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T h e e nt a n gl e m e nt e ntr o p y of s u bs yst e ms of t y pi c al ei g e nst at es of q u a nt u m  m a n y- b o d y  H a milt o ni a ns

h as r e c e ntl y b e e n c o nj e ct ur e d t o b e a di a g n osti c of q u a nt u m c h a os a n d i nt e gr a bilit y. I n q u a nt u m c h a oti c

s yst e ms it h as b e e n f o u n d t o b e h a v e as i n t y pi c al p ur e st at es,  w hil e i n i nt e gr a bl e s yst e ms it h as b e e n f o u n d

t o b e h a v e as i n t y pi c al p ur e  G a ussi a n st at es. I n t his t ut ori al,  w e pr o vi d e a p e d a g o gi c al i ntr o d u cti o n t o

k n o w n r es ults a b o ut t h e e nt a n gl e m e nt e ntr o p y of s u bs yst e ms of t y pi c al p ur e st at es a n d of t y pi c al p ur e

G a ussi a n st at es.  T h e y b ot h e x hi bit a l e a di n g t er m t h at s c al es  wit h t h e v ol u m e of t h e s u bs yst e m,  w h e n

s m all er t h a n o n e h alf of t h e v ol u m e of t h e s yst e m, b ut t h e pr ef a ct or of t h e v ol u m e l a w is f u n d a m e nt all y

di ff er e nt. It is c o nst a nt ( a n d  m a xi m al) f or t y pi c al p ur e st at es, a n d it d e p e n ds o n t h e r ati o b et w e e n t h e

v ol u m e of t h e s u bs yst e m a n d of t h e e ntir e s yst e m f or t y pi c al p ur e  G a ussi a n st at es. Si n c e p arti cl e- n u m b er

c o ns er v ati o n pl a ys a n i m p ort a nt r ol e i n  m a n y p h ysi c al  H a milt o ni a ns,  w e dis c uss its e ff e ct o n t y pi c al p ur e

st at es a n d o n t y pi c al p ur e  G a ussi a n st at es.  We pr o v e t h at,  w hil e t h e b e h a vi or of t h e l e a di n g v ol u m e-

l a w t er ms d o es n ot c h a n g e q u alit ati v el y, t h e n at ur e of t h e s u bl e a di n g t er ms c a n c h a n g e. I n p arti c ul ar,

s u bl e a di n g c orr e cti o ns c a n a p p e ar t h at d e p e n d o n t h e s q u ar e r o ot of t h e v ol u m e of t h e s u bs yst e m.  We

u n v eil t h e ori gi n of t h os e c orr e cti o ns. Fi n all y,  w e dis c uss t h e c o n n e cti o n b et w e e n t h e e nt a n gl e m e nt e ntr o p y

of t y pi c al p ur e st at es a n d a n al yti c al r es ults o bt ai n e d i n t h e c o nt e xt of r a n d o m  m atri x t h e or y, as  w ell as

n u m eri c al r es ults o bt ai n e d f or p h ysi c al  H a milt o ni a ns.
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R E F E R E N C E S 7 1

I. I N T R O D U C TI O N

E nt a n gl e m e nt is a d e fi ni n g pr o p ert y of q u a nt u m t h e or y,
a n d pl a ys a cr u ci al r ol e i n a br o a d r a n g e of pr o bl e ms i n
p h ysi cs, r a n gi n g fr o m t h e bl a c k h ol e i nf or m ati o n p ar a d o x
[1 ] t o t h e c h ar a ct eri z ati o n of p h as es i n c o n d e ns e d  m att er

s yst e ms [ 2 ]. P ut si m pl y, e nt a n gl e m e nt r ef ers t o q u a nt u m
c orr el ati o ns b et w e e n di ff er e nt p arts of a p h ysi c al s yst e m
t h at c a n n ot b e e x pl ai n e d cl assi c all y [3 ,4 ].  O v er t h e y e ars, a
wi d e r a n g e of e nt a n gl e m e nt  m e as ur es h a v e b e e n d e vis e d t o
q u a ntif y e nt a n gl e m e nt [ 5 ]. Pr o mi n e nt a m o n g t h os e ar e t h e
bi p artit e e nt a n gl e m e nt  m e as ur es,  w hi c h i n v ol v e s plitti n g
t h e s yst e m i n t w o p arts.

F or t h e s p e ci al c as e of gl o b all y p ur e q u a nt u m st at es
|ψ ( o ur i nt er est h er e) a n d a bi p artiti o n, t h e v o n  N e u m a n n
e nt a n gl e m e nt e ntr o p y, als o k n o w n as t h e e ntr o p y of e nt a n-
gl e m e nt or j ust t h e e nt a n gl e m e nt e ntr o p y , is o n e of t h e
si m pl est  m e as ur es of q u a nt u m e nt a n gl e m e nt. It v a nis h es if
a n d o nl y if t h er e is n o q u a nt u m e nt a n gl e m e nt b et w e e n t h e
t w o p arts, i n  w hi c h c as e t h e st at e  m ust b e a pr o d u ct st at e.
We st u d y t h e e nt a n gl e m e nt e ntr o p y i n  Hil b ert s p a c es  wit h
a t e ns or pr o d u ct str u ct ur e H = H A ⊗ H B [6 ].  T o c o m p ut e
t h e e nt a n gl e m e nt e ntr o p y of s u bs yst e m A ( wit h v ol u m e
V A ) of |ψ , o n e tr a c es o ut t h e c o m pl e m e nt s u bs yst e m B
( wit h v ol u m e V − V A ,  w h er e V is t h e t ot al v ol u m e) t o
o bt ai n t h e  mi x e d d e nsit y  m atri x ρ̂ A = Tr H B |ψ ψ |. T h e
e nt a n gl e m e nt e ntr o p y S A of s u bs yst e m A is t h e n

S A = − Tr ( ρ̂ A l n ρ̂ A ), (1 )

w hil e t h e n t h  R é n yi e ntr o p y is d e fi n e d as

S (n )
A = − l n[ Tr( ρ̂ n

A )]. ( 2)

T h e s e c o n d- or d er  R é n yi e ntr o p y S (2 )
A h a s alr e a d y b e e n

m e as ur e d i n e x p eri m e nts  wit h ultr a c ol d at o ms i n o pti c al
l atti c es [7 ,8 ].

We str ess t h at t h e f o c us of t his t ut ori al is i n p ur e q u a n-
t u m st at es.  Q u a ntif yi n g e nt a n gl e m e nt i n gl o b all y  mi x e d
st at es is  m or e c h all e n gi n g. I n p arti c ul ar, t h e v o n  N e u m a n n
a n d  R é n yi e nt a n gl e m e nt e ntr o pi es ar e n ot e nt a n gl e m e nt
m e as ur es f or gl o b all y  mi x e d st at es. S e v er al of t h e bi p artit e
e nt a n gl e m e nt  m e as ur es d e fi n e d f or  mi x e d st at es ( e. g., dis-
till a bl e e nt a n gl e m e nt, e nt a n gl e m e nt c ost, e nt a n gl e m e nt of
f or m ati o n, r el ati v e e ntr o p y of e nt a n gl e m e nt, a n d s q u as h e d
e nt a n gl e m e nt) r e d u c e t o t h e e nt a n gl e m e nt e ntr o p y  w h e n
e v al u at e d o n p ur e st at es [ 5 ].

A.  G r o u n d-st at e e nt a n gl e m e nt

I n g e n er al, o n e is i nt er est e d i n u n d erst a n di n g t h e b e h a v-
i or of  m e as ur es of e nt a n gl e m e nt i n p h ysi c al s yst e ms, a n d
i n d et er mi ni n g  w h at s u c h a b e h a vi or c a n t ell us a b o ut
t h e p h ysi c al pr o p erti es of t h e s yst e m.  M u c h pr o gr ess
i n t his dir e cti o n h as b e e n a c hi e v e d i n t h e c o nt e xt of
m a n y- b o d y gr o u n d st at es of l o c al  H a milt o ni a ns, f or  w hi c h
a  wi d e r a n g e of t h e or eti c al a p pr o a c h es ar e a v ail a bl e
[2 ,9 – 1 1 ]. S u c h gr o u n d st at es us u all y e x hi bit a l e a di n g
t er m of t h e e nt a n gl e m e nt e ntr o p y t h at s c al es  wit h t h e
ar e a, or  wit h t h e l o g arit h m of t h e v ol u m e, of t h e s u b-
s yst e m. I d e ntif yi n g a n d u n d erst a n di n g u ni v ers al pr o p erti es
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of t h e e nt a n gl e m e nt e ntr o p y i n gr o u n d st at es of l o c al
H a milt o ni a ns h as b e e n a c e ntr al g o al [ 1 2 – 1 5 ].

I n o n e- di m e nsi o n al s yst e ms of s pi nl ess f er mi o ns or 1
2

s pi ns, t h e l e a di n g (i n t h e v ol u m e V A ) t er m i n t h e e nt a n gl e-
m e nt e ntr o p y h as b e e n f o u n d t o disti n g uis h gr o u n d st at es
of criti c al s yst e ms fr o m t h os e of n o n criti c al o n es [ 1 5 – 1 7 ].
I n t h e f or m er t h e l e a di n g t er m e x hi bits a l o g arit h mi c s c al-
i n g  wit h t h e v ol u m e ( w h e n d es cri b e d b y c o nf or m al fi el d
t h e or y, t h e c e ntr al c h ar g e is t h e pr ef a ct or of t h e l o g arit h m
[1 5 ,1 6 ,1 8 ]),  w hil e i n n o n criti c al gr o u n d st at es t h e l e a di n g
t er m is a c o nst a nt ( w hi c h, i n o n e di m e nsi o n, r e fl e cts a n
ar e a-l a w s c ali n g). S u bl e a di n g t er ms h a v e als o b e e n st u d-
i e d, s p e ci all y i n t h e c o nt e xt of st at es t h at ar e p h ysi c all y
disti n ct b ut e x hi bit t h e s a m e l e a di n g e nt a n gl e m e nt e ntr o p y
s c ali n g.  A n e x a m pl e i n t h e c o nt e xt of q u a dr ati c  H a milt o-
ni a ns i n t w o di m e nsi o ns ar e gr o u n d st at es t h at ar e criti c al
wit h a p oi ntli k e F er mi s urf a c e v ers us n o n criti c al,  w hi c h
b ot h e x hi bit a l e a di n g ar e a-l a w e nt a n gl e m e nt e ntr o p y [ 1 9 –
2 3 ].  R e m ar k a bl y, t h e s u bl e a di n g t er m i n t h e f or m er s c al es
l o g arit h mi c all y  wit h V A w hil e it is c o nst a nt f or n o n criti-
c al gr o u n d st at es [ 2 4 ].  Als o, i n t w o- di m e nsi o n al s yst e ms,
criti c al st at es d es cri b e d b y c o nf or m al fi el d t h e or y [ 2 5 ] a n d
st at es  wit h a s p o nt a n e o usl y br o k e n c o nti n u o us s y m m etr y
[2 6 ,2 7 ] h a v e b e e n f o u n d t o e x hi bit a u ni v ers al s u bl e a di n g
l o g arit h mi c t er m.

B.  E x cit e d-st at e e nt a n gl e m e nt

I n r e c e nt y e ars, i nt er est i n u n d erst a n di n g t h e f ar-fr o m-
e q uili bri u m d y n a mi cs of ( n e arl y) is ol at e d q u a nt u m s ys-
t e ms a n d t h e d es cri pti o n of o bs er v a bl es aft er e q uili br ati o n
[2 8 – 3 0 ] h a v e  m oti v at e d  m a n y st u di es of t h e e nt a n gl e m e nt
pr o p erti es of hi g hl y e x cit e d ei g e nst at es of q u a nt u m  m a n y-
b o d y s yst e ms ( m ostl y i n t h e c o nt e xt of l atti c e s yst e ms)
[3 1 – 6 4 ].  B e c a us e of t h e li mit e d s uit of t o ols a v ail a bl e
t o st u d y e nt a n gl e m e nt pr o p erti es of hi g hl y e x cit e d ei g e n-
st at es of  m o d el  H a milt o ni a ns,  m ost of t h e r es ults r e p ort e d
i n t h os e  w or ks  w er e o bt ai n e d usi n g e x a ct di a g o n ali z ati o n
t e c h ni q u es,  w hi c h ar e li mit e d t o r el ati v el y s m all s yst e m
si z es.

I n c o ntr ast t o t h e gr o u n d st at es, t y pi c al hi g hl y e x cit e d
m a n y- b o d y ei g e nst at es of l o c al  H a milt o ni a ns h a v e a l e a d-
i n g t er m of t h e e nt a n gl e m e nt e ntr o p y t h at s c al es  wit h
t h e v ol u m e of t h e s u bs yst e m.  Als o, i n c o ntr ast t o t h e
gr o u n d st at es, t h e l e a di n g v ol u m e-l a w t er m e x hi bits a f u n-
d a m e nt all y di ff er e nt b e h a vi or d e p e n di n g o n  w h et h er t h e
H a milt o ni a n is n o ni nt e gr a bl e (t h e g e n eri c c as e f or p h ys-
i c al  H a milt o ni a ns) or i nt e gr a bl e. I n t h e f or m er c as e t h e
c o e ffi ci e nt h as b e e n f o u n d t o b e c o nst a nt,  w hil e i n t h e l at-
t er c as e it d e p e n ds o n t h e r ati o b et w e e n t h e v ol u m e of t h e
s u bs yst e m a n d t h e v ol u m e of t h e e ntir e s yst e m.

M a n y- b o d y s yst e ms t h at ar e i nt e gr a bl e ar e s p e ci al as
t h e y h a v e a n e xt e nsi v e n u m b er of l o c al c o ns er v e d q u a n-
titi es [6 5 ].  As a r es ult, t h eir e q uili bri u m pr o p erti es c a n
i n  m a n y i nst a n c es b e c al c ul at e d a n al yti c all y, a n d t h eir

n e ar- e q uili bri u m pr o p erti es c a n b e “ a n o m al o us, ” e. g., t h e y
c a n e x hi bit tr a ns p ort  wit h o ut dissi p ati o n ( b allisti c tr a ns-
p ort).  Als o, is ol at e d i nt e gr a bl e s yst e ms f ail t o t h er m ali z e
if t a k e n f ar fr o m e q uili bri u m. I nt er est e d r e a d ers c a n l e ar n
a b o ut t h e e ff e cts of q u a nt u m i nt e gr a bilit y i n t h e c oll e cti o n
of r e vi e ws i n  R ef. [ 6 6 ].

T h er e is a  wi d e r a n g e of q u a dr ati c  H a milt o ni a ns i n
ar bitr ar y di m e nsi o ns ( w hi c h i n cl u d e a  wi d e r a n g e of n o ni n-
t er a cti n g  m o d els), e. g., tr a nsl ati o n all y i n v ari a nt q u a dr ati c
H a milt o ni a ns, t h at c a n b e s e e n as a s p e ci al cl ass of i nt e-
gr a bl e  m o d els.  A cl ass i n  w hi c h t h e n o n d e g e n er at e  m a n y-
b o d y ei g e nst at es ar e  G a ussi a n st at es,  w hil e t h eir d e g e n er-
at e ei g e nst at es c a n al w a ys b e  writt e n as  G a ussi a n st at es.
T his  m e a ns t h at t h os e  m a n y- b o d y ei g e nst at es ar e f ull y
c h ar a ct eri z e d b y t h eir o n e- b o d y d e nsit y  m atri x or t h eir
c o v ari a n c e  m atri x.  T h e e nt a n gl e m e nt e ntr o p y of hi g hl y
e x cit e d ei g e nst at es of s o m e of t h os e “i nt e gr a bl e ” q u a dr ati c
H a milt o ni a ns  w as st u di e d i n  R efs. [ 3 6 ,4 2 ,4 4 ,5 0 ,5 3 ].  Ot h er
q u a dr ati c  H a milt o ni a ns i n ar bitr ar y di m e nsi o ns t h at  will
b e of i nt er est t o us h er e ar e q u a dr ati c  H a milt o ni a ns i n
w hi c h t h e si n gl e- p arti cl e s e ct or e x hi bits q u a nt u m c h a os
(t o b e d e fi n e d i n t h e n e xt s u bs e cti o ns).  We r ef er t o s u c h
H a milt o ni a ns as q u a nt u m- c h a oti c q u a dr ati c  H a milt o ni a ns.
T h e e nt a n gl e m e nt e ntr o p y of hi g hl y e x cit e d ei g e nst at es of
q u a nt u m- c h a oti c q u a dr ati c  H a milt o ni a ns ( o n a l atti c e)  w as
st u di e d i n  R efs. [ 6 1 ,6 2 ]. It  w as f o u n d t o e x hi bit a t y pi-
c al l e a di n g v ol u m e-l a w t er m t h at is q u alit ati v el y si mil ar t o
t h at f o u n d i n ei g e nst at es of i nt e gr a bl e q u a dr ati c  H a milt o-
ni a ns (i n  w hi c h t h e si n gl e- p arti cl e s e ct or d o es n ot dis pl a y
q u a nt u m c h a os), s u c h as tr a nsl ati o n all y i n v ari a nt q u a dr ati c
H a milt o ni a ns ( o n a l atti c e) [ 4 2 ,5 0 ].

I n t h e pr es e n c e of i nt er a cti o ns,  m a n y- b o d y i nt e gr a bl e
s yst e ms  m ostl y e xist i n o n e di m e nsi o n [ 6 7 ,6 8 ].  T h e y c o m e
i n t w o “ fl a v ors, ”  H a milt o ni a ns t h at c a n b e  m a p p e d o nt o
n o ni nt er a cti n g o n es ( a s m all er cl ass), a n d  H a milt o ni a ns
t h at c a n n ot b e  m a p p e d o nt o n o ni nt er a cti n g o n es.  R e m ar k-
a bl y, b ot h “ fl a v ors ” h a v e b e e n f o u n d t o d es cri b e pi o n e eri n g
e x p eri m e nts  wit h ultr a c ol d q u a nt u m g as es i n o n e di m e n-
si o n [ 6 9 – 8 5 ].  T h e e nt a n gl e m e nt e ntr o p y of hi g hl y e x cit e d
ei g e nst at es of l atti c e  H a milt o ni a ns t h at c a n b e  m a p p e d
o nt o n o ni nt er a cti n g o n es ( w hi c h e x hi bit t h e s a m e l e a d-
i n g v ol u m e-l a w t er ms as t h eir n o ni nt er a cti n g c o u nt er p arts)
w as st u di e d i n  R efs. [ 4 8 ,5 0 ],  w hil e t h e e nt a n gl e m e nt
e ntr o p y of hi g hl y e x cit e d ei g e nst at es of a  H a milt o ni a n (t h e
s pi n- 1

2
X X Z c h ai n) t h at c a n n ot b e  m a p p e d o nt o a n o ni nt er-

a cti n g o n e  w as st u di e d i n  R ef. [ 5 5 ].  R e m ar k a bl y, i n all t h e
q u a dr ati c a n d i nt e gr a bl e s yst e ms st u di e d s o f ar, t h e c o e ffi-
ci e nt of t h e l e a di n g v ol u m e-l a w t er m of t y pi c al ei g e nst at es
h as b e e n f o u n d t o d e p e n d o n t h e r ati o b et w e e n t h e v ol u m e
of t h e s u bs yst e m a n d t h e v ol u m e of t h e e ntir e s yst e m.

A n al yti c al pr o gr ess u n d erst a n di n g t h e pr e vi o usl y  m e n-
ti o n e d n u m eri c al r es ults h as b e e n a c hi e v e d i n s o m e s p e ci al
c as es.  O n e s u c h c as e is tr a nsl ati o n all y i n v ari a nt q u a dr ati c
H a milt o ni a ns, or  m o d els t h at c a n b e  m a p p e d o nt o t h e m i n
o n e di m e nsi o n [ 6 7 ], f or  w hi c h ti g ht b o u n ds  w er e o bt ai n e d
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f or t h e l e a di n g ( v ol u m e-l a w) t er m i n t h e a v er a g e e nt a n-
gl e m e nt e ntr o p y [ 4 2 ,5 0 ], a n d s o m e u n d erst a n di n g  w as
g ai n e d a b o ut s u bl e a di n g c orr e cti o ns [ 4 8 ].  T his  w as p os-
si bl e t h a n ks t o t h e  G a ussi a n n at ur e of t h e ei g e nst at es.
A n ot h er c as e is n o ni nt e gr a bl e  m o d els u n d er t h e ass u m p-
ti o n t h at t h eir ei g e nst at es e x hi bit ei g e nst at e t h er m ali z ati o n
[3 3 ,4 5 ,4 6 ,5 2 ].

C.  R a n d o m  m at ri x t h e o r y i n p h ysi cs

R a n d o m  m atri x t h e or y h as pr o vi d e d a  m or e s yst e m-
ati c a p pr o a c h t o g ai ni n g a n a n al yti c al u n d erst a n di n g of t h e
e nt a n gl e m e nt pr o p erti es of  m a n y- b o d y ei g e nst at es i n n o n-
i nt e gr a bl e  m o d els [4 0 ,4 3 ,6 3 ,8 6 – 8 9 ]. S u c h a n a p pr o a c h is
j usti fi e d b y t h e f a ct t h at  m a n y st u di es (s e e, e. g.,  R ef. [2 9 ]
f or a r e vi e w) h a v e s h o w n t h at n o ni nt e gr a bl e  m o d els
e x hi bit “ q u a nt u m c h a os. ”  B y q u a nt u m c h a os  w h at is  m e a nt
is t h at st atisti c al pr o p erti es of hi g hl y e x cit e d ei g e nst at es of
s u c h  m o d els, e. g., l e v el s p a ci n g distri b uti o ns, ar e d es cri b e d
b y t h e  Wi g n er s ur mis e [ 2 9 ].  T his  w as c o nj e ct ur e d b y
B o hi g as,  Gi a n n o ni, a n d S c h mit ( B G S) [ 9 0 ] f or q u a nt u m
s yst e ms  wit h a cl assi c al c o u nt er p art, i n  w hi c h c as e “ q u a n-
t u m c h a os ” us u all y o c c urs  w h e n t h e cl assi c al c o u nt er p arts
ar e K c h a oti c,  w h er e K st a n ds f or  K ol m o g or o v, a n d it
is t h e cl ass of s yst e ms t h at e x hi bit t h e hi g h est d e gr e e of
c h a os.  R e m ar k a bl y, e v e n st atisti c al pr o p erti es of ei g e n v e c-
t ors s u c h as t h e r ati o b et w e e n t h e v ari a n c e of t h e di a g o n al
a n d t h e o ff- di a g o n al  m atri x el e m e nts of  H er miti a n o p er a-
t ors h a v e b e e n s h o w n t o a gr e e  wit h r a n d o m  m atri x t h e or y
pr e di cti o ns [ 9 1 – 9 4 ].  R e c e ntl y, t w o of us ( M. R. a n d  L. V., i n
c oll a b or ati o n  wit h P.  Ł y d ż b a) us e d r a n d o m  m atri x t h e or y
i n t h e c o nt e xt of q u a nt u m- c h a oti c q u a dr ati c  H a milt o ni a ns
t o o bt ai n a cl os e d-f or m e x pr essi o n t h at d es cri b es t h e a v er-
a g e e nt a n gl e m e nt e ntr o p y of hi g hl y e x cit e d ei g e nst at es of
q u a dr ati c  m o d els  w h os e si n gl e- p arti cl e s p e ctr u m e x hi bits
q u a nt u m c h a os, s u c h as t h e t hr e e- di m e nsi o n al  A n d ers o n
m o d el [ 6 1 ,6 2 ].

T h e a p pli c ati o n of r a n d o m  m atri x t h e or y t o  m a n y- b o d y
s yst e ms g o es b a c k t o  w or ks b y  Wi g n er [ 9 5 – 9 8 ] as  w ell as
L a n d a u a n d S m or o d ms k y [ 9 9 ] i n t h e 1 9 5 0s,  w h o ai m e d
at fi n di n g a st atisti c al t h e or y t h at d es cri b e d t h e e x cit a-
ti o n s p e ctr a i n n u cl ei f or el asti c s c att eri n g pr o c ess es.  T h eir
n o v el i d e a  w as t h at a s u ffi ci e ntl y c o m pli c at e d o p er at or li k e
t h e  H a milt o n, or t h e l atti c e  Dir a c o p er at or, c a n b e r e pl a c e d
b y a r a n d o m  m atri x ( w h os e e ntri es ar e, pr ef er a bl y,  G a us-
si a n distri b ut e d as t h os e ar e e asi er t o d e al  wit h a n al yti c all y)
wit h t h e a p pr o pri at e s y m m etri es. F or t his t o h ol d, it is n ot
i m p ort a nt t h at t h e p h ysi c al o p er at or h as  m atri x e ntri es t h at
ar e all o c c u pi e d  wit h n o n z er o e ntri es. I n c o n d e ns e d  m att er
m o d els [ 2 9 ], as  w ell as i n l atti c e  Q C D [1 0 0 – 1 0 4 ], n u m eri-
c al e vi d e n c e h as s h o w n t h at v er y s p ars e  m atri c es c a n als o
e x hi bit s p e ctr al c h ar a ct eristi cs of a r a n d o m  m atri x  wit h
G a ussi a n distri b ut e d e ntri es. It is t h e c o n c e pt of u ni v er-
s alit y t h at h as  m a d e r a n d o m  m atri c es s o v ers atil e.  Li k e
i n t h e c e ntr al li mit t h e or e m, i n  w hi c h a n i n fi nit e s u m of

i n d e p e n d e ntl y a n d i d e nti c all y distri b ut e d r a n d o m v ari a bl es
l e a ds t o a  G a ussi a n r a n d o m v ari a bl e u n d er v er y  mil d c o n-
diti o ns, it h a p p e ns t h at, f or  m a n y s p e ctr al q u a ntiti es, it d o es
n ot  m att er h o w t h e r a n d o m  m atri x is a ct u all y distri b ut e d.

O v er t h e y e ars, r a n d o m  m atri x t h e or y h as f o u n d  m a n y
m or e a p pli c ati o ns i n p h ysi cs; f or e x a m pl e, t h e l o c al l e v el
d e nsit y a b o ut  Dir a c p oi nts ( als o k n o w n as h ar d e d g es i n
r a n d o m  m atri x t h e or y) h as b e e n us e d t o cl assif y o p er-
at ors s u c h as  H a milt o ni a ns a n d  Dir a c o p er at ors, a n d t o
dis c er n gl o b al s y m m etri es of a s yst e m.  B y gl o b al s y m-
m etri es, it is  m e a nt t h os e t h at ar e d es cri b e d b y a li n e ar
i n v ol uti o n ( o p er at ors t h at s q u ar e t o u nit y) i n t er ms of u ni-
t ar y a n d a nti u nit ar y o p er at ors.  Well- k n o w n e x a m pl es i n
p h ysi cs ar e ti m e r e v ers al, p arit y, c h ar g e c o nj u g ati o n, a n d
c hir alit y.  Gl o b al s y m m etri es pl a y a c e ntr al r ol e  w h e n cl as-
sif yi n g s yst e ms i n t h e c o nt e xt of q u a nt u m c h a os [ 1 0 5 ],
i n s u p er c o n d u ct ors a n d t o p ol o gi c al i ns ul at ors [1 0 6 ,1 0 7 ],
i n q u a nt u m- c hr o m o d y n a mi cs-li k e t h e ori es i n t h e c o nti n-
u u m a n d o n a l atti c e [ 1 0 4 ,1 0 8 ], a n d i n S a c h d e v- Ye- Kit a e v
( S Y K)  m o d els [1 0 9 ,1 1 0 ].

D.  L o c al s p e ct r al st atisti cs

T h er e ar e t w o s p e ctr al s c al es t h at ar e us u all y dis c uss e d
i n t h e c o nt e xt of r a n d o m  m atri x t h e or y, a n d t o  w hi c h dif-
f er e nt ki n ds of u ni v ers aliti es a p pl y.  T h os e ar e t h e l o c al a n d
t h e gl o b al s p e ctr al s c al es.

T h e  mi cr os c o pi c or l o c al s p e ctr al s c al e is gi v e n b y t h e
l o c al  m e a n l e v el s p a ci n g  w h er e t h e fl u ct u ati o ns of t h e
i n di vi d u al ei g e n v al u es ar e r es ol v e d.  T his s c al e is oft e n of
m or e p h ysi c al i nt er est as it a n al ys es t h e l e v el r e p ulsi o n of
ei g e n v al u es t h at ar e v er y cl os e t o e a c h ot h er. S u c h a l e v el
r e p ulsi o n is us u all y al g e br ai c f or v er y s m all dist a n c es s.
N a m el y, t h e l e v el s p a ci n g distri b uti o n p (s),  w hi c h is t h e
distri b uti o n of t h e dist a n c e of t w o c o ns e c uti v e ei g e n v al-
u es, is of t h e f or m s β ( w h er e β is t h e  D ys o n i n d e x) f or
s m all dist a n c es.

W hil e t h e s y m m etr y of a  H a milt o ni a n, s u c h as ti m e
r e v ers al, c hir alit y, or c h ar g e c o nj u g ati o n, is n ot v er y
i m p ort a nt f or t h e gl o b al s p e ctr al s c al e, it is v er y i m p ort a nt
f or t h e l o c al s p e ctr al st atisti cs as it i n fl u e n c es t h e v al u e of
β .  Wi g n er [9 7 ] d eri v e d t h e distri b uti o n f or t w o-l e v el  G a us-
si a n r a n d o m  m atri c es  wit h  D ys o n i n d e x β = 1,  w hi c h  w as
s o o n g e n er ali z e d t o β = 2, 4,

p (s) = 2
( [( β + 2 ) /2] )β + 1

( [( β + 1 ) /2] )β + 2
s β

× e x p −
[( β + 2 ) /2]

[( β + 1 ) /2]

2

s 2 ( 3)

wit h t h e g a m m a f u n cti o n [x ].  T his distri b uti o n is n o w a-
d a ys c all e d  Wi g n er’s s ur mis e.  T h e c orr es p o n di n g r a n d o m
m atri c es ar e k n o w n as t h e  G a ussi a n ort h o g o n al e ns e m-
bl e ( G O E; β = 1), t h e  G a ussi a n u nit ar y e ns e m bl e ( G U E;
β = 2), a n d t h e  G a ussi a n s y m pl e cti c e ns e m bl e ( G S E; β =
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4).  T h os e ar e us u all y c o m p ar e d  wit h t h e l e v el s p a ci n g dis-
tri b uti o n of i n d e p e n d e ntl y distri b ut e d ei g e n v al u es (β = 0),
w hi c h gi v es t h e P oiss o n distri b uti o n

p (s) = e − s , (4 )

a n d  wit h t h e l e v el s p a ci n g distri b uti o n of t h e o n e-
di m e nsi o n al q u a nt u m h ar m o ni c os cill at or ( als o k n o w n as
t h e pi c k et f e n c e st atisti cs),  w hi c h is a si m pl e  Dir a c d elt a
f u n cti o n

p (s) = δ ( 1 − s). (5 )

All fi v e b e n c h m ar k distri b uti o ns ar e s h o w n i n Fi g. 1( a) .
T h e us e of t h e  Wi g n er s ur mis e as a di a g n osti c of q u a n-

t u m c h a os a n d i nt e gr a bilit y f oll o w e d f u n d a m e nt al c o n-
j e ct ur es b y  B G S [9 0 ] ( m e nti o n e d b ef or e) a n d  B err y a n d
T a b or [ 1 1 1 ], r es p e cti v el y.  T h e l att er st at es t h at, f or a n i nt e-
gr a bl e b o u n d e d s yst e m  wit h  m or e t h a n t w o di m e nsi o ns
a n d i n c o m m e ns ur a bl e fr e q u e n ci es of t h e c orr es p o n di n g
t ori, t h e s p e ctr u m s h o ul d f oll o w t h e P oiss o n st atisti cs.
H o w e v er, b ot h c o nj e ct ur es h a v e t o b e u n d erst o o d  wit h
t h e f oll o wi n g c ar e as t h e ei g e n v al u e s p e ctr u m  m ust b e
pr e p ar e d a p pr o pri at el y.

(i)  T h e s p e ctr u m  m ust b e s plit i nt o s u bs p e ctr a  wit h
fi x e d “ g o o d ” q u a nt u m n u m b ers s u c h as t h e s pi n,
p arit y, a n d c o ns er v e d c h ar g es.  T his r e q uir es k n o wl-
e d g e of all t h e s y m m etri es of t h e  m o d el.  T his
st e p  m ust b e t a k e n si n c e a dir e ct s u m of i n d e-
p e n d e nt  G U E  m atri c es c a n yi el d a l e v el s p a ci n g
distri b uti o n t h at r es e m bl es t h e P oiss o n st atisti cs; s e e
Fi g. 1( b) .

(ii)  O n e n e e ds t o u nf ol d t h e s p e ctr a,  m e a ni n g t h at t h e
dist a n c e b et w e e n c o ns e c uti v e ei g e n v al u es  m ust b e
i n a v er a g e e q u al t o o n e.  T his s e c o n d st e p is cr u ci al

as o nl y t h e n t h e l e v el s p a ci n g distri b uti o ns ar e
c o m p ar a bl e a n d u ni v ers al st atisti cs c a n b e r e v e al e d.
T h e ei g e n v al u e s p e ctr u m of a n irr e g ul arl y s h a p e d
dr u m, a c o m pl e x  m ol e c ul e, a n d t h at of a h e a v y
n u cl e us h a v e c o m pl et el y di ff er e nt e n er g y s c al es.
Aft er t h e u nf ol di n g of t h eir s p e ctr a t h es e s c al es ar e
r e m o v e d a n d s h o w c o m m o n b e h a vi or.  Yet, t h e pr o-
c e d ur e of u nf ol di n g is f ar fr o m tri vi al f or e m piri c al
s p e ctr a.  T h er e ar e ot h er  m e a ns s u c h as t h e st u d y
of t h e r ati o b et w e e n t h e t w o s p a ci n gs of t hr e e c o n-
s e c uti v e ei g e n v al u es [ 1 1 2 ].  B ut t his o bs er v a bl e als o
h as its li mit ati o ns as t his ki n d of “ a ut o m ati c u nf ol d-
i n g ” o nl y  w or ks i n t h e b ul k of t h e s p e ctr u m. It f ails
at s p e ctr al e d g es a n d ot h er criti c al p oi nts i n t h e
s p e ctr u m.

