic sub-
system with V4 out of V bosonic modes and total particle
number N can be treated analogously to Eq. (45), but with
dimensions respecting the bosonic commutation statistics,
ie.,

_ (Na+Vy—1)!
NN+ V=V )
BNV =N =N wo—vi—nr 4D
N4 V=1)
W= T (142
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which follows from the combinatorics of sampling with
replacement without caring about the order, e.g., for
d4, we ask how many ways there are to distribute Ny
indistinguishable particles over ¥y sites (where each site
can hold arbitrarily many particles). Anew, it holds that
Y N0 (Na)dg(N — Ny) = dy.

Following Page’s approach, we again choose an arbi-
trary uniformly distributed random vector state in the
Hilbert space Hy. Thus, the invariance of the state under
the unitary group U(dy), now with a different dimension
dy, still applies. Therefore, we can follow the same strat-
egy as in Sec. II B, in particular we can exploit Eq. (45)
with dimensions (140). This yields, in the thermodynamic
limit with fixed f € (0, %) and n € (0, 00),

(Sa)bosy =VnIn(l +n~") + In(1 4 n)]

n + n?
+«/T/‘/ = In(1 4+ n~1)87.1/2

+f+ln§1 —-f)

+o(1), (143)

(Sthuosw = (Stlbosnciy — = 401, (144)

2

where the weighted average is only meaningful for w > 0,
for which n = 1/(e"” — 1). Note that there is no particle-
hole symmetry for bosons, and that n = N/V can be
arbitrarily large.

Other natural generalizations are spin-s systems with
s >% and systems consisting of distinguishable parti-
cles. These cases can also be studied using the methods
discussed in this tutorial after carrying out the respec-
tive combinatorics of the Hilbert space dimensions dy
and dp. Also, systems with global symmetries such as
time-reversal invariance or chirality can be considered,
which have an impact on the respective symmetry group
so that the Hilbert space is not invariant anymore under
U(dy) but only under O(dy) or U(dy,) x U(dy,). The
leading terms are expected to be the same, as the respec-
tive random matrix ensembles share the same level den-
sities. Deviations are expected to occur in subleading
terms.

3. Other ensembles and entanglement measures

We focused on ensembles of states, general and Gaus-
sian pure states for arbitrary and fixed particle num-
bers, which mirror the entanglement properties of typi-
cal (“infinite-temperature”) eigenstates of physical lattice
models. It is also possible to construct ensembles of pure
states in which one fixes the energy, which mirror the
entanglement properties of "finite-temperature" eigenstates
of physical lattice models. Steps in this direction have
already been taken using different tools; see, e.g., Refs.

[33,47,51,52,157,213]. In the context the scaling of the
eigenstate entanglement entropy at different energy den-
sities (“temperatures”), let us also emphasize that all the
average entanglement entropies computed in this tutorial
exhibited a leading volume-law term, namely, the lead-
ing term in the average entropies scales with the number
of modes V and is thus agnostic to the individual shape
or area of the subsystem. In contrast, as discussed in
the Introduction, it is well known that low-energy states
of many physical systems of interest exhibit a leading
area law term. An important open question is whether
one can define ensembles of pure states that exhibit
leading terms in the entanglement entropy that are area
law.

Instead of considering the von Neumann entanglement
entropy, one can also consider other quantities that are
defined with respect to the invariant spectrum of the
reduced density operator p4 = Try, |¥) (Y] of a pure
state |Y). Such quantities include the well-known Renyi
entropies Sﬁ")(h&)), and the eigenstate capacity [214]. We
focused on the von Neumann entropy, as it is arguably
the most prominent measure of bipartite entanglement.
Nonetheless, we expect that our findings can also be
extended to the aforementioned quantities; see, e.g., Refs.
[62,86,88,215] for studies of Renyi entropies and Refs.
[178,216] for studies of the eigenstate capacity.

It would also be interesting to explore multipar-
tite entanglement measures for different ensembles of
pure states. This will likely require new techniques,
and it is not clear what the most suitable mea-
sure is. The latter question is the subject of ongoing
research.
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APPENDIX A: GENERAL PURE STATES WITH A
FIXED NUMBER OF PARTICLES

1. Average entanglement entropy

In sum (45) we have different contributions. Since our
goal is to asymptotically expand the sum as a whole up
to O(1), which includes three different orders, namely V,
V7, and 1, we need to approach it systematically. The
first step is to identify the various contributions of such
an expansion. Let us list them as follows.

1. The difference of the digamma functions in Eq. (45)
can always be asymptotically expanded because the
dimensions dy, dpg(N — Ny), and d4(N4) grow with
V. The only exceptions are when either the volumes
of subsystem A4 are V4 =0,V or the occupation
numbers are N = 0, V. These situations correspond
to the trivial cases that we do not split the system
into two subsystems or that all sites are empty or
occupied, which we always exclude. When assum-
ingn =N/Vandf = V,/V being of order one and
having a finite distance from 1, the dimensions grow
exponentially in V.

The dimension does not grow or only grows poly-
nomially in ¥ when Ny ~ 0,V for d4(N4) or N —
N4y =0,V — V4 fordg(N — Ny). However, the pref-
actor gy, = d4(Ng)dp(N — N4)/dy will be expo-
nentially small for these cases, as we will see below.

I

Thus, we can expand the difference of the digamma
functions as

Wldy + 1] — Wlds(N —No) + 1]
= __dav -V
=i (ot ) 0,

Widy + 11— W[, (N) + 1]

_ dy —.
=1n (dA(NA)) + 0™, (A1)

where y1,y2 > 0 are two nonvanishing rates that
only state how fast the exponential correction of
this approximation vanishes. These logarithms of
the ratios are expanded in Appendix A 1 a.

2. A second contribution results from N, which

determines the fraction of the contribution of the
two sums. It is defined by the largest positive integer
such that it still holds that d ;(N,) < dg(N — Ny).
We need a 1/V expansion of this integer as slight
deviations may yield order-one terms. We derive
such an expansion in Appendix A 1b.

3. Once we know the 1/V expansion of N, we can
combine it with approximation (A1) and consider
the first part of the sum, which is

N.
crit dis(NNdr(N — N,
Z =) A 3; 2 (Wldy + 1]~ WIdg — Np) + 1)
Ny=0
Y d(Ny)dg(N — N,
+ Z ((Ng) 3( A)(q_,[dN_Fl]—lll[dA(NA)‘l-l])
Na=Ngit+1 N

Nerit N
= dg(N)dp(N — Ny) ( dy )
= 1
NZFO dy \aa—m)t 2

Na=Negip+1

dy(Ng)dp(N — Ny) In ( dy

O 7" A2
dy dA(NA))“L €7 (A

with a fixed > 0. We note that we can extend the
second sum to the upper terminal N as the binomial
factor is equal to 0 whenever Ny > V.

What is still needed is to expand the dimensions.
The factor oy, = ds(Ng)dp(N — Ny)/dy is a cru-
cial ingredient for this purpose, as already pointed
out. For large V, it will have approximately a Gaus-
sian shape in Ny with a center nyV and a width oy4.
The problematic point is that the two sums create
a kink at N.4. Thence, one needs to make a case
discussion when | N — 14 V] is maximally of order
oV or not. We have already pointed out above Eq.

(51) that ngy = nf and o/f (1 —f)n(1 —n)/7.

030201-39

The logarithm of the ratio of the dimensions will
be Taylor expanded in (N4/V — nf') and will be of
order 1/ A/V. Therefore, we only need to understand
the asymptotic expansion of the moments

Nerit

dy(Ng)dp(N — Ny) (NA )j
M; =c_ — —nf
4 éﬂ dy 4
N
te, Z dA(NA)d;(N_NA)
Ny=N_gii+1 N
J
X (N—; - nf) , (A3)
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where c_ and c¢; are some Ny-independent coef-
ficients, which in principle depend on the order j
of the moment, though.We show in Appendix A1b
that n4V is never larger than N so that the max-
imum of gy, is always in the first sum while the
second sum only contains an exponential tail; see
Fig. 17. Thus, it is suitable to consider the splitting

M =c. Z d4(N4)dp(N — NA)( _ f)

d,
Ny=0 N

+ (cy—c_)AM;,
N

d;(N)dg(N — Ny (N, 7
Z 4(Ng)dp( A)(A f)

d
Nyg=Ncrit+1 N

AMj =
(Ad)

The advantage is that the first sum with N4 running
from 0 to N can be seen as a contribution that is
always present. Only when [N — n4¥] is at most
of order oV = ‘/f(l —fn(l —n)V will the sec-
ond sum AM; be of importance. We carry out the
expansion of M; in Appendix A 1c.

4. The remaining part of sum (45) is

5 NZ da(No)ds(N — N) da(N) — 1

= dy 2d3(N — Ny)
N
+ 2
N4=Nerit+1
8 dy(Ng)dp(N — Ny) dg(N — Ny) — 1
dy 2d4(Ny)
(AS)

As mentioned, the dimensions d4(N,) and dg(N —
Ny4) usually grow exponentially in V, and where they
do not grow like that they will be suppressed by the
exponential tails of oy, . Thus, we can omit the terms
1/[2dp(N — Ny4)] and 1/[2d4(N4)], resulting in an
exponentially suppressed correction. Secondly, the
two sums can be combined into the form

min(N,V,
1 ™8 4y (Ng)dp(N — Ny)

=-
2 o dy
« min [ dy(Ng)  dp(N —Ny)
dp(N —Ng)"  ds(Ny)
+ 07" (A6)

with another fixed y > 0.

One may ask why we do not deal with this sum
in the same way as we have done for the differ-
ence of the digamma functions. First, we cannot

extend the upper terminal of the sum to N as the
ratio d4(Ny4) /dg(N — N4) can cancel the zero of the
weight gy,. Second, the ratio ds(N4)/dp(N — Ny)
can exponentially grow as well as shrink in ¥ which,
in principle, can shift the maximum of the weight
~,- We analyze this behavior in Appendix A 1d.

Once all these contributions have been analyzed and
expanded in 1/ \/I_/, we combine the intermediate results
in Appendix A le.

a. Asymptotic expansion of the logarithm of the ratio
of dimensions

As we have seen in approximation (Al) of the differ-
ences of the digamma functions, it is suitable to expand
the logarithm of the ratio

( dy ) (V!NA!(VA—NA)!)
In =In
ds(Ny) NI (V=N)!'Vy!
_ n(ﬂ(nﬂ)!([f —nA]V)?)' (A7)
(a1 —n]lN! (W)!

The approximation of the other logarithm follows from
the symmetry relation (Ny, Vy4) — (N — Ny, V— V) or,
equivalently, (ng,f) — (n —n4, 1 —f).

We carry out the series expansion of Eq. (A7) in two
steps. First, we take the asymptotic expansion in V. For
this purpose, we take into account the facts that f, 1 —
fs n, 1 —n > 0 are of order one so that one can use of
the Stirling formula (A8) for four of the six factorials,
namely P1/(nV)! ([1 — n]¥)! (f¥)!. For the other two terms
A ([f —nalV)!, we exploit the knowledge that the
maximal contribution of the binomial distribution is given
at ny = nf. Hence, it also follows that the argument in the
remaining factorials grows linearly with V. Therefore, we
exploit the Stirling approximation

= 2k (kY + D e =11 4 o(r1)]
= V27 kV(I)¥ e P11 + oy Y)Y

(kM)!
(AR)
with &k being of order one, for any of the six factorials.

Collecting these approximations, the large-V expansion
yields

! (dj?\fﬁ)) = Vnaln(n)

+ (f —ng)In(f —ny) —nin(n)
— (I =n)In(1 —n) — f In(f)]

(HA(f ny)

—|
MR Ty

_ ) +00r). (A9)
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FIG. 17. [lllustration of the contributions of sum (45) for V' = 500, f = %, and n = % — 4/+/L, where we plot the density oy =
dy(Ngdp(N — Ny)/dy (blue circles) and the approximate observable g(N4) (yellow circles), which is given by Indy /d4(N4) for
dy(Ny) < dp(N — Ny) and In[dy /dg(N — N)] otherwise. Note that we use different scales for gy, and g(N,). As reference points we
have added the center of the Gaussian approximation of gy, (blue vertical line) and the point Nt of the kink of the summands (yellow

vertical line).