I n t h e c o nt e xt of t h e  Wi g n er s ur mis e,  w e s h o ul d str ess
t h at e v e n t h o u g h t h e st atisti cs of t h e s p e ctr al fl u ct u ati o ns
ar e  w ell d es cri b e d at t h e l e v el of t h e  m e a n l e v el s p a ci n g
[1 1 3 – 1 1 5 ] ( e v e n b e y o n d t h e c o nt e xt of  m a n y- b o d y s ys-
t e ms; s e e, e. g., t h e r e vi e ws a n d b o o ks [1 1 6 – 1 1 9 ] a n d t h e
r ef er e n c es t h er ei n), it  w as s o o n r e ali z e d t h at t h er e ar e st a-
tisti c al pr o p erti es of t h e s p e ctr al fl u ct u ati o ns of  m a n y- b o d y
H a milt o ni a ns t h at c a n n ot b e d es cri b e d usi n g f ull r a n d o m
m atri c es; s e e  R efs. [ 1 2 0 – 1 2 3 ].  T his is d u e t o t h e f a ct t h at
us u all y o nl y o n e-, t w o- a n d  m a y b e u p t o f o ur- b o d y i nt er-
a cti o ns r e pr es e nt t h e a ct u al p h ysi c al sit u ati o n.  R a n d o m
m atri c es t h at r e fl e ct t h es e s p ars e i nt er a cti o ns ar e c all e d
e m b e d d e d r a n d o m  m atri x e ns e m bl es [ 1 1 6 ,1 2 2 ,1 2 4 – 1 2 6 ].
I n t h e p ast d e c a d es, t h e y h a v e e x p eri e n c e d a r e vi v al d u e
t o st u di es of t h e S Y K  m o d el [1 2 7 – 1 3 2 ], a n d t w o- b o d y
i nt er a cti o ns [1 3 3 – 1 3 5 ].  A f ull u n d erst a n di n g of h o w t h es e
a d diti o n al t e ns or str u ct ur es,  w hi c h aris e n at ur all y i n q u a n-
t u m  m a n y- b o d y s yst e ms, i m p a ct t h e e nt a n gl e m e nt of t h e
e n er g y ei g e nst at es is c urr e ntl y  missi n g.

( a) ( b)

FI G. 1. ( a)  T h e l e v el s p a ci n g distri b uti o ns of t h e P oiss o n distri b uti o n (s oli d li n e; β = 0), t h e  Wi g n er s ur mis e of t h e  G O E ( d ott e d
li n e; β = 1), of t h e  G U E ( d as h e d li n e; β = 2), of t h e  G S E ( d as h- d ot li n e; β = 4), a n d t h e pi c k et f e n c e st atisti cs ( v erti c al li n e; β = ∞ ).
( b)  T hr e e  M o nt e  C arl o si m ul ati o ns (s y m b ols) of t h e s p a ci n g b et w e e n ei g e n v al u es (5 0 · M ) a n d (5 0 · M + 1 ) of t h e dir e ct s u m of M
G U Es  wit h a  m atri x di m e nsi o n N = 1 0 0 (i n t ot al, t h e  m atri x di m e nsi o n is 1 0 0 M × 1 0 0 M ), c o m p ar e d t o t h e P oiss o n distri b uti o n (s oli d
li n e), a n d t h e  Wi g n er s ur mis e of t h e  G U E ( d as h e d li n e).  T h e e ns e m bl e si z e is 1 05 s u c h t h at t h e st atisti c al err or is a b o ut 1 %.  T h e bi n
si z e is a b o ut 0. 1, b ut v ari es as t h e u nf ol di n g sli g htl y c h a n g es t h eir a ct u al v al u e.
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E.  Gl o b al s p e ct r al st atisti cs a n d ei g e n v e ct o r st atisti cs

T h e s e c o n d s c al e is t h e  m a cr os c o pi c or gl o b al s p e c-
tr al s c al e,  w hi c h is us u all y d e fi n e d as t h e a v er a g e dist a n c e
b et w e e n t h e l ar g est a n d t h e s m all est ei g e n v al u es. F or t his
s c al e,  Wi g n er [ 9 5 ,9 8 ] d eri v e d t h e f a m o us  Wi g n er s e mi-
cir cl e,  w hi c h d es cri b es t h e l e v el d e nsit y of a  G a ussi a n
distri b ut e d r e al s y m m etri c  m atri x.  H e  w as als o t h e first t o
s h o w, a g ai n u n d er  mil d c o n diti o ns, t h at t h e  G a ussi a n dis-
tri b uti o n of t h e i n d e p e n d e nt  m atri x e ntri es c a n b e r e pl a c e d
b y a n ar bitr ar y distri b uti o n, a n d n e v ert h el ess o n e still
o bt ai ns t h e  Wi g n er s e mi cir cl e.  O n e i m p ort a nt f e at ur e of
t his ki n d of u ni v ers alit y is t h at it d o es n ot d e p e n d o n t h e
s y m m etri es of t h e o p er at ors. F or i nst a n c e,  w h et h er t h e
m atri x is r e al s y m m etri c,  H er miti a n, or  H er miti a n s elf-
d u al h as n o i m p a ct o n t h e l e v el d e nsit y,  w hi c h is i n all
t h os e c as es a  Wi g n er s e mi cir cl e [1 3 6 ].  T h e gl o b al s p e c-
tr al s c al e als o pl a ys a cr u ci al r ol e i n ti m e s eri es a n al ysis
[1 3 7 ] a n d t el e c o m m u ni c ati o ns [1 3 8 ],  w h er e i nst e a d of t h e
Wi g n er s e mi cir cl e t h e  M ar č e n k o- P ast ur distri b uti o n [ 1 3 9 ]
d es cri b es t h e l e v el d e nsit y.

T h e gl o b al s c al e is al w a ys i m p ort a nt  w h e n c o nsi d eri n g
t h e s o- c all e d li n e ar s p e ctr al st atisti cs,  m e a ni n g a n o bs er v-
a bl e t h at is of t h e f or m N

j = 1 f ( λj ),  w h er e t h e λ j ar e t h e
ei g e n v al u es of t h e r a n d o m  m atri x.  T his is t h e sit u ati o n t h at
w e e n c o u nt er  w h e n c o m p uti n g t h e e nt a n gl e m e nt e ntr o p y,
w h er e t h e λ j ar e t h e ei g e n v al u es of t h e d e nsit y  m atri x; cf.
E q. ( 1).  T h er ef or e,  w e e x p e ct t h at t h e l e a di n g t er ms i n t h e
e nt a n gl e m e nt e ntr o p y ar e i ns e nsiti v e t o t h e  D ys o n i n d e x β ,
s o t h at t h e e nt a n gl e m e nt e ntr o p y c a n s er v e as a n e x c ell e nt
di a g n osti c f or i nt e gr a bl e or c h a oti c b e h a vi or.

A r el at e d di a g n osti c f or t h e a m plit u d e A of v e ct or c o m-
p o n e nts of ei g e nst at es is t h e P ort er- T h o m as distri b uti o n
[1 4 0 ],  w hi c h is us e d t o d e ci d e  w h et h er a st at e is l o c al-
i z e d or d el o c ali z e d.  T h e P ort er- T h o m as distri b uti o n is a
χ 2 distri b uti o n,

I (A ) =
β N

2

β / 2 A β / 2 − 1

[β / 2]
e x p −

β N

2
A , ( 6)

w h er e t h e n or m ali z ati o n of t h e first  m o m e nt is c h os e n t o b e
e q u al t o 1 / N .  N ot e t h at i n t h e q u at er ni o n c as e o n e d e fi n es
t h e a m plit u d e as t h e s q u ar e d  m o d ul us of a q u at er ni o n
n u m b er.  H e n c e, as a s u m of f o ur s q u ar e d r e al c o m p o-
n e nts, si mil ar t o t h e s q u ar e d  m o d ul us of a c o m pl e x n u m b er
( w hi c h is t h e s u m of t h e s q u ar e of t h e r e al a n d i m a gi-
n ar y p arts).  A ct u all y, t h e a p pli c ati o n of r a n d o m  m atri c es
f or c o m p uti n g t h e e nt a n gl e m e nt e ntr o p y is b as e d o n t his
i d e a.  We c a n o nl y r e pl a c e a g e n eri c ei g e nst at e b y a  H a ar-
distri b ut e d v e ct or o n a s p h er e aft er ass u mi n g t h at t h e st at e
is d el o c ali z e d.  U nli k e t h e P ort er- T h o m as distri b uti o n, as
pr e vi o usl y  m e nti o n e d, t h e l e a di n g t er ms i n t h e e nt a n gl e-
m e nt e ntr o p y ar e e x p e ct e d t o b e i n d e p e n d e nt of t h e  D ys o n
i n d e x β ( w hi c h h as y et t o b e pr o v e d).

T h e r el ati o n b et w e e n c ert ai n q u a nt u m i nf or m ati o n al
q u esti o ns a n d r a n d o m  m atri x t h e or y als o h as a l o n g his-
t or y, a n d t h e t e c h ni q u es d e v el o p e d ar e di v ers e (s e e, e. g.,
t h e r e vi e w [1 4 1 ] a n d  C h a pt er 3 7 of  R ef. [1 1 8 ]).  Q u es-
ti o ns a b o ut g e n eri c distri b uti o ns a n d t h e n at ur al g e n er ati o n
of r a n d o m q u a nt u m st at es h a v e b e e n a f o c us of att e nti o n
[1 4 2 ,1 4 3 ].  T h e a ns w ers t o t h os e q u esti o ns ar e still d e b at e d
as t h er e ar e s e v er al  m e as ur es of t h e s et of q u a nt u m st at es
a n d e a c h h as its b e n e fits a n d fl a ws; f or i nst a n c e, t w o of
t h os e ar e b as e d o n t h e  Hil b ert- S c h mi dt  m etri c a n d t h e
B ur es  m etri c [ 1 4 2 ,1 4 4 ].  T h os e  m e as ur es d e fi n e s o m e ki n d
of “ u nif or m distri b uti o n ” o n t h e s et of all q u a nt u m st at es
a n d, a ct u all y, g e n er at e r a n d o m  m atri x e ns e m bl es t h at h a v e
b e e n st u di e d t o s o m e e xt e nt [ 1 4 2 ,1 4 3 ,1 4 5 – 1 4 9 ]. I n t his
t ut ori al,  w e e n c o u nt er o n e of t h e af or e m e nti o n e d e ns e m-
bl es, n a m el y, t h e o n e r el at e d t o t h e  Hil b ert- S c h mi dt  m etri c,
w hi c h n at ur all y aris es fr o m a gr o u p a cti o n s o t h at t h e st at es
ar e  H a ar distri b ut e d a c c or di n g t o t his gr o u p a cti o n.

F.  T y pi c alit y a n d e nt a n gl e m e nt

A n i m p ort a nt q u esti o n t h at o n e c a n as k,  w hi c h r el at es
t o t h e l at est o bs er v ati o ns  m a d e i n t h e c o nt e xt of r a n d o m
m atri x e ns e m bl es, is  w h at ar e t h e e nt a n gl e m e nt pr o p er-
ti es of t y pi c al p ur e q u a nt u m st at es.  T his  w as t h e e arli est
q u esti o n t o b e a d dr ess e d. F oll o wi n g  w or k b y  L u b ki n [ 1 5 0 ]
a n d  Ll o y d a n d P a g els [ 1 5 1 ], P a g e [1 5 2 ] o bt ai n e d a cl os e d
a n al yti c al f or m ul a f or t h e a v er a g e e nt a n gl e m e nt e ntr o p y
( o v er all p ur e q u a nt u m st at es) as a f u n cti o n of t h e s ys-
t e m a n d s u bs yst e m  Hil b ert s p a c e di m e nsi o ns.  T his f or m ul a
w as ri g or o usl y pr o v e n l at er i n  R efs. [ 1 5 3 – 1 5 5 ]. I n l atti c e
s yst e ms i n  w hi c h t h e di m e nsi o n of t h e  Hil b ert s p a c e p er
sit e is fi nit e, o n e c a n s h o w t h at P a g e’s f or m ul a r es ults i n
a “ v ol u m e-l a w ” b e h a vi or, i. e., t h e e nt a n gl e m e nt e ntr o p y
s c al es li n e arl y i n t h e v ol u m e V A of t h e s u bs yst e m, S A ∝ V A

(f or a l ar g e s yst e m of v ol u m e V a n d a s u bs yst e m  wit h
V A < V / 2).  T h e pr ef a ct or of t his v ol u m e l a w is t h e s a m e
t h at  w as l at er f o u n d i n st u di es of hi g hl y e x cit e d ei g e nst at es
of n o ni nt e gr a bl e  H a milt o ni a ns a n d, s e p ar at el y,  wit hi n r a n-
d o m  m atri x t h e or y.  D e vi ati o ns fr o m P a g e’s r es ult h a v e
b e e n dis c uss e d i n t h e c o nt e xt of hi g hl y e x cit e d ei g e nst at es
of n u m b er- pr es er vi n g  H a milt o ni a ns a w a y fr o m h alf- filli n g
[4 3 ,4 6 ].  T h e e nt a n gl e m e nt e ntr o p y of p ur e q u a nt u m st at es
wit h p arti cl e- n u m b er c o ns er v ati o n  w as als o st u di e d i n
R efs. [ 4 7 ,4 9 ].

I n  m a n y p h ysi c all y r el e v a nt sit u ati o ns, c o nstr ai nts s u c h
as p arti cl e- n u m b er c o ns er v ati o n ar e pr es e nt a n d, as a
r es ult, t h e  Hil b ert s p a c e of t h e s yst e m d o es n ot f a ct or i nt o
t h e t e ns or pr o d u ct of  Hil b ert s p a c es of s u bs yst e ms.  Ot h er
n ot a bl e e x a m pl es ar e g a u g e t h e ori es t h at h a v e a  G a uss
c o nstr ai nt, a n d q u a nt u m gr a vit ati o n al s yst e ms  w h er e t h e
H a milt o ni a n its elf is a q u a nt u m c o nstr ai nt [ 1 5 6 ].  W h e n
t h e c o nstr ai nt is a d diti v e o v er s u bs yst e ms, i. e., of t h e f or m
C A + C B = 0, o n e c a n r es ol v e t h e  Hil b ert s p a c e as a dir e ct
s u m o v er a t e ns or pr o d u ct of si m ult a n e o us ei g e ns p a c es
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of C A a n d C B t h at s ol v e t h e c o nstr ai nt.  A n e x a m pl e of
t his p h e n o m e n o n is t h e pr e vi o usl y  m e nti o n e d s yst e ms
wit h a fi x e d t ot al n u m b er of p arti cl es,  w h er e C A i s t h e
n u m b er of p arti cl es i n t h e s u bs yst e m. F or t his cl ass of
s yst e ms, a f or m ul a f or t h e t y pi c al e nt a n gl e m e nt e ntr o p y
of p ur e c o nstr ai n e d st at es ( a n d its v ari a n c e)  w as o bt ai n e d
r e c e ntl y b y o n e of us ( E. B.) i n c oll a b or ati o n  wit h P.
D o n à [ 1 5 7 ].

A n ot h er i m p ort a nt cl ass of p ur e st at es ar e f er mi o ni c
G a ussi a n st at es.  T h e y ar e of s p e ci al i nt er est b e c a us e, as
m e nti o n e d b ef or e, t h e  m a n y- b o d y ei g e nst at es of q u a dr ati c
H a milt o ni a ns ar e  G a ussi a n st at es. I n t h e q u a nt u m c o m-
p uti n g c o m m u nit y t h os e st at es ar e k n o w n as  m at c h g at e
st at es, a n d t h e y ar e us e d t o i m pl e m e nt cl assi c al c o m-
p ut ati o ns o n a q u a nt u m c o m p ut er [ 1 5 8 ].  T h e a v er a g e
e nt a n gl e m e nt e ntr o p y o v er tr a nsl ati o n all y i n v ari a nt  G a us-
si a n st at es  w as st u di e d b y f o ur of us ( E. B.,  L. H.,  M. R.,
a n d  L. V.) i n  R efs. [ 4 2 ,4 8 ,5 0 ],  w h er e ti g ht b o u n ds  w er e
d eri v e d.  T h e a v er a g e o v er all f er mi o ni c  G a ussi a n st at es
w as st u di e d l at er b y t hr e e of us ( E. B.,  L. H., a n d  M. K.)
i n  R ef. [1 5 9 ], a n d a cl os e d-f or m e x pr essi o n  w as d eri v e d
as a f u n cti o n of t h e t ot al ( V ) a n d t h e s u bs yst e m (V A ) v ol-
u m es.  T o l e a di n g or d er i n V A , t h at e x pr essi o n a gr e e d  wit h
t h e o n e pr e vi o usl y d eri v e d i n  R ef. [6 1 ] f or t h e a v er a g e
e ntr o p y o v er all ei g e nst at es of p arti cl e- n u m b er- pr es er vi n g
r a n d o m q u a dr ati c  H a milt o ni a ns t h at, i n t ur n,  w as s h o w n
t o a gr e e  wit h t h e a v er a g e o v er r a n d o m q u a dr ati c
H a milt o ni a ns  wit h o ut p arti cl e- n u m b er c o ns er v ati o n i n

R ef. [ 6 2 ].  E nt a n gl e m e nt e ntr o pi es of  G a ussi a n st at es  wit h
p arti cl e- n u m b er c o ns er v ati o n  w er e als o st u di e d i n  R efs.
[8 6 ,8 8 ] i n t h e c o nt e xt of S Y K  m o d els.  We c o n n e ct all t h es e
r es ults t hr o u g h o ut t his t ut ori al.

G.  O utli n e

We pr o vi d e a d et ail e d u n d erst a n di n g of t h e b e h a vi or of
t h e e nt a n gl e m e nt e ntr o p y of t y pi c al p ur e q u a nt u m st at es
i n ( a) t h e e ntir e  Hil b ert s p a c e ( S e c. II) a n d ( b) t h e s u b-
s et of  G a ussi a n st at es ( S e c. III).  B ot h f or p ur e q u a nt u m
st at es i n t h e e ntir e  Hil b ert s p a c e, a n d  wit hi n t h e s u bs et of
G a ussi a n st at es,  w e c o nsi d er c as e ( 1) i n  w hi c h t h e n u m-
b er of p arti cl es is n ot fi x e d s e p ar at el y fr o m c as es ( 2) i n
w hi c h it is fi x e d a n d ( 3) i n  w hi c h  w e t a k e a  w ei g ht e d
s u m o v er all fi x e d p arti cl e- n u m b er s e ct ors.  O v er all,  w e
t h us c o nsi d er si x c h ar a ct eristi c e ns e m bl es,  w hi c h  w e c a n
c o m p ar e  wit h t h e r es p e cti v e t y pi c al ei g e nst at e e nt a n gl e-
m e nt e ntr o p y f o u n d i n p h ysi c al  H a milt o ni a ns, as ill ustr at e d
i n Fi g. 2 . F or g e n er al st at es  wit h o ut fi x e d p arti cl e n u m-
b er, t h e r es ults f or t h e a v er a g e o v er all q u a nt u m st at es
ar e  w ell k n o w n [ 1 5 2 ],  w hil e f or g e n er al  G a ussi a n st at es,
t h e r es ults  w er e r e c e ntl y o bt ai n e d b y t hr e e of us ( E. B.,
L. H., a n d  M. K.) [ 1 5 9 ]. F or q u a nt u m st at es  wit h a fi x e d
n u m b er of p arti cl es, all t h e r es ults dis c uss e d ar e d eri v e d
h er e (t h e d eri v ati o ns ar e e x pl ai n e d i n d et ail i n t h e a p p e n-
di c es).  We i d e ntif y a n d e x pl ai n t h e q u alit ati v e c h a n g es t h at
o c c ur i n s u bl e a di n g t er ms  w h e n o n e fi x es t h e n u m b er of

P h y si c al  H a mil t o ni a n s C h a r a c t e ri s ti c e n s e m bl e s

* N u m e ri c al r e s ul t s h a v e s h o w n t h a t i nt e g r a bl e i nt e r a c ti n g s y s t e m s s h o w q u ali t a ti v el y si mil a r b e h a vi o r [5 5 ].
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j â k â l
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FI G. 2. P h ysi c al  H a milt o ni a ns v ers us c h ar a ct eristi c e ns e m bl es.  T his t ut ori al r el at es t h e t y pi c al e nt a n gl e m e nt e ntr o p y of ei g e nst at es
of p h ysi c al  H a milt o ni a ns (l eft) t o t h e t y pi c al e nt a n gl e m e nt e ntr o p y c o m p ut e d a n al yti c all y f or si x c h ar a ct eristi c e ns e m bl es c o nstr u ct e d
fr o m r a n d o m  m atri x t h e or y (ri g ht).  O n t h e l eft  w e s h o w f o ur r e pr es e nt ati v e p h ysi c al  H a milt o ni a ns, ( a) g e n eri c i nt er a cti n g a n d ( b)
q u a dr ati c, ( 1)  wit h o ut a n d ( 2)  wit h n u m b er c o ns er v ati o n.  O n t h e ri g ht  w e s h o w t h e si x c h ar a ct eristi c e ns e m bl es,  w hi c h ar e o bt ai n e d
c o nsi d eri n g t hr e e s ets of ei g e nst at es [( 1) ar bitr ar y N , ( 2) fi x e d N , a n d ( 3)  w ei g ht e d a v er a g e] f or ( a) g e n er al p ur e st at es a n d ( b) p ur e
G a ussi a n st at es.
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p arti cl es i n t h e q u a nt u m st at es.  We e x pl or e t h e b e h a v-
i or of t h e a v er a g e e nt a n gl e m e nt e ntr o p y as a f u n cti o n
of t h e s yst e m v ol u m e V , t h e s u bs yst e m v ol u m e V A , a n d
t h e t ot al n u m b er of p arti cl es N .  We s h o w t h at g e n er al
p ur e st at es a n d  G a ussi a n st at es s h ar e c o m m o n pr o p erti es
f or f = V A / V V , b ut b e c o m e i n cr e asi n gl y disti n ct as
f → 1

2
.

I n S e c. I V,  w e e x a mi n e t h e r el ati o n b et w e e n t y pi c al
e nt a n gl e m e nt e ntr o pi es i n t h e  Hil b ert s p a c e a n d t y pi-
c al e nt a n gl e m e nt e ntr o pi es g e n er at e d b y r a n d o m  m atri-
c es. I n S e c. V ,  w e e x a mi n e t h e r el ati o n b et w e e n t y pi c al
e nt a n gl e m e nt e ntr o pi es i n t h e  Hil b ert s p a c e a n d t y pi c al
e nt a n gl e m e nt e ntr o pi es of ei g e nst at es of s p e ci fi c  m o d el
H a milt o ni a ns.  W hil e  w e  m ostl y h a v e f er mi o ni c l atti c e s ys-
t e ms ( wit h a n d  wit h o ut s pi n) i n  mi n d, o ur r es ults a p pl y t o
a n y f er mi o ni c s yst e m  wit h a  w ell- d e fi n e d bi p artiti o n, h ar d-
c or e b os o ns, a n d s pi n- 1

2
s y st e ms. I n t h e o utl o o k,  w e dis c uss

h o w t h e s a m e  m et h o ds c a n b e us e d t o st u d y r e g ul ar (s oft-
c or e) b os o ns, l ar g e s pi ns, a n d s yst e ms of disti n g uis h a bl e
p arti cl es.

It  w as r e c e ntl y c o nj e ct ur e d t h at t h e e nt a n gl e m e nt
e ntr o p y of t y pi c al ei g e nst at es of q u a nt u m  m a n y- b o d y
H a milt o ni a ns c a n b e us e d as a di a g n osti c of q u a nt u m c h a os
a n d i nt e gr a bilit y [ 5 5 ].  T his c o nj e ct ur e  w as  m oti v at e d b y
t h e fi n di n g t h at t h e l e a di n g v ol u m e-l a w t er m of t h e e nt a n-
gl e m e nt e ntr o p y i n t y pi c al ei g e nst at es of a n i nt e gr a bl e
m o d el t h at is n ot  m a p p a bl e o nt o a n o ni nt er a cti n g o n e
b e h a v es q u alit ati v el y ( a n d q u a ntit ati v el y) li k e i n t y pi c al
ei g e nst at es of tr a nsl ati o n all y i n v ari a nt q u a dr ati c  H a mil-
t o ni a ns, a n d i n st ar k c o ntr ast t o t h e b e h a vi or i n t y pi c al
ei g e nst at es of q u a nt u m- c h a oti c  H a milt o ni a ns.  Wit h t h at
c o nj e ct ur e i n  mi n d,  w e e x p e ct t h at t h e a n al yti c al e x pr es-
si o ns d eri v e d i n t h e s e cti o ns t o f oll o w c a n b e us e d as
b e n c h m ar ks f or n u m eri c al r es ults o bt ai n e d f or p h ysi c al
H a milt o ni a ns ( a n d a n al yti c al r es ults o bt ai n e d usi n g dif-
f er e nt t e c h ni q u es).  T h e e nt a n gl e m e nt e ntr o p y of t y pi c al
ei g e nst at es of p h ysi c al  H a milt o ni a ns is c o m pl e m e nt ar y t o
di a g n osti cs of i nt e gr a bilit y a n d q u a nt u m c h a os c urr e ntl y i n
us e, s u c h as t h e pr e vi o usl y  m e nti o n e d  Wi g n er s ur mis e t h at
is b as e d o n t h e st atisti c al pr o p erti es of t h e ei g e n e n er gi es.

II.  G E N E R A L  P U R E S T A T E S

We c o nsi d er t h e g e n er al s etti n g of a s yst e m  wit h V
f er mi o ni c  m o d es ( p ot e nti all y arr a n g e d i n a l atti c e of ar bi-
tr ar y di m e nsi o n) a n d a bi p artiti o n of t h e s yst e m i nt o a
s u bs yst e m A ( wit h V A f er mi o ni c  m o d es) a n d its c o m pl e-
m e nt B ( wit h V − V A f er mi o ni c  m o d es).  H e n c e, t h e  Hil b ert
s p a c e h as t h e str u ct ur e H = H A ⊗ H B a n d di m e nsi o n
di m H = d A d B ,  w h er e d A = di m H A a n d d B = di m H B .

T his s et u p c a n b e us e d i n di ff er e nt c o nt e xts. F or
i nst a n c e, o n a D - di m e nsi o n al l atti c e  wit h L sit es p er s p a c e
dir e cti o n a n d N i nt f er mi o ni c  m o d es p er sit e (r e pr es e nti n g
i nt er n al d e gr e es of fr e e d o m, s u c h as s pi n), t h e t ot al n u m b er

of f er mi o ni c  m o d es is

V = L D N i nt. (7 )

F or e a c h  m o d e,  w e c a n d e n ot e t h e cr e ati o n ( a n ni hil ati o n)

o p er at ors as f̂
†

i ( f̂i),  w h er e 1 ≤ i ≤ V .  T h e bi p artiti o n  wit h
r es p e ct t o a s u bs yst e m of V A ≤ V m o d es t h e n yi el ds t h e
Hil b ert s p a c e di m e nsi o ns

d A = 2 V A , d B = 2 V − V A . ( 8)

W h e n  w e fi x t h e s u bs yst e m fr a cti o n f = V A / V , o ur r es ults
h ol d i n f ull g e n er alit y f or ar bitr ar y s p a c e di m e nsi o ns D a n d
f er mi o ns  wit h a n ar bitr ar y s pi n.  T h e y als o h ol d f or h ar d-
c or e b os o ns a n d s pi n- 1

2
s y st e ms ( w hi c h h a v e t w o st at es p er

l atti c e sit e) — b ut n ot f or (s oft- c or e) b os o ns f or  w hi c h t h e
a v er a g e e nt a n gl e m e nt e ntr o p y di v er g es d u e t o t h e i n fi nit e
l o c al di m e nsi o n of t h e  Hil b ert s p a c e.

We n ot e t h at, i n t h e I ntr o d u cti o n,  w e r ef err e d t o V , V A ,
a n d V − V A a s v ol u m es.  We c o nti n u e t o us e t h at t er mi-
n ol o g y i n t h e r est of t h e t ut ori al.  R e a d ers s h o ul d k e e p
i n  mi n d t h at V , V A , a n d V − V A q u a ntif y t h e n u m b er of
f er mi o ni c  m o d es; t h e v ol u m e ( or, si mil arl y, t h e n u m b er of
sit es) b ei n g j ust o n e of t h e p ossi bl e  w a ys i n  w hi c h t his is
a c hi e v e d.

A.  A r bit r a r y n u m b e r of p a rti cl es

A n at ur al a p pr o a c h t o g ai n a n u n d erst a n di n g of t h e
e nt a n gl e m e nt e ntr o p y of p ur e q u a nt u m st at es is t o c o n-
si d er r a n d o ml y c h os e n v e ct or st at es |ψ ∈ H . Si n c e t h e
Hil b ert s p a c e is fi nit e di m e nsi o n al, t h e s et of all st at es
d es cri b es a h y p ers p h er e t h at is c o m p a ct.  T h us, t h e u ni-
f or m distri b uti o n o n t his s et pr o vi d es a n at ur al u n bi as e d
pr o b a bilit y distri b uti o n o v er p ur e st at es [ 1 5 2 ].  T h e c or-
r es p o n di n g d e nsit y o p er at or |ψ ψ | is als o c all e d  H a ar
r a n d o m as it is e q u al t o t h e i n d u c e d  H a ar  m e as ur e o n t h e
c os et U (d A d B ) /U (d A d B − 1 ) wit h U (d ) t h e d - di m e nsi o n al
u nit ar y gr o u p.  T his  m e as ur e is t h e u ni q u e o n e t h at is n or-
m ali z e d a n d i n v ari a nt u n d er u nit ar y tr a nsf or m ati o ns. I n
pr a cti c e,  w e c a n c o nstr u ct s u c h a st at e b y first fi xi n g a r ef-
er e n c e st at e |ψ 0 a n d t h e n d e fi ni n g |ψ = U |ψ 0 ,  w h er e
U : H → H is a r a n d o m u nit ar y tr a nsf or m ati o n dr a w n
fr o m t h e  H a ar  m e as ur e of u nit ar y  m atri c es.

F or e v er y s u c h |ψ , t h e bi p artit e e nt a n gl e m e nt
e ntr o p y  wit h r es p e ct t o t h e t e ns or pr o d u ct d e c o m p ositi o n
H = H A ⊗ H B i s, o n c e a g ai n, d e fi n e d b y

S A (|ψ ) = − Tr H A ( ρ̂ A l n ρ̂ A ),  wit h ρ̂ A = Tr H B |ψ ψ | ,
( 9)

w h er e  Tr H B r ef ers t o t h e p arti al tr a c e o v er t h e s u b- Hil b ert
s p a c e H B .  We ar e i nt er est e d i n t h e a v er a g e a n d t h e v ari a n c e
of S A wit h r es p e ct t o t h e st atisti c al e ns e m bl e. I n P a g e’s
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s etti n g, t h e e ns e m bl e is gi v e n b y  H a ar-r a n d o m d e nsit y
o p er at ors |ψ ψ |.  We c a n  writ e t h os e q u a ntiti es as

S A = S A (U |ψ 0 )d μ( U ), ( 1 0)

( S A )2 = [S A (U |ψ 0 ) − S A ]2 d μ( U ), ( 1 1)

w h er e d μ( U ) r e pr es e nts t h e n or m ali z e d  H a ar  m e as ur e o v er
t h e u nit ar y gr o u p U (d A d B ).  T h e a v er a g e a n d v ari a n c e c a n
b e c o m p ut e d fr o m t h e j oi nt pr o b a bilit y distri b uti o n of t h e
ei g e n v al u es λ i of ρ̂ A ,  w hi c h  w er e d eri v e d i n  R ef. [1 5 1 ], as

S A (|ψ ) = −
d A
j = 1 λ j l n( λj ).

I n t h e c as e of P a g e’s s etti n g,  w h er e o n e dr a ws a r a n d o m
u nif or ml y distri b ut e d st at e |ψ ∈ H , t h e a v er a g e e nt a n-
gl e m e nt e ntr o p y ( a n d a n y ot h er st atisti c al q u a ntiti es)  will
d e p e n d o nl y o n t h e di m e nsi o ns d A a n d d B .  T his s h o ws t h at
t h e e ns ui n g st at e m e nts ar e i n d e p e n d e nt of a n y c h os e n p ar-
ti cl e st atisti cs ( b os o ns, f er mi o ns) a n d als o n ot r estri ct e d t o
t h e s p e ci al c as e of q u bit- b as e d (t w o-st at e p er-sit e) s yst e ms
i n t h e c o nt e xt of  w hi c h t h e y ar e us u all y us e d.  T h e y a p pl y
m u c h  m or e g e n er all y.

1. St atisti c al e ns e m bl e of st at es

L et us o utli n e t h e d eri v ati o n of P a g e’s r es ult i n  E q. ( 2 3).
T h e d eri v ati o n all o ws us t o dr a w s o m e r el ati o ns t o r a n d o m
m atri x t h e or y, a n d  w e us e s o m e of t h e i d e as b e hi n d it l at er
w h e n st u d yi n g f er mi o ni c  G a ussi a n st at es.