In the second step, we replace ny = nf + dny with dny of
order 1/+/V to obtain

dy B B B B
In (dA(NA)) =V({f — D[nin(n) + (1 —n) In(1 —n)]

n
1—n

+ %In(f) +oW1?.
(A10)

+ Vény ln(

vn’
+ _—
2n(1 — n)f

As aforementioned, the asymptotic for the second log-
arithm In(dy/dg(N — N,4)) can also be obtained using
Eq. (A10) when exploiting the symmetry (n4,f) < (n —
ng,1 —f). We can indeed apply this symmetry to Eq.
(A10) as the weight gy, also shares this symmetry. Here,
we note that the maximum of the weight ny = nf* indeed
implies that n — ny = n(1 — f), reflecting the symmetry.
Thence, we have

) = —Vf nln(m) + (1 = n) In(1 — )]

l—n
n
Vvén?

+ 2n(1 —n)(1 —f)
+ % In(1 —f) + 012, (All)

(7~
In{ ———
dg(N — Ny)

+ Vényln (

For computational purposes in the ensuing section, we
need to take the difference of Eqs. (A10) and (A11); recall
the third step of the outline of computing the asymptotic
expansion. In particular, when 1 — 2f is much smaller than
one, this is important because the expectation value of the
two terms tells us how many terms we need to take into
account in the computation. The difference is

dg(N —=Ngo\ _ .
In (W) — V(1 —2f )[nIn(n)

+(1 =n)In(l —n)]

— R

+2V3n,In (1 i ) +o(l),

(A12)

where we have set 1 — 2f <« 1. Hence, this approxima-
tion is only true in this case. For the other case that f
is not close enough to %, we do not need the respective
expression, as we will see.

b. Computation of N,

As already mentioned, N_; is given by the condition
d4(N4)/dp(N — N4) = 1. This ratio can be approximated
via Stirling’s formula (A8),
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dy(Ng) VA N-=N)'(V—Vy—N+Ny)!
dg(N —Ny) Ng' (Va4 — N (V= Vy)!
~ N(n —ng N1 —f —n+ny]b)!
B (M —n NN = 19!

_ [fo—np(—f —n+np [ff (n— " (L—f —nny)'
) Wi —nay (=

As in the previous subsection, we need to go even further and take into account the facts that n, is concentrated at ny = nf
and the small deviation dny = n4 — n4 is of order l/\/I_/. Thus, the Taylor expansion in §ny about this point leads to

,
] [1+O0(F Nl (A13)

diWNg) (1 =f 0 ara—2) [ (1—11) V(2f — 1)én? ] 12 _
GOy 7 AT e | 2Venain ( —= ) + i |1+ 007 (ALY)

We would like to recall that we choose 0 < f < % due to the symmetries of the setting. Thence, the leading prefactor
shows that the ratio vanishes exponentially when 1 — 2f is larger than order 1/V because of% <n"(1-n)l" <1

forany 0 <n < % There is, however, a transition regime like in the Page setting without particle-number conservation,
namely, when 1 — 2f oc 1/V. Then the two dimensions become comparable. From the equation above, we can also read
off that only for f =~ % is the maximum nyV = nfV or, equivalently, dns ~ 0 of the weight oy, = ds(N4)dp(N — Ny)/dy
close to Ngit. Although it does not say, yet, when N is in a distance of order \/I_/away from the maximum n4V = nfV.
Indeed, when 8n, and 1 — 2f are of order 1/+/V, there is a possibility that the two growing terms cancel each other so
that it is not necessary that 1 — 2f needs to be of order 1/¥ as 1/+/V is already suitable. This is exactly what happens in
a particular regime, as we will see below.

One additional comment, when 1 — 2f > 0 is much larger than 1/V, we have d (N4) <« dg(N — N,). Thus, the maxi-
mum 74V lies in the first part of sum (A2). Thus, in the case that the terminal Ny is in the exponentially suppressed part
of the tail of gn,, we can concentrate only on the first part of sum (A2) and disregard the second part.

Thence, we only need to understand what N — nfV is when 1 — 2f « 1 in the limit ¥ — oo for the average of
Eq. (All). It is crucial to know when to cut the sum of Ny in the lower terminal and exploit the other branch of the
Page curve for the remaining sum. A subtle point is that we need to find 8ncrit = Nerie/V — nf up to order 1/V, since
Nit = V(nf + én.y) 1s multiplied by ¥ and the spacing between the step size of the summation index is 1. Therefore, we
have to refine the expansion in Eq. (A14).

The Taylor expansion of the Stirling approximation one order higher is given by Eq. (5.11.1) of Ref. [164]:

In[(kV)!] = % In[27kV] + kVIn(kV) — kV — ﬁ, +Oo(r2). (A15)

We exploit this expansion in Eq. (A13) and use the notation Nt = nfV + ncrit V. As Nerie 1s defined by the condition
d4(Nerit) /dp(N — Ncrir) = 1, we take its logarithm and evaluate the resulting equation up to order 1/V,

0=1In ( dA (Ncrit) )
B dB(N - Ncrit)
_ ll (f [n(1 —f) — dneie][(1 — )1 —n) +3ncm])

2\ + 0nedlf (I — 1) — Sngad(1 — 1)

i [£200 =) = Bnid VDBt [(L— ) (L~ ) + ] D e
(1] + Sneg) T e [f (1 — 1) — Oneg} (=P =0rese (1 — /)17

1 1 1 1 1
- W’(F PR ) —oney T 1—7 (0 —n) +onuy  nf +onu
1 1
f(l - H) - 6ncrit 1 _f

The very last term before the correction is at least of order (1 — 2f)/V « 1/V when éncy; is of order 1/4/V because

) + o). (A16)
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1 /1 1 1 1 1 1
W(fﬂ;(l — ) — 8ncri 1 —f(I—n) +0nei  nf +0na f(1—n)—0ney | —f)

-y o "
=Ty —f)(l n(l —n)) OO

o)

=o(V 1 (A17)

and 1 — 2f <« 1. Thus, we can neglect it.
The other terms still need to be Taylor expanded in 8n; as they are of order 1/+/¥ or smaller. Expanding this expression
in 8ngi up to order 1/V, which is equivalent with the fourth order in dn. as we multiply one term with V, we find that

1 (1—f Qn—Donee  (1—2f)onk, [ 1 1
0_31“( 7 )+2n(1—n)f(1—f)+ 720 —1)? (?J”(l—n)z)

— _ 2
+ V(1 - 2f) In[n"(1 — n)l—n] + 2V8n g In [1 n] + Vf 1)én
n

2nf (1 —f)(1 —n)
V(1 —2n)5ngn.t( 1 1 )+ Vef — D2 —f + Ué‘ﬂﬂm(i 1 )

(1 —m? \(—7)2 ' 12 s (g
+o(r ™
Lo (1=f (2n — 1)8nit B ner Nl o [1=n
_zln( 7 )+2n(1_n)f(1_f)+rf(1 2f ) In[n"(1 — n) ]+2V5nm,ln[ . ]
Vef — 1)én?., V(1 —2n)dn3 1 1 )
2f (=) —m) 61 —m)? ((1 =7y +F)+O(W . (A1

In the second equality, we have omitted all terms that are of lower order than 1/V, making use of the fact that 1 — 2f <« 1.
The equation above can be recast into an implicit expression for dn;. One first puts all §n;-dependent terms on one
side, then pulls out the common factor i, and finally divides the entire expression by the prefactor of dnyit, yielding

[ _[ @2n—1) +2mn[1 —n] N VQf — 1)8ng
T 20 —m)f (1) n 2nf (1 —f)(1 —n)

V(l—2n)6n§m( 1 1) ~'Tn[(1 —1)/f]
6> (1 —n)? r? ] [ 2

EANE V=20 (1 =01 4007, (A19)

In the next step, we need to find out the leading contribution of the denominator. We pull out the factor In[(1 — n)/n]
in the denominator. Then it is immediate that there are only two possibilities since the ratio (1 — 2n)/ In[(1 — n)/n] is
of order one whenever n,1 —n > 0 are of order one. Either (1 — 2f)dn. /(1 — 2n) is of order one or larger or it is
much smaller than 1. In the former case, n needs to be very close to % as (1 —2f )oénere = o(V~Y2). This means that
V(1 —2f ) In[n"(1 — m'"~ —2mInQ2)V(1 — 2f') is the dominant term in the numerator. The latter, however, implies
that 8nere and V(1 — 2f)/[V(1 — 2f )dnerit] = 1/8ncri are of the same order. Hence, dngit must be of order one, which is
in contradiction with the fact that it is of at most of order 1/+/7. In conclusion, the ratio (1 — 2f )dngi/(1 — 2n) is never
of order one or larger, and the denominator is always dominated by 2V In[(1 — n)/n] about which we need to expand.
The question is how far we need to go with this expansion. Here, we have to discuss different regimes.

1. The leading-order term of dny, which is given in Eq. (A20), tells us that, for 1 — 2n « V(1 - 2f), the terminal
Vén,y is of an order larger than V7, meaning that the maximum of the weight oy, = ds(N4)dp(N — N4)/dy plus
the standard deviation is out of reach of Ng:. Thus, we can disregard the second sum in Eq. (A2) and can extend
the first sum to the upper terminal N.
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2. When V(1 — 2f)/(1 — 2n) ranges between order 7 and one, then it holds that

A=) —m)) |
e = = +o(r . (A20)

This means that N is the integer smaller than or equal to nfV — V(1 — 2f ) In[n"(1 — n)'="1/2In[(1 — n)/n].
3. Inthe case (1 — 2n) > V(1 — 2f"), 8ncrit 1s so close to 0 that we can set Ny as the integer smaller than or equal to
nfV. This case can also be seen as a particular limit of the second case.

Note that, for all three cases, we have 1 — 2f <« 1. However, case 1 shows that, for 1 —2f > l/\/I_/z (1— 2?1)/«/12
we will never find a contribution from N as it will always be exponentially suppressed by the weight on,. We recall
that the cases 1 —2f > 1/ V are always suppressed due to the exponentially small ratio d4(N4)/dg(N — N,) regardless
what n is. Thus, the earliest occurrence of order /¥ and order-one terms in the entanglement entropy will be when f
enters the regime about f =~ % at a distance of order 1/+/7.

Let us highlight that this approximation of N_; only works for the average over Eq. (A11). For the average over the
ratio min{d4(N4)/dp(N — N4),dp(N — N4)/d4(N4)}, we need to be more careful as there are additional exponential terms
in 8ny that may shift the maximum of the summands in the average over oy, .

c. Moments of gy,

To compute the entanglement entropy, we need the moments of the weight oy, = ds(N4)dp(N — N4)/dp either for the
full sum with terminals at 0 and N or for that with a cutoff due to N In general, we need to compute M; defined in
Eq. (A4). It can be rewritten in terms of a derivative acting on a sum, i.e.,

M_,r - (a.l —?lf}{
. i Vyl (V — V)N (V — N)! Nl
= VINA (V= Ng)! (N = N (V = Vi = N + Ny)!
+ (c4—c-)
N
Vit (V =V )!N!(V—N)!
x Z A ( A) ( ) eNAMV (A21)
NN i1 MNJAVy—NIN =NV —-Vy—N+Ny)! A—0

with j € N. The two coefficients c;. grow maximally with ¥, and Ac = ¢, — c_ grows at most like /7 forj = 0 and like

Vforj = 1; cf. Eqs. (Al1) and (A12). The second sum without Ac has been denoted by AM; [see (A4)], while the first
sum will be labeled as

N
~ , VL (V= V)N (V= N)! N _
M =@ —nfY N; VING (Vi— N (N — N (V — V4 —N—l—NA)!eN o (A22)

Evaluation of the first sum (A22). As we have seen, the maximum of gy, is close to ny = nf¥V, which always lies below
Nerit. It can be approximated by a Gaussian with variance ﬁ" Hence, when Nt — nfV is larger than order ﬁ" , only the
first sum contributes, and we can approximate Eq. (A21) as M; = ﬂj =+ o(1). The error is exponentially small due to
the Gaussian tail. Otherwise, the sum AM; will contribute, too. Yet, the ensuing computation still applies for the first
sum (A22) as it only takes into account the fact that the upper terminal in the sum is N.