L et us c o nsi d er a g e n er al st at e v e ct or i n t h e t e ns or s p a c e
H = H A ⊗ H B . S u c h a v e ct or c a n al w a ys b e d e c o m p os e d
i nt o s o m e f a ct ori zi n g ort h o n or m al b asis |a ⊗ | b ∈ H :

|ψ =

d A

a = 1

d B

b = 1

w a b |a ⊗ | b ( 1 2)

wit h c o e ffi ci e nts w a b ∈ C .  As p h ysi c al st at e v e ct ors ar e
n or m ali z e d, t h e c o e ffi ci e nts s atisf y

d A

a = 1

d B

b = 1

|w a b |
2 = 1. ( 1 3)

T h es e c o e ffi ci e nts a n d t h eir distri b uti o n c o nt ai n all t h e
i nf or m ati o n a b o ut t h e r a n d o m p ur e st at e a n d, h e n c e, a b o ut
t h e e nt a n gl e m e nt e ntr o p y.  O n c e  w e t a k e t h e p arti al tr a c e
o v er t h e s u bs yst e m B , t h e d e nsit y o p er at or i n s yst e m A is
e x pli citl y gi v e n b y

ρ̂ A =

d A

a 1 ,a 2 = 1

d B

b = 1

w a 1 b w
∗
a 2 b |a 1 a 2 | . ( 1 4)

T h e c o e ffi ci e nts w a b c a n b e s e e n as t h e e ntri es of a d A × d B

c o m pl e x  m atri x W .  T h e n c e,  w e c a n i d e ntif y t h e d e nsit y

o p er at or ρ̂ A = W W † .  T h e d e nsit y o p er at or f or s u bs yst e m
B ,  w h e n tr a ci n g o v er s u bs yst e m A , is gi v e n b y ρ̂ B =
Tr H A |ψ ψ | = W † W .  T his all o ws us t o e x pli citl y s e e t h e
d u alit y b et w e e n t h e t w o s u bs yst e ms, a n d  w h at c h a n g es
w h e n s wit c hi n g fr o m A t o B . I n g e n er al, t h e di m e nsi o ns
d A a n d d B ar e n ot e q u al.  T h us, o n e of t h e t w o d e nsit y o p er-
at ors al w a ys h as z er o ei g e n v al u es b ut ot h er wis e c o m pris es
t h e v er y s a m e ei g e n v al u es  wit h t h e s a m e  m ulti pli cit y as t h e
ot h er d e nsit y o p er at or.

E q u ati o n ( 1 3) i m pli es t h at t h e  m atri x W s atis fi es
Tr W W † = 1. P a g e’s s etti n g of u nif or ml y distri b ut e d st at es
m e a ns t h at W is distri b ut e d u nif or ml y o n t h e u nit s p h er e
d es cri b e d b y t his n or m ali z ati o n c o n diti o n. S u c h a  m atri x
is a r a n d o m  m atri x a n d t h e e ns e m bl e is k n o w n as t h e fi x e d
tr a c e e ns e m bl e [1 1 7 ]. I n q u a nt u m i nf or m ati o n t h e or y, it
h as b e e n us e d i n s e v er al st u di es, e. g., s u c h as t h os e i n  R efs.
[1 4 3 ,1 4 5 ,1 4 9 ,1 6 0 – 1 6 2 ].

Wit h t his k n o wl e d g e at h a n d, l et us c o m p ut e t h e e nt a n-
gl e m e nt e ntr o p y,  w hi c h c a n b e e x pr ess e d i n t er ms of t h e
ei g e n v al u es of W W † , i. e., it h ol ds t h at

S A (|ψ ) = − Tr[ W W † l n(W W † )]

= − Tr[ W † W l n(W † W )]

= S B (|ψ ). ( 1 5)

It is t h e s p e ctr al d e c o m p ositi o n t h e or e m t h at e ns ur es t h e
s y m m etr y of t h e e nt a n gl e m e nt e ntr o p y b et w e e n t h e t w o
s u bs yst e ms.  T his s y m m etr y al w a ys h ol ds.

T o c o m p ut e t h e e ns e m bl e a v er a g e of S A (|ψ ), o n e
i m pl e m e nts t h e n or m ali z ati o n c o n diti o n i n t er ms of a  Dir a c
d elt a f u n cti o n,  w hi c h c a n b e  writt e n as a F o uri er- L a pl a c e
tr a nsf or m of t h e c o m pl e x  Wis h art- L a g u err e e ns e m bl e
[1 1 7 ,1 3 6 ],

S A = − C d A × d B d [W ]S A (|ψ ) δ (1 − Tr W W † )

C d A × d B d [W ]δ ( 1 − Tr W W † )

= − C d A × d B d [W ]
∞

− ∞ dt S A (|ψ )e (1 + it)(1 − Tr W W † )

C d A × d B d [W ]
∞
− ∞ dt e (1 + it)(1 − Tr W W † )

,

( 1 6)

w h er e d [W ] is t h e pr o d u ct of all di ff er e nti als of all  m atri x
el e m e nts of W a n d W † .  T h e s hift of it t o 1 + it is i m p or-
t a nt si n c e it all o ws us t o r es c al e W W † → W W † /( 1 + it),
w hi c h d es cri b es a r ot ati o n of t h e i nt e gr ati o n c o nt o urs i n
t h e c o m pl e x pl a n e  w h er e t h e i nt e gr a n d is a bs ol ut el y i nt e-
gr a bl e.  B ef or e r es c ali n g,  w e us e a st a n d ar d tri c k t o r e writ e
t h e e nt a n gl e m e nt e ntr o p y r e m o vi n g t h e l o g arit h m:

S A (|ψ ) = − ∂ Tr (W W † ) | = 1 . ( 1 7)

We als o us e t his r el ati o n  w h e n c o m p uti n g t h e a v er a g e
e nt a n gl e m e nt e ntr o p y of f er mi o ni c  G a ussi a n st at es.  Aft er
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t h e af or e m e nti o n e d r es c ali n g of t h e r a n d o m  m atri x W W † ,
t h e e nt a n gl e m e nt e ntr o p y r e a ds

S A = − ∂

∞

− ∞ dt (1 + it)− d A d B − e (1 + it)

∞

− ∞ dt (1 + it)− d A d B e (1 + it)

× C d A × d B d [W ] Tr(W W † ) e − Tr W W †

C d A × d B d [W ]e − Tr W W †
= 1

. ( 1 8)

T h e first f a ct or c a n b e c o m p ut e d usi n g st a n d ar d t e c h ni q u es
i n c o m pl e x a n al ysis, yi el di n g

∞
− ∞ dt (1 + it)− d A d B − e (1 + it)

∞

− ∞ dt (1 + it)− d A d B e (1 + it)
=

[d A d B ]

[d A d B + ]
( 1 9)

wit h [x ] t h e g a m m a f u n cti o n.  O n c e  w e a p pl y t h e d eri v a-
ti v e i n ,  w e s e e t h at t h e first t er m of P a g e’s r es ult ( 2 3)
f oll o ws fr o m t h e fi x e d tr a c e c o n diti o n.  T his  w as als o
o bs er v e d a n d e x pl oit e d i n t h e ori gi n al  w or ks i n  w hi c h  E q.
( 2 3) w as c o m p ut e d [ 1 5 2 ,1 5 4 ].

T h e r e m ai ni n g i nt e gr al o v er W is a n a v er a g e o v er t h e
c o m pl e x  Wis h art- L a g u err e e ns e m bl e [ 1 1 7 ,1 3 6 ],  w hi c h is
o n e of t h e t hr e e cl assi c al r a n d o m  m atri x e ns e m bl es t h at
als o i n cl u d e t h e  G a ussi a n [ 1 1 7 ,1 1 8 ,1 3 6 ] a n d t h e J a c o bi
[1 3 6 ,1 6 3 ] e ns e m bl es. I nt er esti n gl y, it is t h e J a c o bi e ns e m-
bl e t h at  w e e n c o u nt er  w h e n st u d yi n g f er mi o ni c  G a ussi a n
st at es l at er o n.

I n t h e fi n al st e p, o n e us es t h e ei g e n v al u es x 1 , . . . , x d A ≥
0 of W W † a n d e x pr ess es t h e a v er a g e i n t er ms of t h e l e v el
d e nsit y of t h e  L a g u err e e ns e m bl e. I n t his st e p, o n e n e e ds
t o d e ci d e  w h et h er d A ≤ d B or d A ≥ d B , as t h e d e nsit y is n ot
a n al yti c at d A = d B .  T his r e fl e cts t h e f a ct t h at eit h er ρ̂ A or
ρ̂ B h a s e x a ct z er o ei g e n v al u es, a n d it is t h e s o ur c e of t h e
c as e disti n cti o n i n P a g e’s r es ult ( 2 3).  W h e n ass u mi n g t h at
d A ≤ d B , t h e l e v el d e nsit y is e q u al t o [1 3 6 ]

R 1, L a g (x ) =
d A !

(d B − 1 )!
x d B − d A e − x

× [L
(d B − d A + 1 )
d A − 1 (x )L

(d B − d A )
d A − 1 (x )

− L
(d B − d A + 1 )
d A − 2 (x )L

(d B − d A )
d A

(x )], ( 2 0)

i n t er ms of t h e g e n er ali z e d  L a g u err e p ol y n o mi als L ( α )
n (x ).

Usi n g t h e s eri es r e pr es e nt ati o n of L
(d B − d A + 1 )
a (x ) i n  E q.

( 1 8. 5. 1 2) of  R ef. [1 6 4 ], a n d t h e  R o dri g u es f or m ul a f or

L
(d B − d A )
b (x ) i n  E q. ( 1 8. 5. 5) of  R ef. [1 6 4 ], o n e c a n s h o w f or

a ≤ b t h at

∞

0

x + α e − x L (d B − d A + 1 )
a (x )L

(d B − d A )
b (x )d x

=

a

l= 0

[a + α + 2] [ + l + 1] [ + α + l + 1]

[l + α + 2] [ + l − n + 1] (a − l)! l! b !

× (− 1 )l+ b , ( 2 1)

w hi c h is di ff er e nt fr o m t h e f or m ul a us e d i n  R ef. [ 1 5 4 ].  We
us e t his a p pr o a c h as it p ar all els o ur c o m p ut ati o n f or  G a us-
si a n st at es. P utti n g e v er yt hi n g t o g et h er i n  E q. ( 1 8), usi n g
t h e i d e ntit y

d [W ] Tr(W W † ) e − Tr W W †

d [W ]e − Tr W W †
= d A

∞

0

x R 1, L a g (x )d x ,

( 2 2)

w e arri v e at P a g e’s r es ult i n  E q. ( 2 3).  As  w e h a v e  m e n-
ti o n e d b ef or e, t h e s y m m etr y i n d A a n d d B r e fl e cti n g t h e
s y m m etr y i n t h e t w o s u bs yst e ms A ↔ B h as t o b e i m pl e-
m e nt e d b y h a n d.  T h e r a n d o m  m atri x a p pr o a c h u n d ers c or es
t his l oss of a n al yti cit y  w h e n g oi n g o v er t o t h e g e n eri c
n o n z er o ei g e n v al u es of W W † a n d s el e cti n g t h e s m all er of
t h e t w o di m e nsi o ns.

2.  A v er a g e a n d v ari a n c e

T h e a v er a g e e nt a n gl e m e nt e ntr o p y of a u nif or ml y dis-
tri b ut e d p ur e st at e i n H r estri ct e d t o s u bs yst e m A is gi v e n
b y t h e P a g e f or m ul a [ 1 5 2 ]

S A =

⎧
⎪⎨

⎪⎩

(d A d B + 1 ) − (d B + 1 ) −
d A − 1

2 d B
, d A ≤ d B ,

(d A d B + 1 ) − (d A + 1 ) −
d B − 1

2 d A
, d A > d B ,

( 2 3)

w h er e (x ) = (x ) /  (x ) is t h e di g a m m a f u n cti o n. I n t h e
t h er m o d y n a mi c li mit V → ∞ w h e n V A , V − V A → ∞ als o
s o t h at t h e s u bs yst e m fr a cti o n

f =
V A

V
( 2 4)

is fi x e d, P a g e’s f or m ul a ( 2 3) r e d u c es t o

S A = f V l n 2 − 2 −| 1 − 2 f |V − 1 + O (2 − V ), ( 2 5)

w h er e  w e  will b e c ar ef ul t o c o nsist e ntl y us e  L a n d a u’s “ bi g
O ” a n d “littl e o ” n ot ati o n i n t his  m a n us cri pt, s u c h t h at

f (V ) = O (V n ) ⇐ ⇒ li m
V → ∞

f (V )

V n
= c = 0, ( 2 6)

f (V ) = o (V n )

a n d

⇐ ⇒ li m
V → ∞

f (V )

V n
= 0. ( 2 7)

T h e first t er m i n  E q. ( 2 5) is a v ol u m e l a w: t h e a v er-
a g e e nt a n gl e m e nt e ntr o p y s c al es as t h e  mi ni m u m b et w e e n
t h e v ol u m es V A = f V a n d V B = (1 − f )V . F or f = 1

2
, t h e

s e c o n d t er m is a n e x p o n e nti all y s m all c orr e cti o n. I n f a ct,
at fi x e d f a n d i n t h e li mit V → ∞ , t h e s e c o n d t er m
− 2 −| 1 − 2 f |V − 1 b e c o m es − 1

2
δ f , 1/ 2 .  We c a n als o r es ol v e pr e-

cis el y h o w t his  Kr o n e c k er d elt a aris es i n t h e n ei g h b or h o o d

0 3 0 2 0 1- 1 0
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S A = a V − b + O ( 2 − V ) f = 1
2

+
Λ f

V

0. 0

0. 1

0. 2

0. 3

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

– 5 0 5

0. 1

0. 2

0. 3

0. 4

( a)

( b)

( c)

FI G. 3.  T h e a v er a g e e nt a n gl e m e nt e ntr o p y S A = a V − b + o (1 ) as a f u n cti o n of t h e s u bs yst e m fr a cti o n f = V A / V f or l ar g e V . ( a)
L e a di n g- or d er b e h a vi or, als o k n o w n as t h e P a g e c ur v e. ( b)  T h e c o nst a nt c orr e cti o n,  w hi c h is gi v e n b y a  Kr o n e c k er d elt a − 1

2
δ f , 1/ 2 . T his

Kr o n e c k er d elt a is r es ol v e d i n ( c) b y c arr yi n g o ut a d o u bl e s c ali n g li mit V → ∞ wit h f = V A / V = 1
2

+ f / V .

of f = 1
2
.  As it  m a y b e di ffi c ult t o r e a c h e x a ctl y f = 1

2
i n p h ysi c al e x p eri m e nts, t h e  m or e pr e cis e st at e m e nt is
t h at  w e s e e t h e c orr e cti o n  w h e n e v er f = 1

2
+ O (1 / V ). F or-

m all y,  w e c a n t h us r es ol v e t h e c orr e cti o n t er m e x a ctl y as
− 2 −| f | −1 f or f = 1

2
+ f / V , as vis u ali z e d i n Fi g. 3 .

We fi n d si mil ar  Kr o n e c k er d elt a c o ntri b uti o ns δ f , 1/ 2 i n
s u bs e q u e nt s e cti o ns  w h er e  w e dis c uss t h e t y pi c al e ntr o p y
at fi x e d p arti cl e n u m b er a n d i n t h e s etti n g of  G a ussi a n
st at es.  T h es e t er ms hi g hli g ht n o n a n al yti citi es i n t h e e nt a n-
gl e m e nt e ntr o p y t h at c a n b e r es ol v e d b y d o u bl e s c ali n g
li mits.  T h os e “ criti c al p oi nts ” o c c ur at s y m m etr y p oi nts
a n d al o n g a x es. I n t h e pr es e nt c as e, t his h as h a p p e n e d  wit h
t h e di m e nsi o ns d A a n d d B r e fl e cti n g  w h et h er t h e d e nsit y
o p er at or ρ̂ A = W W † or ρ̂ B = W † W c o nt ai ns g e n eri c z er o
ei g e n v al u es.

T h e v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y of a r a n d o m
p ur e st at e is gi v e n b y t h e e x a ct f or m ul a (f or d A ≤ d B ) [1 5 7 ,
1 6 5 ,1 6 6 ]

( S A )2 =
d A + d B

d A d B + 1
(d B + 1 ) − (d A d B + 1 )

−
(d A − 1 )(d A + 2 d B − 1 )

4 d 2
B (d A d B + 1 )

, ( 2 8)

w h er e (x ) = d (x ) /d x = d 2 [l n (x )]/ d x 2 i s t h e first
d eri v ati v e of t h e di g a m m a f u n cti o n. It c a n b e d eri v e d usi n g
si mil ar t e c h ni q u es as t h os e o utli n e d a b o v e f or t h e a v er a g e.
I n p arti c ul ar, t h e fi x e d tr a c e c o n diti o n c a n b e s e p ar at e d as
b ef or e vi a t h e tri c k of t h e F o uri er- L a pl a c e tr a nsf or m, s u c h
t h at o n e is l eft  wit h a n a v er a g e o v er t h e c o m pl e x  Wis h art-
L a g u err e e ns e m bl e.  T h e d eri v ati o n is t e di o us a n d l e n gt h y
b e c a us e o n e h as t o d e al  wit h d o u bl e s u ms,  w hi c h c a n b e
c o m p ut e d as d es cri b e d i n  A p p e n di x D [1 6 7 ].

I n t h e t h er m o d y n a mi c li mit dis c uss e d a b o v e,  E q. ( 2 8)
r e d u c es t o

( S A )2 = 1
2

− 1
4
δ f , 1

2
2 − (1 +| 1 − 2 f |)V + o (2 − (1 +| 1 − 2 f |)V ).

( 2 9)

T his s h o ws t h at t h e v ari a n c e is e x p o n e nti all y s m all i n V .
As a r es ult, i n t h e t h er m o d y n a mi c li mit t h e e nt a n gl e m e nt
e ntr o p y of a t y pi c al st at e is gi v e n b y  E q. ( 2 5) [1 5 7 ].

A n e w, o n e c o ul d r es ol v e t h e v ari a n c e at t h e criti c al
p oi nt f = 1

2
vi a a d o u bl e s c ali n g li mit f = 1

2
+ f / V .  T his

yi el ds ( S A )2 = 2 − V 2 − 2 | f | −1 (1 − 2 − 2 | f | −1 ).

B.  Fi x e d n u m b e r of p a rti cl es

L et us g o o v er t o a  Hil b ert s p a c e H (N ) wit h a fi x e d n u m-
b er of p arti cl es, b ut still c arr yi n g o v er t h e i d e a t o dr a w
st at es u nif or ml y fr o m t h e s p h er e i n t his  Hil b ert s p a c e.  We
f urt h er ass u m e t h at t h er e is a n oti o n of a bi p artiti o n i nt o
s u bs yst e m A a n d B , s u c h t h at o n e c a n s p e cif y f or e a c h p ar-
ti cl e if it is i n s u bs yst e m A or B . S u c h a d e c o m p ositi o n is
n ot a si m pl e t e ns or pr o d u ct a n y m or e, b ut it is a dir e ct s u m
of t e ns or pr o d u cts

H (N ) =

N

N A = 0

H (N A )
A ⊗ H (N − N A )

B . ( 3 0)

T h e dir e ct s u m is o v er t h e o c c u p ati o n n u m b er i n A ( w hi c h
l a b els t h e c e nt er of t h e s u b al g e br a).  E a c h s u m m a n d r e p-
r es e nts t h os e st at es  w h er e N A p arti cl es ar e i n s u bs yst e m
A a n d N − N A p arti cl es ar e i n s u bs yst e m B ( ass u mi n g
i n disti n g uis h a bl e p arti cl es).

W h e n N A i s l ar g er t h a n di m e nsi o n V A of s u bs yst e m A ,
or N − N A i s l ar g er t h a n V − V A ,  w e c o nsi d er t h e t e ns or

pr o d u ct H (N A )
A ⊗ H (N − N A )

B a s t h e e m pt y s et a n d, t h e n c e,
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n o n e xist e nt.  T his is t h e c as e as, d u e t o P a uli’s e x cl usi o n
pri n ci pl e,  w e c a n n ot p ut  m or e f er mi o ns i n t h e s yst e m t h a n
t h er e ar e q u a nt u m st at es.  We als o a d a pt t his u n d erst a n di n g
f or t h e f oll o wi n g dis c ussi o n  w h er e dir e ct s u ms, or di n ar y
s u ms, a n d pr o d u cts ar e r e d u c e d t o t h e c o m p o n e nts t h at ar e
a ct u all y pr es e nt.

1. St atisti c al e ns e m bl e of st at es

L et us c o nsi d er f er mi o ni c cr e ati o n f̂
†

i a n d a n ni hil ati o n

f̂i o p er at ors,  w hi c h s atisf y t h e a nti c o m m ut ati o n r el ati o ns

{ f̂i, f̂
†

j } = δ ij , { f̂i, f̂j } = 0  wit h i, j = 1, . . . , V .  T h e c orr e-
s p o n di n g n u m b er o p er at ors ar e

N̂ =

V

i= 1

f̂
†

i f̂i, N̂ A =

V A

i= 1

f̂
†

i f̂i, N̂ B =

V

i= V A + 1

f̂
†

i f̂i, ( 3 1)

w h er e o n e c a n s e e t h at

N̂ = N̂ A + N̂ B . ( 3 2)

T h e  Hil b ert s p a c e of t h e s yst e m c a n b e d e c o m p os e d as a
dir e ct s u m of  Hil b ert s p a c es at fi x e d ei g e n v al u e N of N̂ ,

H =

V

i= 1

H i =

V

N = 0

H (N ) ( 3 3)

wit h H (N ) gi v e n b y  E q. ( 3 0).  T h e di m e nsi o n of e a c h
N - p arti cl e s e ct or is

d N = di m H (N ) =
V !

N ! (V − N )!
. ( 3 4)

It is i m m e di at e t o c h e c k t h at di m H = V
N = 0 d N = 2 V .

Si mil arl y, o n e c a n us e t h e n u m b er o p er at ors N̂ A a n d N̂ B

t o d e c o m p os e t h e  Hil b ert s p a c es H A a n d H B i nt o s e ct ors

H A =

V A

N A = 0

H (N A )
A , H B =

V − V A

N B = 0

H (N B )
B . ( 3 5)

L et us str ess o n c e a g ai n t h at,  w hil e H is a t e ns or pr o d u ct
o v er A a n d B ,

H =

V A

i= 1

H i ⊗

V

i= V A + 1

H i = H A ⊗ H B , ( 3 6)

t h e s e ct or at fi x e d n u m b er N ≤ V A i s n ot a t e ns or pr o d u ct.
It is t h e dir e ct s u m of t e ns or pr o d u cts fr o m  E q. ( 3 0). T h e

c orr es p o n di n g di m e nsi o ns of t h e s u bs yst e ms ar e

d A (N A ) = di m H (N A )
A =

V A !

N A ! (V A − N A )!
,

d B (N B ) = di m H (N B )
B =

(V − V A )!

N B ! [(V − V A ) − N B ]!
.

( 3 7)

O n e c a n c h e c k t h at t h e di m e nsi o ns a d d u p c orr e ctl y,

N

N A = 0

d A (N A ) d B (N − N A ) =
V !

N ! (V − N )!
= d N . ( 3 8)

T h e f or m ul a f or d A , a n d e q ui v al e ntl y t h at of d B , f oll o ws
fr o m a si m pl e c o u nti n g ar g u m e nt of h o w  m a n y c h oi c es
t h er e ar e t o pl a c e N A i n disti n g uis h a bl e p arti cl es o n V A

m o d es.  L et us u n d erli n e t h at it d o es n ot  m att er  w h at
w e l a b el p arti cl es a n d  w h at h ol es.  N ot e t h at d A (N A ) or
d B (N − N A ) will v a nis h f or N A o utsi d e of t h e i nt er v al
[ m a x(0, N + V A − V ), mi n(N , V A )], b ut  w e  will n ot tr u n-
c at e t h e s u m, as  w e  will s o o n t ur n it i nt o a  G a ussi a n
i nt e gr al.

Fr o m t h es e di m e nsi o ns  w e c a n r e a dil y r e a d o ff t w o e x a ct
s y m m etri es.

(i) It d o es n ot  m att er  w h et h er o n e c o nsi d ers s u bs ys-
t e m A or B .  O n e c a n e x c h a n g e (d A (N A ), V A , N A ) ↔
(d B (N − N A ), V − V A , N − N A ).  T his all o ws us t o
r estri ct t h e dis c ussi o n t o V A ≤ V / 2.  H o w e v er, t h e
di m e nsi o ns of t h e t w o  Hil b ert s p a c es ar e e x c h a n g e d,
w hi c h ( as  w e  will s h o w) yi el ds n o n a n al yti c p oi nts
al o n g V A = V / 2 d u e t o t h e t w o br a n c h es of P a g e
c ur v e ( 2 3).

(ii)  A d diti o n all y, t h er e is a p arti cl e- h ol e s y m m etr y si n c e
it d o es n ot  m att er  w h et h er o n e c o u nts p arti cl es or
h ol es.  A ct u all y, t h e “ p arti cl es ” d o n ot n e c ess aril y
n e e d t o r e pr es e nt p arti cl es b ut t h e y c a n b e, f or
i nst a n c e, u p s pi ns  w hil e t h e “ h ol es ” ar e d o w n s pi ns
( h a vi n g i n  mi n d s pi n- 1

2
s y st e ms).  A n y bi n ar y str u c-

t ur e  wit h f er mi o n st atisti cs ( m e a ni n g P a uli pri n ci-
pl e) c a n b e d es cri b e d i n t his s etti n g.  M at h e m ati-
c all y, t h e p arti cl e- h ol e s y m m etr y is r e fl e ct e d i n t h e
e x c h a n g e (N , N A ) ↔ (V − N , V A − N A ).  We n ot e
t h at i n t his c as e t h e di m e nsi o ns ar e n ot e x c h a n g e d
s o o n e d o es n ot s wit c h br a n c h es i n P a g e c ur v e ( 2 3).
T h er ef or e, t h e s y m m etr y p oi nts at N = V / 2  will
b e a n al yti c, as  w e  will als o s h o w.  T his s y m m etr y
all o ws us t o r estri ct N ≤ V / 2.

I n s u m m ar y,  w e o nl y n e e d t o st u d y t h e b e h a vi or i n t h e
q u a dr a nt (V A , N ) ∈ (0, V / 2] 2 .  T h e r e m ai ni n g q u a dr a nts ar e
o bt ai n e d b y s y m m etr y.

Li k e i n t h e s etti n g i n  w hi c h  w e d o n ot fi x t h e p arti-
cl e n u m b er,  w e c a n r el at e t h e pr o bl e m t o r a n d o m  m atri x
t h e or y.  H er e,  w e bri e fl y r e c all t h e  m ost i m p ort a nt
i n gr e di e nts fr o m  R ef. [1 5 7 ].  A st at e |ψ ∈ H (N ) c a n b e
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a g ai n  writt e n i n a b asis.  We c h o os e t h e ort h o n or m al b asis

v e ct ors |a , N A ⊗ | b , N − N A ∈ H (N A )
A ⊗ H (N − N A )

B s o t h at
t h e st at e v e ct or h as t h e e x p a nsi o n

|ψ =

N

N A = 0

d A

a = 1

d B

b = 1

w̃
(N A )
a b |a , N A ⊗ | b , N − N A , ( 3 9)

wit h t h e a b br e vi ati o ns d A = d A (N A ) a n d d B = d B (N −
N A ).  T h e n or m ali z ati o n is t h e n r e fl e ct e d b y t h e tri pl e s u m

N

N A = 0

d A

a = 1

d B

b = 1

|w̃
(N A )
a b |2 = 1. ( 4 0)

T h e dir e ct s u m o v er N A i s i m p ort a nt as it t ells us t h at t h e
d e nsit y o p er at or ρ̂ A = Tr H B |ψ ψ | h as a bl o c k di a g o n al
f or m, n a m el y,

ρ̂ A =

N

N A = 0

d A

a 1 ,a 2 = 1

d B

b = 0

w̃
(N A )
a 1 b ( w̃

(N A )
a 2 b ) ∗ |b , N A a 2 , N A | . ( 4 1)

A g ai n,  w e c a n u n d erst a n d t h e c o e ffi ci e nts w̃
(N A )
a b ∈ C as

t h e e ntri es of a d A × d B m atri x W̃ N A .  T h e p oi nt is t h at
t h os e  m atri c es ar e c o u pl e d b y c o n diti o n ( 4 0). I n R ef. [1 5 7 ]
t h os e  m atri c es  w er e d e c o u pl e d b y u n d erst a n di n g t h eir
s q u ar e d  Hil b ert- S c h mi dt n or ms as pr o b a bilit y  w ei g hts, i. e.,
d e fi ni n g

p N A =

d A

a = 1

d B

b = 1

|w̃
(N A )
a b |2 ∈ [ 0, 1] ( 4 2)

s u c h t h at W̃ N A =
√

p N A W N A .  T his n ot ati o n all o ws o n e t o
i d e ntif y t h e d e nsit y o p er at or of s u bs yst e m A wit h t h e bl o c k

di a g o n al  m atri x ρ̂ A = di a g (p 0 W 0 W
†
0 , . . . , p N W N W

†
N ), as

ill ustr at e d i n Fi g. 4 .
T h us, t h e e nt a n gl e m e nt e ntr o p y b e c o m es t h e s u m

S A (|ψ ) =

N

N A = 0

[p N A Tr (W N A W
†
N A

l n[W N A W
†
N A

])

+ p N A l n(p N A )]. ( 4 3)

A n e w, t h e s y m m etr y b et w e e n t h e t w o s u bs yst e ms is
r e fl e ct e d b y t h e s p e ctr al d e c o m p ositi o n t h e or e m si n c e

it h ol ds t h at ρ̂ B = Tr H A |ψ ψ | = di a g (p 0 W
†
0 W 0 , . . . , p N

W
†
N W N ).
Si n c e t h e n or ms ar e e n c o d e d i n t h e pr o b a bilit y  w ei g hts

p N A , e a c h  m atri x W N A W
†
N A

i n d e p e n d e ntl y d es cri b es a fi x e d

tr a c e e ns e m bl e, i. e.,  Tr W N A
W

†
N A

= 1.  T h us, it c a n b e d e alt
wit h i n t h e s a m e  w a y as i n P a g e’s c as e, i n p arti c ul ar e a c h
of t h os e c a n b e tr a c e d b a c k t o a c o m pl e x  Wis h art- L a g u err e

V = 1 2 V = 2 0

( b) n = 1/ 4

N A = 2

N A = 3

N A = 4

N A = 3

N A = 4

N A = 5

N crit

( a) n = 1/ 2

FI G. 4. S k et c h of t h e bl o c k di m e nsi o ns of t h e r e d u c e d d e n-
sit y  m atri x ρ̂ A of s u bs yst e m A at t h e s u bs yst e m fr a cti o n f =
1
2
. ( a) C as e V = 1 2 at h alf filli n g n = 1

2
, f or w hi c h V A = 6.

T h e n u m b er of p arti cl es r a n g es fr o m N A = 0 t o N A = 6,  wit h
N A = 3 r e pr es e nti n g t h e l ar g est bl o c k. ( b)  C as e V = 2 0 at q u ar-
t er filli n g n = 1

4
, f or w hi c h V A = 1 0.  T h e n u m b er of p arti cl es

r a n g es fr o m N A = 0 t o N A = 5,  wit h N A = 5 r e pr es e nti n g t h e
l ar g est bl o c k.  T h e bl o c ks  wit h N A ≥ N crit = 3 ar e l ar g er t h a n
t h e c orr es p o n di n g bl o c ks i n s u bs yst e m B ( n ot s h o w n i n t h e
fi g ur e).

e ns e m bl e of  m atri x di m e nsi o n d A × d B .  T h e pr o b a bilit y
w ei g hts p N A ∈ [ 0, 1] ar e als o dr a w n r a n d o ml y vi a t h e j oi nt
pr o b a bilit y distri b uti o n [ 1 5 7 ]

δ ( 1 − N
N A = 0 p N A ) N

N A = 0 p
d A d B − 1
N A

d p N A

δ ( 1 − N
N A = 0 p N A ) N

N A = 0 p
d A d B − 1
N A

d p N A

. ( 4 4)

T h e  Dir a c d elt a f u n cti o n e nf or c es c o n diti o n ( 4 0),  w hil e t h e

f a ct ors p
d A d B − 1
N A

ar e t h e J a c o bi a ns f or t h e p ol ar d e c o m p osi-

ti o n of t h e v e ct ors i n H (N A )
A ⊗ H (N − N A )

B i nt o t h eir s q u ar e d
n or m p N A a n d t h e dir e cti o n,  w hi c h is e n c o d e d i n W N A .
T h e n or m ali z ati o n of t h e distri b uti o n of p N A

w a s c o m p ut e d
i n  R ef. [1 5 7 ] a n d c a n b e d e d u c e d b y i n d u cti v el y tr a ci n g
t h e i nt e gr als o v er p N A b a c k t o  E ul er’s b et a i nt e gr als i n
E q. ( 5. 1 2. 1) of  R ef. [ 1 6 4 ].

2.  A v er a g e a n d v ari a n c e

Wit h t h es e d e fi niti o ns a n d dis c ussi o ns,  w e ar e n o w
r e a d y t o st at e t h e  m ai n r es ult i n  E q. ( 2 3) of  R ef. [1 5 7 ]: t h e
a v er a g e e nt a n gl e m e nt e ntr o p y i n s yst e m A of a u nif or ml y
distri b ut e d r a n d o m st at e i n H (N ) i s gi v e n b y

S A N =

mi n (N ,V A )

N A = 0

d A d B

d N
[ S A + (d N + 1 )

− (d A d B + 1 )], ( 4 5)
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w h er e d A = d A (N A ) a n d d B = d B (N − N A ) d e p e n d o n N A a c c or di n g t o  E q. ( 3 7) a n d S A r ef ers t o P a g e’s r es ult ( 2 3) f or

gi v e n d A a n d d B .  E q u ati o n ( 4 5) f oll o ws fr o m t h e a v er a g e o v er W N A W
†
N A

i n  E q. ( 4 3),  w hi c h ar e i n d e p e n d e nt fi x e d tr a c e
r a n d o m  m atri c es.  T h e pr ef a ct or d A d B / d N , as  w ell as t h e a d diti o n al di g a m m a f u n cti o ns, f oll o w fr o m  E ul er’s b et a i nt e gr al
i n  E q. ( 5. 1 2. 1) of  R ef. [1 6 4 ]. I n p arti c ul ar,  w e h a v e us e d

p N A
=

1

0 p
+ d A d B − 1

N A
(1 − p N A ) d N − d A d B − 1 d p N A

1

0 p
d A d B − 1
N A

(1 − p N A ) d N − d A d B − 1 d p N A

=
[ + d A d B ] [d N ]

[d A d B ] [ + d N ]
( 4 6)

f or a n y > − d A d B .  T h e a v er a g e o n t h e ri g ht- h a n d si d e c a n b e o bt ai n e d b y r es c ali n g p j → (1 − p N A )p j f or a n y j = N A ,
w hi c h d e c o u pl es t h e a v er a g e o v er p N A wit h t h e r e m ai ni n g pr o b a bilit y  w ei g hts p j .

We c a n  writ e  E q. ( 4 5) as

S A N =

N

N A = 0

N A ϕ N A , ( 4 7)

b y i ntr o d u ci n g t h e q u a ntiti es

N A =
d A d B

d N
,

ϕ N A =

⎧
⎪⎨

⎪⎩

(d N + 1 ) − (d B + 1 ) −
d A − 1

2 d B
, d A ≤ d B ,

(d N + 1 ) − (d A + 1 ) −
d B − 1

2 d A
, d A > d B

= (d N + 1 ) − (m a x (d A , d B ) + 1 ) − mi n
d A − 1

2 d B
,
d B − 1

2 d A
. ( 4 8)

T h e f u n cti o n N A c a n b e u n d erst o o d as a pr o b a bilit y distri-
b uti o n of h a vi n g N A p arti cl es i n A ,  wit h t h e n or m ali z ati o n

N A
(N A ) = 1 f oll o wi n g fr o m  E q. ( 3 8).  T h e f u n cti o n

ϕ N A
,  w h e n u n d erst o o d as a c o nti n u o us f u n cti o n, h as a

ki n k at N crit ,  w hi c h r ef ers t o t h e l ar g est i nt e g er s u c h t h at
d A (N crit ) ≤ d B (N − N crit ).  T h er e is o nl y o n e sit u ati o n i n
w hi c h N crit i s n ot  w ell d e fi n e d, n a m el y,  w h e n V A = N =
V / 2 or, e q ui v al e ntl y,  w h e n f = n = 1

2
wit h f = V A / V a n d

n = N / V .  T h e n it al w a ys h ol ds t h at d A (N A ) = d B (N − N A )
f or all N A = 0, . . . , N . I n t his c as e,  w e d o n ot n e e d a n N crit

a s t h e t er ms i n b ot h s u ms ar e t h e s a m e.
We ar e u n a bl e t o e v al u at e t his s u m e x a ctl y, b ut  w e c a n

e x p a n d S A N i n p o w ers of V a n d a p pr o xi m at e t h e s u m b y
a n i nt e gr al

S A N =

N

N A = 0

N A ϕ N A =
∞

− ∞

(n A ) ϕ (n A )d n A + o (1 ),

( 4 9)

w h er e (n A ) is t h e s a d dl e p oi nt a p pr o xi m ati o n of V n A V =
V d A d B / d N ,  w hi c h r e pr es e nts t h e pr o b a bilit y distri b uti o n
f or t h e i nt e nsi v e v ari a bl e n A = N A / V .  T his is e n o u g h f or

c o m p uti n g t h e l e a di n g or d ers  wit h o ut d o u bl e s c ali n g.  We
fi n d t h e n or m al distri b uti o n

(n A ) =
1

σ
√

2 π
e x p −

1

2

n A − ¯n A

σ

2

+ o (1 ) ( 5 0)

wit h  m e a n n̄ A = f n a n d v ari a n c e σ 2 = f (1 − f )n (1 −
n ) /V .

I n  A p p e n di x A 1 b ,  w e c ar ef ull y a n al y z e t h e di ff er e n c e
δ n crit = n crit − ¯n A f or n crit = N crit / V a n d fi n d t h at, f or fi x e d
f < 1

2
, o n e al w a ys h as δ n crit = O (1 ) a n d δ n crit > 0.  T h us,

f or f = 1
2
, t h e c e nt er of t h e  G a ussi a n n̄ A i s s u ffi ci e ntl y s e p-

ar at e d fr o m n crit .  T his all o ws us t o disr e g ar d t h e s e c o n d
s u m i n  E q. ( 4 5) as it is e x p o n e nti all y s u p pr ess e d. I n t h e
c as e t h at f > 1

2
,  w e c a n disr e g ar d t h e first s u m b e c a us e of

t h e s y m m etr y b et w e e n t h e t w o s u bs yst e ms A a n d B .
T o fi n d t h e o bs er v a bl e ϕ ( n A ) fr o m  E q. ( 4 8), w e us e

Stirli n g’s a p pr o xi m ati o n

[d N + 1] − [ m a x(d A , d B ) + 1] = l n  mi n
d N

d B
,
d N

d A

+ o (1 ). ( 5 1)
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( a) ( b)

FI G. 5.  T h e l e a di n g e nt a n gl e m e nt e ntr o p y s A (f , n ) = li mV → ∞ S A N / V fr o m  E q. ( 5 4) [s e e  E q. ( 6 6)]. F or n = 1
2
, s A (f , n ) c oi n ci d es

wit h P a g e’s r es ult ( m a xi m al e nt a n gl e m e nt). ( a)  T hr e e- di m e nsi o n al pl ot as a f u n cti o n of t h e s u bs yst e m fr a cti o n f = V A / V a n d t h e
filli n g r ati o n = N / V .  O n e c a n s e e t h e  mirr or s y m m etri es V A → V − V A a n d N → V − N . ( b)  R es ults at fi x e d n pl ott e d as f u n cti o ns of
f .  T h e c ol or e d li n es a gr e e i n b ot h pl ots s o t h at t h e ri g ht o n e c a n b e s e e n as s e cti o ns of t h e l eft o n e al o n g t h e c ol or e d li n es.

M or e o v er, it h ol ds f or V 1 a n d fi x e d f ∈ (0, 1 ) t h at

mi n
d A − 1

d B
,
d B − 1

d A
= δ f , 1/ 2 δ n , 1/ 2 + o (1 ). ( 5 2)

T h e  Kr o n e c k er d elt a is, i n f a ct, a “r eli c ” of a d o u bl e s c al-
i n g li mit, s e e Fi gs. 3( b) a n d 3( c) f or a si mil ar r es ult i n t h e
c o nt e xt of P a g e’s s etti n g  wit h o ut fi x e d p arti cl e n u m b er. It
c a n b e r es ol v e d b y ass u mi n g t h at f is cl os e t o 1

2
b ut n ot

e x a ctl y at 1
2
; s e e  A p p e n di x A .  W h e n c oll e cti n g all t er ms

u p t o or d er O (1 ),  w e o bt ai n

ϕ ( n A ) = [n A l n(n A ) − f l n(f ) − n l n[(1 − n ) /n ]

− l n(1 − n ) + (f − n A ) l n(f − n A )]V

+
1

2
l n

n A (f − n A )

f (1 − n )n
−

1

2
δ f , 1/ 2 δ n , 1/ 2 + o (1 )

( 5 3)

f or n A ≥ n crit . F or n A ≤ n crit ,  w e n e e d t o a p pl y t h e s y m m e-
tri es n A → n − n A a n d f → 1 − f i n e x p a nsi o n ( 5 3).

I n t h e li mit V → ∞ ,  G a ussi a n ( 5 0) n arr o ws b e c a us e t h e
st a n d ar d d e vi ati o n s c al es li k e σ ∼ 1 /

√
V .  We c a n, t h er e-

f or e, e x p a n d ϕ ( n A ) i n p o w ers of (n A − ¯n A ) ar o u n d t h e
m e a n n̄ A . I n or d er t o fi n d t h e a v er a g e u p t o a c o nst a nt or d er,
it s u ffi c es t o e x p a n d u p t o t h e q u a dr ati c or d er a n d t h e n c al-
c ul at e i nt e gr al ( 4 9).  O nl y f or f = 1

2
,  w e h a v e δ n crit = o (1 ),

s o t h at  w e n e e d t o t a k e i nt o a c c o u nt t h e n o n a n al yti cit y i n
ϕ ( n A ) i ntr o d u c e d b y t h e s y m m etr y  w h e n e x c h a n gi n g t h e
t w o s u bs yst e ms. I n t his c as e,  w e i nt e gr at e t w o di ff er e nt
T a yl or e x p a nsi o ns f or n A ≤ n / 2 a n d n A ≥ n / 2,  w hi c h  will
i ntr o d u c e a t er m of or d er

√
V , as dis c uss e d b el o w.

C o m bi ni n g t h es e r es ults,  w e arri v e at t h e  m ai n r es ult of
t his s u bs e cti o n,

S A N = [(n − 1 ) l n(1 − n ) − n l n(n )]f V

−
n (1 − n )

2 π
l n

1 − n

n
δ f , 1/ 2

√
V

+
f + l n(1 − f )

2
−

1

2
δ f , 1/ 2 δ n , 1/ 2 + o (1 ), ( 5 4)

v ali d f or f ≤ 1
2
.  T h e l e a di n g, v ol u m e-l a w, t er m i n  E q. ( 5 4)

is t h e s a m e as t h at o bt ai n e d i n  R efs. [4 3 ,4 6 ] usi n g r a n d o m
m atri x t h e or y, a n d t h e s a m e as i n  R ef. [ 1 5 7 ] [s e e  E q. ( 2 7)],
w h er e it is i nt er pr et e d as t h e t y pi c al e nt a n gl e m e nt e ntr o p y
i n t h e ( hi g hl y d e g e n er at e) ei g e ns p a c e of a  H a milt o ni a n of
t h e f or m Ĥ = N̂ = N̂ A + N̂ B .  T h e s u bl e a di n g

√
V t er m  w as

first dis c uss e d i n  R ef. [ 4 3 ], s p e ci fi c all y, it c oi n ci d es  wit h
t h e b o u n d f or s u c h a t er m c o m p ut e d at f = 1

2
[4 3 ]. It is

r e m ar k a bl e t h at, f or n = 1
2
, t h e c o nst a nt t er m is n ot hi n g b ut

t h at o bt ai n e d i n  R ef. [4 3 ]  wit hi n a “ m e a n fi el d ” c al c ul ati o n,
w hil e at n = f = 1

2
t h e e xtr a − 1

2
c orr e cti o n  w as f o u n d i n

R ef. [ 4 3 ] n u m eri c all y, b ot h f or r a n d o m st at es as  w ell as f or
ei g e nst at es of a n o ni nt e gr a bl e  H a milt o ni a n.  We h a d all t h e
i n gr e di e nts t o g u ess t h e g e n er al f or m i n  E q. ( 5 4). Its a ct u al
d eri v ati o n  wit h all t h e d et ails fills s e v er al p a g es, a n d c a n b e
f o u n d i n  A p p e n di x A .  A vis u ali z ati o n of t h e l e a di n g t er m
i n  E q. ( 5 4) c a n b e f o u n d i n Fi g. 5 .

A n i m p ort a nt q u esti o n c o n c er ns t h e r es ol uti o n of t h e
Kr o n e c k er d elt as i n  E q. ( 5 4),  w hi c h i n di c at e n o ntri vi al
s c ali n g li mits.  T h e  Kr o n e c k er d elt as ar e o nl y o bt ai n e d
al o n g t h e criti c al li n e f = 1

2
,  w hi c h c o nt ai ns a  m ulti crit-

i c al p oi nt at n = 1
2

w h e n V → ∞ .  O n e n e e ds t o t a k e
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( a)

( b)

( c)

( d)

( e)

S A N = a V − b V 1 / 2 − c + O ( 1 ) S A N a t f = 1
2

+
Λ f√

V

S A N a t n = 1
2

+ Λ n√
V

a n d f = 1
2

+
Λ f

V

FI G. 6.  T h e e nt a n gl e m e nt e ntr o p y S A N fr o m  E q. ( 5 4) as vi e w e d fr o m t h e c o ntri b uti o ns of t h e first t hr e e t er ms i n t h e e x p a nsi o n i n
V . ( a) –( c)  T hr e e- di m e nsi o n al pl ots as f u n cti o ns of t h e s u bs yst e m fr a cti o n f = V A / V a n d t h e filli n g r ati o n = N / V . ( d)  R es ol vi n g t h e
e x p a nsi o n c o e ffi ci e nt b f or f = 1

2
+ f /

√
V ar o u n d f = 1

2
, a s gi v e n b y E q. ( A 6 6), a p pr o a c hi n g z er o f or l ar g e | f |. ( e)  R es ol vi n g t h e

e x p a nsi o n c o e ffi ci e nt c f or n = 1
2

+ n /
√

V a n d f = 1
2

+ f / V ar o u n d f = n = 1
2
, a s gi v e n b y E q. ( A 6 8), a p pr o a c hi n g (2 l n 2 − 1 ) /4

f or l ar g e | f | or | n |.  We u n d erli n e t h at t h e s u bl e a di n g c o ntri b uti o ns ar e  m ulti pli e d b y a  mi n us si g n.

t h e r es ol uti o n i nt o a c c o u nt b e c a us e e x p eri m e nts ar e c ar-
ri e d o ut i n fi nit e s yst e ms i n  w hi c h f a n d n c a n o nl y b e
fi x e d  wit hi n s o m e e x p eri m e nt al r es ol uti o n.  C o ns e q u e ntl y,
it is i m p ort a nt t o u n d erst a n d  wit hi n  w hi c h  m ar gi n of err or
o n e n e e ds t o c h o os e f a n d n t o o bs er v e t h e c orr es p o n d-
i n g t er ms.  T his q u esti o n c a n b e a ns w er e d b y a n al y zi n g
t h e li mit V → ∞ i n t h e d o u bl e s c ali n g f = 1

2
+ V − α

f

a n d/ or n = 1
2

+ V − β
n .  We fi n d t h at t h e

√
V c orr e cti o n i n

E q. ( 5 4) (f or fi x e d n ) b e c o m es visi bl e f or α = 1
2
, i. e.,  w h e n-

e v er t h e di ff er e n c e b et w e e n f a n d 1
2

i s of or d er 1/
√

V or
s m all er.  T h e c o nst a nt c orr e cti o n r e q uir es a  m or e d et ail e d
a n al ysis as it d e p e n ds o n t h e r el ati v e s c ali n g of b ot h f
a n d n ar o u n d f = n = 1

2
. S u btl e c a n c el ati o ns h a v e t o b e

t a k e n i nt o a c c o u nt as n ot all s o ur c es of c orr e cti o n, s u c h as
N crit , a p pr o xi m ati o n ( 5 1), or t h e r e writi n g of t h e s u m as a n

i nt e gr al, ar e e q u all y i m p ort a nt; s e e  A p p e n di x A .  T h e vis u-
ali z ati o n of t h e t er ms i n  E q. ( 5 4) t h at i n cl u d e  Kr o n e c k er
d elt as, as  w ell as t h eir s c ali n g, is pr es e nt e d i n Fi g. 6 .

T h e v ari a n c e ( S A )2
N = S 2

A N − S A
2
N of t h e e nt a n gl e-

m e nt e ntr o p y of p ur e q u a nt u m st at es i n H (N ) c a n b e f o u n d
usi n g t h e r es ult i n  E q. ( 2 4) of  R ef. [ 1 5 7 ].  W h e n e x pr ess e d
as a s u m o v er t h e n u m b er of p arti cl es N A it t a k es t h e f or m

( S A )2
N =

1

d N + 1

N

N A = 0

( ϕ 2
N A

+ χ N A ) −

N

N A = 0

N A ϕ N A

2

,

( 5 5)

w h er e N A
a n d ϕ N A

ar e gi v e n i n  E q. ( 4 8) a n d χ N A
i s d e fi n e d

as

χ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(d A + d B ) (d B + 1 ) − (d N + 1 ) (d N + 1 ) −
(d A − 1 )(d A + 2 d B − 1 )

4 d 2
B

, d A ≤ d B ,

(d A + d B ) (d A + 1 ) − (d N + 1 ) (d N + 1 ) −
(d B − 1 )(d B + 2 d A − 1 )

4 d 2
A

, d A > d B .

( 5 6)
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As e arli er, d N , d A (N A ), d B (N − N A ) ar e u n d erst o o d as
f u n cti o ns of t h e p arti cl e n u m b er a n d ar e gi v e n b y  E qs.
( 3 4) a n d ( 3 7). I n t h e t h er m o d y n a mi c li mit V → ∞ , at
fi x e d s u bs yst e m fr a cti o n f = V A / V a n d fi x e d p arti cl e
d e nsit y n = N / V , t h e v ari a n c e is e x p o n e nti all y s m all a n d
its as y m pt oti c s c ali n g c a n b e o bt ai n e d vi a t h e s a d dl e p oi nt
m et h o ds of  A p p e n di x A . I n p arti c ul ar,  w e h a v e

N

N A = 0

N A ϕ 2
N A

−

N

N A = 0

N A ϕ N A

2

=
∞

− ∞

(n A ) ϕ 2 (n A )d n A

−
∞

− ∞

(n A ) ϕ (n A )d n A

2

+ o (1 )

= f (1 − f ) −
1

2 π
δ f , 1/ 2

× l n
n

1 − n

2

n (1 − n )V + o (V ) ( 5 7)

a n d

N

N A = 0

N A χ N A =
1

4
δ f , 1/ 2 δ n , 1/ 2 + o (1 ), ( 5 8)

w h er e  w e h a v e us e d t h e f a ct t h at, f or l ar g e di m e nsi o ns,
d A 1 a n d d B 1, χ s c al es as

χ N A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d A

2 d B
+ O (1 / d 2

B ), d A < d B ,

1
4

+ o (1 ), d A = d B ,

d B

2 d A
+ O (1 / d 2

A ), d A > d B .

( 5 9)

T h er ef or e, t h e t er m i n br a c k ets i n  E q. ( 5 5) is of or d er
V ,  w hil e t h e d e n o mi n at or d N + 1 is e x p o n e nti all y l ar g e.
Usi n g t h e Stirli n g a p pr o xi m ati o n f or d N i n  E q. ( 5 5), w e
fi n d t h at

( S A )2
N = α V 3 / 2 e − β V + o (e − β V ), ( 6 0)

wit h

α =
√

2 π f (1 − f ) −
1

2 π
δ f , 1/ 2 l n

n

1 − n

2

× [n (1 − n )]3 / 2 + o (1 ), ( 6 1)

β = − n l n n − (1 − n ) l n(1 − n ).

T his  m e a ns t h at t h e a v er a g e e nt a n gl e m e nt e ntr o p y i n
E q. ( 5 4) is als o t h e t y pi c al e nt a n gl e m e nt e ntr o p y of p ur e
q u a nt u m st at es  wit h N f er mi o ns, n a m el y, t h e o v er w h el m-
i n g  m aj orit y of p ur e q u a nt u m st at es  wit h N f er mi o ns h a v e
t h e e nt a n gl e m e nt e ntr o p y i n  E q. ( 5 4).

3.  Wei g ht e d a v er a g e a n d v ari a n c e

H a vi n g c o m p ut e d t h e a v er a g e e nt a n gl e m e nt e ntr o p y of
p ur e st at es  wit h N p arti cl es, n e xt  w e c a n c o m p ut e t h e a v er-
a g e o v er t h e e ntir e  Hil b ert s p a c e.  A s u btl et y is t h at t h e
s yst e m is i n eit h er of t h e  Hil b ert s p a c es H N , b ut  w e d o n ot
k n o w i n  w hi c h o n e.  T h er ef or e,  w hil e t h e distri b uti o n of t h e
p ur e st at es  wit h a fi x e d p arti cl e n u m b er is gi v e n q u a nt u m
m e c h a ni c all y,  m e a ni n g u nif or ml y distri b ut e d o v er a u nit
s p h er e,  w e a d diti o n all y h a v e a cl assi c al pr o b a bilit y f or t h e
p arti cl e n u m b er N .

Wit h t his i n  mi n d,  w e c a n a v er a g e o v er S A N wit hi n
e a c h s e ct or  wit h N p arti cl es  w ei g ht e d b y its  Hil b ert s p a c e
di m e nsi o n d N fr o m  E q. ( 3 4).  M or e g e n er all y,  w e c a n i ntr o-
d u c e a  w ei g ht p ar a m et er w a n d a pr o b a bilit y P N of fi n di n g
N p arti cl es:

P N =
1

Z
d N e − w N . ( 6 2)

H er e Z = V
N = 0 d N e − w N = (1 + e − w ) V n or m ali z es t h e

distri b uti o n.  T h e a v er a g e filli n g fr a cti o n n̄ c a n b e e x pr ess e d
i n t er ms of t h e  w ei g ht p ar a m et er w as

n̄ =

V

N = 0

P N
N

V
=

1

1 + e w
( 6 3)

wit h h alf- filli n g n̄ = 1
2

c orr es p o n di n g t o e q ui w ei g ht e d s e c-
t ors, i. e., w = 0.  T h e v ari a n c e of t h e filli n g fr a cti o n,

( n )2 =

V

N = 0

P N
N

V
− ¯n

2

=
n̄ (1 − ¯n )

V
( 6 4)

c a n b e o bt ai n e d e asil y b y n oti n g t h at P N i s a bi n o mi al
distri b uti o n.

We c al c ul at e t h e a v er a g e e nt a n gl e m e nt e ntr o p y at fi x e d
w ei g ht p ar a m et er w ,

S A w =

V

N = 0

P N S A N , ( 6 5)

u p t o c o nst a nt or d er i n V b y e x p a n di n g S A N ar o u n d n̄
a n d t h e n usi n g t h e k n o w n v ari a n c e ( n )2 . Si n c e S A N i s
a n al yti c as a f u n cti o n of N (f or f < 1

2
) a n d d o es n ot h a v e

a n y dis c o nti n uiti es i n its d eri v ati v es, it s u ffi c es t o e x p a n d
its l e a di n g or d er (li n e ar i n V ) ar o u n d n̄ a s

s A (n , f ) = [(n − 1 ) l n(1 − n ) − n l n n ]f

= [( n̄ − 1 ) l n(1 − ¯n ) − ¯n l n n̄ ]f

+ f l n[(1 − ¯n ) / n̄ ] −
f (n − ¯n )2

2 (1 − ¯n ) n̄

+ o (n − ¯n )3 , ( 6 6)

a n d c al c ul at e its e x p e ct ati o n v al u e  wit h r es p e ct t o t h e
bi n o mi al distri b uti o n.  Usi n g (n − ¯n )2 = σ 2 ,  w e fi n d t h e
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c o nst a nt c orr e cti o n − f / 2,  w hi c h c a n c els t h e i d e nti c al t er m
i n  E q. ( 5 4).  T er ms of or d er V 1 / 2 a n d V 0 c a n b e dir e ctl y e v al-
u at e d at n = ¯n ,  w h er e t h e bi n o mi al distri b uti o n is c e nt er e d,
b e c a us e its fi nit e  wi dt h o n t h os e t er ms  will o nl y c o ntri b ut e
c orr e cti o ns of s u bl e a di n g or d er O (1 ).  H e n c e, t h e r es ulti n g
a v er a g e is e q u al t o

S A w = ( n̄ − 1 ) l n(1 − ¯n ) − ¯n l n( n̄ ) f V

−
n̄ (1 − ¯n )

2 π
l n

1 − ¯n

n̄
δ f , 1/ 2

√
V

+
l n(1 − f )

2
−

2

π
δ f , 1/ 2 δ n̄ , 1/ 2 + o (1 ), ( 6 7)

w h er e n̄ = 1 /( 1 + e w ) w as c o m p ut e d i n  E q. ( 6 3).  A p e d a-
g o gi c al d eri v ati o n of  E q. ( 6 7) c a n b e f o u n d i n  A p p e n di x
A 2 . I nt er esti n gl y,  E q. ( 6 7) c a n b e s u m m ari z e d b y t h e
si m pl e r el ati o n S A w = S A N = N̄ − f / 2 + o (1 ) e x c e pt at
f = ¯n = 1

2
,  w h er e t h e  Kr o n e c k er d elt a fr o m  E q. ( 5 4) l e a ds

t o a d diti o n al i nt e gr als, as e x pl ai n e d i n  A p p e n di x A 2 .
F or w = 0  wit h n̄ = 1

2
, E q. ( 6 7) d es cri b es t h e a v er a g e

e nt a n gl e m e nt e ntr o p y of u nif or ml y  w ei g ht e d ei g e nst at es of
t h e n u m b er o p er at or ( wit h r es p e ct t o t h e  H a ar  m e as ur e).
T his a v er a g e  w as c o m p ut e d i n  R ef. [ 4 9 ] as S A w = 0 =
f V l n 2 + l n(1 − f ) /2 − 2 δ f , 1/ 2 / π ,  w hi c h c oi n ci d es  wit h

E q. ( 6 7) f or n̄ = 1
2
.

Si mil arl y, o n e c a n c o m p ut e t h e v ari a n c e of t h e  w ei g ht e d
e nt a n gl e m e nt e ntr o p y

( S A )2
w =

V

N = 0

P N S 2
A N −

V

N = 0

P N S A N

2

= ¯n (1 − ¯n ) l n
n̄

1 − ¯n

2

f V + o (V ). ( 6 8)

N ot e t h at,  w hil e t h e v ari a n c e ( S )2
N at a fi x e d n u m b er of

p arti cl es is e x p o n e nti all y s m all at l ar g e V , t h e  w ei g ht e d
v ari a n c e ( S )2

w s c al es li n e arl y i n V b e c a us e of t h e O (V − 1 )
v ari a n c e ( n )2 i n t h e filli n g fr a cti o n. F or f = 0 a n d n̄ = 0,
t h e l e a di n g- or d er t er m o nl y v a nis h es at n̄ = 1

2
.  H o w e v er,

w e al w a ys h a v e li m V → ∞ ( S A ) w / S A w = 0, i. e., t h e r el-
ati v e st a n d ar d d e vi ati o n v a nis h es i n t h e t h er m o d y n a mi c
li mit, s o t h at t h e a v er a g e e nt a n gl e m e nt e ntr o p y S A w

a n d t h e t y pi c al ei g e nst at e e nt a n gl e m e nt e ntr o p y al w a ys
c oi n ci d e.

III.  P U R E  F E R MI O NI C  G A U S SI A N S T A T E S

I n t his s e cti o n,  w e d e fi n e f er mi o ni c  G a ussi a n st at es a n d
c al c ul at e t h e a v er a g e a n d v ari a n c e of t h e e nt a n gl e m e nt
e ntr o p y f or t his f a mil y of st at es. F oll o wi n g  R ef. [ 1 5 9 ],  w e
d o t his first f or p ur e f er mi o ni c  G a ussi a n st at es, f or  w hi c h
t h e n u m b er of p arti cl es is n ot fi x e d.  N e xt,  w e d eri v e n e w
r es ults f or f er mi o ni c  G a ussi a n st at es  wit h a fi x e d n u m b er

of p arti cl es. I n b ot h c as es  w e  mi mi c t h e i d e a of a u nif or ml y
distri b ut e d st at e.  T his  w or ks b e c a us e i n b ot h c as es t h er e is
a n at ur al a cti o n of a c o m p a ct gr o u p a n d t h e s et is gi v e n b y
a si n gl e or bit of t his gr o u p a cti o n.  T h us, o n e c a n c h o os e t h e
u ni q u e  H a ar  m e as ur e t o g e n er at e a n e ns e m bl e of f er mi o ni c
G a ussi a n st at es.

It  m a y b e n at ur al t o as k  w h et h er t h e s a m e a n al ysis c o ul d
als o b e c arri e d o ut f or b os o ni c  G a ussi a n st at es.  U nf or-
t u n at el y, t h e a ns w er is i n t h e n e g ati v e.  T h e e ns e m bl e of
b os o ni c  G a ussi a n st at es is n o n c o m p a ct  wit h u n b o u n d e d
e nt a n gl e m e nt e ntr o p y si n c e t h e c orr es p o n di n g i n v ari a n c e
gr o u p is a n o n c o m p a ct o n e. S o a n y gr o u p i n v ari a nt a v er a g e
w o ul d di v er g e.  M or e o v er, t h e o nl y b os o ni c  G a ussi a n st at e
t h at h as a fi x e d p arti cl e n u m b er is t h e v a c u u m  wit h z er o
p arti cl es a n d z er o e nt a n gl e m e nt.  T o cir c u m v e nt t h e pr o b-
l e m, o n e c o ul d fi x t h e a v er a g e n u m b er of p arti cl es.  T h e n,
t h e c orr es p o n di n g  m a nif ol d  w o ul d b e a g ai n c o m p a ct a n d
o n e c a n a v er a g e o v er all t h os e  G a ussi a n st at es (i n a si mi-
l ar s pirit as i n  R efs. [1 6 8 ,1 6 9 ]), b ut t h e r es ulti n g a n al ysis
w o ul d b e r at h er di ff er e nt fr o m o ur a p pr o a c h h er e. It  m a y
b e p ossi bl e t o us e a d u alit y b et w e e n b os o ni c a n d f er mi o ni c
e nt a n gl e m e nt e ntr o p y of  G a ussi a n st at es [ 1 7 0 ] f or t his, b ut
w e  will n ot c arr y o ut t his a n al ysis h er e.

A.  D e fi niti o n of f e r mi o ni c  G a ussi a n st at es

I nst e a d of st arti n g  wit h p ur e f er mi o ni c  G a ussi a n st at es,
it is e asi er t o b e gi n  wit h  mi x e d  G a ussi a n st at es b e c a us e t h e
p ur e o n es c a n b e u n d erst o o d as li mits of t his d e fi niti o n.  We
c h o os e a  M aj or a n a b asis {γ j }j = 1, ..., 2V i n t h e 2V - di m e nsi o n al
Hil b ert s p a c e H si n c e t h e c orr es p o n di n g e ns e m bl e is e asi er
t o d es cri b e.  T his  M aj or a n a b asis s atis fi es t h e a nti c o m-
m ut ati o n r el ati o n {γ j , γ k } = δ j k,  m e a ni n g t h at t h e y cr e at e
a  Cli ff or d al g e br a a n d c a n b e c h os e n t o b e  H er miti a n,

γ
†
j = γ j .  M or e o v er, it h ol ds t h at  Tr( m

l= 1 γ jl ) = 0  wit h
jl ∈ { 1, . . . , V } a n d a n y p ositi v e i nt e g er m w h e n e v er t h er e is
a γ j t h at d o es n ot a p p e ar i n t his pr o d u ct  wit h a n e v e n or d er.
Ot h er wis e, it h ol ds t h at  Tr ( m

l= 1 γ jl ) = ± 2 V − m / 2 ,  w hi c h is
u p t o a f a ct or 2 − m / 2 t h e di m e nsi o n of t h e r e pr es e nt ati o n of
t h e  Cli ff or d al g e br a as  w ell as t h e di m e nsi o n of t h e  Hil b ert
s p a c e H .

A  G a ussi a n st at e is t h e n a n y d e nsit y o p er at or of t h e f or m

ρ̂ ( γ ) =
e x p (− 2 V

j ,k = 1 q j kγ j γ k )

Tr e x p (− 2 V
j ,k = 1 q j kγ j γ k )

=
e x p (− γ † Q γ )

Tr e x p (− γ † Q γ )

( 6 9)

wit h t h e  M aj or a n a o p er at or- v al u e d c ol u m n v e ct or γ =
( γ1 , . . . , γ 2 V ) † .  T his f or m gi v es t h e  G a ussi a n st at es t h eir
n a m e.  T h e  H er miti cit y of ρ̂ ( γ ) i m pli es t h at t h e c o e ffi ci e nt
m atri x Q = { q j k}j ,k = 1, ..., 2V A n e e ds t o b e  H er miti a n,  w hil e
t h e a nti c o m m ut ati o n r el ati o ns of t h e  M aj or a n a b asis all o ws
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us t o s et t h e r e al s y m m etri c p art t o z er o. I n d e e d, d u e t o

2 V

j ,k = 1

q j kγ j γ k =

2 V

j = 1

q jj +
1 ≤ j < k ≤ 2 V

q j k( γ j γ k − γ k γ j )

=

2 V

j = 1

q jj +
1 ≤ j < k ≤ 2 V

(q j k − q kj ) γ j γ k , ( 7 0)

w e s e e t h at t h e di a g o n al p art of Q o nl y yi el ds a c o n-
st a nt  w hil e t h e s y m m etri c o n e dr o ps o ut.  T h e n c e, t h e
c o e ffi ci e nt  m atri x is a 2 V × 2 V i m a gi n ar y a ntis y m m et-
ri c  m atri x Q = − Q ∗ = − Q T . S u c h a  m atri x c a n b e bl o c k
di a g o n ali z e d b y a n ort h o g o n al  m atri x M ∈ O (2 V ). I n p ar-
ti c ul ar, it h ol ds t h at Q = M T di a g ( λ1 τ 2 , . . . , λ V τ 2 )M ,  wit h
t h e s e c o n d P a uli  m atri x τ 2 a n d λ j ≥ 0. I ntr o d u ci n g η =
( η1 , . . . , η 2 V ) † = M γ ,  w h os e e ntri es cr e at e a n ot h er  M aj o-
r a n a b asis, t h e e x pr essi o n si m pli fi es b e c a us e of γ † Q γ =
− 2 i V

j = 1 λ j η 2 j − 1 η 2 j .  We c a n r e a dil y c o m p ut e t h e e x p o-
n e nt

e x p[ − γ † Q γ ] =

V

j = 1

(c os h ( λj ) + 2 i si n h ( λj ) η2 j − 1 η 2 j ),

( 7 1)

a n d t h e n or m ali z ati o n

Tr e x p[ − γ † Q γ ] = 2 V
V

j = 1

c o s h ( λj ). ( 7 2)

S u m m ari zi n g, a n y  G a ussi a n st at e h as t h e c o m p a ct f or m

ρ̂ ( γ ) = 2 − V
V

j = 1

[ 1 + 2 i t a n h( λj ) η2 j − 1 η 2 j ], ( 7 3)

w h er e t h e λ j ar e t h e si n g ul ar v al u es a n d t h e η j ar e t h e
M aj or a n a b asis i n t h e c orr es p o n di n g ei g e n b asis of t h e
m atri x Q .

G a ussi a n st at es s atisf y t h e  Wi c k-Is erlis t h e or e m,  m e a n-
i n g t h at all  m o m e nts c a n b e e x pr ess e d i n t er ms of t h e first
a n d s e c o n d  m o m e nts. Si n c e t h e first  m o m e nts v a nis h f or
f er mi o ns, all t h e i nf or m ati o n of a f er mi o ni c  G a ussi a n st at e
is e n c o d e d i n t h e c o v ari a n c e  m atri x.  W h e n s u btr a cti n g t h e
i d e ntit y a n d  m ulti pl yi n g b y t h e i m a gi n ar y u nit,  w e o bt ai n
t h e s y m pl e cti c f or m

− iJ̃ = Tr H ρ̂ ( γ ) γ γ † − 1
2
1 2 V

= M T Tr H

V

j = 1

1

2
+ i t a n h( λj ) η2 j − 1 η 2 j ( η η † − 1 2 V ) M .