To compute Eq. (A22), we make use of the contour integral

- V—N
(V—N)! _f dz (1+72) (A23)
[

Va—N)!(V=V4—N+Ng)! ~ Jioy 2miz 20a=Na
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which is based on the binomial sum (1 4 z)"V = ,_0 (iV_ N) z!. Then, we can carry out the sum exactly and find

that

~ V (V= Vy)! dz (1+2)""M1 4 zeM")V

B — d; — . A24
M_,F C ( A f)j it iz ZVA —o ( }

Comparing with Eq. (A10), we only need the first and second centered moments. We note that, due to the proper
normalization of gy, , it holds that M = 1. The first centered moment,

—~ — V-1
&y = V“”’f e —nf (142152 4 o(1)
4 lz|= 12.‘:‘1‘.’1
- Vil (V—V! V—-n! (V-1
ST [ B ZED I A A AT = 1)!]
_ =7V —nf(V_ VA)
4 V
—o, (A25)

vanishes exactly without any approximation; note that V;/V = f". In the same manner we compute the second centered
moment, where we have to go up to order 1/¥ as we multiply by V [see Eq. (A11)]:

~ V(- V,g!jg dz
M2 - 4 lz]=1 2mwiz

VATV, L, (V=)
T [" D o7

V_2
[ = (5 -2ira =) )ty [

" (v —2)!
+(?}—2nf(1 —f))(V )T —Vi— D)
242 -2
T =7, —2)!]
. 2(1 _f)if(f +u) + (E —z?lzf(l _f))f(l _f)(l + l)
% v 4

wiir2a-)(1-r L) oo

_ n(1 —n){](l -f) + o). (A26)

The third equality follows by Taylor expanding in 1/¥, which amounts to an error term starting with the order 1/V2.
Actually, the leading orders of the two centered moments are not very surprising as they are the mean and the variance of
on,- This calculation only checks that there are no additional corrections that may become relevant.

Returning to the approximation M; = Jﬁj + o(1) for Negt — nfV > +/V, the first moment M is exponentially sup-
pressed as it is only given by the second sum AM; that lies in the exponentially small tail of gy,. In contrast, the
correction to the leading order in the second centered moment M3 is of order 1/¥ when c_ is of order ¥, which is indeed
the case; see Eq. (Al1).

Finally, we combine the two moments M1 and Mg with expansion (A11) to compute the sum

i dy(N4)dg(N — Ny) In( dy )

N0 dy dg(N — Ny)

— —Vf [nIn(n) + (1 — n) In(1 —n)]+f3+ 1"(12 Dy (ﬁ) (A27)
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This is our first intermediate result, which will be needed when combining it with the full entanglement entropy.

The case Ny — nfV < O(\/I_/) and the term AM;. When N is in the vicinity ofn,; V=nfV =nV/2+n2f —1)V/2
(namely of order +/¥), we need to take into account the fact that both sums, M and AM;, contribute. Recall that
8f =1 —2f must be of order 1/4/¥ or smaller and 8n = 1 — 2n cannot be less than order +/7(1 — 2f) to find this
regime. This implies that the coefficient for the constant term (j = 0) of Eq. (A12) will be at most of order /7. Thus, we
need to expand the sum for this case up to order 1/+/7. For j = 1, we still need to expand up to order 1/V, though this
expansion does not have a term of order one, as we will see.

We consider the sum

N
% |: Z VAV —=F)HI!N! (V- N)! (NA— Crit—l)l{lr’] (Azg)
Ng=Negig+1 VINg (Va=N)' (N =N\ (V=Vy =N + NA)’ A=0 '

for j = 0,1, where we have pushed a factor exp[—(Ngit + 1)A/V] into the derivative as it will be beneficial for the
ensuing calculation. The summands can be extended by (N — Ngit — 1)! Neie! (N4 — Nerie — 1)! in the numerator and the
denominator to exploit the identity

(:rlt1 (NA_ crit — l)!(V N)I
N (Vs —N)!'(V— V4 —N + Np)!

! V-N
az (1+2) -1 .
= dx VANt | — it 20

ﬁ =1 2miz zV=Va—N+N4 (1 —x)~ (A29)

The integrand over the auxiliary variable x is also known as the beta distribution. Let us underline that it always holds that
Neit < Ng < N for AM;. The sum can be carried out exactly anew, and we find that, for the zeroth moment,

———(1 — x)Nenit (x )Nt~ (A30)

— V—N
AMp = VALV =V N! f f dz (1+2)
lz

Neit'(N — Negie — D! |=1 2miz zV=Va
and, for the first moment,
Vil (V— V! N!
Ncrit! (N - Ncrit - 1)! n

1
dz [N — Ncrit -1 Ncrit +1
dx _
% A et 2m‘z[ ot ( % "f)(x +z)]

AM| =

(1+2)"" N N—N_—2 :
ZVT(I —x) ‘(x +Z) L (A3l)
This time the integral is too involved to compute the results directly in a closed form. We use a saddle point approximation.
The derivatives in x and z of the logarithm of the integrand yield in leading order the saddle point equations

N —Neit  Nui V—N V—V4 N-—Nea .
(' _0 and - 4+ L= 0. (A32)
x0 + zo 1 —xo 1+2zo Z x0 + zo '

Since Nerit = nfV + ANy with ANy = O(\/I_’), and the standard deviation about the saddle points is of order 1/ \/I_’ , We
can replace Nt by nfV in the saddle point equations without changing the integrals. The same holds for the deviation of
f from as 1 — 2f is at most of order 1/+/¥ in the present case. This yields the approximate saddle point solutions

xp=0 and zp=1. (A33)

Thus, we expand x = 8x/+/Vand z = 1 + i8z/+/V with 6x € R, and éz € R.
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For the first moment, this yields a drastic simplification because of the factor

N — Neig — 1 Negit + 1
Vt x—l—( tV+ —nf)(x+z)

n ANt 1( ANt )
= Sx + +—(2 4+ VYV = 2f yndx + 2i 8z
2V V 2V ( /) JV

+ o3,

(A34)

which already starts with order 1/+/7. Therefore, we only need to go to order 1/+/7 in all other factors in AM); like in

AMo.
The single terms we need to expand are [note that 1 — 2f = O(1 //V) or smaller]

(1 _I_Z)V—N :2(1—1'1)]/(1 +i 1 62)(1 n)V
2V

Vr(a - m, , L=n l1—n
= 2=V ey [ z + 622] [1 —i 822 +o! ]
P 2 8 24V )
—(141=2)Fj2—1
S—V+Va—1 (I_HE)
JV

= exp [—fgaz — l(zf\/l_/(l —2f)oz + 322)]

x[l—ia—z—l_zfc? +: +O(V— )]

N, 6

y sx \PA=1H2)V/ 2+ ANy
1 — ot — ] — —
a=n==(1-7)
_ vV ANgie V(1 —2f)n) )
_exp[—TSx—(ﬁ — 5 cﬁx—zéx]
1 ANcm_\/I_/(l—2f)”) 2 M o3 -1 ]
x[l 2\/{_/( NG 3 dx 6ﬁ’3x +0(V )|,

and

- éx + idz
N—Nit—

x+z)" et = (1 +

( ) JV

)n(l+1 —2f YW/2—AN_ i —f

—exp [(”‘2/? _ Aj%f‘ + v = 2f)")(ax +i8z) — ;(Sx + faz)E]
x [1 - %/(6x+ i8z) + (A;;ﬁ‘ _a _42f )")(ax+ i82)2

" i52)3 1
+6W(6x—|—162) +OoV™ )],
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with j = 1, 2. Additionally, we expand the factorial prefactors using Stirling’s formula,
Vil (V—=V4)!N!
Neri! (N — Nerie — D!V
2{n—1)V(1 — 14+ 2f){1—1+2f)]r’/2
- [n—1+2f + 2A N5/ (nV)Jr(A—1421)V/2+ANerit
(141 —2f)+1-2772
T 1 =2 — 28N/ ()"0

2ANei\ V-
x(l+1—2f— t) v

nV
— z{n—l)VVT\/ﬁ e

D)

V(1 =2f)n— 2ANcm)2]
2nV

xp[fa oy

2 AN crit
V

x [1 +(1=2f)——= L o )] (A39)

Collecting all our previous results, and integrating over §x € R, and §z € R, we find that

AM _ ! fi 2 AN : 20N, owv! A40
0= 3 aa =y | T Ty P T aa T O (40

(1 —nm)n + 2ANeit/V
V8T (1 —m)nV

These two equations are our second ingredient. In particular, when combining these with Eq. (A12), we find that

and

AM; =

2ANZ, 3 .
— it o, A4l
eXP[ n )V]+ ( ) (A41)

N

Z dy(Ng)dp(N — Ny) In (dB(N _NA))
dy ds(Ny)

Ny=Ngit+1
= —V(1 = 2f)[nln() + (1 — n) In(1 — n)]

Lo 2 AN 1 2ANZ,
% (Eer C[ n(l—n)V °“‘] T omy P [ T a —n) VD

n \ (1 —n)n+2ANe/V 2AN2, .
(5 oo [ a0 "

which is our second intermediate result. As one can readily check, this term starts at most with order /7 as 1 — 2f is at
most of order 1/+/7 in the present case. Additionally, it will contribute order-one terms.

d. Average over dimension ratios

We now turn to evaluate sum (A6). We need to expand the average

min(N,V4)

d4s(Ny)dp(N — N,
Y 4(Na) 3; 2 tmin{dy(N) /dp(N — Np), dp(N — N)/dg(Np)}
N;=0
Ny min(N,V ) 2
_ Z (NA) N Z d (N NA) (A43)
: N_.{ Ncrll“‘l

For that purpose, it is paramount to take the correct bounds of the summing index as either dp(N — N4) or dy(N4) are
canceled in the weight on, = d4(N4)dp(N — N4)/dn by the observable min{d(N4)/dp(N — N4),dp(N — N4)/d4(N4)}.
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Note that, in Eq. (A21), the weight oy, allowed us to extend the sum from Ny = 0to Ny = N instead of Ny = min(N, V).
The weight gy, implemented the correct terminal.

We need to understand where d4(N4) and dp(N — N4) become maximal. This is indeed given for Nj]) =V4/2=fV/2

for d4(N4) and Nf) =N—-(V—-Vy/2=2n—1+f)V/2 for dg(N — N4) because both are binomial weights whose
maximum is always at the center of the distribution.
To see which of the two dimensions is largest, we take their ratio and expand in large V-

AN ([(V— mnu)z
dg(N —N@®)  (V=VD'\  (Va/2)!
__m ([(1 —f)m]!)2
(=N @7/2)!
= [l er-vv 4oy, (A44)

Hence, for suitably large V, it is always dy4 (Nj])) < dg(N — ﬂf)) because f < % Note that we compare the maximums of
the two dimensions at different N4 and not at the same one. However, the ratio of the two dimensions at the same Ny = _}({ZJ
will always be the smaller one, i.e., dy4 (Nf)) <dy (Nj”) <dg(N — Nf)) [the first inequality follows from the fact that the
maximum of d4(N4) is achieved at Nj])]. Hence, it is clear that ﬂf) < Nerit. In particular, the maximum ofdg(N — Ny)/dy
cannot be achieved at N}({ZJ but is only given at the lower terminal Ny = N + 1. Since dﬁ(N —Ny)/dn < on, for Ny >
Nrit, the second sum can only contribute when Ny has a distance of order \/T’ to the maximum nyV = nfV of gn,. As we
have seen, this is only the case when 1 — 2f is of order 1/+4/7 or less and 1 — 2n < /V(1 — 2f).

Let us first consider the case 1 —2f > V~1/2 as it is still unclear whether sum (A43) yields anything of order one in
this case. When Ny < N, we have, for the first part of the sum,

d5(Ny)  dy(Ng)dp(N — N,
(Ny) - (N 4)dp( 1) — on,. (A45)
dy dy
This means that d%(N4)/dy is exponentially suppressed when N4 has a distance larger than order V7 to the maximum
n4V = nfV of gn,. The maximum le) = fV/2 of d4(Ny) is evidently far away when » is not close to % When expanding
df, (N4)/dy about Ny = nfV + 8nsV with dny of order l/ﬁ’, the expansion up to order one is

di(NA) _ 1 (l - H)EVSHA[(I o n)l—nnn]V(l—zf)
dv  2aVn(1 —n)f2\ n
ven’ )
xexp[——n(l_n)f][l—l—O(V )] (A46)

Sincef,n € (0, %], the leading term in ¥ exponentially suppresses all summands if 1 — 2f > ¥~1/2_ Similarly, we have an

exponential suppression ofdﬁ(N —Ny)/dn < ds(Ng)dp(N — Ny)/dy = on, for any Ng > N because then ngV = nfV
is certainly further away than a distance /7 from N,. Therefore, the second part (A6) of the entanglement entropy does
not contribute for 1 — 2f > ¥~/ in the thermodynamic limit.