( 7 4)

We h a v e e m p h asi z e d t h at t h e tr a c e is o nl y o v er t h e  Hil b ert
s p a c e H a n d n ot o v er t h e i n di c es of t h e  M aj or a n a b asis,

w hi c h e x pl ai ns  w h y  w e c o ul d t a k e t h e ort h o g o n al  m atri x
M o ut t h e tr a c e.  T h e s hift b y h alf of t h e i d e ntit y  m atri x
1
2
1 2 V o nl y s u btr a cts t h e di a g o n al t er ms γ 2

j = 1
2
,  w hi c h

d o n ot c o nt ai n a n y i nf or m ati o n.  T h e s y m m etri es of t h e
M aj or a n a b asis t ell us t h at t h e s y m pl e cti c f or m J̃ i s r e al
a ntis y m m etri c. I n a str ai g htf or w ar d c o m p ut ati o n o n e c a n
s h o w t h at

Tr H

V

j = 1

1

2
+ i t a n h( λj ) η2 j − 1 η 2 j η η † −

1

2
1 2 V

= di a g[t a n h ( λ1 ) τ2 , . . . , t a n h( λV ) τ2 ]. ( 7 5)

T h er ef or e, t h e ei g e n v al u es of J̃ ar e e q u al t o ± i xj =

± i t a n h( λj ), a n d t h e li n k b et w e e n Q a n d J̃ i s gi v e n b y t h e
bij e cti v e r el ati o n

J̃ = i t a n h(Q ). ( 7 6)

As  w e c a n g o b a c k a n d f ort h b et w e e n t h es e t w o  m atri c es,
ρ̂ ( γ ) is f ull y d et er mi n e d b y J̃ s o t h at it is s uit a bl e t o a d o pt
t h e n ot ati o n ρ̂ ( J̃ ). F or i nst a n c e,  w e c a n e x pr ess t h e v o n
N e u m a n n e ntr o p y i n t er ms of J̃ b e c a us e of

− Tr[ ρ̂ ( J̃ ) l n ρ̂ ( J̃ )]

= Tr

V

j = 1

1

2
+ i xj η 2 j − 1 η 2 j

V

k = 1

l n
1

2
+ i xj η 2 k − 1 η 2 k

=

V

k = 1

s (x k ) = Tr s(iJ̃ ) ( 7 7)

wit h [ 1 7 1 – 1 7 3 ]

s(x ) = −
1 + x

2
l n

1 + x

2
−

1 − x

2
l n

1 − x

2
.

( 7 8)

Wit h t h e h el p of t h e v o n  N e u m a n n e ntr o p y, it is str ai g ht-
f or w ar d t o i d e ntif y t h e p ur e f er mi o ni c  G a ussi a n st at es.
T h os e ar e gi v e n  w h e n all ei g e n v al u es ar e e q u al t o x j =

± 1. I n d e e d, a d e nsit y o p er at or of t h e f or m ρ̂ ( J̃ ) =
2 − V V

j = 1 (1 ± 2 iη 2 j − 1 η 2 j ) s atis fi es t h e n e c ess ar y a n d s uf-
fi ci e nt c o n diti o n f or p ur e st at es (i n c o m bi n ati o n  wit h
p ositi v e s e mi d e fi nit e n ess a n d t h e n or m ali z e d tr a c e), i. e.,

ρ̂ 2 ( J̃ ) = 2 − 2 V
V

j = 1

(1 ± 2 iη 2 j − 1 η 2 j )
2

= 2 − V
V

j = 1

(1 ± 2 iη 2 j − 1 η 2 j )

= ρ̂ ( J̃ ). ( 7 9)

T h e c orr es p o n di n g n or m ali z e d st at e v e ct or of ρ̂ ( J̃ ) =
|J̃ J̃ | i s d e n ot e d b y |J̃ a n d it is o nl y d et er mi n e d u p
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t o a c o m pl e x p h as e.  T h e s et of all r e al a ntis y m m etri c
m atri c es J̃ wit h ei g e n v al u es ± i is d es cri b e d b y { J̃ =
M T J 0 M | M ∈ O (2 V ) a n d J 0 = iτ 2 ⊗ 1 V }.  T his gi v es a n at-
ur al p ar a m etri z ati o n of p ur e f er mi o ni c  G a ussi a n st at es,
w hi c h  will b e o ur st arti n g p oi nt i n S e c. III  B.

B.  A r bit r a r y n u m b e r of p a rti cl es

We first f o c us o n t h e f a mil y of p ur e f er mi o ni c  G a ussi a n
st at es i n  w hi c h o n e d o es n ot fi x t h e p arti cl e n u m b er, i. e.,
w e i n cl u d e  G a ussi a n st at es t h at c o nsist of a s u p er p ositi o n
of st at es  wit h di ff er e nt t ot al p arti cl e n u m b er.

1. St atisti c al e ns e m bl e of st at es

As  w e h a v e s e e n i n t h e pr e vi e ws s u bs e cti o n, all p ur e
f er mi o ni c  G a ussi a n st at es c a n b e d es cri b e d b y t h eir s y m-
pl e cti c f or m J̃ = i J̃ |γ γ † − 1 2 V |J̃ = M T J 0 M ,  wit h a n
ort h o g o n al  m atri x M ∈ O (2 V ) a n d t h e s y m pl e cti c u nit
J 0 = iτ 2 ⊗ 1 V ,  w hi c h is ess e nti all y a c a n o ni c al e m b e d di n g
of t h e s e c o n d P a uli  m atri x τ 2 i n t h e 2V - di m e nsi o n al s p a c e
a n d d e fi n es a c o m pl e x str u ct ur e; s e e  R efs. [ 1 5 9 ,1 7 2 ,1 7 3 ].
O n e c a n r e n d er t h e r el ati o n b et w e e n p ur e st at es a n d r e al
a ntis y m m etri c  m atri c es J̃ wit h ei g e n v al u es ± i, i. e., J̃ 2 =
− 1 2 V , t o a o n e-t o- o n e c orr es p o n d e n c e  w h e n di vi di n g all
ort h o g o n al  m atri c es o ut of O (2 V ) t h at c o m m ut e  wit h J 0 .
T h es e  m atri c es b uil d a s u b gr o u p t h at is t h e r e al r e p-
r es e nt ati o n of t h e u nit ar y gr o u p U (V ) (t h e dir e ct s u m
of t h e f u n d a m e nt al a n d a ntif u n d a m e nt al r e pr es e nt ati o ns).
T h e n c e, t h e s et of all p ur e f er mi o ni c  G a ussi a n st at es c a n b e
i d e nti fi e d  wit h t h e c os et O (2 V ) /U (V ),  w hi c h is V (V − 1 )
di m e nsi o n al.

T h er e is a n at ur al O (2 V ) gr o u p a cti o n o n t h e p ur e
st at es b y J̃ → M T J̃ M t h at c orr es p o n ds t o t h e c h a n g e
of a n ort h o n or m al  M aj or a n a b asis.  T h er ef or e, a d o pti n g
P a g e’s i d e a of a u nif or m distri b uti o n t h at is gi v e n b y a
gr o u p a cti o n,  w e ass u m e t h at t h e e ns e m bl e of r a n d o m
p ur e f er mi o ni c  G a ussi a n st at es is cr e at e d b y t h e n or m al-
i z e d  H a ar distri b uti o n o n O (2 V ) /U (V ). Pr a cti c all y, t his
c a n b e r e ali z e d b y dr a wi n g a  H a ar- distri b ut e d ort h o g o n al
m atri x M ∈ O (2 V ), a n d c o nsi d eri n g t h e p ur e st at e c orr e-
s p o n di n g t o t h e r e al a ntis y m m etri c  m atri x J̃ = M T J 0 M ;
s e e  R ef. [ 1 5 9 ].

W h e n r estri cti n g a p ur e f er mi o ni c  G a ussi a n st at e ρ̂ ( J̃ )
t o a s u bs yst e m A wit h a ( d A = 2 V A )- di m e nsi o n al  Hil b ert
s p a c e H A , o n e o bt ai ns a  mi x e d  G a ussi a n st at e.  T h e c orr e-
s p o n di n g s y m pl e cti c f or m c a n b e o bt ai n e d b y a pr oj e cti o n
of t h e  m atri x J̃ .  Wit h o ut l oss of g e n er alit y,  w e ass u m e t h at
γ̃ = ( γ1 , . . . , γ 2 V A

) † i s a n ort h o n or m al  M aj or a n a b asis o nl y
a cti n g n o ntri vi all y o n H A b ut h as a tri vi al a cti o n o n t h e
ot h er  Hil b ert s p a c e H B .  D e fi ni n g A a s t h e pr oj e cti o n of
a 2 V v e ct or o nt o t h e first 2 V A c o m p o n e nts, it h ol ds t h at
γ̃ = A γ a n d t h e n e w s y m pl e cti c f or m c orr es p o n di n g t o

t h e st at e ρ̂ A ( J̃ ) = Tr H B ρ̂ ( J̃ ) i s

J̃ A = Tr H A ρ̂ A ( J̃ ) γ̃ γ̃ † − 1
2
1 2 V A

= A Tr H ρ̂ ( J̃ ) γ γ † − 1
2
1 2 V

T
A

= A J̃ T
A . ( 8 0)

H e n c e, t h e n e w c o v ari a n c e  m atri x is o nl y a n ort h o g o n al
pr oj e cti o n of t h e ol d o n e o nt o its u p p er l eft 2 V A × 2 V A

bl o c k. S ur el y, it c a n b e a n y di a g o n al bl o c k or e v e n a  m or e
c o m pli c at e d e m b e d di n g of t his 2 V A × 2 V A m atri x J̃ A i n
J̃ .  H o w e v er, t h e gr o u p i n v ari a nt g e n er ati o n of t h e p ur e
f er mi o ni c  G a ussi a n st at es t ells us t h at all t h es e e m b e d di n gs
ar e e q ui v al e nt. P h ysi c all y, t his  m e a ns t h at all t h es e s u bs ys-
t e ms of H = H A ⊗ H B ar e ess e nti all y t h e s a m e o n c e t h e
di m e nsi o n d A i s fi x e d.  We h a v e alr e a d y s e e n t his pi ct ur e i n
P a g e’s s etti n g.

I n  R ef. [1 5 9 ], it  w as s h o w n t h at t h e r a n d o m  m atri x
J̃ A = A M T J 0 M

T
A wit h a  H a ar distri b ut e d M ∈ O (2 V )

h as a j oi nt pr o b a bilit y d e nsit y of its ei g e n v al u es
idi a g (x 1 τ 2 , . . . , x V A τ 2 ) of t h e f or m

P (x ) = N
j < k

(x j − x k )
2

V A

l= 1

(1 − x 2
l )

V − 2 V A ( 8 1)

wit h N t h e n or m ali z ati o n.  H er e,  w e alr e a d y s e e t h at it is
cr u ci al t o ass u m e t h at V A ≤ V / 2; ot h er wis e,  w e n e e d t o
c o nsi d er t h e d e nsit y o p er at or ρ̂ B ( J̃ ) = Tr H A ρ̂ ( J̃ ). I n d e e d,
it is a g ai n t h e s a m e s y m m etr y b et w e e n s u bs yst e ms A a n d
B t h at is still tr u e h er e, a n d t h e br e a k d o w n of a n al yti c-
it y is d u e t o s o m e ei g e n v al u es, eit h er of ρ̂ A ( J̃ ) or ρ̂ B ( J̃ )
b ei n g e x a ctl y z er o.  T h os e ei g e n v al u es ar e r el at e d t o t h e
ei g e n v al u es of J̃ A or, e q ui v al e ntl y, J̃ B t h at ar e e x a ctl y ± i.

T h e  m ai n i d e a t h at e nt ers t h e c o m p ut ati o n of t h e
j oi nt pr o b a bilit y distri b uti o n ( 8 1) is Pr o p ositi o n  A. 2 of
R ef. [ 1 7 4 ],  w hi c h s h o ws  w h at t h e ei g e n v al u es of a c or a n k-
2 pr oj e cti o n of a r e al a ntis y m m etri c  m atri x ar e.  T h e n, o n e
n e e ds o nl y r e p etiti v el y a p pl y t his pr o p ositi o n, l e a di n g t o
t h e distri b uti o n a b o v e.

O n e i m p ort a nt i n gr e di e nt i n t h e c o m p ut ati o n is t h at all
k - p oi nt c orr el ati o n f u n cti o ns c a n b e e x pr ess e d i n t er ms of
a si n gl e k er n el f u n cti o n K (x l, x j ) as [ 1 7 5 ]

R k (x 1 , . . . , x k ) =
V A !

(V A − k )!

1

− 1

d x k + 1 · · ·
1

− 1

d x V A P (x )

= d et[ K (x l, x j )]l,j = 1, ...,k . ( 8 2)

I n t h e  m at h e m ati c al br a n c h of r a n d o m  m atri x t h e or y, t his
str u ct ur e is k n o w n as a d et er mi n a nt al p oi nt pr o c ess [ 1 7 6 ].
T h e a v er a g e a n d v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y c a n
t h e n b e tr a c e d b a c k t o a n i nt e gr al of t h e o n e- p oi nt f u n cti o n
R 1 (x ) a n d t h e t w o- p oi nt c orr el ati o n f u n cti o n R 2 (x 1 , x 2 ),
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r es p e cti v el y. I n g e n er al, hi g h er c u m ul a nts of t h e e nt a n gl e-
m e nt e ntr o p y ar e a v er a g es of s p e ci fi c k - p oi nt c orr el ati o n
f u n cti o ns.

Distri b uti o n ( 8 1) is s h ar e d  wit h t h e u nit ar y J a c o bi
e ns e m bl e [ 1 3 6 ,1 6 3 ],  w hi c h is a tr u n c ati o n of a  H a ar-
distri b ut e d u nit ar y  m atri x.  D es pit e t h e f a ct t h at t h e ei g e n-
v al u e st atisti cs is t h e s a m e  wit h a u nit ar y J a c o bi e ns e m bl e,
t h e ei g e n v e ct or st atisti cs is di ff er e nt.  T his c a n b e r e a dil y
s e e n i n t h at t h e ei g e n v e ct ors of t h e u nit ar y J a c o bi e ns e m-
bl e  m ust b e U (V A ) i n v ari a nt,  w hil e i n t h e pr es e nt c as e t h e y
ar e o nl y O (2 V A ) i n v ari a nt.

2.  A v er a g e a n d v ari a n c e

O ur g o al is a g ai n t o c o m p ut e t h e  m e a n a n d v ari a n c e of
t h e e nt a n gl e m e nt e ntr o p y of s u bs yst e m A ,

S A G = S A (|M J 0 M
− 1 )d μ( M ), ( 8 3)

( S A )2
G = (S A (|M J 0 M

− 1 ) − S A G ) 2 d μ( M ), ( 8 4)

w h er e S A (|J̃ ) = Tr s(iJ̃ A ) [ s e e  E q. ( 7 8)] a n d d μ( M ) n o w
r e pr es e nts t h e  H a ar  m e as ur e o v er t h e ort h o g o n al gr o u p.
C o m p uti n g t h e a v er a g e e nt a n gl e m e nt e ntr o p y o v er all
G a ussi a n st at es  w as t h e  m ai n t e c h ni c al a c hi e v e m e nt of
R ef. [ 1 5 9 ]. It  w as f a cilit at e d b y r e c e nt r es ults i n r a n d o m
m atri x t h e or y [ 1 7 4 ], fr o m  w hi c h o n e c a n d e d u c e  w h at t h e
j oi nt pr o b a bilit y distri b uti o n of t h e si n g ul ar v al u es J̃ A ar e.
F or t his,  w e  m a k e r e p etiti v e us e of Pr o p ositi o n  A. 2 of
R ef. [ 1 7 4 ] b y al w a ys pr oj e cti n g a w a y t w o r o ws of  m atri x
J ; first t o [J ]N − 1 , t h e n [J ]N − 2 , u ntil  w e arri v e at [J ]N A .  T his
yi el ds f or x = (x 1 , . . . , x N A ) t h e distri b uti o n

P (x ) =
(d et X )2

N A !

N A − 1

j = 0

c − 1
j (1 − x 2

j + 1 ) , ( 8 5)

w h er e  w e h a v e t h e N A × N A m atri x X a n d c j gi v e n b y

X ij = p j − 1 (x i) = P ( , )
2 j − 2 (x i), ( 8 6)

c j =
2 2 [(2 j + )!]2

(2 j )! (2 j + 2 )! (4 j + 2 + 1 )
, ( 8 7)

wit h = N B − N A ≥ 0.  T h e k - p oi nt c orr el ati o n f u n cti o ns
fr o m  E q. ( 8 2) ar e f ull y e n c o d e d b y K (x a , x b ),  w hi c h is
gi v e n b y t h e k × k m atri x ( wit h a , b = 1, . . . , k ) gi v e n b y
[1 3 6 ]

K (x , y ) =

N A − 1

j = 0

ψ j (x ) ψj (y ), ψ j (x ) =
(1 − x 2 ) / 2

√
c j

p j (x ),

( 8 8)

wit h
1

0 ψ j (x ) ψk (x )d x = δ j k.  T h e a v er a g e e nt a n gl e m e nt
e ntr o p y c a n b e  writt e n i n t er ms of t h e o n e- p oi nt f u n cti o n,

S A G =
1

0

R 1 (x )s(x )d x

= V − 1
2

(2 V ) + 1
2

+ V A − V (2 V − 2 V A )

+ 1
4

− V A (V ) − 1
4

(V − V A ) − V A , ( 8 9)

w h er e t h e d et ails c a n b e f o u n d i n  A p p e n di x C 1 .  A n e w, t h e
s y m m etr y V A ↔ V − V A i s n ot r e fl e ct e d i n t his r es ult a n d
n e e ds t o b e i ntr o d u c e d b y h a n d.  T h e ori gi n of t his br e a ki n g
i n t h e a n al yti c al r es ult is, as i n P a g e’s s etti n g, o n e of t h e
t w o d e nsit y o p er at ors ρ̂ A a n d ρ̂ B h a s a n e x a ct n u m b er of
z er o  m o d es.  T h e r es ult c orr es p o n ds t o t his s yst e m  wit h o ut
t h es e g e n eri c z er o  m o d es.  T his s el e cti o n is a n o n a n al yti c al
st e p. I n d e e d, t h er e is a n o n a n al yti c ki n k at V A = V / 2 ( first
d eri v ati v e j u m ps t h er e).  H o w e v er, it is di ffi c ult t o s e e  w h e n
pl otti n g t h e r es ult e v e n f or  m o d er at el y s m all V (s a y of t h e
or d er 1 0).  T h e r e as o n is t h at t his ki n k v a nis h es li k e 1 / V 2 ,
s o t h at it is o nl y of t h e or d er of 1 %  w h e n V = 1 0.

F or f = V A / V ≤ 1
2
, t h e t h er m o d y n a mi c li mit r e a ds

S A G = V [(l n 2 − 1 )f + (f − 1 ) l n(1 − f )]

+ 1
2
f + 1

4
l n (1 − f ) + O (1 / V ), ( 9 0)

w h os e l e a di n g- or d er t er m  w as f o u n d e arli er i n  R ef. [ 6 1 ]
t o gi v e t h e a v er a g e ei g e nst at e e nt a n gl e m e nt e ntr o p y of
n u m b er- pr es er vi n g r a n d o m q u a dr ati c  H a milt o ni a ns.  T his
m at c h is n ot a c oi n ci d e n c e, as dis c uss e d i n S e c. III  C 3.

I nt er esti n gl y, r es ult ( 9 0) gl u e d t o its r e fl e cti o n f →
1 − f at f = 1

2
i s 2 ti m es di ff er e nti a bl e at f = 1

2
.  T h us,

t h e n o n a n al yti cit y is h ar dl y visi bl e. St arti n g  wit h t h e t hir d
d eri v ati v e o n e c a n a ct u all y s e e t h e br e a ki n g of a n al yti cit y.
We n ot e t h at, i n c o ntr ast t o t h e c as e of g e n er al p ur e st at es
c o nsi d er e d b y P a g e, i n  E q. ( 9 0) t h er e is n o  Kr o n e c k er d elt a
c o ntri b uti o n at f = 1

2
.

T h e v ari a n c e ( S A )2 c a n b e c o m p ut e d fr o m t h e  m atri x
r e pr es e nt ati o n of t h e e nt a n gl e m e nt e ntr o p y f u n cti o n s(x )
wit h r es p e ct t o t h e f u n cti o n ψ i(x ):

s ij =
1

− 1

s (x ) ψi(x ) ψj (x ) d x . ( 9 1)

I n f ull a n al o g y t o t h e c al c ul ati o n i n  R ef. [1 5 9 ],  w e fi n d t h at

( S A )2
G =

1

− 1

s 2 (x )K (x , x )d x

−
1

− 1

s (x 1 )s (x 2 )K
2 (x 1 , x 2 )d

2 x
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=
1

− 1

s (x 1 )s (x 2 )K (x 1 , x 2 )[δ ( x 1 − x 2 )

− K (x 1 , x 2 )]d
2 x

=
1

− 1

s (x 1 )s (x 2 )

V A − 1

i= 0

ψ i(x 1 ) ψi(x 2 )

×

∞

j = V A

ψ j (x 1 ) ψj (x 2 ) d 2 x

=

V A − 1

i= 0

∞

j = V A

s 2
ij . ( 9 2)

T h e v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y f or a p ur e
f er mi o ni c  G a ussi a n st at e  w as c o m p ut e d t o l e a di n g or d er
i n  R ef. [1 5 9 ] a n d is gi v e n i n

( S A )2
G =

f + f 2 + l n(1 − f )

2
+ o (1 ). ( 9 3)

We pr es e nt a s yst e m ati c d eri v ati o n i n  A p p e n di x C 2 b as e d
o n c ert ai n i nt e gr als of J a c o bi p ol y n o mi als.  Usi n g t h e t e c h-
ni q u es of  R efs. [ 1 4 9 ,1 7 7 ],  w e e x p e ct t h at t h e v ari a n c e c a n
b e c al c ul at e d i n a cl os e d c o m p a ct f or m f or fi x e d V as a n
e x pr essi o n i n t er ms of di g a m m a f u n cti o ns, a n al o g o us t o
E q. ( 8 9). I n f a ct,  H u a n g a n d  Wei [1 7 8 ] c o nj e ct ur e d s u c h
a n a n al yti c al f or m ul a.

C.  Fi x e d n u m b e r of p a rti cl es

We c o nsi d er f er mi o ni c  G a ussi a n st at es  wit h a fi x e d
p arti cl e n u m b er N , i. e., t h e i nt ers e cti o n of t h e f a mil y of
f er mi o ni c  G a ussi a n st at es a n d t h e  Hil b ert s p a c e H (N ) .

F or t his, it is us ef ul t o c h a n g e fr o m t h e b asis of  M aj o-
r a n a o p er at ors γ i t o t h e b asis of cr e ati o n a n d a n ni hil ati o n

o p er at ors.  T his b asis, { f̂j = (1 /
√

2 )( γ2 j − 1 + iγ 2 j ), f̂
†

j =

(1 /
√

2 )( γ2 j − 1 − iγ 2 j )}j = 1, ...,V ,  will b e h el pf ul  w h e n st u d y-
i n g  G a ussi a n st at es  wit h fi x e d p arti cl e n u m b ers.  T h os e ar e
gi v e n b y t hr e e π / 4 r ot ati o ns of t h e f or m

( f̂1 , . . . , f̂V , f̂
†

1 , . . . , f̂
†

V ) = ( γ1 , . . . , γ 2 V )T † = γ † T † ( 9 4)

wit h

T = e iπ / 4 e x p − i
π

4
τ 3 ⊗ 1 V e x p − i

π

4
τ 1 ⊗ 1 V ,

( 9 5)

a n d τ 1 a n d τ 3 b ei n g t h e first a n d t hir d P a uli  m atri c es.
H e n c e, t h e s y m pl e cti c f or m b e c o m es a c o m pl e x str u ct ur e

i n t his b asis t h at is gi v e n b y

J = i T Tr H ρ̂ ( γ ) γ γ † − 1
2
1 2 V T †

= i
J̃ |f̂if̂

†
j − f̂

†
j f̂i|J̃ J̃ |f̂

†
i f̂

†
j − f̂

†
j f̂

†
i |J̃

J̃ |f̂if̂j − f̂j f̂i|J̃ J̃ |f̂
†

i f̂j − f̂j f̂
†

i |J̃
i,j = 1, ...,V

,

( 9 6)

w h er e  w e h a v e us e d t h e a nti c o m m ut ati o n r el ati o n
{ f̂k , f̂

†
l } = δ kl a n d { f̂k , f̂l} = { f̂

†
k , f̂

†
l } = 0.  T h e tr a nsf or m a-

ti o n of J̃ → J is a u nit ar y tr a nsf or m ati o n.
F or f er mi o ni c  G a ussi a n st at es  wit h a fi x e d n u m b er

of p arti cl es, t h e o ff- di a g o n al bl o c ks i n  E q. ( 9 6) v a n-
is h b e c a us e t h os e c o nt ai n e x p e ct ati o n v al u es of o p er a-
t ors t h at c h a n g e t h e p arti cl e n u m b er.  T h us,  w e ar e l eft
wit h t h e ei g e n v al u es of t h e t w o V - b y-V m atri c es F ij =

− i J |f̂if̂
†

j − f̂
†

j f̂i|J a n d G ij = − i J |f̂
†

i f̂j − f̂j f̂
†

i |J .
T h es e t w o  m atri c es ar e i nti m at el y r el at e d vi a F = − G
d u e t o t h e a nti c o m m ut ati o n r el ati o ns.  A ct u all y, it is als o
a dir e ct c o ns e q u e n c e of t h e a nti- H er miti cit y a n d t h e τ 1 ⊗
1 V a ntis y m m etr y of J = − J † = − ( τ1 ⊗ 1 V )J T ( τ1 ⊗ 1 V ).
T h er ef or e,  w h e n i xj i s a n ei g e n v al u e of t h e a nti- H er miti a n
V × V m atri x F , t h e n − i xj h as t o b e a n ei g e n v al u e of G .
T h er e ar e n o a d diti o n al s y m m etri es of F a n d G ,  m e a ni n g
t h at t h e y c a n b e ar bitr ar y  H er miti a n  m atri c es.  O nl y t h eir
si n g ul ar v al u es ar e b o u n d e d t o b e i nsi d e t h e i nt er v al [ 0, 1]
b e c a us e t his is alr e a d y t h e c as e f or t h e c o m pl e x str u ct ur e
J t h at is i n h erit e d fr o m t h e p ositi v e s e mi d e fi nit e n ess of
st at e ρ̂ .

U si n g t h e c a n o ni c al c o m m ut ati o n r el ati o ns, it h ol ds t h at

F ij = 2 i J |f̂
†

j f̂i|J − iδ ij = − G ji. ( 9 7)

T his e q u ati o n r el at es F a n d G t o t h e o n e- b o d y r e d u c e d d e n-

sit y  m atri x t h at is d e fi n e d as C ij = J |f̂
†

j f̂i|J . I n d e e d, t h e
m atri x C is  H er miti a n,

{C † }ij = C ∗
ji = ( J |f̂

†
i f̂j |J )∗ = J |f̂

†
j f̂i|J = C ji, ( 9 8)

a n d p ositi v e s e mi d e fi nit e,

v † C v =

V

i,j = 1

C ij v
∗
i v j =

V

j = 1

v j f̂j |J
2

≥ 0. ( 9 9)

M or e o v er, its tr a c e is fi x e d,  Tr C = J | V
j = 1 f̂

†
j f̂j |J =

J |N̂ |J = N , i n a n ei g e ns p a c e of t h e t ot al n u m b er o p er a-
t or N̂ .  H e n c e, aft er a pr o p er n or m ali z ati o n o n e c a n i nt er pr et
C as a d e nsit y  m atri x.

1. St atisti c al e ns e m bl e of st at es

We h a v e s e e n t h at, f or a p ur e f er mi o ni c  G a ussi a n st at e,
t h e ei g e n v al u es of J m ust b e ± i or i n v ari a ntl y  writt e n
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J 2 = − 1 2 V .  T h er ef or e, t h e ei g e n v al u es of s u b- bl o c ks F
a n d G ar e als o ± i w h e n  w e ass u m e a fi x e d p arti cl e n u m-

b er; s e e  R ef. [ 1 7 3 ].  A n y b asis { f̂j }j = 1, ...,V ,  w hi c h a d mits
t h e s a m e c a n o ni c al a nti c o m m ut ati o n r el ati o ns a n d s p a n-
ni n g t h e s a m e s p a c e of cr e ati o n o p er at ors as t h e ori gi n al

b asis { f̂j }j = 1, ...,V , c a n b e c h os e n i n t h e c o nstr u cti o n of F a n d
G .  T h e s et of t h es e b as es of cr e ati o n o p er at ors is gi v e n b y

t h e a cti o n of t h e u nit ar y gr o u p U (V ), i. e., ( f̂
†
1 , . . . , f̂

†
V ) =

( f̂
†

1 , . . . , f̂
†

V )U wit h U ∈ U (V ).  As e a c h b asis is bij e cti v el y
r el at e d t o a p ur e st at e ρ̂ = | J J |, t h e s et of all p ur e
f er mi o ni c  G a ussi a n st at es  wit h a fi x e d p arti cl e n u m b er N
c a n b e g e n er at e d b y F = U † F 0 U a n d G = U T G 0 U

∗ ,  w h er e
F 0 a n d G 0 ar e di a g o n al  m atri c es  wit h ± i o n t h eir di a g o n al.
O n e c a n bri n g t h e n u m b er of ei g e n v al u es  wit h + i a n d − i
i n c o n n e cti o n  wit h t h e fi x e d n u m b er of p arti cl es N w h e n
tr a ci n g t h e  m atri x F , yi el di n g

Tr F = 2 i J

V

j = 1

f̂
†

j f̂j J − i V = − i(V − 2 N ). ( 1 0 0)

T h us, F 0 c a n b e c h os e n as F 0 = idi a g (1 N , − 1 V − N ), a n d,
e q ui v al e ntl y, G 0 = idi a g (− 1 N , 1 V − N ). Si mil arl y,  w e c a n
writ e t h e o n e- b o d y r e d u c e d d e nsit y  m atri x C = U † C 0 U
wit h C N = di a g (1 N , 0, . . . , 0) t h at c o m pris es V − N z er os,
a n d  w h er e t h e s u bs cri pt hi g hli g hts t h e n u m b er of p arti cl es.

T h e gr o u p a cti o n of U (V ) o n p ur e f er mi o ni c  G a us-
si a n st at es  wit h a fi x e d p arti cl e n u m b er a g ai n s u g g ests
t h e n oti o n of a u nif or m distri b uti o n.  H e n c e,  w e g e n er-
at e t h e st at e e ns e m bl e b y p ar a m et eri zi n g t h e ass o ci at e d
c o m pl e x str u ct ur e as J = idi a g (U † [ 2C N − 1 V ]U , U T [1 V −
2 C N ]U ∗ ) wit h a  H a ar distri b ut e d U ∈ U (V ).

W h e n  w e c o nsi d er a s u bs yst e m c o nsisti n g of t h e first
V A sit es,  w e n e e d t o r estri ct J t o t h e 2V A × 2 V A m atri x
J A , i n  w hi c h b ot h F a n d G ar e r estri ct e d t o t h e l eft u p p er
V A × V A bl o c ks.  T his c h oi c e, as b ef or e, r es ults i n n o l oss of
g e n er alit y si n c e t h e  H a ar- distri b ut e d  m atri x U c o v ers a n y
ot h er ki n d of ort h o g o n al pr oj e cti o n.  T h at t h e r estri cti o n
t o a s u b- bl o c k is i n d e e d dir e ctl y r el at e d t o t h e r estri c-
ti o n of a s u bs yst e m f oll o ws al o n g t h e s a m e li n es as i n
t h e c as e  wit h o ut a fi x e d p arti cl e n u m b er.  O n e n e e ds t o
c o m p ut e t h e c o v ari a n c e  m atri x t h at is gi v e n b y t h e a n ni-
hil ati o n a n d cr e ati o n o p er at ors t h at o nl y a ct n o ntri vi all y
i n t h e  Hil b ert s p a c e H A ,  w hi c h is a g ai n e q ui v al e nt  wit h a

pr oj e cti o n J A = di a g (F A , G A ) a n d, t h us, F A = ˆ A F ˆ T
A a n d

G A = ˆ
A G ˆ T

A ,  w h er e ˆ
A pr oj e cts o nt o t h e first V A r o ws.

I nst e a d of usi n g t h e s p e ctr u m ± i x of J A , it is s o m e-
ti m es c o n v e ni e nt t o us e t h e ei g e n v al u es y of t h e V A × V A

r estri ct e d o n e- b o d y r e d u c e d d e nsit y  m atri x C A = ˆ
A C ˆ T

A .
It still h ol ds t h at J A = idi a g (2 C A − 1 V A

, 1 V A
− 2 C A ).  T his

i m pli es t h at, f or t h e e nt a n gl e m e nt e ntr o p y,  w e h a v e
Tr s(i J ) = 2 Tr s(2 C A − 1 V A

) b as e d o n  E q. ( 9 7). I n t er ms
of ei g e n v al u es t his r e a ds s(x ) = s(2 y − 1 ).  T h e e nt a n gl e-
m e nt e ntr o p y p er v ol u m e s(2 y − 1 ) v a nis h es f or y = 0

a n d y = 1, d u e t o s(± 1 ) = 0.  T h er ef or e, t h e e nt a n gl e-
m e nt e ntr o p y S A i s i n v ari a nt u n d er c h a n gi n g t h e n u m b er
of ei g e n v al u es 0 or 1 i n C A .

T h e g e n er ati o n of C A i s t h e n gi v e n b y a  H a ar-r a n d o m
u nit ar y V × V m atri x U a n d t h e  m atri x pr o d u ct

C A = [U ]V A × N [U ]
†
N × V A

, ( 1 0 1)

w h er e [ U ]V A × N i s t h e V A × N u p p er l eft s u b- bl o c k of
t h e  m atri x U .  T h e  m atri x [U ]V A × N i s als o k n o w n as t h e
tr u n c at e d u nit ar y e ns e m bl e or si m pl y t h e u nit ar y J a c o bi
e ns e m bl e i n r a n d o m  m atri x t h e or y [ 1 3 6 ,1 6 3 ]. It a p p e ars
i n s e v er al c o nt e xts s u c h as q u a nt u m tr a ns p ort [1 7 9 ] a n d
q u a nt u m s c att eri n g [ 1 8 0 ], as it c a n b e s e e n as a s u b- bl o c k
of a n S m atri x.

L et us s u m m ari z e t h e s y m m etri es of t h e a b o v e s etti n g.

(i)  T h e p arti cl e- h ol e s y m m etr y,  w hi c h is gi v e n b y N ↔
V − N , is r e fl e ct e d  w h e n r e pl a ci n g C = U † C N U →
1 V − C = U † (1 V − C N )U .  E x pl oiti n g t h e s y m m e-
tr y s(x ) = s(− x ), it h ol ds t h at

Tr s( ˆ
A [ 2C − 1 V ] ˆ

A ) = Tr s( ˆ
A [ 2(1 V − C )

− 1 V ] ˆ A ), ( 1 0 2)

w hi c h u n d erli n es t his s y m m etr y.
(ii)  T h er e is a g ai n a s y m m etr y b et w e e n s u bs yst e ms A

a n d B .  A n e w, it is n ot i m m e di at e as t h e s el e cti o n is
al w a ys gi v e n b y t h e s m all est of t h e t w o c o m pl e m e n-
t ar y di a g o n al bl o c ks [ o n e of si z e V A × V A a n d of si z e
(V − V A ) × (V − V A )] of C .  T h es e ar e a n e w gi v e n
b y h a vi n g a d e nsit y  m atri x  wit h o ut z er o  m o d es.
T h us,  w e a ct u all y e x p e ct t o p ut t his s y m m etr y i n b y
h a n d as b ef or e.

(iii) S ur prisi n gl y, t his  m a n u al i m pl e m e nt ati o n of t h e
e x c h a n g e of s u bs yst e ms is n ot r e all y n e e d e d f or
f er mi o ni c  G a ussi a n st at es as t h er e is a n ot h er,  m or e
s u btl e s y m m etr y t h at r el at es t o t h e n u m b er of e x a ct
ei g e n v al u es at + i of t h e s y m pl e cti c f or m J̃ A .  T his is
m a nif est e d i n a n a d diti o n al p arti cl e-s u bs yst e m s y m-
m etr y V A ↔ N . Its  m at h e m ati c al ori gi n is t h at t h e
s p e ctr a of [ U ]V A × N [U † ]N × V A a n d [ U † ]N × V A [U ]V A × N

o nl y di ff er b y t h e n u m b er of z er o ei g e n v al u es,  w hi c h
c orr es p o n d t o e x a ct ei g e n v al u es ± i of J̃ A . P h ysi-
c all y, t his  m e a ns t h at t h er e ar e f er mi o ni c  m o d es i n
t h e ei g e n b asis of J̃ A t h at o nl y a ct o n H A a n d d o
n ot a ct o n t h e s u b- Hil b ert s p a c e H B .  T h e p arti cl e-
s u bs yst e m s y m m etr y als o n e e ds t o b e i ntr o d u c e d
b y h a n d as t h e c al c ul ati o n r e q uir es t h at C A h as n o
g e n eri c z er o ei g e n v al u es.  T h er ef or e,  w e c a n e x p e ct
a br e a ki n g of a n al yti cit y at t h e s y m m etr y a x es
N = V A a n d N = V − V A b e c a us e of t h e p arti cl e-
h ol e s y m m etr y N ↔ V − N .  O n e c o ns e q u e n c e of
t h e p arti cl e-s u bs yst e m s y m m etr y is t h at t h e s y m m e-
tr y a xis d e fi n e d b y V A = V / 2  m ust h a v e t h e s a m e
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V A ↔ N

0 V

V

V A

V A ↔ V − V A

¯N

V A = V / 4

w ( n̄ )

N
N ↔ V − N

r e gi o n of
S A G , N wi t h

V A ≤ N ≤ V
2

V A ↔ V − N

FI G. 7. Ill ustr ati o n of t h e s y m m etri es of t h e a v er a g e e nt a n-
gl e m e nt e ntr o p y S A G ,N a s a f u n cti o n of V A a n d N . W h e n w e
c o m p ut e t h e a v er a g e S A G ,w a s a f u n cti o n of (w , V A , V ), w e ar e
e ff e cti v el y i nt e gr ati n g a g ai nst t h e d e nsit y f u n cti o n w (N ) at fi x e d
V A ,  w hi c h is a p pr o xi m at el y a  G a ussi a n ( pl us c orr e cti o ns) c e n-
t er e d at t h e e x p e ct ati o n v al u e N̄ = Ve − w /( 1 + e − w ).  Tr a nsiti o ns
ar e c h ar a ct eri z e d b y a n e n h a n c e d c orr e cti o n of or d er 1 /

√
V t o

S A G ,w , a n d o c c ur  w h e n e v er N̄ = V A , as t his is t h e p oi nt  w h er e
t h e i n cr e asi n gl y n arr o w  G a ussi a n is i nt e gr at e d a g ai nst t w o dif-
f er e nt a n al yti c f u n cti o ns o n eit h er si d e of its p e a k ( d u e t o t h e
p arti cl e-s u bs yst e m s y m m etr y).  T h e f u n cti o n S A G ,N i s a n al yt-
i c al a cr oss t h e s u bs yst e m a n d p arti cl e- h ol e s y m m etri es ( d as h e d
li n es), b ut n ot a cr oss p arti cl e-s u bs yst e m s y m m etri es (s oli d li n es).

a n al yti cit y pr o p erti es as t h e s y m m etr y a xis N =
V / 2.  T his is t h e r e as o n  w h y t h e i m pl e m e nt ati o n of
t h e s y m m etr y b et w e e n t h e t w o s u bs yst e ms is n ot
n e e d e d.

T h e t hr e e s y m m etri es cr e at e t h e o v er all s y m m etr y gr o u p
Z 2 × Z 2 × Z 2 Z 2 ⊗ Z 4 ,  w hi c h c a n b e vis u ali z e d b y t h e
r es p e cti v e  mirr or a x es.  T h e l att er pr o d u ct Z 2 ⊗ Z 4 r e fl e cts
t h e f a ct t h at t h er e is a fi nit e r ot ati o n gr o u p Z 4 a n d a p oi nt
r e fl e cti o n gr o u p Z 2 ,  w hi c h c o m m ut e.  W h e n  w e c o m p ut e
S A G ,N i n  E q. ( 1 1 3) f or V A ≤ N ≤ N / 2,  w e o nl y c o m p ut e

it o n o n e ei g ht h of t h e a v ail a bl e p ar a m et er s p a c e.  Usi n g t h e
a b o v e s y m m etri es, o n e c a n e asil y d e d u c e S A G ,N f or a n y
ot h er v al u es of V A a n d N .  We ill ustr at e t h e s y m m etri es a n d
t h e r es p e cti v e tr a nsiti o ns i n Fi g. 7 .

T h e ei g e n v al u e distri b uti o n of i F is gi v e n b y t h e u ni-
t ar y J a c o bi e ns e m bl e, as dis c uss e d i n  R efs. [1 3 6 ,1 8 1 ].  T his
distri b uti o n h as t h e f or m

P (x ) = N
j < k

(x j − x k )
2

V A

i= 1

(1 + x i)
N − V A (1 − x i)

V − V A − N .

( 1 0 3)

We c a n r e writ e t his pr o b a bilit y distri b uti o n as

P (x ) =
(d et X )2

V A !

V A − 1

j = 0

c − 1
j (1 − x j + 1 )

α (1 + x j + 1 )
β ,

( 1 0 4)

w h er e  w e h a v e t h e V A × V A m atri x X a n d c j gi v e n b y

X ij = p j − 1 (x i) = P ( α ,β )
j − 1 (x i), ( 1 0 5)

c j =
2 α + β + 1

2 j + α + β + 1

(j + α ) ! (j + β ) !

(j + α + β ) ! j !
, ( 1 0 6)

wit h

α = V − N ≥ 0, ( 1 0 7)

β = V − N − V A ≥ 0, ( 1 0 8)

a n d P ( α ,β )
n (z ) t h e J a c o bi p ol y n o mi als.  We c a n d e fi n e t h e

f u n cti o n

ψ j (x ) =
1

√
c j

P ( α ,β )
j (x ), ( 1 0 9)

w hi c h all o ws us t o e x pr ess t h e l e v el d e nsit y a n d t h e t w o-
p oi nt k er n el as

R 1 (x ) =

V A − 1

i= 0

ψ 2
i (x ), ( 1 1 0)

K (x , y ) =

V A − 1

i= 0

ψ i(x ) ψi(y ). ( 1 1 1)

E q u ati o n ( 8 2) u n d erli n es t h at t h e k er n el is a c e nt er pi e c e
i n t h e g e n er al s p e ctr al st atisti cs of d et er mi n a nt al p oi nt
pr o c ess es, as it is h er e.

T h e a b o v e a n al yti c al pr e p ar ati o ns ar e o ur st arti n g p oi nt
f or t h e c o m p ut ati o ns t h at ar e p erf or m e d i n  A p p e n di x D a n d
w h os e r es ults ar e s u m m ari z e d i n S e c. III  C 2.

2.  A v er a g e a n d v ari a n c e

T h e a v er a g e e nt a n gl e m e nt e ntr o p y o v er all p ur e
f er mi o ni c  G a ussi a n st at es  wit h t ot al p arti cl e n u m b er N
a n d a s u bs yst e m v ol u m e V A o ut of a t ot al v ol u m e V ( wit h
V A ≤ N ≤ V / 2) is

S A G ,N = V A

1

− 1

R 1 (x )s(x ) d x ( 1 1 2)

wit h s(x ) fr o m  E q. ( 7 8) a n d R 1 (x ) is t h e o n e p oi nt f u n c-
ti o n.  T h e e v al u ati o n of t his i nt e gr al is e x pl ai n e d i n d et ail
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( b)( a)

FI G. 8.  T h e l e a di n g or d er of t h e e nt a n gl e m e nt e ntr o p y s G
A (f , n ) = li mV → ∞ S A G ,N / V fr o m  E q. ( 1 1 4) [s e e als o  E q. ( D 2 8)].  O n e

c a n s e e t h e  mirr or s y m m etri es V A → V − V A , N → V − N , a n d V A → N . F or n = 1
2
, s G

A (f , n ) c oi n ci d es  wit h t h e f or m ul a d eri v e d
i n  R efs. [6 1 ,1 5 9 ]. ( a)  T hr e e- di m e nsi o n al pl ot as a f u n cti o n of t h e s u bs yst e m fr a cti o n f = V A / V a n d t h e filli n g r ati o n = N / V . O n e
c a n s e e t h e  mirr or s y m m etri es V A → V − V A a n d N → V − N . ( b)  R es ults at fi x e d n pl ott e d as f u n cti o ns of f .  T h e i ns et s h o ws t h at
s G
A (f , n ) ∼ s A (f , n ) wit h s A (f , n ) = li mV → ∞ S A N / V [ m e a ni n g  E q. ( 6 6) i n P a g e’s s etti n g] as f → 0.  As b ef or e, t h e c ol or e d c ur v es ar e

t h e s a m e i n t h e l eft a n d ri g ht pl ots.

i n  A p p e n di x D 1 .  We o bt ai n

S A G ,N = 1 −
V A

V
(1 + V ) −

N V A

V
(N ) + V (V )

+
V A (N − V )

V
(V − N ) + (V A − V )

× (V − V A + 1 ) ( 1 1 3)

f or V A ≤ N ≤ V / 2,  w h er e (x ) = (x ) /  (x ) is t h e
di g a m m a f u n cti o n.  All ot h er v al u es of N a n d V A c a n b e
c o m p ut e d b y usi n g t h e f a ct t h at t h e e nt a n gl e m e nt e ntr o p y
is s y m m etri c u n d er N → V − N , V A → V − V A , a n d N ↔
V A .  L et us e m p h asi z e t h at  E q. ( 1 1 3) is alr e a d y s y m m etri c
u n d er N → V − N .  T his  will pl a y a n i m p ort a nt r ol e  w h e n
i d e ntif yi n g

√
V c o ntri b uti o ns f or a v er a g es at fi x e d  w ei g ht

p ar a m et er w .
If  w e d e fi n e n = N / V a n d f = V A / V ,  w e c a n e x p a n d

t his f or m ul a i n V t o fi n d t h e t h er m o d y n a mi c li mit

S A G ,N = [(f − 1 ) l n(1 − f ) + f [(n − 1 ) l n(1 − n )

− n l n n − 1]] V

+
f [ 1 − f + n (1 − n )]

1 2 (1 − f )(1 − n )n

1

V
+ O (V − 3 ), ( 1 1 4)

w h er e  w e ass u m e t h at f ≤ n ≤ 1
2
.  O n e c a n us e t h e s y m-

m etri es dis c uss e d i n Fi g. 7 t o fi n d S A G ,N f or t h e ot h er

p ar a m et ers.  We n ot e t h at t h e l e a di n g or d ers f or f ≤ 1
2

a n d

n = 1
2

r e a d

S A G ,N = V / 2 = [(l n 2 − 1 )f + (f − 1 ) l n(1 − f )]V

+
(5 / 4 − f )f

3 (1 − f )

1

V
+ O (V − 3 ). ( 1 1 5)

R e m ar k a bl y, t h e l e a di n g- or d er i n V is t h e s a m e as
t h at f o u n d i n  R ef. [6 1 ] f or t h e a v er a g e o v er ei g e n-
st at es of n u m b er- c o ns er vi n g r a n d o m  H a milt o ni a ns, a n d
i n  R ef. [1 5 9 ] f or t h e e ns e m bl e of all f er mi o ni c  G a ussi a n
st at es.  W h y t his is n o c oi n ci d e n c e  will b e c o m e a p p ar e nt i n
S e c. III  C 3. I n Fi g. 8 ,  w e vis u ali z e o ur a n al yti c al r es ults
f or t h e l e a di n g or d er of S A G ,N .

We c o m p ut e t h e v ari a n c e ( S A )G ,N u si n g t h e s a m e str at-
e g y as  E q. ( 9 3) b as e d o n s ij fr o m  E q. ( C 1 2),  w h er e ψ i(x )
n o w c o m es fr o m  E q. ( 1 0 9). I n  A p p e n di x D 2 ,  w e st u d y t h e
as y m pt oti cs of s ij ar o u n d t h e l e a di n g c o ntri b uti o n s V A − 1, V A

i n t h e li mit V → ∞ at a fi x e d s u bs yst e m fr a cti o n f =
V A / V a n d p arti cl e n u m b er n = N / V .  We fi n d t h at

( S A )2
G ,N = l n(1 − f ) + f + f 2 + f 2 (2 n − 1 ) l n

1

n
− 1

+ f (f − 1 )(n − 1 )n l n2
1

n
− 1 + o (1 )

( 1 1 6)

f or 0 < f ≤ n ≤ 1
2
.  We vis u ali z e t his r es ult i n Fi g. 9 .

At n = 1
2
, t h e e x pr essi o n a b o v e si m pli fi es t o

li mV → ∞ ( S A ) 2
G ,N (f , 1

2
) = f + f 2 + l n(1 − f ),  w hi c h is

e x a ctl y t wi c e t h e v ari a n c e ( 9 3) f o u n d f or t h e e nt a n gl e m e nt
e ntr o p y of all f er mi o ni c  G a ussi a n st at es [1 5 9 ].

0 3 0 2 0 1- 2 5



E U G E NI O  BI A N C HI et al. P R X  Q U A N T U M 3, 0 3 0 2 0 1 ( 2 0 2 2)

( a) ( b)

FI G. 9.  T h e l e a di n g or d er of t h e st a n d ar d d e vi ati o n ( S A ) G ,N of t h e e nt a n gl e m e nt e ntr o p y S A , fr o m E q. ( 1 1 6). ( a)  T hr e e- di m e nsi o n al
pl ot as a f u n cti o n of t h e s u bs yst e m fr a cti o n f = V A / V a n d t h e filli n g r ati o n = N / V . ( b)  R es ults at fi x e d n pl ott e d as f u n cti o ns of f .
T h e c ol or e d c ur v es i n t h e ri g ht pl ot ar e t h e s e cti o ns  wit h t h e s a m e c ol or i n t h e l eft pl ot.

3.  Wei g ht e d a v er a g e a n d v ari a n c e

F oll o wi n g t h e d e fi niti o ns i n S e c. II  B 3,  w e c a n d e fi n e
t h e  w ei g ht e d a v er a g e e nt a n gl e m e nt e ntr o p y of  G a ussi a n
st at es

S A G ,w =

V

N = 0

P N S A G ,N , ( 1 1 7)

w h er e P N i s a f u n cti o n of w as d e fi n e d i n  E q. ( 6 2), a n d
pr o d u c es a n a v er a g e filli n g r ati o n̄ = N̄ / V = 1 /( 1 + e w )
[s e e  E q. ( 6 3)]. I n t h e t h er m o d y n a mi c li mit, V → ∞ , w e
c a n a p pr o xi m at e t h e bi n o mi al distri b uti o n b y a c o nti n u o us
pr o b a bilit y distri b uti o n w (n ),  w hi c h a p pr o a c h es a  G a us-
si a n pl us c orr e cti o ns (s e e  A p p e n di x D 2 a ) t h at b e c o m es
i n cr e asi n gl y p e a k e d at n = ¯n .

W h e n  w e a v er a g e o v er all  G a ussi a n st at es  wit h a fi x e d
n u m b er of p arti cl es, a n at ur al  w ei g ht is gi v e n  w h e n w = 0,

i. e.,  w e  w ei g h e a c h p arti cl e- n u m b er s e ct or b y its  Hil b ert
s p a c e di m e nsi o n N . If  w e  w o ul d dr a w a r a n d o m ei g e n-
st at e of a r a n d o m q u a dr ati c n u m b er- c o ns er vi n g  H a milt o-
ni a n (s e e S e c. I V  A), t h e r es ulti n g ei g e nst at e e nt a n gl e m e nt
e ntr o p y will t h us c orr es p o n d t o w = 0.  T h e l e a di n g- or d er
a v er a g e f or ei g e nst at es of s u c h  H a milt o ni a ns  w as d eri v e d
i n  R ef. [6 1 ], a n d  w as l at er s h o w n n u m eri c all y [6 2 ] a n d
a n al yti c all y [ 1 5 9 ] t o c oi n ci d e  wit h t h e l e a di n g- or d er a v er-
a g e o v er ei g e nst at es of r a n d o m q u a dr ati c  H a milt o ni a ns
wit h o ut n u m b er c o ns er v ati o n or, e q ui v al e ntl y, o v er all
f er mi o ni c  G a ussi a n st at es.  T h e pr es e nt c al c ul ati o n e x pl ai ns
t h es e c oi n ci d e n c es b y s h o wi n g e x pli citl y h o w t h e a v er a g e
at w = 0 c orr es p o n ds t o t h e p e a k of t h e bi n o mi al dis-
tri b uti o n at n = ¯n = 1

2
, s o at l e a di n g or d er S A G ,w = 0 =

S A G + O (1 ).
We c al c ul at e t h e bi n o mi al a v er a g e o v er N a n al yti c all y

u p t o or d er 1 / V i n  A p p e n di x D 2 a .  T h e r es ulti n g l e a di n g-
or d er b e h a vi or, as a f u n cti o n of n̄ a n d f , is gi v e n b y

S A G ,w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(f − 1 ) l n(1 − f ) + f [( n̄ − 1 ) l n(1 − ¯n ) − 1 − ¯n l n n̄ ]]V −
f

2

+
(f − 2 )f

1 2 (f − 1 )

1

V
+ O (1 / V 3 ), f < n̄ ≤ 1

2
,

[(f − 1 ) n̄ l n(1 − f ) − ¯n (1 + f l n f ) + ( n̄ − 1 ) l n(1 − ¯n )]V −
n̄

2

+
n̄ (1 − f + f 2 )

1 2 f (1 − f )

1

V
+ O (1 / V 3 ), n̄ < f ≤ 1

2
,

[(f 2 − 1 ) l n(1 − f ) − f (1 + f l n f )]V −
f

2
+

(1 − f )f

1 8 π

1
√

V

+
1 + f

2 4 (1 − f )

1

V
+ O (1 / V 3 / 2 ), f = ¯n < 1

2
,

l n 2 −
1

2
V −

1

4
+

1

3
√

2 π

1
√

V
+

1

8

1

V
+ O (1 / V 3 / 2 ), f = ¯n = 1

2
,

( 1 1 8)
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( a)

( b)

( c)

( d)

( e)

S A G, w = a V + b + c V − 1 / 2 + O ( V − 1 ) S A G, w a t f = 1
2

+
Λ f√

V
a n d n̄ = 1

2
+ Λ n̄√

V

S A G, w a t n̄ = f + Λ n̄√
V

FI G. 1 0.  T h e s u bs yst e m e nt a n gl e m e nt e ntr o p y S A G ,w fr o m  E q. ( 1 1 9) as vi e w e d fr o m t h e c o ntri b uti o ns of t h e first t hr e e t er ms i n
t h e e x p a nsi o n i n V . ( a) –( c)  T hr e e- di m e nsi o n al pl ots as f u n cti o ns of t h e s u bs yst e m fr a cti o n f = V A / V a n d t h e filli n g r ati o n = N / V .
( d)  R es ol vi n g b f or n̄ = 1

2
+ n̄ /

√
V a n d f = 1

2
+ f /

√
V ar o u n d f = ¯n = 1

2
, a s gi v e n b y E q. ( D 3 4). ( e)  R es ol vi n g dis c o nti n uiti es of

c f or n̄ = f + n̄ /
√

V ar o u n d f = ¯n < 1
2

gi v e n b y  E q. ( D 4 4).

f or f , n̄ ≤ 1
2
. T o O (1 /

√
V ), t h e a b o v e r es ults c a n b e r e c ast i n t h e f oll o wi n g c o m p a ct e q u ati o n:

S A G ,w = [( μ− − 1 ) l n(1 − μ − ) + μ − [( μ+ − 1 ) l n(1 − μ + ) − 1 − μ + l n μ + ]]V

−
μ −

2
+ δ f ,n̄

f (1 − f )

1 8 π
+ δ f , 1/ 2

1

6
√

2 π

1
√

V
+ O

1

V
( 1 1 9)

wit h μ + = m a x (f , n̄ ) a n d μ − = mi n (f , n̄ ).  E q u ati o n ( 1 1 9)
is vis u ali z e d i n Fi gs. 1 0( a) – 1 0( c) .  N ot e t h at S A G ,w s at-
is fi es t h e p arti cl e-s u bs yst e m s y m m etr y n̄ ↔ f o nl y u p t o
1 /

√
V ,  w hi c h is n ot s ur prisi n g c o nsi d eri n g t h at t his s y m-

m etr y is o nl y e x a ct f or a v er a g es at fi x e d  N .  We c o m p ar e d
o ur a n al yti c al r es ults  wit h t h os e of n u m eri c al c al c ul ati o ns.
I n Fi g. 1 1 ,  w e s h o w s o m e of t h e fi nit e-si z e s c ali n g a n al ys es
t h at  w e c arri e d o ut.

We n ot e t h at t h e as y m pt oti c b e h a vi or of t h e a v er-
a g e e nt a n gl e m e nt e ntr o p y S A G ,w (f ) is c h ar a ct eri z e d b y
a n o n a n al yti c b e h a vi or al o n g t h e s y m m etr y a x es f = ¯n
a n d f = 1 − ¯n .  T his gi v es ris e t o disti n ct c orr e cti o ns i n
t h e t h er m o d y n a mi c li mit.  M ost i m p ort a ntl y,  w e h a v e a n
e n h a n c e m e nt of or d er 1 /

√
V w h e n e v er f = ¯n a n d, i n

p arti c ul ar, at f = ¯n = 1
2
.  T h es e r e gi m es ar e d u e t o t h e

v ari o us s y m m etri es of t h e a v er a g e e nt a n gl e m e nt e ntr o p y
S A G ,N a s a f u n cti o n of V A a n d N . I n p arti c ul ar, t h er e is

t h e af or e m e nti o n e d p arti cl e-s u bs yst e m s y m m etr y,  w hi c h
st at es t h at S A G ,N i s i n v ari a nt u n d er i nt er c h a n gi n g N ↔

V A .  T his s y m m etr y h as t o b e p ut i n b y h a n d a n d r es ults
i n  Kr o n e c k er d elt as as i n P a g e’s s etti n g, alt h o u g h t h er e
t h e  Kr o n e c k er d elt as r es ult e d fr o m a di ff er e nt s y m m e-
tr y. I n  A p p e n di x D 2 c ,  w e r es ol v e t h e  Kr o n e c k er d elt as
i n  E q. ( 1 1 9) b y st u d yi n g t h e as y m pt oti cs f or eit h er n̄ =
f + f /

√
V or n̄ = 1

2
+ f /

√
V a n d f = 1

2
+ f /

√
V .

T h e r es ulti n g e x pr essi o ns ( D 3 5) a n d ( D 4 3) ar e vis u ali z e d
i n Fi gs. 1 0( d) a n d 1 0( e) .

W h e n c o m p uti n g t h e a v er a g e e nt a n gl e m e nt e ntr o p y
S A G ,w fr o m  E q. ( D 2 6) f or  w ei g ht p ar a m et er w a n d s u bs ys-

t e m si z e V A ≤ V / 2, o n e e x p e cts tr a nsiti o ns t o o c c ur  w h e n-
e v er t h e e x p e ct ati o n v al u e N̄ = V n̄ = Ve − w /( 1 + e − w )
cr oss es a s y m m etr y a xis,  w h er e t h er e is a dis c o nti n uit y i n
t h e t hir d d eri v ati v e of S A G ,N . I nt er esti n gl y,  w e o nl y h a v e

a tr a nsiti o n at n̄ = f (i. e., N̄ = V A ) a n d n̄ = f = 1
2
, b ut n ot

at n̄ = 1
2

(i. e., N̄ = V / 2) d u e t o t h e f a ct t h at  E q. ( 1 1 3) is
s y m m etri c i n N ↔ V − N , s o t h at o ur f u n cti o n S A G ,N i s
a n al yti c a cr oss t h e p arti cl e- h ol e s y m m etr y.  T h e r e as o n f or
t his is t h at S A G ,N h a s c o nti n u o us d eri v ati v es u p t o or d er
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0

0

1 × 1 0 – 9 1 × 1 0 – 4

– 1 × 1 0 – 4

– 2 × 1 0 – 4

– 2 × 1 0 – 4

– 2 × 1 0 – 4

– 1 × 1 0 – 9

– 2 × 1 0 – 9

– 3 × 1 0 – 9

– 4 × 1 0 – 9

– 5 × 1 0 – 9

1 × 1 0 – 3 2 × 1 0 – 3 3 × 1 0 – 3 4 × 1 0 – 3 5 × 1 0 – 3
2 × 1 0 – 8 4 × 1 0 – 8 6 × 1 0 – 8 8 × 1 0 – 8 1 × 1 0 – 7 0

0

( a) ( b)

FI G. 1 1.  As y m pt oti cs of S A G ,w .  We c o m p ar e t h e e x a ct v al u es of t h e a v er a g e e nt a n gl e m e nt e ntr o p y S A G ,w c o m p ut e d n u m eri c all y
b y e v al u ati n g t h e s u m i n  E q. ( 1 1 7) usi n g  E q. ( 1 1 4) f or V ≤ 2 0 0 0,  wit h t h e as y m pt oti c r es ults,  E q. ( 1 1 8), i. e.,  w e s h o w t h e di ff er e n c e

δ S (3 )
G ,w = S A G ,w − S A

(3 )
G ,w , w h er e S A

(3 )
G ,w c orr es p o n ds t o e x p a nsi o n ( 1 1 8) u p t o or d er 1 / V . I n p arti c ul ar, o n e c a n s e e t h at t h e n e xt or d er

is 1/ V 3 / 2 if f = ¯n , a n d 1/ V 3 ot h er wis e.

t hr e e at n̄ = 1
2
, s o t h at  w e  w o ul d n ot s e e a tr a nsiti o n if  w e

o nl y e x p a n d u p t o or d er 1 / V .  H o w e v er,  w e e x p e ct t h at t h e
fift h- or d er t er m of s G

A (f , n ) = li mV → ∞ S A G ,N / V [s e e als o
E q. ( D 2 8)] e x p a n d e d i n p o w ers of ( n̄ − n ) will c o ntri b ut e
a s q u ar e r o ot e n h a n c e m e nt of or d er V − 3 / 2 f or n̄ = 1

2
.

Fi n all y, l et us als o c o m m e nt a b o ut t h e l e a di n g or d er of
t h e v ari a n c e at fi x e d  w ei g ht p ar a m et er w .  T h e l e a di n g-
or d er c o ntri b uti o n is d u e t o t h e v ari a n c e ( n )2 i n t h e n u m-

b er of p arti cl es,  E q. ( 6 4).  As a r es ult,  w hil e t h e v ari a n c e
at fi x e d p arti cl e n u m b er is O ( 1),  E q. ( 1 1 6), t h e v ari a n c e at
fi x e d w s c al es li n e arl y  wit h t h e v ol u m e

( S A )2
G ,w =

⎧
⎪⎨

⎪⎩

n̄ (1 − ¯n ) l n
n̄

1 − ¯n

2

f 2 V + o (V ), f ≤ ¯n ,

n̄ (1 − ¯n )[(1 − f ) l n(1 − f ) + f l n f + l n(1 − ¯n )]2 V + o (V ), f > n̄ ,

( 1 2 0)

wit h f ≤ 1
2
.  N ot e t h at, at w = 0 ( c orr es p o n di n g t o n̄ = 1

2
),

t h e l e a di n g- or d er O (V ) t er m v a nis h es. I n g e n er al,  w e h a v e
li mV → ∞ ( S A ) G ,w / S A G ,w = 0,  w hi c h s h o ws t h at i n t h e
t h er m o d y n a mi c li mit t h e a v er a g e ( 1 1 8) als o gi v es t h e
t y pi c al v al u e of t h e e nt a n gl e m e nt e ntr o p y.

I V.  E X A C T  R E L A TI O N  T O  R A N D O M
H A MI L T O NI A N S

S o f ar,  w e h a v e f o c us e d o n e ns e m bl es of q u a nt u m st at es
a n d c o m p ut e d st atisti c al pr o p erti es of t h e e nt a n gl e m e nt
e ntr o p y  wit h r es p e ct t o t h e f oll o wi n g si x e ns e m bl es: ( 1 a)
r a n d o m st at es, ( 2 a) r a n d o m st at es  wit h fi x e d t ot al p arti cl e
n u m b er, ( 3 a)  w ei g ht e d a v er a g es o v er r a n d o m st at es  wit h
fi x e d t ot al p arti cl e n u m b er, ( 1 b) r a n d o m f er mi o ni c  G a us-
si a n st at es, ( 2 b) r a n d o m f er mi o ni c  G a ussi a n st at es  wit h
fi x e d t ot al p arti cl e n u m b er, a n d ( 3 b)  w ei g ht e d a v er a g es
o v er r a n d o m f er mi o ni c  G a ussi a n st at es  wit h fi x e d t ot al
p arti cl e n u m b er. I n t his s e cti o n,  w e s hift t h e f o c us fr o m
e ns e m bl es of q u a nt u m st at es t o r a n d o m  H a milt o ni a ns,
t h eir ei g e nst at es, a n d t h eir d y n a mi cs.

A.  R a n d o m  m a n y- b o d y  H a milt o ni a ns

E ns e m bl es ( 1 a), ( 2 a), a n d ( 3 a) c a n b e r e ali z e d usi n g
ei g e nst at es ( e v e n o nl y gr o u n d st at es) of r a n d o m  H a mil-
t o ni a ns t h at ar e tr a diti o n al r a n d o m  m atri c es.  T h e e ns u-
i n g  H a milt o ni a ns gi v e a n e x a ct c orr es p o n d e n c e t o P a g e’s
s etti n g, i. e., t h e a v er a g es a n d v ari a n c es  will a gr e e at
all or d ers ( m e a ni n g e v e n at fi nit e V )  w h e n t h e r es p e c-
ti v e r a n d o m  H a milt o ni a n s atis fi es t h e pr o p erti es dis c uss e d
n e xt.

We first c o nsi d er c as e ( 1 a), f or  w hi c h t h e n u m b er of
p arti cl es is n ot fi x e d.  T h e st at e v e ct or i n t his c as e e x pl or es
t h e e ntir e s p h er e of t h e  Hil b ert s p a c e H .  T h us, a n y r a n-
d o m  H a milt o ni a n t h at cr e at es a  H a ar- distri b ut e d r a n d o m
st at e v e ct or is s uit a bl e. F or i nst a n c e, l et us st u d y t h e
r a n d o m- m atri x  H a milt o ni a n

Ĥ 1 a =

2 V

κ ,λ = 1

C κ λ |v κ v λ | , ( 1 2 1)

w h er e |v λ i s a n ort h o n or m al b asis of t h e  Hil b ert s p a c e
a n d C κ λ i s a  H a ar- distri b ut e d r a n d o m  m atri x.  T o g et  H a ar-
distri b ut e d ei g e n v e ct ors, t h e di a g o n ali z ati o n C = U † E U
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m ust i n v ol v e r a n d o m  m atri c es U dr a w n fr o m t h e  H a ar
m e as ur e of U (2 V ),  w hil e t h e distri b uti o n of t h e ei g e n v al-
u es a p p e ari n g i n t h e di a g o n al  m atri x E c a n b e ar bitr ar y.  A
si m pl e, a n d o n e of t h e  m ost c o m m o n e x a m pl es of s u c h a
distri b uti o n f or C is gi v e n b y t h e  G U E [1 1 7 ,1 1 8 ,1 3 6 ],

P ( Ĥ 1 a ) = 2 − 2 V − 1
π − 2 2 V − 1

e x p −
1

2

2 V

κ ,λ = 1

|C κ λ |
2

= 2 − 2 V − 1
π − 2 2 V − 1

e − Tr Ĥ 2
1 a / 2 . ( 1 2 2)

T o r el at e t h e  H a milt o ni a n Ĥ 1 a t o  m a n y- b o d y  H a milt o ni-
a ns,  w e r e writ e it as a p ol y n o mi al i n f er mi o ni c cr e ati o n
a n d a n ni hil ati o n o p er at ors,

Ĥ 1 a =

2 V

l= 0

2 V

j1 ,...,jl= 1

c (l)
j1 ,...,jl

ξ̂ j1 · · · ξ̂ jl ( 1 2 3)

wit h { ξ̂ j }j = 1, ..., 2V = ( f̂1 , . . . , f̂V , f̂
†

1 , . . . , f̂
†

V ).  T h e c o e ffi-

ci e nts c (l)
j1 ,...,jl

s atisf y s y m m etri es t h at r e fl e ct t h e a nti c o m m u-

t ati o n r el ati o ns, { f̂k , f̂l} = { f̂
†

k , f̂
†

l } = 0 a n d { f̂k , f̂
†

l } = δ kl ,

a n d t h e  H er miti cit y of Ĥ 1 a , a n d t h e f a ct t h at i n e a c h s u m

o v er c (l)
j1 ,...,jl

t h er e ar e e x a ctl y l o p er at ors i n v ol v e d t h at
c a n n ot b e r e d u c e d t o a s m all er or d er of a  m a n y- b o d y
i nt er a cti o n.  E x pl oiti n g t h e u nit ar y  m atri x T i n  E q. ( 9 5),
i n p arti c ul ar g oi n g i nt o a  M aj or a n a b asis, s h o ws t h at

c̃ (l)
k 1 ,...,k l

= 2 V
j1 ,...,jl= 1 c (l)

j1 ,...,jl

l
a = 1 T ja k a i s t ot all y s k e w s y m-

m etri c i n t h e i n di c es a n d is r e al  w h e n l(l − 1 ) /2 is e v e n
a n d i m a gi n ar y  w h e n l(l − 1 ) /2 is o d d.