When 1 — 2f = O(V~'/?), the leading term in Eq. (A46) slightly shifts the maximum of the summands, as we have seen
for N;. Actually, N, which is (nf + 8ng;) V with Eq. (A20) in this scaling, will be the maximum since (1 —n)/n > 1
forn < %, such that, whenever Nyt/V — ny = 8ncrit — 8ny is larger than order 1/V, the ratio df, (N4)/dn will again be
exponentially suppressed. Also, for d%(N — N4)/dy, the maximum lies at N5 when Ny > N4, as we have seen that
the maximum ﬂf) < Nerit and dp(N — Ny) is monotonously decreasing for Ny > NfJ . Its expansion about Ny = (nf +
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dny)V is equal to

dﬁ(NA) _ 1 ( n )M"”[(l — )P D
dy V2 Vn(l —n)(1 —f)?
B Vén? 12 .

Let us try to simplify both expansions (A46) and (A47) further. We know that they are only valid when N has a distance
of order /¥ to gV = nfV. In Appendix A 1 b, we showed that this is only the case when v/7(1 — 2f ) is maximally of
order 1 — 2n. Hence, 1 — 2f must be maximally of order 1/+/7 in which we can expand. However, there are two cases to
discuss in the scaling of the variable n depending on the exact scaling of 1 — 2f .

When 1 —2f = O(V_” 2), we have already mentioned that Ny takes its maximum at Ngnie = [nf + 8#ncrie) V], which
is the largest integer that is smaller than or equal to (nf" + én)V = (nf — (é —f)In[r"(1 — n)'="1/ In[(1 — n)/n])V +
o(1); see Eq. (A20). This holds for both sums (A43). One can readily see from the Eqs. (A46) and (A47) that only
summands where |[N4 — Ngit| is of order one are of the same order as the maximum while the other terms are suppressed.
Thus, we substitute Ny = Ny —j = nfV + ANy —j for Ny < Nyrand Ny =N+ 1 +j =nfV + ANy + 1 4+ for
Ny > Neig withj = 0,1,2,... and

V(1 — 2f ) In[rn"(1 — n)!~"]
2In[(1 — n)/n]

where the error is only a number in [0, 1). Substituting expansions (A46) and (A47) into Eq. (A43), we find that

ANcrit = cnt _fV L‘Sncrit VJ + O(l) = [ - J -+ 0(1), (A48)

min(N,Vy4)
Y ds (Nﬂ)djiN ~ N0 ingd, (V) /dg(N — Ny),dg(N — N)/dy(N.)}
Ny=0

_n 2AN i —28nc5 V—-2j [ (ANCHI _J) ]
exp

- 1
j:o\/m( n ) n(l —n)fV

n ) 2ANi—28nc V42425

+Z \/Q:rrVn(l —n)(1 —f)2(1 —n

" ex [_ (ANaic + 1 +/)?
Pl nd—ma—ryr

since in the first sum it is 8n,V = ANqit —j and in the second sum it is dny ¥V = AN + 1 +j. We have extended the
sum to 0o because we only add exponentially suppressed terms to it, and we have used the expression of dng from
Eq. (A20). The j dependence in the Gaussian part of Eq. (A49) can be dropped since j /+/¥ is of order 1/+/V; note that
ANgit = O(ﬁ'). Using the fact that the geometric series converge because 1 — 2n € (0, 1) is of order one and all the
summands are of order 1/+/7 due to the prefactor, it becomes immediate that sum (A6) still vanishes; although it now
vanishes like 1/4/7.

A similar argument holds when 1 — 2n > 1/4/¥ is of order one even if (1 — 2f )+/¥ is maximally of order 1 — 2n
and, hence, rapidly vanishing. In this case the variable x = (1 — 2n)j becomes quasicontinuous, meaning that j will
be of order 1/(1 — 2n). We need to scale j with 1 — 2n since the quadratic part from the Gaussian, namely j /+/V =
x/[v/7(1 — 2n)] < 1. This yields an integral over an exponential function showing that both sums in Eq. (A43) vanish
like lf[ﬁ’(l — 2n)]. It is certainly much weaker, but it is vanishing nonetheless.

Therefore, only in the case (1 — 2f )3/V < 1 — 2n < 1 can sum (A6) contribute to the entanglement entropy of order
one and above. The two expansions (A46) and (A47) simplify in this case to

] +0o N, (A49)

da: (N, 8
% = ZV(EI_]),/ﬁ/exp[—SVénﬁ +4V(1 = 2n)dng][1 + OV,
i N (A50)
d3(N, [8
% = 2" | exp[—8V8n? — 4V (1 — 2n)dn4][1 + O(V~'/%)].
N aV
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The variable 8n4 becomes quasicontinuous as it is of order 1/+4/¥, meaning that the sum is replaced by an integral. Thus,
the final computation of sum (A43) is

min{N,V4)

dy(Ng)dp(N — Ny) .
3 A2 ; 47 min{dy(Ny)/dp(N — Ny),dg(N — Ny)/d4(Ny)}
N4=0 N
m@(1-2)/A-2m] 4, /T asn
_ 2;»(2;_1)[ Y T exp[—8¥sn? + V(1 — 2n)n
- ar CPLESVam 4 AV = 2mina]

42712 f ATdény
In@)(1=2f)/[4(1-2n)] 27

— V-1 exp [—V(l — 2n)2]erfc|:ﬁ(l — 2 —In - 2f)]

exp[—SVﬁnﬁ —4V(1 — 2n)ényg] + o(1)

2 V21 =2n)
o V(1 — 2n)? (1 —2n)? + InQ2)(1 —2f)
F(1-21)—1
+2 exp [—2 ]erfc[v V. «/5(1 "o ] +o(1), (A51)

where we have made use of the complementary error function.

Also, in this formula one can readily check the various asymptotic limits. If either 1 — 2n > 1//Vor 1 —2f > 1/V,
the term vanishes, as already pointed out. For the three cases discussed in Appendix A 1 b, the following conclusions
hold.

Case I: (1 —2n) < V(1 —2f) = O(1/+/V). It holds that

min(N, V.
2 dy(Ng)dp(N — Ny) - l dy(Ns)  ds(N — Ny) ]
o dy dp(N — Ny)’  dy4(Ny)
=
=2"¥-D 4 o(D). (A52)

Case 2: (1 —2n) = O[VV(1 — 2f )] = O(1/+/V). We need to keep the result as is.
Case 3: O(1//V) = (1 — 2n) > /V(1 — 2f ). We obtain

m"(f’:y‘“ dy(N)dg(N — Ny) l dy(Ny)  dp(N — N,,)]
Na=0 dy dp(N —Ng)°  da(Ny)
—2n)? _
= exp [M]erfc[ﬁ(l—\/zzn)] +o(1). (A53)

The third case covers part of the second case and the third case in Appendix A 1 b. In the first case, the exponential decay
is not always completely correct as we have seen in the discussion above. The reason is that the error term still contains
algebraic decaying terms that will take over.

e. Resulting formula
Collecting all intermediate results (A27), (A42), and (A51), we arrive at

(Sq)y = —Vf[nIn(n) + (1 — n) In(1 — n)] +j% + In(]z—f)

— V(1 =2f) In[n"(1 — n)' "]
Do 2 A 1 2AN2,
% (Eer c[ n(l—n)V ““‘] T i omy P [ T n)V])
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— : 2ANZ.
+ﬁln( n )(1 n)n—l—QANmt/Vexp[ t]

1—n V21 —mn ~n(1—nV
i V(1 — 2n)2] [ (1 —2n)2 —In(2)(1 — 2f)]
_rar-n-2 £ V.
=xP [ 2 erfe| V7 V2(1 —2n)
e V(1 — 2n)? (1 —2n)?% +InQ2)(1 —21) _
_o¥1-2)-2
2 exp [ > ]erfc [ﬁ N ] +o(1). (A54)

What remains to be discussed is the parameter

V(1 —2f ) In[n"(1 — n)!="]
- 21In[(1 — n)/n]

AN = [ J + O(1). (AS5)

Two terms in Eq. (A54) can be combined with the help of this expansion, i.e.,

V(1= 2) [ (1 —m)' "] [_ 2ANZ, ]
V2an(l —n)V PL™wa=ny

( n ) 2 ANrit 2AN2,
+ In exp| - ———
1—n)2n(T —nn?V n(l —n)V
=o(1), (A56)

implying that we can omit these two terms. This yields the simplification

(Sa)y = —Vf [nIn(n) + (1 — n) In(1 — n)] +f5 + @

_ra-z In[n"(1 — n)l_”]erfc[ /#ANM]
2 n(l—nV
(A—mn¥ ( n 2ANZ,
T n(l—n)exp[_n(l—n)V]

a2y [ V(1 — 2")2]erfc[ﬁ(l —2n)? —In(2)(1 — 2f)]

2 V21 = 2n)
o V(1 — 2n)? (1 —2n)?% +InQ2)(1 —21) .
_yb-21)-2 |
? P [ 2 ]erfc [ﬁ V2(1 —2n) ] o (A7)

The two terms in the second and third lines can give rise to additional order-one terms from the fact that AN has an
order-one distance to the smallest integer. To see whether this is indeed the case, we split ANt = ANc(rliz + AN‘:(E‘) with
AND — V(1 — 2f ) In[n"(1 — n)'="]
ent 2In[(1 — n)/n]

(AS8)

We need to expand
n(l—n)V

2 8 2(ANYY2
=erfe| [———ANW |- | — = exp| — Z(AN) AN® 1 ov ) (A59)
n(l—n¥V an(l —n)V n(l—n)V '
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and

[ 2AN2Z, ]
exXp| — ——m—m——

n(l—n)V
(2 ) (D2
exp| - 2@Ne) ] 4ANe [ 2(AN) "]\ v oty (A60)
nl—nV | nd—nV n(l—my |

Plugging in AN ) " we note that the leading-order correction due to a nonzero ANC(EJ vanishes, and the next order is of

crit?
order 1//V.
Thence, the final result for the average entanglement entropy reads

(SA)N:—Vf[nln(n)-|—(1_H)ln(l_n)]+%+ln(12 )

-y In[n"(1 — n)l_"]erfc[ / #AN“{]
2 n(l—-n)¥V =

(A—mnV ( n 2(ANDY?
T “(1—;;)“"[ n(l—n)V]

P T [ V(1 — 2n)2] [\/;—,(1 —2m)? — @)1 — 2f)]

2 V2(1 —2n)
N V(1 — 2n)2] [ (1 —=2n)% +In2)(1 — 2f)]
_ pVa-2)-2 Ya=2m71 sl /7t 1. A61
exp [ 5 30 —2n) +o(1) (A6l)

When n > 5 and;’orf > 5, we need to apply the symmetries and reflect (f ,n) < (1 —f,n) < (f,1 —n) < (1 —f,
1—-1).

Note that the result in Eq. (A61) naturally holds everywhere as long as f ,n, (1 — n), (1 — f) stay of order one. Only at
these boundaries are there significant deviations. When, additionally, 1 — 2f" and/or 1 — 2n are of order one, the last four
terms vanish naturally as they are exponentially suppressed then.

At fixed f and n, we therefore find that

(Sa)y = —Vf [nln(n) + (1 — n) In(1 — n)] +w
1— 1 — i
_ n( . n) In - n ‘3f.1{2«/?"— 53f,1;23n,1/2 + o(1), (A62)

as already derived in the main text. Thus, there are discontinuities at f = % andf =n= %, which can be further resolved
with the help of Eq. (A61), as discussed next.

f. Resolving the critical regimes

In the main text, we found that the formula at fixed f,n € (0, 2) comprises additional terms at the line /' = 5 as well

as at the multicritical point f =n = 2 With the help of Eq. (A61), we can resolve these critical points by conSIdenng
double scaling limits as follows:

1A
, n= (A63)

* v

1
zoominginatf:n:i: f=

B = ] =
SEQE

1
zooming in at f = 3" f==-+ (A64)

Here the relevant scales (i.e., powers of V) are determined based on the discussion in the previous section. When choosing
different dependencies in ¥ for the deviations Ay and Ay, either create the Kronecker deltas in Eq. (A62) (higher powers
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in V) or the terms take their limit for vanishing deviations (lower powers in V). Actually, the multicritical point f =n = %

is more subtle. While the last two terms in Eq. (A61) scale like those shown in Eq. (A63), the two terms in the second
line of Eq. (A61) are still resolved when keeping +/7(1 — 2f)/(1 — 2n) of order one. We do not discuss this subtlety in
the present subsection.