T h e st atisti c al distri b uti o n of t h e c o e ffi ci e nts c (l)
j1 ,...,jl

i s
d et er mi n e d b y t h e distri b uti o n of  m atri x C μ ν .  T h e b est  w a y
t o s e e t his is t o g o i nt o t h e  M aj or a n a b asis γ 1 , . . . , γ 2 V vi a
r el ati o n ( 9 4).  T h e n, o n e n e e ds t o t a k e i nt o a c c o u nt t h e n or-
m ali z ati o n γ 2

j = 1
2
1 2 V t o d et er mi n e t his distri b uti o n,  w hi c h

l e a ds t o

P ( Ĥ 1 a ) =

2 V

l= 1 1 ≤ j1 < ···< jl≤ l

2 V − l− 1 l!

π

× e x p[ − 2 V − l− 1 l! |c̃ (l)
j1 ,...,jl

|2 ]. ( 1 2 4)

T o d eri v e t his r es ult, o n e n e e ds t o us e t h e f a ct t h at t h e
tr a c e of a pr o d u ct of γ j i s o nl y n o n v a nis hi n g  w h e n e a c h
γ j a p p e ars  wit h a n e v e n n u m b er i n t his pr o d u ct.

T h e st atisti c al pr o p erti es of t h e e nt a n gl e m e nt e ntr o p y i n
ei g e nst at es of t h e r a n d o m  H a milt o ni a n Ĥ 1 a ar e d es cri b e d
e x a ctl y b y t h e r es ults of S e c. II  A si n c e t h e  H a milt o ni a n
is i n v ari a nt u n d er t h e c o nj u g ati o ns of t h e u nit ar y gr o u p
U (2 V ).  H e n c e, its ei g e nst at es ar e u nif or ml y distri b ut e d
o v er t h e u nit s p h er e i n H .  We e m p h asi z e t h at t his  H a mil-
t o ni a n is n ot p arit y pr es er vi n g s u c h t h at t h e s u p ers el e cti o n
r ul e ( eit h er o nl y e v e n or o d d p o w ers i n ξ j ) d o es n ot a p pl y.

S Y K  m o d els [ 1 2 7 ,1 2 8 ] ar e r el at e d t o t his c o nstr u cti o n.

F or t h e q - b o d y S Y K ( or i n s h ort S Y Kq ), o n e s ets c (l)
j1 ,...,jl

=
0 f or all l = q , a n d c h o os es t h e  G a ussi a n distri b uti o n f or

c
(q )
j1 ,...,jq

, as  w e h a v e d o n e h er e. F or a fi x e d q , t h es e  m o d-

els h a v e  m or e s y m m etri es t h a n  w e h a v e b y a d di n g u p all
q .  T h us, t h e y r e fl e ct all ki n ds of r a n d o m  m atri x s y m m e-
tr y cl ass es ( a ct u all y o n e c a n fi n d all t e n cl ass es of t h e
Altl a n d- Zir n b a u er cl assi fi c ati o n [ 1 0 6 ,1 8 2 ]) a n d f oll o w t h e
B ott p eri o di cit y [ 1 8 3 ] i n V a n d q ; s e e R efs. [1 0 9 ,1 1 0 ].
W h e n  mi xi n g S Y K q wit h di ff er e nt q ’s, it is li k el y t h at i n
t h e l ar g e-V li mit o n e e n ds u p i n t h e s a m e cl ass as o ur r a n-
d o m  H a milt o ni a n Ĥ 1 a .  H o w e v er, f or a fi x e d q , it  mi g ht
h a p p e n t h at t h e s u bl e a di n g or d ers di ff er fr o m o ur r es ults.

We t ur n n o w t o c as e ( 2 a), i n  w hi c h  w e n e e d t o i m pl e-
m e nt n u m b er c o ns er v ati o n i n t h e r a n d o m  H a milt o ni a n.
B as e d o n t h e dir e ct s u m d e c o m p ositi o n ( 3 1) of t h e  Hil b ert
s p a c e,  w e d e fi n e a n ort h o n or m al b asis |v (N )

μ of t h e N -

p arti cl e  Hil b ert s p a c e H (N ) of di m e nsi o n d N gi v e n i n
E q. ( 3 4).  T o p ar all el ( 2 a),  w e c o nsi d er a r a n d o m- m atri x
H a milt o ni a n i n t his p arti cl e s e ct or gi v e n b y

Ĥ (N )
2 a =

d N

κ ,λ = 1

C̃ (N )
κ λ |v (N )

κ v (N )
λ | , ( 1 2 5)

w h er e t h e  H er miti a n  m atri x C̃ (N ) = { C̃ (N )
κ λ } κ ,λ = 1, ...,d N i s

ass u m e d t o b e a U (d N ) gr o u p i n v ari a nt r a n d o m  m atri x,

i. e., it c a n b e di a g o n ali z e d, C̃ (N ) = U † E U , vi a a  H a ar-
distri b ut e d u nit ar y  m atri x U ∈ U (d N ).  A n e w, t h e  G U E is
a si m pl e e x a m pl e of s u c h a distri b uti o n [i n p arti c ul ar,
E q. ( 1 2 2) wit h 2 V r e pl a c e d b y d N ], b ut t h e cl ass is  m or e
g e n er al a n d d o es n ot c o nstr ai n t h e di a g o n al  m atri x E t h at
c o m pris es t h e e n er gi es.

As b ef or e,  w e  w a nt t o e x pr ess t h e  H a milt o ni a n Ĥ (N )
2 a

i n t er ms of a p ol y n o mi al i n f er mi o ni c cr e ati o n a n d a n ni-
hil ati o n o p er at ors.  T his c a n n ot b e d o n e  wit h o ut a d di n g
a n ort h o g o n al pr oj e cti o n o nt o t h e  Hil b ert s p a c e  wit h N

p arti cl es. I nst e a d of Ĥ (N )
2 a ,  w e c o nsi d er t h e dir e ct s u m

Ĥ 2 a / 3 a =

V

N = 0

Ĥ (N )
2 a , ( 1 2 6)

w hi c h is n o w e x pr essi bl e i n t er ms of ( f̂1 , . . . , f̂V , f̂
†

1 , . . . ,

f̂
†

V ).  W hil e a n ar bitr ar y r a n d o m  H a milt o ni a n Ĥ (N )
2 a h a s

d 2
N d e gr e es of fr e e d o m, t h e r a n d o m  H a milt o ni a n Ĥ 2 a / 3 a

h a s V
N = 0 d 2

N =
2 V
V

d e gr e es of fr e e d o m.  T h e s u b-

s cri pt alr e a d y i n di c at es t h at t his r a n d o m  H a milt o ni a n als o
d es cri b es c as e ( 3 a),  w h er e o n e a v er a g es o v er st at es  wit h
di ff er e nt p arti cl e n u m b ers.

A n ot h er s u btl e p oi nt is t h at p arti cl e- n u m b er c o ns er v a-
ti o n d o es n ot all o w a n y o d d p o w ers of t h es e o p er at ors n or
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d o es it all o w a n u n b al a n c e d n u m b er of cr e ati o n a n d a n ni hi-
l ati o n o p er at ors.  T h us, t h e g e n er al f or m of Ĥ 2 a / 3 a i s gi v e n
b y

Ĥ 2 a / 3 a =

V

l= 0

V

j1 ,...,jl,k 1 ,...,k l= 1

c (l)
j1 ...jl,k 1 ...k l

f̂
†

j1
· · · f̂

†
jl

f̂k l
· · · f̂k 1

,

( 1 2 7)

w hi c h, b y c o nstr u cti o n, c o m m ut es  wit h t h e p arti cl e-

n u m b er o p er at or.  T h e c o e ffi ci e nts c (l)
j1 ...jl,k 1 ...k l

ar e t ot all y
s k e w s y m m etri c i n t h e first l i n di c es as  w ell as s k e w s y m-
m etri c i n t h e l ast l o n es.  T o e ns ur e t h e  H er miti cit y of

Ĥ 2 a / 3 a , it h ol ds t h at t h e
V
l

×
V
l

m atri x C (l) cr e at e d b y

c (l)
j1 ...jl,k 1 ...k l

f or a fi x e d l is  H er miti a n. It is si m pl e t o c h e c k

t h at t h e d e gr e es of fr e e d o m gi v e n b y all c (l)
j1 ...jl,k 1 ...k l

f or all l

a d d u p t o t h e f or m erl y o bt ai n e d
2 V
V

.

T h e st atisti c al distri b uti o n of t h e c o e ffi ci e nts c (l)
j1 ...jl,k 1 ...k l

i s d et er mi n e d b y t h e distri b uti o n of t h e  m atri c es C̃ (N ) f or

all N . Si n c e t h e c o e ffi ci e nts c (l)
j1 ...jl,k 1 ...k l

ar e li n e ar c o m-

bi n ati o ns of  m atri x el e m e nts of all C̃ (0 ) , . . . , C̃ (V ) , t h eir
distri b uti o ns  will i n g e n er al b e c o u pl e d d es pit e t h e f a ct t h at

o n e c a n c h o os e t h e distri b uti o ns of C̃ (N ) t o b e c o m pl et el y
i n d e p e n d e nt a n d n ot i d e nti c al.

As  m e nti o n e d b ef or e, t h e si m pl est c h oi c e ar e  G U Es i n
C̃ (N ) wit h t h e s a m e v ari a n c e,  w hi c h yi el ds

P ( Ĥ 2 a / 3 a ) =

√
d et

2 2 V − 1 π 2 / 2
e x p −

1

2
Tr Ĥ 2

2 a / 3 a , ( 1 2 8)

w h er e = 2 V
V

.  T h e  m atri x is × di m e nsi o n al,  wit h

m atri x e ntri es j1 ...jlj1 ...jl ,k 1 ...k m k 1 ...k m
e q u al t o (l!)2 (m !)2

Tr[ f̂
†

j1
· · · f̂

†

jl
f̂jl · · · f̂j1 f̂

†
k 1

· · · f̂
†

k m
f̂k m

· · · f̂k 1
]  wit h l, m = 0, . . . , V

a n d 1 ≤ j1 < · · · < jl ≤ V , 1 ≤ j1 < · · · < jl ≤ V , 1 ≤
k 1 < · · · < k m ≤ V as  w ell as 1 ≤ k 1 < · · · < k m ≤ V . It is
v er y s p ars e b e c a us e t h e tr a c e is o nl y n o n v a nis hi n g  w h e n

e a c h f̂j a p p e ars as oft e n as its  H er miti a n c o nj u g at e f̂
†

j ,
a n d it  mi g ht h a p p e n t h at t h er e ar e o p er at ors t h at a n ni hil at e

e a c h ot h er, s u c h as f̂ 2
j = ( f̂

†
j ) 2 = 0.  T h e n c e, o nl y c o n-

t ai ns e ntri es e q u al t o ± 2 L (l!)2 (m !)2 wit h a n L ∈ { 0, . . . , V }.

T h e f a ct or 1 / π
2 / 2 r e fl e cts t h e n u m b er of t ot al d e gr e es of

fr e e d o m  w hil e 1/ 2 2 V − 1
r e s ults fr o m t h e c o u nti n g of h o w

m a n y r e al c o e ffi ci e nts e xist, n a m el y, V
l= 0

V
l

= 2 V . T h e

si m pl est n o ntri vi al e x a m pl e is o bt ai n e d f or V = 2  w h er e
is e q u al t o

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

4 2 0 0 2 4
2 2 0 0 1 4
0 0 0 1 0 0
0 0 1 0 0 0
2 1 0 0 2 4
4 4 0 0 4 4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

( 1 2 9)

wit h t h e or d eri n g of t h e c o e ffi ci e nts (c (0 ) , c (1 )
1, 1 , c

(1 )
1, 2 , c

(1 )
2, 1 , c

(1 )
2, 2 ,

c (2 )
1 2, 1 2 ).  T his e x a m pl e u n d ers c or es h o w i nt ert wi n e d t h e c or-

r el ati o ns of t h e c o e ffi ci e nts c (l)
j1 ...jl,k 1 ...k l

c a n b e c o m e if o n e
w a nts t o  writ e t h e e x a ct r e ali z ati o n of c as es ( 2 a) a n d ( 3 a) i n
t er ms of a n ni hil ati o n a n d cr e ati o n o p er at ors.  T h e n c e, fr o m
a pr a cti c al p oi nt of vi e w, it is si m pl er t o g e n er at e t h es e
r a n d o m  H a milt o ni a ns i n t er ms of t h e i n d e p e n d e nt  G U E

g e n er at e d c o e ffi ci e nts C̃ (N )
κ λ .

W h e n f o c usi n g o n a c ert ai n p arti cl e- n u m b er s e ct or, t h e
st atisti c al pr o p erti es of t h e e nt a n gl e m e nt e ntr o p y i n ei g e n-
st at es of Ĥ 2 a / 3 a ar e d es cri b e d e x a ctl y b y t h e r es ults of
S e c. II  B,  m e a ni n g c as e ( 2 a).  W h e n c o nsi d eri n g all s e c-
t ors,  w e h a v e c as e ( 3 a). F or distri b uti o n ( 1 2 8), pi c ki n g a n y

ei g e nst at e is e q u all y li k el y, t his yi el ds t h e  w ei g ht
V
N

t o fi n d a st at e i n t h e s e ct or H (N ) ,  w hi c h c orr es p o n ds t o a
w ei g ht e d a v er a g e  wit h w = 0. I m pl e m e nti n g a  w ei g ht e d
a v er a g e  wit h w > 0 is als o p ossi bl e, b ut  m ust b e l ar g el y
d o n e b y h a n d, i. e.,  w e  w o ul d or g a ni z e t h e ei g e nst at es of a
r a n d o m  H a milt o ni a n b as e d o n t h eir p arti cl e n u m b er a n d
t h e n c h o os e o n e at r a n d o m usi n g t h e st atisti c al  w ei g ht
e n c o d e d b y w .

M a n y- b o d y i nt er a cti n g  H a milt o ni a ns st u di e d i n n u cl e ar
p h ysi cs [ 1 1 3 – 1 1 5 ,1 2 0 – 1 2 2 ] ar e r el at e d t o t h es e ki n ds
of  H a milt o ni a n.  T h e y, as  w ell as t h e S Y K  m o d els, ar e
c all e d e m b e d d e d r a n d o m  m atri c es [ 1 1 6 ,1 2 3 – 1 2 6 ]. F or

i nst a n c e, f or a q - b o d y  H a milt o ni a n,  w e s et c (l)
j1 ...jl,k 1 ...k l

=
0 f or all l = q a n d c h o os e t h e a b o v e  G a ussi a n distri-

b uti o n f or c (l)
j1 ...jl,k 1 ...k l

.  As f or c as e ( 1 a) a n d S Y Kq f or a
fi x e d q , t h e  m a n y- b o d y  H a milt o ni a n  m a y s atisf y a d diti o n al
gl o b al s y m m etri es s o t h at s u bl e a di n g t er ms  m a y d e vi at e
fr o m o ur r es ults.  H o w e v er,  w e e x p e ct t h at a  mi xt ur e of
q - b o d y i nt er a cti o ns s h o ul d s p e e d u p t h e c o n v er g e n c e t o t h e
l e a di n g- or d er r es ult i n t h e t h er m o d y n a mi c li mit V → ∞ .

B.  R a n d o m q u a d r ati c  H a milt o ni a ns

C as e ( 1 b) f or r a n d o m p ur e f er mi o ni c  G a ussi a n st at es

is o bt ai n e d fr o m Ĥ 1 a b y s etti n g all c o e ffi ci e nts c (l)
i1 ,...,il

=
0  w h e n e v er l = 2 i n E q. ( 1 2 3); t h e r es ulti n g r a n d o m
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q u a dr ati c  H a milt o ni a n r e a ds

Ĥ 1 b =

2 V

i,j = 1

c (2 )
ij ξ̂ iξ̂ j ( 1 3 0)

wit h c o e ffi ci e nts c (2 )
ij dr a w n fr o m a pr o b a bilit y distri b u-

ti o n t h at d e p e n ds o nl y o n  m atri x i n v ari a nts of T C (2 ) T
T

wit h C (2 ) = { c (2 )
ij } i,j = 1, ..., 2V , s u c h as tr a c es  Tr(T C (2 ) T

T ) 2 k .
T h e n t h e i n v ari a n c e u n d er O (2 V ) is g u ar a nt e e d,  w hi c h is
n e e d e d f or t h e u nif or ml y distri b ut e d p ur e f er mi o ni c  G a us-
si a n st at es t h at ar e t h e ei g e n v e ct ors of t his  H a milt o ni a n.
T h e  G a ussi a n c h oi c e as t h e distri b uti o n of t h e c o e ffi ci e nts
c (2 )

ij i s e q u al t o

P ( Ĥ 1 b ) =
1 ≤ j1 < j2 ≤ 2 V

2 V

π
e

− 2 V |c̃
(2 )
j1 ,j2

|2
, ( 1 3 1)

w h e n st arti n g fr o m t h e distri b uti o n of Ĥ 1 a . Si n c e C (2 )

i s u nit aril y e q ui v al e nt t o t h e r e al a ntis y m m etri c 2V × 2 V
m atri x 2 T C T T ,  w hi c h c a n b e s e e n i n t h e  M aj or a n a b asis,
t h e  G a ussi a n e ns e m bl e is als o k n o w n as t h e  G a ussi a n r e al
a ntis y m m etri c e ns e m bl e [ 1 1 7 ] or  G A O E i n  R ef. [1 0 4 ] (it
als o h as ot h er a cr o n y ms s u c h as  B d G- S i n  R ef. [ 1 0 9 ] or
cl ass  B D i n  R efs. [ 1 0 6 ,1 8 2 ] as it is n ot as c a n o ni c al as t h e
G U E).  We  w o ul d li k e t o e m p h asi z e t h at t h e r e al a ntis y m-
m etr y of T C T T i s t h e r e as o n  w h y t h er e is n o  mi n us si g n
i n t h e e x p o n e nt of t h e distri b uti o n, i. e.,  Tr(T C (2 ) T

T ) 2 < 0.

W h e n g oi n g o v er fr o m t h e c o e ffi ci e nts c̃ (2 )
j k i n t h e  M aj or a n a

b asis t o c (2 )
j k i n t h e cr e ati o n- a n ni hil ati o n b asis,  w e n e e d t o

e m pl o y T T T = τ 1 ⊗ 1 V / 2 a n d pr o p erl y n or m ali z e t h e dis-
tri b uti o n ( m ulti pl yi n g it b y t h e J a c o bi a n),  w hi c h gi v es ris e
t o a f a ct or 2− V (V − 1 ) .  T h e n, t h e distri b uti o n is

P ( Ĥ 1 b ) =
2 V (V − 1 )(V − 3 ) /2

π V (V − 1 ) /2
e x p[ 2 V − 3 Tr (C (2 ) [τ 1 ⊗ 1 V ])2 ].

( 1 3 2)

C ert ai nl y, t h e f a ct ors of 2 c a n b e a bs or b e d  w h e n c h o osi n g
a g e n er al st a n d ar d d e vi ati o n f or t h e  G a ussi a n e ns e m bl e.

T h e ei g e n v e ct ors of Ĥ 1 b ar e  H a ar distri b ut e d  wit h
r es p e ct t o t h e gr o u p O (2 V ), as dis c uss e d i n  R ef. [1 7 3 ],
t h o u g h t h e y ar e sli g htl y r ot at e d b y t h e u nit ar y  m atri x√

2 T ; s e e  E q. ( 9 5).  T h e ei g e nst at es of t his  H a milt o ni a n ar e
f er mi o ni c  G a ussi a n st at es, a n d t h e st atisti c al pr o p erti es of
t h e e nt a n gl e m e nt e ntr o p y i n t h es e ei g e nst at es ar e d es cri b e d
e x a ctl y b y t h e r es ults of S e c. III  B.

F or c as es ( 2 b) a n d ( 3 b),  w e c a n r e p e at t h e fi x e d- p arti cl e-
n u m b er st e ps f or r a n d o m q u a dr ati c  H a milt o ni a ns, s p e ci fi-

c all y,  w e s et c (l)
j1 ...jl,k 1 ...k l

= 0 f or all l = 1 i n E q. ( 1 2 7). T h e
m ost g e n er al q u a dr ati c f er mi o ni c  H a milt o ni a n t h at c o m-
m ut es  wit h t h e t ot al n u m b er o p er at or N̂ d e fi n e d i n  E q. ( 3 1)

c a n b e  writt e n as

Ĥ 2 b / 3 b =

V

i,j = 1

c̃ (2 )
i,j f̂

†
i f̂j ( 1 3 3)

wit h t h e c o e ffi ci e nts c̃ (2 )
i,j dr a w n fr o m a n e ns e m bl e t h at is

i n v ari a nt u n d er t h e c o nj u g at e a cti o n of U (V ); i n p arti c ul ar,

t h e  H er miti a n r a n d o m  m atri x C̃ = { ˜ c (2 )
i,j } i,j = 1, ...,V a n d U C̃ U †

wit h a n ar bitr ar y fi x e d U ∈ U (V ) ar e e q u all y distri b ut e d.
T h e si m pl est e x a m pl e f or s u c h a distri b uti o n is a V × V
G U E.  T h at o n e a gr e es  wit h a q u a dr ati c p arti cl e- n u m b er-
c o ns er vi n g S Y K  m o d el i n its  Dir a c f er mi o n f or m ul ati o n
(t h e  Dir a c S Y K 2  m o d el f or s h ort),  w hi c h is a fr e e r a n-
d o m  H a milt o ni a n.  T h e v ol u m e-l a w c o e ffi ci e nt s G

A (f , n ) =
li mV → ∞ S A G ,N / V [s e e  E q. ( 1 1 5)],  w as first c o nj e ct ur e d
i n t h e c o nt e xt of q u a dr ati c  H a milt o ni a ns  w h os e si n gl e-
p arti cl e ei g e nst at es c a n b e  w ell a p pr o xi m at e d b y ei g e n-
st at es of r a n d o m  m atri c es [ 6 1 ].

I n g e n er al, all ei g e nst at es of n o n d e g e n er at e q u a dr ati c
r a n d o m  H a milt o ni a ns of t his U (V ) i n v ari a n c e ar e  G a us-
si a n st at es.  N ot e t h at d e g e n er at e ei g e ns p a c es  will c o nt ai n
s u p er p ositi o ns of  G a ussi a n st at es,  w hi c h ar e n ot  G a ussi a n
t h e ms el v es. F or  m ost r a n d o m  H a milt o ni a ns, t h e s u bs et of
d e g e n er at e  H a milt o ni a ns is a s et of  m e as ur e z er o, s o it c a n
b e i g n or e d.

A n e w,  w e h a v e tr e at e d c as es ( 2 b) a n d ( 3 b)  wit h a si n-
gl e  H a milt o ni a n. F or t h e f or m er c as e, o n e n e e ds t o r estri ct
t h e  H a milt o ni a n ei g e nst at es t o t h e s e ct or  wit h N p arti-
cl es,  w hil e f or t h e l att er c as e, o n e n e e ds t o c o m p ut e t h e
w ei g ht e d a v er a g e o v er all ei g e nst at es. F or t h e a v er a g e o v er
all s e ct ors,  w e a g ai n pi c k a n ar bitr ar y ei g e nst at e of t h e
H a milt o ni a n H 2 b / 3 b .  A r a n d o m  m a n y- b o d y ei g e nst at e of
t his  H a milt o ni a n  will b e i n t h e s e ct or  wit h N p arti cl es  wit h

pr o b a bilit y 2 − V V
N

, s o a t y pi c al ei g e nst at e  will h a v e t h e

e nt a n gl e m e nt e ntr o p y S A G ,w = 0 f o u n d i n  E q. ( 1 1 8). If o n e
r estri cts t h e a n al ysis t o ei g e nst at es  wit h N p arti cl es t h e n
t h e st atisti c al pr o p erti es of t h e e nt a n gl e m e nt e ntr o p y ar e
d es cri b e d e x a ctl y b y t h e r es ults of S e c. III  C 2.

I n Fi g. 1 2 ,  w e s h o w n u m eri c al r es ults f or t h e a v er a g e
e nt a n gl e m e nt e ntr o p y of t h e p arti cl e- n u m b er- c o ns er vi n g
S Y K 2  m o d el ( 1 3 3).  T h e n u m eri c al r es ults i n Fi g. 1 2( a)
b e h a v e as e x p e ct e d fr o m t h e a n al yti c al pr e di cti o ns f or t h e
v ol u m e-l a w c o ntri b uti o n ( 1 1 8) as a f u n cti o n of V , a n d t h e
o n es i n Fi g. 1 2( b) b e h a v e as e x p e ct e d fr o m t h e a n al yti c al
pr e di cti o ns f or t h e s u bl e a di n g t er ms gi v e n i n  E q. ( 1 1 8). I n
t h e si m ul ati o ns, t h e a v er a g e is c arri e d o ut o v er all s e ct ors
wit h a fi x e d p arti cl e n u m b er,  w h er e t h e  w ei g ht is gi v e n b y
t h e di m e nsi o n of t h e s e ct or.  T his c orr es p o n ds t o w = 0 or,
e q ui v al e ntl y, n̄ = 1

2
.

C.  D y n a mi c al a v e r a g es

A n ot h er i m p ort a nt a p pli c ati o n of o ur r es ults c o n c er ns
t h e st u d y of q u a nt u m  m a n y- b o d y st o c h asti c d y n a mi cs

0 3 0 2 0 1- 3 1
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( a)
( b)

FI G. 1 2. Fi nit e-si z e s c ali n g of t h e a v er a g e e nt a n gl e m e nt
e ntr o p y di ff er e n c e f or r a n d o m q u a dr ati c f er mi o ni c  H a milt o ni-

a ns. ( a) Pl ot of δ S (0 )
G ,w = 0 = S A

(0 )
G ,w = 0 − S̄ , w h er e S A

(0 )
G ,w = 0 i s t h e

v ol u m e-l a w t er m i n  E q. ( 1 1 8) a n d S̄ d e n ot es t h e n u m eri c al r es ults
f or ei g e nst at es of t h e p arti cl e- n u m b er c o ns er vi n g S Y K 2  m o d el
at n̄ = 1

2
, v ers us 1/ V at s u bs yst e m fr a cti o ns (fr o m b ott o m t o

t o p) f = 0. 1, 0. 2, 0. 3, 0. 4, 0. 5.  H ori z o nt al li n es ar e c o nst a nts f / 2.

( b) Pl ot of δ S (1 )
G ,w = 0 = S A

(1 )
G ,w = 0 − S̄ v ers us 1 /

√
V at s u bs yst e m

fr a cti o ns f = 0. 4 a n d 0. 5,  w h er e S A
(1 )
G ,w = 0 = S A

(0 )
G ,w = 0 − f / 2.

T h e li n es ar e t h e s e c o n d s u bl e a di n g t er ms fr o m  E q. ( 1 1 8).
S p e ci fi c all y, t h e s oli d li n e ( c orr es p o n di n g t o f = 0. 5) is t h e f u n c-
ti o n − 1 /( 3

√
2 π )( 1 /

√
V ), a n d t h e d as h e d li n e ( c orr es p o n di n g

t o f = 0. 4) is t h e f u n cti o n − f (f − 2 ) /[ 1 2(f − 1 )](1 / V ). T h e
n u m eri c al r es ults f or S̄ ar e fr o m  R ef. [ 6 1 ].

[1 8 4 ].  We c o nsi d er a ti m e- d e p e n d e nt r a n d o m  H a milt o ni a n
( wit h or  wit h o ut p arti cl e c o ns er v ati o n) f or  w hi c h t h e ti m e

d eri v ati v e Ċ μ ν or ċ (2 )
ij of t h e c o e ffi ci e nt  m atri c es ar e d elt a

c orr el at e d i n ti m e, i. e., f or  w hi c h  w e h a v e

Ċ μ ν (t) Ċ τ σ (t ) ∝ γ δ ( t − t ), ( 1 3 4)

ċ (2 )
ij (t) ċ (2 )

kl (t ) ∝ γ δ ( t − t ). ( 1 3 5)

If  w e e v ol v e a n i niti al q u a nt u m st at e ( G a ussi a n f or a
q u a dr ati c  H a milt o ni a n a n d  wit h fi x e d p arti cl e n u m b er
w h e n it is a p arti cl e- c o ns er vi n g  H a milt o ni a n), t h e ti m e
e v ol uti o n l e a ds t o a n er g o di c e x pl or ati o n of t h e r es p e c-
ti v e s p a c e of st at es c o nsi d er e d i n ( 1 a), ( 1 b), ( 2 a), a n d ( 2 b),
pr o vi d e d t h at t h e str e n gt h γ of t h e fl u ct u ati o ns is s uf-
fi ci e ntl y l ar g e i n t h e t h er m o d y n a mi c li mit. I n d e e d, it is
k n o w n fr o m t h e  Br o w ni a n  m oti o n o n t h e u nit ar y gr o u p
U (d ) (s e e  R ef. [1 8 5 ] f or t h e r a n d o m  m atri x v ersi o n a n d
R ef. [ 1 8 6 ] f or t h e c orr es p o n di n g ei g e n v al u es) t h at t h er e is
a p h as e tr a nsiti o n at a criti c al v al u e tcrit = tcrit (d ) ∝ d w h e n
t h e  m atri x si z e d g o es t o i n fi nit y. I n  R ef. [ 1 8 6 ] it  w as f o u n d
t h at t h e l e v el d e nsit y of s u c h a u nit ar y r a n d o m  m atri x d o es
n ot h a v e t h e e ntir e c o m pl e x u nit cir cl e as a s u p p ort.  We
pr es u m e t h at t his h as a dir e ct c o ns e q u e n c e f or t h e st at es,
t o o, si n c e t h e y h a v e b e e n c o nstr u ct e d vi a t h e n at ur al gr o u p
a cti o n o n t h e st at es.

T his i m pli es t h at t h e ti m e e v ol uti o n  will o nl y u nif or ml y
s a m pl e t h e f ull e ns e m bl e of st at es  wit h r es p e ct t o t h e

H a ar  m e as ur e  w h e n t h e ti m e is s u ffi ci e ntl y l ar g e c o m-
p ar e d t o t h e u n d erl yi n g gr o u p di m e nsi o n,  w hi c h is U (2 V )
or V

N = 0 U (d N ) f or t h e P a g e s etti n g a n d O (2 V ) or U (V ) f or
p ur e f er mi o ni c  G a ussi a n st at es  wit h o ut a n d  wit h p arti cl e-
n u m b er c o ns er v ati o n, r es p e cti v el y.  T h e n, t h e as y m pt oti c
ti m e a v er a g e of t h e e nt a n gl e m e nt e ntr o p y  will c oi n ci d e
wit h t h e r es p e cti v e a v er a g es c o m p ut e d i n t h e pr e vi o us s e c-
ti o ns.  M or e o v er,  w e als o e x p e ct t h at t h e st a n d ar d d e vi ati o n
gi v es a g o o d a p pr o xi m ati o n of t h e e x p e ct e d fl u ct u ati o ns
a b o ut t his a v er a g e o v er ti m e.

A g ai n, t his a n al ysis a p pli es t o b ot h g e n er al a n d
q u a dr ati c  H a milt o ni a ns.  T h e l att er c orr es p o n ds t o t h e
q u a nt u m si m pl e s y m m etri c e x cl usi o n pr o c ess i ntr o d u c e d
i n  R efs. [1 8 7 ,1 8 8 ], f or  w hi c h t h e st atisti c al pr o p erti es of
t h e  R e n yi e ntr o pi es  w er e st u di e d i n  R ef. [1 8 1 ].

V.  R E L A TI O N  T O  P H Y SI C A L  H A MI L T O NI A N S

T h e g o al of t his s e cti o n is t o c o ntr ast t h e r es ults f or
t h e e nt a n gl e m e nt e ntr o pi es fr o m S e cs. II a n d III t o t h os e
i n ei g e nst at es of p h ysi c al  H a milt o ni a ns o n a l atti c e. F or
t h e l att er,  w e  m ostl y h a v e i n  mi n d l o c al  H a milt o ni a ns
wit h s h ort-r a n g e h o p pi n gs a n d i nt er a cti o ns (i n v ol vi n g o nl y
a f e w n ei g h b ori n g l atti c e sit es).  R es ults f or i nt er a cti n g
H a milt o ni a ns ar e dis c uss e d i n S e c. V A ,  w hil e r es ults f or
q u a dr ati c ( n o ni nt er a cti n g)  H a milt o ni a ns ar e dis c uss e d i n
S e cs. V B a n d V C .