Critical lineat [ = % andn < % It is important to resolve the Kronecker delta about / = % for fixed n. In this case, we
need to expand Eq. (A61) with f = % + Ar /+/V, where we need to take into account the fact that Eq. (A61) is only valid
for Ay < 0 because we assumed thatf ,n < % to derive this formula. The last two terms become exponentially suppressed
and can be omitted. Thus, the expression simplifies to

1 InQ)
4 2

(Sq)y = —;[nln(n) + (1 —n)In(1 —n)]+ \/T’[n In(n) + (1 —n) In(1 —n)][Af| +

) V2| Az | In[n"(1 — n)'="]
n l—n
- ~/T’[|Af |In[n"(1 — n) ]erf"( T /nd —m|In[(1 — n)/n]l)
In [1 — n]
n

2A2 In’[n"(1 — n)! ™
exp( g ol —m) )] (A65)
The terms of the first line agree with expansion (A62) around f = % + Ar/ 'V, while the second line resolves the

n(l —n)

+ 2

T (1= mnIn[(1 —n)/n]

Kronecker delta describing the subleading term —b+/¥ given by

V2|As | In[n*(1 — n)'="] )
/n(1 —n)| In[(1 — n)/n]|

2A% In’[n"(1 — n)'="]
_ 247 |
P ( (I —mnIn[(1 - n)/n])' (A66)

b= |As|In[n"(1 — n)‘—"]erfc( -

1—
In [ n]
n
This term is visualized in Fig. 6(d). Both equations above are already written in such a way that they hold for f ,n € (0, 1),
meaning that one can also plug in values with n > % and Ay > 0.

n(l —n)

+ 2

Multicritical point at [ =n = % When expanding the final result (A61) about f =n = %, where we assume that

f= % + Ay /Vand n = % + A;/+/V, we resolve the Kronecker delta at the point f = n = 1: see Eq. (A62). Now all
terms in Eq. (A61) become important and need to be taken into account:

L
5

2.2
In(2) ) \/7 ( AZln (2)) (|Af|1n(2))
hY = V— Az — . [ —|Az|ex — = — |Af | In(2) erf| ———
1 2AZ + Ay In2 2A% — Ay In2
— —(In4 -1+ eZAr'Zv [4Af erfc(M) 44747 erfc(—” s )])
4 V2| Al V2IA5
+ o(1). (A67)
The constant terms of the first line are the result of expanding higher-order terms in n and f around n =f = % The

second and third lines then contain the resolution of the Kronecker delta at f =n = % plus the offset (In4 — 1)/4. The
offset is not the result of higher-order terms, which is why we have included it in the negative term —c that is of constant
order in V. This constant is given by

1 2A2 + AsIn2 2A2 — AfIn2
c== ( In4 — 14 & [4"‘1r erfc(M) + 4N erfe (—f")]) (A68)
4 V2| Az V2|A;l

We plotted this term in Fig. 6(e). Let us mention that only the last two terms in this constant create the Kronecker delta at
f =n=j:cf Eq. (A62).
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2. Weighted average over sectors

Finally, we turn to the average over different sectors of fixed particle number N = 0,...,V, which is weighted by
exp[—wN]. Explicitly, this means that we need to compute

1 4 4
_ N —wiN
(Sa)y = a +e—“’)VNE=0 T (Sa)w
v/

1 4
- a +e—“’)Vh§N! V—N)!

eV (Su)y
1 V2

. w(N—F)

The second identity follows from the particle-hole symmetry (S4)y = (S4)y_n. It is useful to write the sum in this form
since Eq. (A61) is only applicable for N = nV < V/2. It becomes symmetric in n <> | —n when replacing all terms
in In[n/(1 —n)] by —|In[(1 — n)/n]| and in the last two terms (1 — 2n) — |1 — 2n|. All the other terms are already
symmetric. Because of this symmetry, we may also assume that w is positive, meaning that the average particle number
is smaller than %

The average of the first four terms in Eq. (A61) does not involve an exponential behavior in n. Thus, it is suitable to
expand n about its mean, which is (n) = (N}/V = 1/(1 + €") + dninthe firstsumand (n) = (N)/V =1/(1 +e™) + én
in the second one, with 8n = O(1/+/7). The order of this deviation tells us when the second sum plays a role, namely,
when w = O(1/+/¥). Otherwise, it is exponentially suppressed due to the Gaussian tail of the large-¥ approximation
of the binomial weight. Indeed, this Gaussian would also exponentially suppress the last two terms in Eq. (A61) when
w > I/W, as those only contribute when 1 — 2n is of order l/ﬁ"or smaller.

Hence, for w > 1/+/7, the average entanglement entropy becomes

1 V2 4

(1 +e—“’)VNZ=0N! (V —N)!

(Sa)y = eV (Sy)y +o(1)

1 Vi2 71 oy

= +e—“’)VNZ:0N! (V.— e
. ( S In(l—f)

—Vf [pIn(n) + (1 = m) In(1 = )] +5 + ——

-y In[rn"(1 — n)]_”]erfc[ /;ANU{]
2 n(l—n)V

_ 1)y2
(1 n)nVln( n )exp[ 2(AN_;,) ])+0(1)

27 1—n Cn(l—n)V
¥V
_ _ f 1 4 —wiN _ 2
= Sy = sy = @ +e—“’)VNX:=ON! v—m¢ W=
= (Sa)v=w L +o(1) (A70)

2

with N = 1/(1 4+ e"). The —f /2 results from the very first term in Eq. (A61), as it is the average of the second-order
term in the Taylor expansion in (n — (n)). The averages of the first-order terms vanish because of the centered Gaussian
approximation of the binomial weight. This is also why the other terms do not contribute as the second-order Taylor terms
will be of order O(1/+/¥) or smaller.

The calculation is more complicated for w = O(1/ «/I_/) or smaller. Then N is concentrated about V/2 and its difference
is of order /7. The question is where we get new contributions in Eq. (A61). Certainly, this can only happen when 1 — 2f
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is of order 1/¥ or smaller as otherwise the maximum is always sufficiently away from the multicritical point f =n = %
We go step by step through the single terms.
The terms in the first line of Eq. (A61) are symmetric and smooth aboutn = %, so that the Taylor expansion and average

will be exactly the same as in the case for w >3 1/4/7. The only thing to consider is that (N) = N = ¥z is not exactly at
V/2, but % — n is of order l/\/I_/. Therefore, we have an expansion about N = V/2, yielding

_ 1)} _
(San=n = (Sadn=vp2 — V(” - 5) +o(). (ATI)

The term in the second line of Eq. (A61) is of order V(1 — 2f ) = O(1) or smaller, so that any Taylor expansion about
n= 2 leads to terms that are vanishing in the large-V limit. The term in the third line of Eq. (A61) yields an additional
integral as the leading order vanishes and the first-order Taylor expansion gives a term of order one. This integral is

(" 2(AND)?
"(1 —n) exP[ n(l —n)V])
_ A—VW/[8 dén 2 _ (n2)*P2(1 = 2f )?
= 4e A \/2_Jrexp[ 26n ]cosh[\/l_’wé‘n] 6ne p[ o
1
ol —
(#)

4y [® ,  (In2)212(1 —2f)? 1
_Re ./; dénexp | —28n" — o cosh[«/f_/wén]cﬁn—}—O 7))

( (1 —nm)nV

2

(A72)

because AN = In(2)V3/2(1 — 2 )/(88n) with n = N /V = 5 — 8n/~/V. We have not found a way to further simplify
this integral, so we have evaluated it numerically.
Also, for the two last terms in Eq. (A61), we can go over to a Gaussian integral as any correction will be of vanishing

order in ¥ — 00 as the two terms are of order one or smaller. Hence, we have

V/2 2
1 n —wN | w(N—P)\ oV (2f —1)=2 Va —2n)
a +e—W)Vh§N! Fom¢ e )2 P 2
_ 2_ _
» erfc[ﬁ(l 2n) In(2)(1 Zf)]
V2(1 = 2n)
o5 2
=2"@-D —V“;fsf Ao osh/Pwdnler: [43" — A _2f)] O(L) AT3
e T cos [\/_w nlerfc oo + N ( )
and, similarly,
7 2
1 V! —wN | _w(N=P)\AF(1=2f)=2 V(1 —2n)
(1+e—“’)VZN!(V—N)!(e +em2 P 2
2
y erfcl:\/F_’ (1 =2n)"+In(2)(1 — Zf)]
V2(1 - 2n)
2 _
:2V(1—2f)e—Vw2/8~[0 T};COSh[ﬁwﬁn]erfc[Mn +lr:(/2§);(1 2f)] +O(%}). (A74)

We evaluate these integrals numerically as an analytical treatment seems to be out of reach.
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In summary, the entanglement entropy averaged over the particle number N at w = O(1/+/¥) or smaller and for 1 —
2f =0V 1) is

Sy — (S V(1 —2m)? 1
(Sa)w = (Sa)vy=ry2 — 2 -1
4 x In2)212(1 — 2f )?
——e_sz’isf ddnexp —28n* — (n2)77( /) cosh[ﬁ’w&n]ﬁn
T 0 8n?
® ds 46n* — In2)¥V(1 -2
_ ZV{zf_l)e_szfgf _ncosh[ﬁ’wén]erfc[ - n@n f)]
0 27 \/88n
® ds 46n* + In2)¥(1 -2 1
V=2 P8 f _"cosh[ﬁ’wan]erfc[ n” + @y - )] +0(—). (A75)
0 2w \/88n JV
Let us stress that
1 In(2) o 1
(S w=rp =@V + 7 — ——+ W@V —2f) =2"¥ D1 4 O(Wf)
1 —In(4 1
=In@)V(1 —f) + T() —2V-n-1 4 O(ﬁ) (A76)

forf < %
At last, we would like to consider the particular case f = % and w = 0 that corresponds to a multicritical point, too. In
this case Eq. (A75) simplifies drastically. Indeed, the last two integrals are both equal to

 gsn 1
fo merfc[«/ian] = (A77)

Also, the third, remaining integral can be carried out as
4 [® 1
Z f dsne " §p = — . (A78)
T Jo by

Collecting everything we find that, at w = O(1/+/7) or smaller,

1 2
S = (SO Wy — = — = AT9
(S4) (S4) vy=rp2 17 (A79)

This result can be combined with Eq. (A71) to get Eq. (67), when choosing f and n of order one and fixed without double
scaling. Then, the last term —2 /7 only appears when f = n = %, resulting in a Kronecker delta.

APPENDIX B: INTEGRATION FORMULA FOR JACOBI POLYNOMIALS

When considering the average and the variance of the entanglement entropy for ensembles of fermionic Gaussian states,
we routinely encounter expressions involving integrals of Jacobi polynomials given by

o d (! o a
I}E} 1PraBy) [E[l(l — x)2te(] +x)ﬁ2pé lusl)'}_')} 2,82J] . (B1)

e—1

In order to evaluate this expression, we write the Jacobi polynomials using one of their two representations:

k m
(@,B1) o\ (a1 + K)! k\ (a1 + 1 +k+m)! _l om

m=0

—x@A1D
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for the sum representation and

-1 1

(% (
p}( Z,JSEJ(x)
mn Y B
20 (1 —x)2(1 4+ x)P2
=y

A —x)™2H (1 4 x)P2H (B3)

for the Rodrigues formula. Note that it is important that (I —x)®2(1 4+ x)?2 in Eq. (B1) matches those appearing in

sz"s” (x). The appearing integrals can be evaluated by first an integration by parts and then exploiting the beta function
integral [Eq. (5.12.1) of Ref. [164] ], which can be identified when substituting x = 2/ — 1 and ¢ € [0, 1],

1
Tey pr.mi(€) = f (1 =)™ 01 —0)®* (1 +x)Pax
-1

_ ctpimiernn D@+ m+ e+ DBy + 1+ DEn+e + 1)
M+ pr+m+e+1+4+2)
1
“Tm—Itet1)

(B4)

where I'(z) is the gamma function. Note that this function has removable singularities at integers when m <[/ — 2 in the
limite — 1. When 0 < m <[ — 2, we can use Euler’s reflection formula [Eq. (5.5.3) of Ref. [164]],

r@rd —z) =

sin(mz) (B5)
1 sint(m—I+¢€+1) '
= = 'l —(m—1 D1,
Tm—Itet) :rr [1=(m=I+e+D]
to remove those singularities, such that
sarstpmpessi_ T@+m+e+ DIB+1+1)
) Moy ++m+e+I1+2)T'(m+e+1)
sinmm—I4+e+ 1D)I'(l—m—¢) <]_2
X s m=1I1—wz,
Tar pomi = T B6
20l = ippimierit__ D@2 tm+e+ DB+ 1+1) (B6)
Moy, ++m+e+I14+2)T'(m+e+1)
x , m=>1[—1.
'm—1I+e+1)
We can evaluate the derivative in € at € = 1 analytically to find that
T:Iz,ﬂz,m,f( l )
22+m+f+a2+|32(m+1)!;f+f2)!(m24-:12+1)1(f—m—2)! (_ 1)m+: form<1—2
(ﬂ +ba2+1H-m+ ) — £l
22+’"+’+¢2+ﬂz(mfl)!(2.*+,82)!(m+a2+1)1[1n2+¢(2+m)—-{:(2+m—1)+-b(2+m+a2)—¢(3+m+f+a +55)1 (B7)
(g +Ba+HHm+2) (m—I41)! :
form=1-1,
for the respective integer cases of m, where the divergences have been removed accordingly. This yields
k
[éau,ﬁl,az,ﬂzJ — IHZXHE%&,H 1;2’182‘!”,1(1) . (B8)

m=0

F
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The summand F' for m < [ — 2 can be written as

F o (1t K@D A4 B! (4 m)! A= m =21 (4 m + )
k! m! (k—m)! (m+ap)!
8 (k+m+aj + B1)!
Q+l+m+az+ B)!

I—m—2)! (1 +m+ay)!

o 1\In 2+ +B
= (2 ) (4 B! (14 m)

8 (k+m+a; + B1)!
Q+l+m+ar+ )

(B9)

The difficulty lies in the evaluation of this sum, which simplifies drastically for suitable k and /, as well as «; + B, and
a2 + B2. While there may exist a method to evaluate Eq. (B8) for general values, it will suffice for our purpose to compute
for the specific situation we encounter.

APPENDIX C: PURE FERMIONIC GAUSSIAN STATES

1. Average entanglement entropy

We start with the one-point function R; (x), normalized to fol Ry (x)dx = V4, which can be shown [136,159] to be given
by

V-1 V-1
1
R =) U0 =01-9%) ~[P P, (C1)
n=0 n=0 ™

where A =V —2V,, PP refers to the Jacobi polynomials, and the constant ¢, is given by

B 22A12n + A)IP?
= M Cnt2A) @nt+2A 1 1)

(€2)

An important property of orthogonal polynomials is that they satisfy the Christoffel-Darboux relation [Eq. (18.2.12) of
Ref. [164]] that expresses the above sum in terms of the polynomials and their first derivatives of the highest orders.
This is useful for analyzing the asymptotic behavior. This Christoffel-Darboux formula, for a general set of orthogonal
polynomials p,(x) with normalization c,, reads

Va—1

2 k B
Z Pnc(x) _ - VAIkIV [Py, ®py—1(x) = py, 1 (Dpr, )], (C3)
n=0 n A— 1%y

where the coefficients k, are the leading-order coefficients in p,(x). In the present case of the Jacobi polynomials, we can
exploit an additional recurrence relation [Eq. (18.9.15) of Ref. [164] ], and the known coeflicient k, of the highest power
in the Jacobi polynomials,

This allows us to write R (x) as
Ri(x) = V4[A1Fi(x) — A2F>(x)], (C5)
where we have introduced the abbreviations
A= ky,_2 2A+2V4+1 Fi(x) = (1 — xz)apg(;%:_liaﬂ)(x)Péﬁ;g(x), (C6)

cawv —2kav, 2
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kgVA_g 2A 42V, —1

Ay = ,
cawvy—2kav, 2

Fx) = (1 = xX)APRHATD ) PS (x). (C7)

We make use of this simplified expression for the level density to compute the average entanglement entropy (S4)gy =
fol R (x)s(x)dx for Gaussian states, where the empirical entanglement entropy in terms of the eigenvalues x is

s@%:—(l;x)m(ljx)—(l;x)m(l;x):ﬂn2—%&ﬁl—xf+%1+xfkﬁs (C8)

where s(x) was introduced in Eq. (78). The trick with generating the logarithm by a derivative is a standard one and it is
related to the replica trick. The advantage is that we can understand the factors (1 &+ x)¢ as a tractable deformation of the
original weight (1 —x2)2 = (1 —x)2(1 +x)2.

Because of the normalization of the one-point function fol Ri(x)dx = V4 and the symmetry s(x) = s(—x), the average
becomes

Sa)gn = Valln2 — A1) + A2D], (C9)

where we have introduced the integrals

 [(A+LA+LAA)  (A+LA+LALA) -
h=1loy, 2y L=1ay, 300, (C10)

where Ié?l’ﬂl’az"s” was introduced in Eq. (B8) and reduced to a sum in Eq. (B8). Note that the factors of 1 in Eq. (C8)
were canceled by the symmetrizing over x — —x. Both sums can be performed analytically, leading to the full expression
given by (89).

2. Variance

In Eq. (92), we have seen that the variance of the entanglement entropy can be expressed in terms of the integrals

1
%szwmw%wm

1

d ! P €
:_EE[L[U +x)°+ (1 —x) ]u'ff(x)%-(x)]

— (ﬂ,ﬂ,ﬂ,ﬂ) A
= I , (C11)

e=l1

where ;(x) and s(x) were introduced in Eqs. (88) and (78), respectively, and we used the fact that ¥;(x) = ¥;(—x). For
i<j,

.S'% ZINRAHAHD) (A +HD(2A+2] 1) (2A+HY +l)[2(a+i)]![(l+a—232)i—2(a—l)i2+(&+l)(2j+l)(a+j )]2

if 2020)1(2i=2j +1)2(i— )2 (=2i+2 + 12 [2(A+7 + DI A+i+7 )2 (A+iH +1)2 QA+ 2i+2j +1)? ’

(C12)

where Eq. (C12) is only valid for i < j, which is all we need for the sum in Eq. (92). Despite all terms in the sum of Eq.
(92) being nonzero for large N, it is dominated by the summand S%;A_LNA, so that it makes sense to consider the limit

— lim & _(ff = D)HEEDRE 42143 — 4f (k+ 1+ DT
= NLHCI,OSNA—I—-'JVAHC - 4k+1+ ])2(2k+ 21 + 1)2(2k 20+ 3)2

Efzk (C13)

with fixed f = ¥V, /V. Summing over Eq. (C13) then yields Eq. (93).

APPENDIX D: PURE FERMIONIC GAUSSIAN STATES WITH A FIXED NUMBER OF PARTICLES

1. Average entanglement entropy

The idea behind computing the entanglement entropy for Gaussian states is based on a different random matrix average
than that in the Page setting. Since a formula for the entanglement entropy a la Page is not at hand, we derive it in the
present section. Let us briefly outline the strategy.
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1. The goal is to compute (S4)gy = fol s(x)R1(x)dx as explained in the main text.

2. We can express R;(x) as a sum of Jacobi polynomials and s(x) as derivatives in € of powers (1 £ x)¢ evaluated at
€ = 1. This is a crucial trick that allows us to deal with the logarithm in s(x).

3. In order to simplify the integral, we first apply the Christoffel-Darboux formula (turning the sum of V4 terms into
a sum over two terms) and then express one Jacobi polynomial as a sum and the other as derivatives via Rodrigues
formula.

4. This gives (Sq)gn as a sum of known integrals (of which some need to be regularized) that can be eventually
evaluated.

As already mentioned, we start with the level density R; from Eq. (110) that describes the eigenvalues of a truncated
unitary matrix. It is given in terms of Jacobi polynomials and the associated weight (1 — x)*(1 + x)#, with respect to
which they form an orthonormal set. In particular, the level density is

V-1 Vy—1

1
Ri) =) 9,00 =1 =00 +0)f 3 —[PP @) (D1)

n=0 n=0 "

with ¥, (x) as in Eq. (109). An important property of orthogonal polynomials is that they satisfy the Christoffel-Darboux
relation [Eq. (18.2.12) of Ref. [164]] that expresses the above sum in terms of the polynomials and their first derivatives
of the highest orders. This is useful for analyzing the asymptotic behavior. This Christoffel-Darboux formula, for a general
set of orthogonal polynomials p,(x) with normalization ¢,, reads

VA_lpz(x) k-1 ’ ’
> = = Py, Py @) = Py Py, ) (D2)
n=0 n A A

where the coefficients £, are the leading-order coefficients in p,(x). In the present case, we can again use the known
relations from Eq. (C4). Thus, R;(x) is expressed as

Ry (x) = V4[4 F1(x) — AyF(x)], (D3)

where we have introduced the abbreviations

Al _ kVA—](a + ,8 + VA + 1)1 Fl(x) — (1 _x)l’-!(l +x)18‘pl(;t1]"8+l)(x)p}(f‘f{ (x), (D4}
2V ey, —1ky, . !
Ay = Mamt @HBAVA b a0 +0)fPEEFD )PP (x). (D5)

cy,—1ky, 2

We make use of this simplified expression for the level density to compute the average entanglement entropy (S4)gn =

fol R (x)s(x)dx for Gaussian states, where the empirical entanglement entropy in terms of the eigenvalues x is

() (152) (5 () - oo

where s(x) was introduced in Eq. (78).
Because of the normalization, fol Ry (x)dx = V4 and the symmetry R, (x) = R;(—x) by construction, the average reduces

to
(Sidon = Va[In2 — 3411, + 14,5]. (D7)
Here, we have introduced the two symmetrized integrals

I _Ii(fj-l——ll f{:lﬂﬁ) +I]E£-I_—L,a:l,f '1), L= I(ﬂf-l‘],ﬁ-i-]ﬂ B) +[U9‘_|‘;ﬂ:1 ﬁﬂ)j (DS}

where I,E;“"‘B"QZ’BZ) was introduced in Eq. (B8) and reduced to a sum in Eq. (B8). Note that we used PP (—x) =
(—x)"'P,E‘S ) (x) to arrive at this symmetrization.
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Only the last two terms in the sum need to be dealt with in the second case because those correspond tom = n — 1 and
m = n with n = V4 — 1. This leads to the following lengthy expression:

2V ta+ B Vata—DI(Vi+ B —1)!
- Vy—1NVs+a+B+1D!

V=3
(m+1)
x[mzzo(VA—m—2)(VA—m—1)

+@+B+2V)(In2 - Vy+ W (Vy) — V(1) — W(a+ B +2Vy))

L

+Va+a)V(Vy+a)+ Vy+B)VYFVs+B)+a+ B+ 3VA]- (D9)

The cumbersome looking sum can be in fact carried out exactly with the help of the following identity that is based on a
series representation of the digamma function [Eq. (5.7.6) of Ref. [164]]:

n

m+1) B Z B - |
Y Grm@TnT) Tizen | TYEtn+h-vd). (D10)

m=0
Thence, we arrive at

HEANV(V =N — D! [V + VIn2 + NU(N) — VWU (V) + (V — N)¥(V — N)]

3., =
NVa—DI(V—Va+ 1)

(D11)

In a very similar way, we can also evaluate /; as

V42
L = Z Y(VA)[X”(:{I+1,JB+1,VA—2)T(’I,B‘VAJ"(I)_I_X’;ﬂ+l,a+l,V,¢—2)?—-’8‘a,VA,m(l)]
m=0
- 2;!Jroyrﬂ(ZV,;, +a+B)Via+ta—-DIFs+ -1
Vil (Vg +a+ B)!

V4—2 (m+1)

X
,g Vata+B+m+D)Va+a+p+m+2)

22T (Ve T (Vy+ BV — 1+ 2V +a+ B (¥ (L +a+S+V )~ 2V +a+8))]
= VT (V44 +B)!

DALUN — NV =N=DI[Vy—1+TOV+1—V,) — T¥ )]
VL (V= V! '

(D12)

In this case, we have not needed to consider different cases of Eq. (B7). It always holds thatm <n — 2 withn = V4 — 2.
In the fourth line, we employed anew Eq. (D10) to express the sum in terms of digamma functions.

Finally, we combine both terms (D11) and (D12) according to Eq. (D7). After canceling the various factorials, we
eventually arrive at the expression

14 14
(Si)oy =1=—2(U+ V) + V(W) = ZLV = N)W(F = N) + N¥®N)]
+ Va =NV =Va+ 1), (D13)

quoted in the main text. This average has the particle-hole symmetry N <> V' — N, as can be readily seen. Let us highlight
that the symmetry between the number of particles N and system size V4 is not visible since the formula above only
holds for ¥4y < N, ¥ — N. The symmetry is enforced by hand, where one needs to reflect V4 <> N in the formula when
V4 > N. In this way one also gets the mirror symmetry between two subsystems 4 <> B reflected in V4 <+ V — V4. The
latter symmetry and how it is introduced, namely by hand, is shared with Page’s setting.
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2. Variance

In Eq. (92), we have seen that the variance of the entanglement entropy can be expressed in terms of the integrals

1
sy = f SV ()

:_EE[ f [(1+x) + (1 - x)f]w;(x)wj(x)]

e=1

E(Iy('mﬂ‘a,m + (- l)i+j[y(_a,3.a,m), (D14)

which are only needed for the indices i < V4 < j. Note that the integral in the second line is of the same form as that in
Eq. (B1), which was reduced to a sum in Eq. (B8). Thus, we can express the result as the sum

Iy =) YOXEPIT, , o (1) + ()P X BT, (D], (D15)

where ¥, X, and T are defined in Eqs. (B2), (B3), and (B7), respectively. In order to compute the sum, we need to
distinguish the casesi+ 1 =j = V4 and i + 1 <j due to the case discussion in 7. The resulting expressions are rather
unwieldy, but we can simplify them by definingi = V4 — 1 —landj = V4 + k and then taking the thermodynamic limit
V — o0 to find that

_ S =2 =2( — D@ —Dn In[(1 - n)/n]]z

)
Soo = llm 5'%1,—1 Ve =

(f =Dm—Dn
=2 .
Sik = Jim V1LVt (Dl6)
— [ @kt 2m+ Qe ) (1 D R (- D Q kDt f (et 2] (D17)

(F =D U+D? (1+k+P)2 Q+k+D2 (n—fn—n 4fn?) 1 HEH

Sum (92) is certainly a finite sum of generalized hypergeometric functions after taking this limit. What has been rather
surprising for us is that it can be performed exactly, yielding the relatively simple expression

o0
. 2 . -
Jim (AS)Ey =) 5y
Lk=0

—In(1 —f)+f +f2+f2(2n—1)ln(l ;")

+f(f—1)(n—1)n1n2(1;"), (D18)

which is the main result of this section.

While our representation of s; has not been suitable to perform the full sum for finite size V, the asymptotic result looks
as if it is possible to compute the variance (AS4)gn as an expression of digamma functions at fixed ¥, similar to (S4)
from Eq. (113). For this, it will likely be beneficial to find closed formulas for the inner product of different orthogonal
polynomials along the lines of Ref. [149]. In fact, such methods have already been used to find a closed expression for the
variance (ASy)¢ of the entanglement entropy for the ensemble of all Gaussian states [177].
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a. Weighted average over sectors

As in the Page setting, we can average the entanglement entropy over all particle-number sectors with a binomial weight
for Gaussian states, as well. Employing the same notation as in the Page case, the binomial weight

V 14 —Nw
o= (3)r"d " = (V) ey

e " d _1 _ 1
14+e™ and q4= p_1+e—“’

(D19)

with p =

depends on the parameter w, which tells us how likely it is to find a system with a particular number of particles in it.
Because of the symmetry we can assume anew that w > 0, where w = 0 corresponds to the symmetric probability weight

vV
ew(N) =2 V(N)-

Let us recall that this binomial distribution is characterized by the mean N, variance A%N, and skewness VN

_ Ve ™ Ve™™ q—p 2 sinh(w/2) .
N=Vp= ., (AN?=Vpg= ———, and vy= = ) D20)
P=Tiew (AN) Pd= Gy N= NG (D20

We need these quantities for our dual approach when averaging, which has been similarly applied to the average over
Ny in Appendix A 1c. As in the Page case, we have to deal with kinks in the entanglement entropy averaged over all
Gaussian states, which result from the fact that we have to introduce the symmetry in the particle number N = n¥ and the
subsystem size ¥4 = fV. We would like to highlight that, despite the difference in the physical origin of the average, for
Page over N, and in the present case over N, the mathematical problem is very similar. The average will be split into a
sum extending over the whole range of N = 0,. .., ¥ for the part of the quantity that the maximum of the binomial weight
ow(N) lies in. For this quantity, we make use of the exact cumulants shown above. In the remaining parts, which are
subleading as we will see, we approximate the binomial distribution by a normal distribution and the sum by an integral.

In the particular case w = 0, the skewness of the binomial distribution vanishes. This will have an important impact, as
we will see since many terms will drop out.

Let us briefly outline the strategy.

1. In Appendix D 2 b, we assume that f < % and w > 0 (thus, the average particle number 7 < %} are fixed and do not
follow a double scaling in the limit V" — oo.

2. We expand (S4) ¢y up to order 1/¥, where we make the surprising observation that there is no term of order 1.

3. To get the correct weighted average up to order 1/V it is therefore sufficient to evaluate (S4)gy at N = N = Va,
where the binomial distribution is peaked and then take the binomial average for the leading-order term SE in
(Sadgn = stf + O(V~") into account.

4. For this, we expand s§ around 7 up to fourth order. The nonanalyticities along the symmetry axis f = n have to
be dealt, separately, but as the binomial distribution becomes increasingly narrow around #, we only need to take
them into account if n = f .

5. Combining all terms than yields the weighted average (Sy4)¢,, up to order O(1/¥) for fixed f* and n.

6. In Appendix D2 ¢, we zoom into the critical line n = f < % and the multicritical point n = f = % The critical
regime about these points is dictated by the width of the binomial distribution, which, for n = N/V, is of order
1/\/?. This allows us to resolve any kinks in the expansion up to order O(l/\/T’).

b. Resulting formula

When we take the averages, we need to respect the validity of Eq. (D13), which is V4 < N < ¥V — V4 or, equivalently,
f <n <1—f.Hence, we must take into account the kinks we introduce when we enforce the symmetries f <> n <
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TABLE II. The probability distribution g,,(n) is peaked around n, so we expand
sf = Z:I:D sg”) (n—n)™ + O(n — n)° from (St)en = st + O(VY) up to fourth
order for the cases f < nand f > n, showing the nonanalyticity of (S4} sy around
f = n. This nonanalyticity only shows up starting with the third order. The coef-
ficients for n > 1 — f follow from the first column when substituting n — 1 —n
and multiplying by (—1)™, which is a consequence of the particle-hole symmetry
n <> 1 — n of the entanglement entropy.

m sf,m)forngfg% sg”)forfgngl—f

0 (f —Daln(l —f) —a(l +f Inf) f —DIn(1 —f)
+( — 1)In(1 — ) +f[(mn—1)In(1 —n) — 1 —nln#]

I (f -DIn(~f)—fInf +In(l —n) f In[(1 —n)/n]

2 1/2(n—1) f/2(m—n

3 —1/6(n — 1)? (f —2f m)/6(n— 1)°n°

4 1/12(n — 1)3  /1D[1/( — 1) — 1/72%]

1 — n. We have the identifications

N
1— =1+ V) + V()

—7[(V— VWV — V) + V¥ (Vy)]

+(N = V)WV =N + 1), N <V,

v

1— =214V + V()
Soxn =1 —Z2[ = MYE = N) + N@)] (D21)
+Vy =WV -V +1), Vi< N=<V—Vy

V—N
l———0+N+Vup)
VZN
—— [V =V)W(V = Vi) + Va¥ (V)]

~NUN + 1), V—V4<N.

Hence, when denoting the mean n = 1/(1 + €"), around which we need to expand (S4) y, it is necessary to distinguish

the three cases n <f,f <n<1—f,and | —f < n, as each of them requires a different expansion. What is very

beneficial is that (S4) gy agrees up to order 1/V in the limit /' — 00 so that the expansion coefficients will be the same.
We begin by expanding (S4) ¢y as

4
m —m , S40 _
(Sadow =V si" =) + == + o)

m=10

SA=f)+fn(l—n) (D22)
1200 —f)A —nm)n
n(l—n)+fn(l—f)

21 -0 =nf

with s40 =

:a |

£l

Since n — i1 will be of order 1/+4/¥ and we multiply by ¥, this Taylor expansion corresponds to an expansion of up to
order 1/V. We list the respective expansion coefficients Sf{mJ in Table Il forn < 1 —f, which are all of order one when we
do not choose any double scaling limit in / and n. The coefficients for » = 1 — f° can be obtained when employing the
symmetry n — 1 — n in the case n < f . The constant 54 is stated separately because it is the only one that is explicitly
multiplied by 1/V while the ¥ dependence in the other terms only enters via averaging over (n — n)™.

When computing the leading-order behavior of the respective average (S4)¢,,, we need to compute the averages
{((n —n)™) of these powers. As long as |f — n| is larger than order 1/\/1_/ and n < %, which is equivalent to w > 0,
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the power series will be the same on both sides of the maximum, i.e., for n > n and n < n. Then, the kinks are not vis-
ible as they are too far away to have a nonexponential suppression. So we can use the known averages of the binomial
distribution given by

1, m=20,
0, m=1,
p—g, m=2,
T m_31
12
2.2
pPq 1 —6gp
3 =4
V2 ( * Vpq ) me
with
[ B
p_1+ew_n an q_l—l—e—“’_ n.

Hence, in the case |/ — 71| 3> 1//V with0 < 71 < % the full average is given by

sO 43— P + 22 oY, (D24)

(Sa) G = Vs +1(1 — 1) % %

(@ 4 a(l—n)(1—2n) 5 A*(1—n)?% 4 S
v

where we have used the fact that the next-order term ((n — 71)®) would be of order ¥~ since the leading order has a
vanishing asymmetry.

In Eq. (D24), only the coefficients sfto) and Sff) are important when one is interested in terms up to order 1. Table 1I
shows that the expansion coefficients up to order 2 are continuous at f = n. Thus, Eq. (D24) still holds up to order 1 even
when |f — 1] is of order 1/+/7 or smaller. The key subtlety of this formula lies in the third and fourth moments. The cause
for this is a discontinuity showing in the third and higher derivatives of (S4) y atfV' = V4 = N = nf . This requires us to
compute the expectation value of (n — i) and (n — i)*, separately, when | —n| = o112,

For this purpose, we need to approximate the average over the binomial distribution by a Gaussian integral. However,
we need to take particular care beyond the Gaussian case, which is given by the Edgeworth series

JV
V2r[a(l — 7)) + O(1/V)]

Such a series approximates the original probability distribution while cumulants up to a particular order are chosen to be
exact. In our case, the constant & is chosen such that we match the skewness of the binomial distribution, i.e., the case
m = 3 from Eq. (D23). This leads to the requirement that @ = (¢ — p)/3pq = (1 — 2n)/3n(1 — n). The normalization
stays the same up to order 1/V as the Gaussian without the Edgeworth series because the first-order correction drops out
when integrating over n.

We can stop with the first order since (n — n) = O(V—12) and the zeroth, first, and second moments of the binomial
distribution do not need this approximation because the coefficients are the same at f = n. The fourth moment of the
binomial distribution already comes with order 1/V [cf. Eq. (D24)], such that the Edgeworth series is not needed for
this term as it gives only higher-order corrections. The only term that has been treated with the Edgeworth series is the
third-order term (2 — n)* that a priori starts with an order 1/73/2. Thence, the correction via the Edgeworth series only
mixes the third with the fourth moments so that the 1/V term is correctly attributed.

When expanding sff from (Sa)gn = stf + O(V') around i1 = f , the expansion coefficients SS") differ at m = 3 for
n < f and n > f. We refer to these different coefficients by sg"_) and sﬁ"“, respectively. The resulting average is then
given by

ow(Vn) = e V=2 /A-D[| 4 o(n — 71) + O[(n — 7)2]]. (D25)

4
m— —m 54,0
(Sa) G0 = VmZ::‘]sE, o —m)") + =7
o0
+ VG —58) f 0 (m)(n — i)’dn + O(V /%), (D26)
f
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where we first expand everything forn < f and then correct for n > f* at third order. Most expansion coeflicients Sf{mi)

can be read off Table I1 except forn=f = 5 In this case, there is no region with f < n < 1 — f such that we have the
expansion forn <f =3 landn>1—f = % The coeflicients for the latter can be retrleved via the n — 1 — n mirror

this yields s(3+) (3 ) =

symmetry, which implies that ( P = (- D™s, ") When expanding s§ around 71 = f = 2, 3
Recall that we consider n < 5 and hold n and f fixed, when taking the limit ¥ — 00. The double scaling llmlts when
zooming into the critical points, will be discussed in Appendix D 2 c.

Whenever [ # n, the error is exponentially suppressed for ¥ — 00, which is why we only need to take this term for
f = n into account. While the averages ((n — n)™) from Table 1I are exact, the integrals in Eq. (D26) have an additional
error due to the fact that we approximate the binomial sum by a continuous integral. However, at third order this will only
induce a subleading error of order ¥—>/2 (eventually of order ¥—3/2 after multiplying by V).

In summary, we evaluate Eq. (D26) to find Eq. (118) of the main text, where we included all terms up to order 1/V and

indicated the correct next order based on the numerical results shown in Fig. 11.

c. Resolving the critical regimes

The average (Sy),, is described by a continuous function at linear and constant order in ¥, but the term of order 1//V
only appears when / = n. Based on our previous analysis, it is therefore a natural question to analyze this term to under-
stand how this critical regime is resolved when being close to n = f. The width of the approximate binomial distribution
ow(n) scalesas 1/ V7, so onlyifn=f + Aﬁ/\/l_’ will the discontinuity in the third derivative contribute to the average.
We therefore analyze this limit to resolve the term of order 1/+/¥ around f = 7.

In the following, we only analyze the contribution towards the 1/+/7 term. While there is also a discontinuity at order
1/V, the actual calculation is rather tedious and the result is quite lengthy, but can be carried out with the same techniques
presented here. For our purpose, it is indeed sufficient to resolve all dlscontmumes up to order 1//7.

Transitionatn = f = ] Around the multicritical pointn = f = 2 , the correction of order 1/+/7 is due to the discon-

tinuities of the third derlvatwe in s§ f‘ (f ,n) with the two casesn < f and 1 —f > i > f that need to be distinguished. We
recall that (Sy) gy = Vs$ + O(V—"). The relevant scalings of 7 and f are given by

lA— 1Af

The two kinks result in two discontinuities in the third derivative of sff(f ,n), namely at n = % +As/ V7. Those imply
different formulas in the entanglement in the following regions (see Fig. 18):

(D27)

s§(n,f) inregionl,n < = — —=%

|Ar| 1 A
PV )
As] _

N

Here the function s$(f , n) represents the leading order in (S4)¢ N = = Vs§(f ,n) + O(1) (computed forf <n < % and then
analytically continued), and is given by

s$(f,n) inregion 2,

1
“ —n,f) inregion 3, 3 +

sf(f,n) = —-DIn(l—-f)+f[(n—1)In(1 —n) —nlnn—1] (D28)

in the region f < n < 1, which is actually also valid for % < n <[ (so that we did not have to split up region 2).

The main idea of the ensuing computation is to choose the region where 7 lies in and then use Eq. (118) for this
particular region. Since there are also contributions from the other regions because the width of the binomial weight also
covers parts therein, we need to additionally compute the average over the difference between the corresponding cases
in Eq. (118) over these regions. Let us underline that, when w > 0, it holds that 7 < % Thence, it holds that A; < 0 and
there are the two cases,n < f and | —f > n > [, to distinguish that are reflected in A; < —|As|and 0 > A; > —[Af|.

Case 1: Az < —|As|. Asn < [, the maximum of the binomial distribution lies in region 1. Hence, we rewrite the three
sums that constitute the entanglement entropy into a sum where the index for s %(n,f ) runs over the whole range from 0
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FIG. 18. Illustration of integrals. We illustrate the calculation of d (S4),, around n = f = %, where (a) refers to case 1 (with Ay =

—1, Az = —1.2, ¥ =30) and (b) refers to case 2 (with Ay = —1, Az = —0.8, V' = 30). Note that we use different scales for g,, and
sf. Also, the proportions are slightly off since we have used a relatively small V. The size of region 2 is comparable to the width of the
binomial distribution when ¥ > 1.

to ¥ and then sum over the correction, which is the difference to Sf (n,f ), in the other two sums. In particular, we write

Vi V—¥4—1
Sddaw=VY_ euMs{m)+V Y o,M)si(f.n)
N=0 N=F4+1
¥V
+V ) ew)s§—nf)+00
N=V_Vy4
v V—V4—1
=V owMs§mf)+V Y ow®)sus§(f ,n)
N=0 N=VF4+1
¥V
+V ) SowW)s§(f.n) + 0. (D29)
N=V_Vy4
The differences are defined as
Sus§(f.m) =s§(F . m) —s§nf), 8§ .m) =51 —nf) —s§n.f), (D30)

and they are illustrated in Fig. 18. For the first sum, we can employ the first case in Eq. (118). The other two sums simplify
when noting that the differences 815§ (f ,n) and 831s$(f , n) have vanishing partial derivatives at f = n = % up to order
2. Thus, we can replace g,,(¥n) by its Gaussian approximation without the Edgeworth series correction because the terms
will already start with order 1/+/7. The total correction can then be summarized as the integral

_ 3 1-f o0
dSaes P=ry. (amsg”’ f 0w(Vn)(n — 7)"dn + 53155 f 0(Vn)(n — ﬁ)’”dn)

+o(1//7), (D31)

where S,jsg") are the respective expansion coefficients from Eq. (D30) expanded in (n — n)™. We directly combine the
result with the second case.
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Case 2: 0 > Az > —|Ay|. Now, the main contribution comes from region 2 where % — Af/ﬁg n< %—l— Ar /\/I_/.
Therefore, we split the sums as

V V4 V
(S =V Y 0wMWSAm) + VY 0uW)8si(fm) +V Y 8310u(N)Sss§(f,m) +O(V") (D32
N=0 N=0 N=V-¥4
with
818§ s m) =G f) —sG(Fm),  Sxs{(fm) =G —nf) —sG(F ,m). (D33)

The latter are illustrated in Fig. 18(b). As in case 1, we replace the first sum by the second case in Eq. (118), and
approximate the remaining two sums by the Gaussian integrals

SA)H = 2 = VZ (SIES(m)f Qw(VH)(n — n)mdn +3325(M) foo QW(VH)(H _ﬁ)mdn)

1 o(1/4/7), (D34)

where §;; .S';mJ are the respective expansion coefficients from Eq. (D33) expanded in (n — n)™.
We combine both cases and extend the result to positive and negative Ay and Aj; by applying the symmetries of the
entanglement entropy resulting in the absolute values of Ay and Ajz:

d (S4 )'ﬂ"'r 12 _ 12[\/_( —2(1A7 |-1AR |J2[1—|—2(|Af| |A:D2]

+ 2N NI (1A |+ A7)
— (A7 1+ 1AGDD3 + 4(1As | + A7) lerfe[v2(1 Ar | + |AzD)]

1
— 1Az = [AGIIE3 + 4(1Af | — |AsD) Jerfe(v2]| A | — IAﬁII)]W]
+o(1/V/V). (D35)

We still need to expand result (118) around f = % + Ar /vVandn = % + Ai/~/V, where we expand the case f <7 <

1/2 in Eq. (118) for the case 1 of the present subsection and the case n < f < % for the case 2 of the present subsection.
Adding the correction from Eq. (D34) leads to the final result

n=f =+ 1 1
max(|Ay |, |As]) L o
— ——————— (@ + 12min(Ar, Aj) + 4max(Ar, Aj))—
6 ( ( f ) ( f ))\/F_’
+d (S0 ="+ 00/1). (D36)

This result reflects the fact that the nonanalyticities only show in the 1/+/¥ corrections and lower orders. In Fig. 10(d),
we show d (S,;)” =12 , which resolves the Kronecker delta §; ¢ 1,2 contained in Eq. (118).

The computatlon above could have also been computed in different ways. For instance, an expansion of all quantities
aboutf =n=n= % would have led to the same result. This approach would not need any case discussion at the expense
that the error functions involved have to be expanded as they contain terms that are proportional to /7.

Transitionath =f < 5. Aroundn=f < 3 w1th 1 —2f > 1//7, the correction of order 1/+/7 is exclusively due
to the discontinuity of the thlrd derivative in (SA)GN, so we only need to analyze this case. Applying the same strategy as
before, by looking for the main contribution in the sum, we need to distinguish if » < f and 7 > f. We emphasize that

030201-69



EUGENIO BIANCHI et al. PRX QUANTUM 3, 030201 (2022)

———————————r————————————— ———————r——————————————
140F i H0.14 140 i H0.14
(a) f f : (b) f f l
2 ] LA B 1 LA
120 : 0.12 120 i 0.12
100 g n ' H0.10 100} | H0.10
8sG(f,m)
80t H0.08 - H0.08
& o & —8s§(f,n) N
60f H0.06 - H0.06
— Ew(“) — Qw(“)
a0t o ~0.04 40l o ~0.04
sG(n, f) — sl f)
20r — sS(fm) 7002 2r sitfn) 002
of H0.00 o H0.00
1 1 1 1 1 1 1 1 1 1 1 1 1l 1 1 1 1 1 1 1 1 1 1 1 1 I-rl 1 1 1 1 1 1 1 1 1 1 |:| 1 1 1 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
n n

FIG. 19. Illustration of integrals. We illustrate the calculation of d (S4),, around f = %, where (a) refers to case 1 (with Ay = —0.1,
¥ = 30) and (b) refers to case 2 (with Ay = 0.1, V" = 30). In contrast to the previous case around f = n = %, we can ignore the third
regionn > 1 — f as the effect is exponentially suppressed. Note that we use different scales for go,, and sff. As in Fig. 18, the proportions
are a bit off due to the relatively small V' that has been chosen (to enhance readability). Actually, the dashed vertical line lies inside the

width of the binomial distribution for V >3 1.

contributions from region 3, where n > 1 — f, are always exponentially suppressed because this region lies at a distance
that is much larger than the width of the binomial distribution.
Case 1: n < f. In this case, the main contribution lies in region 1 [see Fig. 19(a)] so that we express the average as

V V
(Stdew =V owMs§F. W) +V > 0uw)12ds§(f ,n) + O (D37)
N=0 N=V4+1

with 8sG(f,n) = s$(n,f) — s$(f,n) and s§(f, n) given by the first case in Eq. (118). We recall that the sum over the third
region is exponentially small. When expanding about 7 < f, we need to take into account the nonanalyticity that shows
up with the third partial derivatives in n and f. As before, these orders of the Taylor expansion come with the order 1//7
once we have multiplied with the prefactor V. Therefore, the correction is given by

- 3 oo
d(Sa)g, P =V asy f 0w () (n — i)"dn + o(1/V), (D38)
m=0 f

where the additional error by approximating the discrete binomial sum by an integral over g,,(n) is subleading, as it

will contribute towards the overall error of order 1/V. The coeflicients 33}?J are the Taylor expansion coeflicients of the
difference 855 (f , n). Those are given by

G __(f—ﬁ)3[f(4f—2fz—3)+ﬁ] (f —n)*[f (7f —4n—5) + 2n] -
ilfm = R —oya 6/ — D7 o=
-mB-2oG+D+a], _, [FGf —4-3)+20] _,
R T B A R
+Ol(n — n)*]. (D39)

These coefficients are the final ingredient to evaluate Eq. (D38). Before we do this, we also consider the second case and
then directly combine the results.
Case 2: n > f . Now, the main contribution lies in region 2 [see Fig. 19(b)], and we employ the splitting

v Vi
(Sdgw =V 0wM)s§mf) = VY 0wM)s12855(f ,m) + O(V™") (D40)
N=0 N=0
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with the very same szf(f ) =5 “n,f)— sy G(f ,n) as in case 1. Repeating the same steps as in the previous case, we find
the correction term

d (S4)iT <12 = VZ 5 f 0u(m)(n — 7)"dn + 0(1/3/P), (Da1)

where the overall minus sign comes from the fact that the error for n < f* is just opposite to that previously calculated,
i.e., the expansion coefficients ds (mJ are still those listed in Eq. (D39).

Using the absolute value to umfy the previous results of both cases for a general 1 = f + A;/+/¥, where A; can be
both positive or negative, we arrive at

a5, )n <12 (e—A,%{Zf(l—fJ(szﬂ _ofn —f”zA%)
65 T—7f 27
4 AlBA =7 + AZJerfc(|A5 VW))
= 1 D42
2(0—1)f NZAR o(1/VD). (D42)

We can relate this result to our previous finding in Eq. (D34). If we set A; — A; + A; in Eq. (D34) and then consider
the limit Ay — 00, we reproduce Eq. (D42) atf = 1 from above. Consequently, the different limits connect at f as
expected. i

The full asymptotic of (SA)ET‘{ =12 s given by first expanding formula (118) in the respective regions for f < n and
f > n (depending on the sign of A;) and then adding the corrections (D42). Forn = f + A;/+/V, we eventually find that

_2,

SO =P =10 = )In( —f) —f A +f OV + Azf [In(l —f) — Inf WV

1 A2
_E(I—f _f)

[@(Ag)A%(l—Zf) - @)(—Aﬁ)(3+ A} )] 1

6f (112 6 a=2) I
+d (S, 0/, (D43)
where ® is Heaviside step function [with ®(x) = 1 for x > 0 and ®(x) = 0 otherwise]. We show d(SA)G"r< 2 in Fig.

10(e), which resolves the Kronecker delta §; 5 contained in Eq. (118).

Anew, one could have taken again a different approach without case discussion and an expansion about n =n =/
This would have given the same result only the Heaviside step function would have been encoded in additional error
functions whose argument would have been proportional to ﬁp
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