A.  Q u a nt u m- c h a oti c i nt e r a cti n g  m o d el

We f o c us o n a  m o d el of i nt er a cti n g h ar d- c or e b os o ns i n
a o n e- di m e nsi o n al ( 1 D) l atti c e  wit h V sit es, as d es cri b e d
b y t h e  H a milt o ni a n

Ĥ H C B = − t1

V

l= 1

( b̂
†
l+ 1 b̂ l + b̂

†
l b̂ l+ 1 ) − t2

V

l= 1

( b̂
†
l+ 2 b̂ l + b̂

†
l b̂ l+ 2 )

+ V 1

V

l= 1

n̂ ln̂ l+ 1 + V 2

V

l= 1

n̂ ln̂ l+ 2 , ( 1 3 6)

w h er e b̂
†
l (b̂ l) cr e at es ( a n ni hil at es) a b os o n at sit e l a n d n̂ l =

b̂
†
l b̂ l i s t h e sit e o c c u p ati o n o p er at or.  T h e o p er at ors b̂

†
l a n d

b̂ l s atisf y t h e c o m m ut ati o n r el ati o ns [ b̂ j , b̂ k ] = [b̂
†
j , b̂

†
k ] = 0

a n d [ b̂ j , b̂
†
k ] = δ j k, s u p pl e m e nt e d b y a h ar d- c or e c o nstr ai nt

( b̂ l)
2 = ( b̂

†
l )

2 = 0 o n p h ysi c al st at es,  w hi c h t ells us t h at i n
p h ysi c al st at es t h er e c a n b e at  m ost o n e b os o n i n a l atti c e
sit e.

I m pl e m e nti n g t his c o nstr ai nt is s u btl e; s e e  R efs. [1 8 9 ,

1 9 0 ].  We c a n n ot ass u m e t h e r el ati o n ( b̂ l)
2 = ( b̂

†
l )

2 = 0 i n
a n o p er at or  w a y as ot h er wis e o n e fi n ds t h at t h e al g e br a
is z er o.  O n e n e e ds t o i nt er pr et t his c o nstr ai nt as f oll o ws:

ñ |( b̂ l)
2 |m̃ = ñ |( b̂

†
l )

2 |m̃ = 0 f or p h ysi c al st at es |ñ a n d
|m̃ ,  w hi c h ar e o nl y gi v e n b y t h e o c c u p ati o n n u m b ers
ñ = (n 1 , . . . , n V ), m̃ = (m 1 , . . . , m V ) ∈ { 0, 1 }V .  T h e cr u ci al
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( a) ( b)

FI G. 1 3.  A v er a g e e nt a n gl e m e nt e ntr o p y d e nsit y S̄ / [(V / 2 ) l n 2] ( fill e d s y m b ols) of t h e ei g e nst at es of t h e q u a nt u m- c h a oti c i nt er a cti n g
H a milt o ni a n i n  E q. ( 1 3 6),  w hi c h is p arti cl e- n u m b er c o ns er vi n g, as a f u n cti o n of t h e s u bs yst e m fr a cti o n f = V A / V .  T h e a v er a g e is
c arri e d o ut o v er t h e c e ntr al 2 0 % of t h e ei g e nst at es.  O p e n s y m b ols ( o v erl a p pi n g  wit h t h e fill e d o n es) d e pi ct t h e c orr es p o n di n g e x a ct
r es ult f or g e n er al p ur e st at es, gi v e n b y S A N fr o m  E q. ( 4 5) f or t h e s a m e filli n g a n d s yst e m si z e,  w hil e t h e li n es ar e t h e t h er m o d y n a mi c
li mit r es ults fr o m  E q. ( 5 4).  T h e p arti cl e filli n g n a n d t h e n u m b er of l atti c e sit es V ar e ( a) n = 1

2
a n d V = 2 2, a n d ( b) n = 1

6
a n d V = 3 0.

p oi nt is t h at virt u al st at es ar e all o w e d t o h a v e  m or e t h a n
o n e b os o n o n a sit e. F or i nst a n c e, f or t h e e x p e ct ati o n v al u e
i n a si n gl e sit e (V = 1), it h ol ds t h at

0 |b̂ 2 ( b̂ † ) 2 |0 = 0 |2 b̂ b̂ † |0 = 2, ( 1 3 7)

w h er e  w e h a v e e x pl oit e d [ b̂ , ( b̂ † ) 2 ] = 2 b̂ † a n d b̂ |0 = 0. If
o n e  w a nts t o r e pl a c e t h e cr e ati o n a n d a n ni hil ati o n o p er at ors
b y t h e r e g ul ar s pi n o p er at ors i n sl R (2 ), o n e first n e e ds t o
n or m al or d er t h e o p er at ors vi a t h e st a n d ar d b os o ni c c o m-

m ut ati o n r el ati o ns,  m e a ni n g t h at t h e cr e ati o n o p er at ors b̂
†
j

n e e d t o b e pl a c e d t o t h e l eft a n d t h e a n ni hil ati o n o p er at ors

b̂ j t o t h e ri g ht, a n d t h e n r e pl a c e t h e m b y s pi n o p er at ors.
M at h e m ati c all y, t his  m e a ns t h at e a c h o p er at or h as t o b e
d e alt  wit h i n t h e i n fi nit e- di m e nsi o n al F o c k s p a c e, b ut at
t h e e n d t his s p a c e is pr oj e ct e d o nt o t h e s u bs p a c e  wit h z er o
or o n e b os o n p er sit e.  T his r e ci p e n at ur all y f oll o ws fr o m
h o w e x p e ct ati o n v al u es n e e d t o b e c al c ul at e d t o d es cri b e
t h e r es ults of  m e as ur e m e nts i n b os o ni c s yst e ms  wit h v er y
l ar g e o n-sit e i nt er a cti o ns [1 8 9 ,1 9 0 ].

M o d el ( 1 3 6) c o nt ai ns b ot h n e ar est- n ei g h b or a n d t h e
n e xt- n e ar est- n ei g h b or h o p pi n gs a n d i nt er a cti o ns, it is
tr a nsl ati o n all y i n v ari a nt, a n d c o ns er v es t h e t ot al n u m b er
of h ar d- c or e b os o ns.  W h e n  writt e n i n t er ms of 1

2
s pi ns,

H a milt o ni a n ( 1 3 6) is k n o w n as t h e ( e xt e n d e d) s pi n- 1
2

X X Z
c h ai n. It h as b e e n of  m u c h i nt er est t o t h e c o n d e ns e d  m att er
a n d  m at h e m ati c al p h ysi cs c o m m u niti es, a n d b e e n us e d t o
d es cri b e t h e b e h a vi or of s oli d-st at e  m at eri als [ 6 7 ].

H a milt o ni a n ( 1 3 6) is i nt e gr a bl e  w h e n t2 = V 2 = 0, i n d e-
p e n d e ntl y of t h e v al u es of t1 a n d V 1 .  T h e n, it c a n b e s ol v e d
e x a ctl y usi n g a  B et h e a ns at z [ 6 7 ].  W h e n t2 = 0 a n d/ or
V 2 = 0 (f or t1 = 0 a n d V 1 = 0),  H a milt o ni a n ( 1 3 6) is n o n-
i nt e gr a bl e. I n t h e t h er m o d y n a mi c li mit, o n e e x p e cts s u c h a
n o ni nt e gr a bl e  H a milt o ni a n t o e x hi bit m a n y- b o d y q u a nt u m

c h a os, n a m el y, o n e e x p e cts t h e distri b uti o n of t h e s p a c-
i n gs of n e ar est- n ei g h b or l e v els of t h e  m a n y- b o d y e n er g y
s p e ctr u m t o b e d es cri b e d b y t h e  Wi g n er- D ys o n st atisti cs
of r a n d o m  m atri x t h e or y [ 2 9 ,1 9 1 – 1 9 3 ].  T his is  w h y i n t h e
n o ni nt e gr a bl e r e gi m e  w e r ef er t o  H a milt o ni a n ( 1 3 6) as a
q u a nt u m- c h a oti c i nt er a cti n g  H a milt o ni a n.

I n fi nit e ( a n d r el ati v el y s m all, t e ns of sit es) s yst e ms, i. e.,
t h os e t h at c a n b e s ol v e d usi n g f ull e x a ct di a g o n ali z ati o n
( as  w e d o h er e), t h er e is a cr oss o v er r e gi m e b et w e e n i nt e-
gr a bilit y a n d q u a nt u m c h a os as t h e  m a g nit u d e of t2 a n d/ or
V 2 d e p art fr o m z er o (f or t1 ∼ V 1 = 0) [ 1 9 1 – 1 9 5 ]. I n s u c h
a cr oss o v er r e gi m e, f or s m all v al u es of t2 a n d/ or V 2 r el a-
ti v e t o t1 ∼ V 1 , t h e st atisti c al pr o p erti es of t h e  m a n y- b o d y
e n er g y s p e ctr u m c a n n ot b e d es cri b e d b y cl assi c al r a n d o m
m atri x e ns e m bl es.  W h e n t1 , t2 , V 1 , a n d V 2 ar e all si m-
il ar i n  m a g nit u d e, f ull e x a ct di a g o n ali z ati o n c al c ul ati o ns
i n  R efs. [1 9 1 ,1 9 3 ] s h o w e d t h at  H a milt o ni a n ( 1 3 6) e x hi bits
m a n y- b o d y q u a nt u m c h a os.  T o b e i n t his q u a nt u m c h a oti c
r e gi m e, i n t h e c al c ul ati o ns r e p ort e d h er e  w e s et t1 = t2 = 1
a n d V 1 = V 2 = 1. 1.

T h e e nt a n gl e m e nt e ntr o p y of ei g e nst at es of Ĥ H C B i n
E q. ( 1 3 6) w as c al c ul at e d usi n g f ull e x a ct di a g o n ali z ati o n
aft er r es ol vi n g all t h e s y m m etri es of t h e  m o d el.  T h e a v er-
a g e e nt a n gl e m e nt e ntr o p y S̄ w a s c o m p ut e d o v er t h e c e ntr al
2 0 % of t h e e n er g y ei g e nst at es (fr o m all s y m m etr y s e ct ors;
s e e  R ef. [ 4 3 ] f or d et ails). Fi g ur e 1 3 s h o ws t h e b e h a vi or
of t h e a v er a g e e nt a n gl e m e nt e ntr o p y d e nsit y S̄ / [(V / 2 ) l n 2]
as a f u n cti o n of t h e s u bs yst e m fr a cti o n f .  T w o r e m ar k a bl e
f e at ur es of t h os e n u m eri c al r es ults ar e as f oll o ws. (i)  T h e y
ar e n e arl y i d e nti c al f or t h e  H a milt o ni a n ei g e nst at es ( fill e d
s y m b ols) a n d t h e r es ult fr o m  E q. ( 4 5).  T h e s m all di ff er-
e n c es b et w e e n t h e m ar e q u a nti fi e d i n Fi g. 1 4 . (ii)  T h e
d e vi ati o ns of S̄ fr o m t h e  m a xi m al e nt a n gl e m e nt e ntr o p y
(s h a d e d r e gi o n) d u e t o s u bl e a di n g t er ms  m a y b e s u bst a nti al
i n fi nit e s yst e ms, a n d t h e y d e p e n d str o n gl y o n t h e p arti cl e
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( a) ( b)

FI G. 1 4. Fi nit e-si z e s c ali n g of t h e a v er a g e e nt a n gl e m e nt
e ntr o p y di ff er e n c e S A N − S̄ v ers us 1 / V , at t h e s u bs yst e m fr a c-
ti o n f = 1

2
. H er e S A N i s gi v e n b y  E q. ( 4 5) a n d S̄ d e n ot es

t h e n u m eri c al r es ults f or t h e ei g e nst at es of t h e q u a nt u m- c h a oti c
i nt er a cti n g  H a milt o ni a n i n  E q. ( 1 3 6), a v er a g e d o v er t h e c e ntr al
2 0 % of t h e e n er g y s p e ctr u m.  T h e p arti cl e filli n gs n ar e ( a) n = 1

2

a n d ( b) n = 1
4
.  T h e s oli d li n e i n ( a) s h o ws a fit of a f u n cti o n a 1 / V

t o t h e n u m eri c al r es ults at V ≥ 1 4,  wit h a 1 = 1. 6 5.  T h e d as h e d
li n e i n ( b) d e pi cts 1/ V b e h a vi or a n d is pl ott e d as a g ui d e t o t h e
e y e.

filli n g n [ c o m p ar e t h e r es ults f or n = 1
2

i n Fi g. 1 3( a) a n d

f or n = 1
6

i n Fi g. 1 3( b) ].
Fi g ur e 1 3 als o  mirr ors t h e fi nit e-si z e e ff e cts o bs er v e d i n

t h e as y m pt oti c e x p a nsi o n ( 5 4), ill ustr at e d i n Fi g. 6 . T h e
v erti c al ( d o u bl e arr o w) di ff er e n c e at f = 1

2
r ef ers t o t h e

n e xt-t o-l e a di n g- or d er fi nit e-si z e c orr e cti o n of t h e e nt a n-
gl e m e nt e ntr o p y d e nsit y,  w hi c h is O (1 / V ) f or n = 1

2
a n d

O (1 /
√

V ) f or n = 1
2
.  T h e h ori z o nt al ( d o u bl e arr o w) di ff er-

e n c e r ef ers t o t h e s pr e a d of t h e  Kr o n e c k er d elt a δ f , 1/ 2 f or

fi nit e s yst e ms,  w hi c h is O (1 / V ) f or n = 1
2

a n d O (1 /
√

V )

f or n = 1
2
.  We r es ol v e d t h e m i n Fi gs. 6( e) a n d 6( d) ,

r es p e cti v el y.
N e xt,  w e r es ol v e t o  w hi c h d e gr e e t h e a v er a g e e nt a n gl e-

m e nt e ntr o p y S̄ of  H a milt o ni a n ei g e nst at es a gr e es  wit h t h e
a n al yti c al pr e di cti o ns fr o m S e c. II, i n p arti c ul ar  wit h S A N

i n  E q. ( 4 5). I n Fi g. 1 4 ,  w e pl ot t h e fi nit e-si z e s c ali n g of
S A N − S̄ . I n all c as es u n d er c o nsi d er ati o n, t h e di ff er e n c es

a p p e ar t o v a nis h i n t h e t h er m o d y n a mi c li mit.  T his s u g g ests
t h at n ot o nl y t h e v ol u m e-l a w c o ntri b uti o n of  E q. ( 4 5), b ut
als o s u bl e a di n g t er ms i n cl u di n g t h e O (1 ) t er ms c orr e ctl y
pr e di ct t h e ei g e nst at e e nt a n gl e m e nt e ntr o pi es of q u a nt u m-
c h a oti c i nt er a cti n g  H a milt o ni a ns.  T h e di ff er e n c es b et w e e n
t h e l att er a n d  E q. ( 4 5) a p p e ar t o s c al e al g e br ai c all y as
1 / V ζ ,  wit h ζ = O (1 ).  T h e n u m eri c al r es ults s u g g est t h at
ζ = 1 at n = 1

2
[ s e e t h e s oli d li n e i n Fi g. 1 4( a) ],  w hil e

t h e y ar e n ot c o n cl usi v e at n = 1
4

[t h e d as h e d li n e i n Fi g.
1 4( b) d e pi cts 1 / V b e h a vi or a n d is pl ott e d as a g ui d e t o t h e
e y e].  We n ot e t h at, i n Fi g. 1 4 , S A N − S̄ > 0, i m pl yi n g
t h at t h e as y m pt oti c e nt a n gl e m e nt e ntr o p y is a p pr o a c h e d
fr o m b el o w as t h e s yst e m si z e i n cr e as es.

B.  Q u a nt u m- c h a oti c q u a d r ati c  m o d el

N e xt,  w e f o c us o n a q u a dr ati c  m o d el, n a m el y, a  m o d el
w h os e  H a milt o ni a n is bili n e ar i n f er mi o ni c cr e ati o n a n d

a n ni hil ati o n o p er at ors.  We e x pl or e h o w  w ell t h e r es ults f or
f er mi o ni c  G a ussi a n st at es fr o m S e c. III pr e di ct t h e b e h a v-
i or of t h e e nt a n gl e m e nt e ntr o p y i n ei g e nst at es of a p arti cl e-
n u m b er- c o ns er vi n g q u a dr ati c  m o d el t h at e x hi bits si n gl e-
p arti cl e q u a nt u m c h a os.  B y si n gl e- p arti cl e q u a nt u m c h a os
w e  m e a n t h at t h e st atisti c al pr o p erti es of t h e si n gl e- p arti cl e
e n er g y s p e ctr u m ar e d es cri b e d b y t h e  Wi g n er- D ys o n st atis-
ti cs of r a n d o m  m atri x t h e or y.  H e n c e,  w e r ef er t o t his  m o d el
as a q u a nt u m- c h a oti c q u a dr ati c  m o d el [ 6 2 ].  T his is t o b e
c o ntr ast e d t o t h e  m o d el i n S e c. V A ,  w hi c h e x hi bits m a n y-
b o d y q u a nt u m c h a os, a n d t o  w hi c h  w e r ef err e d t o as a
q u a nt u m- c h a oti c i nt er a cti n g  m o d el.

A  w ell- k n o w n q u a dr ati c  m o d el t h at e x hi bits si n gl e-
p arti cl e q u a nt u m c h a os is t h e 3 D  A n d ers o n  m o d el b el o w
t h e l o c ali z ati o n tr a nsiti o n.  T h e  H a milt o ni a n of t his  m o d el
r e a ds

Ĥ A n d = − t
i,j

( f̂
†

i f̂j + f̂
†

j f̂i) +
W

2
i

ε in̂ i, ( 1 3 8)

w h er e t h e first s u m r u ns o v er n e ar est- n ei g h b or sit es o n

a c u bi c l atti c e.  T h e o p er at or f̂
†

j (f̂j ) cr e at es ( a n ni hil at es)

a s pi nl ess f er mi o n at sit e j , a n d n̂ j = f̂
†

j f̂j i s t h e sit e

o c c u p ati o n o p er at or.  T h e o p er at ors f̂
†

j a n d f̂j s atisf y t h e

st a n d ar d a nti c o m m ut ati o n r el ati o ns { f̂l, f̂k } = { f̂
†

l , f̂
†

k } =

0 a n d { f̂l, f̂
†

k } = δ l k.  T h e si n gl e-sit e o c c u p ati o n e n er gi es
ε i ∈ [− 1, 1] ar e i n d e p e n d e ntl y a n d i d e nti c all y distri b ut e d
r a n d o m n u m b ers dr a w n fr o m a b o x distri b uti o n.  T h e
3 D  A n d ers o n  m o d el e x hi bits a d el o c ali z ati o n-l o c ali z ati o n
tr a nsiti o n at t h e criti c al dis or d er W c ≈ 1 6. 5 (s e e, e. g.,  R efs.
[1 9 6 – 1 9 9 ] f or r e vi e ws).  O ur f o c us h er e is o n dis or d er
str e n gt hs  w ell b el o w t his tr a nsiti o n, W W c .  We str ess
t h at,  w h e n r ef erri n g t o si n gl e- p arti cl e q u a nt u m c h a os i n
t h e c o nt e xt of t h e 3 D  A n d ers o n  m o d el ( 1 3 8),  w e h a v e i n
mi n d t h e fi x e d  Hil b ert s p a c e H 1 a s t h e  m o d el of a si n gl e
p arti cl e.

E v e n t h o u g h it h as b e e n k n o w n f or d e c a d es t h at t h e
si n gl e- p arti cl e s p e ctr al pr o p erti es of t h e 3 D  A n d ers o n
m o d el i n t h e d el o c ali z e d r e gi m e ar e  w ell d es cri b e d b y
t h e  Wi g n er- D ys o n st atisti cs [2 0 0 – 2 0 2 ], t h e e nt a n gl e m e nt
e ntr o p y of e n er g y ei g e nst at es  w as st u di e d o nl y r e c e ntl y
[6 2 ].  T h e l att er st u d y s h o w e d t h at t h e v ol u m e-l a w c o n-
tri b uti o n of t y pi c al  m a n y- b o d y ei g e nst at es is a c c ur at el y
d es cri b e d b y t h e v ol u m e-l a w t er m of t h e as y m pt oti c
e x pr essi o n i n  E q. ( 9 0) f or n = 1

2
,  w hi c h is t h e s a m e as

t h at i n  E q. ( 1 1 8) f or n̄ = 1
2
.  T his r es ult s u g g ests t h at t h e

l e a di n g ( v ol u m e-l a w) t er m i n t h e ei g e nst at e e nt a n gl e m e nt
e ntr o p y of t h e 3 D  A n d ers o n  m o d el d e e p i n t h e d el o c al-
i z e d r e gi m e is u ni v ers al. I n t h e  m ai n p a n el of Fi g. 1 5 ,
w e pl ot t h e a v er a g e ei g e nst at e e nt a n gl e m e nt e ntr o p y d e n-
sit y S̄ / [(V / 2 ) l n 2] of r a n d o ml y s el e ct e d ei g e nst at es as a
f u n cti o n of t h e s u bs yst e m fr a cti o n f .  T h e r es ults s h o w
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FI G. 1 5.  A v er a g e e nt a n gl e m e nt e ntr o p y d e nsit y S̄ / [(V / 2 ) l n 2]
i n t h e 3 D  A n d ers o n  m o d el ( 1 3 8) at n̄ = 1

2
.  M ai n p a n el: pl ot of

S̄ / [(V / 2 ) l n 2] v ers us f at dis or d er str e n gt h W = 1, i n a c u bi c
l atti c e  wit h V = 8 0 0 0 sit es (s y m b ols).  T h e r es ults ar e o bt ai n e d
b y a v er a gi n g o v er 1 0 0 r a n d o ml y s el e ct e d  m a n y- b o d y ei g e nst at es
a n d t e n  H a milt o ni a n r e ali z ati o ns.  T h e s oli d li n e is t h e c orr e-
s p o n di n g t h er m o d y n a mi c li mit r es ult f or f er mi o ni c  G a ussi a n
st at es gi v e n b y S A G ,w = 0 i n  E q. ( 1 1 8). I ns et: pl ot of δ s G ,w = 0 =

( S A G ,w = 0 − S̄ ) /[(V / 2 ) l n 2] v ers us 1/
√

V at f = 1
2
, f or W = 1

a n d 3,  w h er e S A G ,w = 0 c orr es p o n ds t o t h e f er mi o ni c  G a ussi a n
st at es [ E q. ( 1 1 7)] at w = 0 a n d t h e s a m e V as S̄ .  T h e r es ults f or
S̄ ar e o bt ai n e d b y a v er a gi n g o v er 1 0 2 t o 1 04 r a n d o ml y s el e ct e d
m a n y- b o d y ei g e nst at es a n d o v er 5 t o 5 0 0  H a milt o ni a n r e ali z a-
ti o ns.  Li n es ar e li n e ar fits a 0 + a 1 /

√
V t o t h e r es ults f or V ≥

2 0 0 0.  We g et a 0 = 2. 4 × 1 0 − 4 a n d a 1 = 0. 0 3 f or W = 1 (s oli d
li n e), a n d a 0 = 3. 0 × 1 0 − 4 a n d a 1 = 0. 1 0 f or W = 3 ( d as h e d
li n e).  T h e n u m eri c al r es ults f or S̄ ar e fr o m  R ef. [ 6 2 ].

r e m ar k a bl e a gr e e m e nt  wit h t h e c orr es p o n di n g t h er m o d y-
n a mi c li mit e x pr essi o n f or t h e  w ei g ht e d a v er a g e e nt a n gl e-
m e nt e ntr o p y o v er f er mi o ni c  G a ussi a n st at es S A G ,w = 0 i n
E q. ( 1 1 8).

I n s pit e of t h e l att er a gr e e m e nt,  w e n ot e t h at t h e a v er a g e
e nt a n gl e m e nt e ntr o p y o v er f er mi o ni c  G a ussi a n st at es d o es
n ot d es cri b e t h e first s u bl e a di n g t er m of t h e a v er a g e e nt a n-
gl e m e nt e ntr o p y i n t h e 3 D  A n d ers o n  m o d el.  As s h o w n i n
t h e i ns et of Fi g. 1 5 , t h e first s u bl e a di n g t er m i n t h e l at-
t er  m o d el s c al es ∝

√
V at f = 1

2
.  N o s u c h t er m a p p e ars i n

S A G ,w = 0 i n  E q. ( 1 1 8).  T h e f a ct t h at, f or t h e 3 D  A n d er-

s o n  m o d el, t h e s u bl e a di n g O (
√

V ) t er m is n ot d es cri b e d
b y  E q. ( 1 1 8) is i n st ar k c o ntr ast t o  w h at  w e f o u n d i n S e c.
V A f or a q u a nt u m- c h a oti c i nt er a cti n g m o d el. I n t h e l att er
c as e, s u bl e a di n g t er ms t h at ar e O (1 ) or gr e at er i n t h e p h ys-
i c al  m o d el ar e pr o p erl y d es cri b e d b y t h e a v er a g e S A N i n
E q. ( 4 5).  H e n c e, t h e ori gi n of t h e O (

√
V ) c o ntri b uti o n t o

t h e e nt a n gl e m e nt e ntr o p y of ei g e nst at es i n t h e 3 D  A n d er-
s o n  m o d el r e m ai ns a n o p e n q u esti o n. S u c h a c o ntri b uti o n
is n ot pr es e nt i n o ur a n al yti c al c al c ul ati o ns of t h e a v er a g es
o v er  G a ussi a n st at es.

C.  T r a nsl ati o n all y i n v a ri a nt n o ni nt e r a cti n g f e r mi o ns

N e xt,  w e c o nsi d er a p ar a di g m ati c q u a dr ati c  m o d el t h at
d o es n ot e x hi bit q u a nt u m c h a os at t h e si n gl e- p arti cl e l e v el.
N a m el y, tr a nsl ati o n all y i n v ari a nt n o ni nt er a cti n g f er mi o ns,

f or  w hi c h t h e  H a milt o ni a n is a s u m of h o p pi n g t er ms o v er
n e ar est- n ei g h b or sit es [t h e first t er m i n  E q. ( 1 3 8)]. F or
si m pli cit y,  w e f o c us o n t h e 1 D c as e

Ĥ 1 D
T = −

V

i= 1

( f̂
†

i f̂i+ 1 + f̂
†

i+ 1 f̂i) ( 1 3 9)

wit h p eri o di c b o u n d ar y c o n diti o ns, f̂V + 1 ≡ f̂1 .  T h e si n gl e-
p arti cl e ei g e n e n er gi es of t h e  m o d el i n  E q. ( 1 3 9) ar e gi v e n
b y t h e  w ell- k n o w n e x pr essi o n n = − 2 c os (2 π n / V ) wit h
n = 0, 1, . . . , V − 1,  w hi c h  m a k es a p p ar e nt t h at t h e st a-
tisti c al pr o p erti es of t h e si n gl e- p arti cl e s p e ctr u m ar e n ot
d es cri b e d b y t h e  Wi g n er- D ys o n st atisti cs.

T h e a v er a g e ei g e nst at e e nt a n gl e m e nt e ntr o p y of t h e
m o d el i n  E q. ( 1 3 9) w as st u di e d i n  R ef. [ 4 2 ] ( b ef or e t h e
u ni v ers al pr e di cti o ns f or t h e q u a nt u m- c h a oti c q u a dr ati c
m o d els a n d t h e f er mi o ni c  G a ussi a n st at es  w er e d eri v e d).
T h e n u m eri c al c al c ul ati o ns i n  R ef. [ 4 2 ]  w er e c arri e d o ut
b y a v er a gi n g t h e e nt a n gl e m e nt e ntr o p y o v er t h e f ull s et
of 2 V m a n y- b o d y ei g e nst at es.  R e m ar k a bl y, t h e n u m eri c al
r es ults  w er e f o u n d t o c o n v er g e r a pi dl y t o t h e t h er m o-
d y n a mi c li mit r es ult, as s h o w n f or t h e c as e of f = 1

2
i n t h e i ns et of Fi g. 1 6 .  T h a n ks t o t h at s c ali n g,  w e fi n d
t h e v ol u m e-l a w c o e ffi ci e nt s ∞

T of t h e a v er a g e e nt a n gl e-

m e nt e ntr o p y S̄ T = s ∞
T V A l n 2 at f = 1

2
t o hi g h n u m eri c al

a c c ur a c y, s ∞
T = 0. 5 3 7 8 (1 ),  w hi c h is c o nsist e nt  wit h t h e

r es ult r e p ort e d i n  R ef. [4 2 ].  T his is t o b e c o ntr ast e d t o t h e
v ol u m e-l a w c o e ffi ci e nt s ∞

G ,w = 0 of f er mi o ni c  G a ussi a n st at es
S A G ,w = 0 = s ∞

G ,w = 0 V A l n 2 fr o m  E q. ( 1 1 8),  w hi c h yi el ds
s ∞
G ,w = 0 = 0. 5 5 7 3.  We t h e n s e e t h at s ∞

T a n d s ∞
G ,w = 0 ar e cl os e

FI G. 1 6.  A v er a g e e nt a n gl e m e nt e ntr o p y d e nsit y S̄ / [(V / 2 ) l n 2]
of tr a nsl ati o n all y i n v ari a nt n o ni nt er a cti n g f er mi o ns i n a o n e-
di m e nsi o n al l atti c e, d es cri b e d b y t h e  H a milt o ni a n i n  E q. ( 1 3 9).
M ai n p a n el: pl ot of S̄ / [(V / 2 ) l n 2] v ers us f i n t h e l atti c e  wit h
V = 3 6 sit es.  T h e r es ults ar e o bt ai n e d b y a v er a gi n g o v er all 2 V

m a n y- b o d y ei g e nst at es.  T h e s oli d li n e is t h e c orr es p o n di n g t h er-
m o d y n a mi c li mit r es ult f or f er mi o ni c  G a ussi a n st at es gi v e n b y
S A G ,w = 0 i n  E q. ( 1 1 8). I ns et: pl ot of δ s T = ( S̄ T − S̄ ) /([V / 2] l n 2 )

v ers us 1 / V at f = 1
2
, w h er e S̄ T /( [V / 2] l n 2 ) = 0. 5 3 7 8.  T h e s oli d

li n e s h o ws t h e f u n cti o n a / V ζ ,  wit h a = 0. 2 3 a n d ζ = 1. 9 6.  T h e
n u m eri c al r es ults f or S̄ ar e fr o m  R ef. [ 4 2 ].
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T A B L E I.  O v er vi e w of t h e r es ults dis c uss e d i n t his t ut ori al.  We list t h e  m ai n r es ults, i n di c at e u p t o  w hi c h or d er i n V w e d eri v e d
t h e r es p e cti v e e x pr essi o ns ( a n d if t h er e e xists a n e x a ct f or m ul a), a n d  w h er e t h e r es p e cti v e f or m ul as c a n b e f o u n d ( e q u ati o ns, fi g ur es,
r ef er e n c es).  M ost r es ults f or fi x e d p arti cl e n u m b er ar e n e w, b ut if s p e ci al c as es or t h e l e a di n g- or d er t er m  w er e alr e a d y k n o w n b ef or e,
w e cit e t h e r el e v a nt  w or ks aft er t h e e q u ati o n i n t h e  m ai n t e xt.

( a)  G e n er al p ur e st at es ( b) P ur e f er mi o ni c  G a ussi a n st at es

( 1)  N o
p arti cl e
n u m b er

S A = a V − b + O (2 − V ) & e x a ct → ( 2 5), Fi g. 3 , [1 5 2 ] S A G = a V + b + O (1 / V ) & e x a ct → ( 8 9), Fi g. 8 , [1 5 9 ]

( S A ) 2 = α e − β V + o (e − β V ) → ( 2 9), [1 6 5 ] ( S A ) 2
G = a + o (1 ) → ( 9 3), [1 5 9 ]

( 2) Fi x e d
p arti cl e
n u m b er

S A N = a V − b
√

V − c + o (1 ) → ( 5 4), Fi g. 6 S A G ,N = a V − b / V + O (1 / V 2 ) & e x a ct → ( 9 0)

( S A ) 2
N = α V 3 / 2 e − β V → ( 6 0) ( S A ) 2

G ,N = a + o (1 ) → ( 1 1 6), Fi g. 9

( 3) Fi x e d
w ei g ht

S A w = a V + b + c
√

V + o (1 ) → ( 6 7) S A G ,w = a V + b + c /
√

V + d / V + o (1 / V ) → ( 1 1 8), Fi g. 1 0

( S A ) 2
w = a V + o (V ) → ( 6 8) ( S A ) 2

G ,w = a V + o (V ) → ( 1 2 0)

b ut di ff er e nt.  T h e f ull c ur v e f or S T a s a f u n cti o n of f ,
f or V = 3 6, is s h o w n i n Fi g. 1 6 t o g et h er  wit h t h e f ull
c ur v e f or S A G ,w = 0 fr o m  E q. ( 1 1 8).  T h e y ar e cl e arl y dif-
f er e nt a n d, gi v e n t h e a b o v e m e nti o n e d f ast c o n v er g e n c e of
t h e n u m eri c al r es ults  wit h V ,  w e e x p e ct t h e di ff er e n c es t o
r e m ai n i n t h e t h er m o d y n a mi c li mit.  T h e e x a ct a n al yti c al
f or m of t h e S̄ T (f ) c ur v e f or tr a nsl ati o n all y i n v ari a nt fr e e
f er mi o ns r e m ai ns el usi v e, b ut ti g ht b o u n ds h a v e alr e a d y
b e e n c al c ul at e d [ 5 0 ].

We c o n cl u d e b y n oti n g t h at, f or t h e tr a nsl ati o n all y
i n v ari a nt q u a nt u m- c h a oti c i nt er a cti n g  m o d el st u di e d i n
S e c. V A , t h e a v er a g e ei g e nst at e e nt a n gl e m e nt e ntr o p y is
a c c ur at el y d es cri b e d b y t h e c orr es p o n di n g e nt a n gl e m e nt
e ntr o p y of g e n er al p ur e st at es.  T h e r ol e of  H a milt o ni a n
s y m m etri es i n t h e a v er a g e e nt a n gl e m e nt e ntr o p y of e n er g y
ei g e nst at es i n q u a nt u m- c h a oti c i nt er a cti n g a n d q u a nt u m-
c h a oti c q u a dr ati c  m o d els r e m ai ns a n i m p ort a nt q u esti o n t o
b e e x pl or e d i n f ut ur e st u di es.

VI. S U M M A R Y  A N D  O U T L O O K

I n t his s e cti o n,  w e bri e fl y s u m m ari z e t h e k e y r es ults
dis c uss e d i n t his t ut ori al, a n d gi v e a n o utl o o k of  w h er e
w e e n visi o n t h e  m et h o ds i ntr o d u c e d t o b e a p pli c a-
bl e.  We als o  m e nti o n s o m e o p e n q u esti o ns i n t h e
c o nt e xt of t h e e nt a n gl e m e nt e ntr o p y of t y pi c al p ur e
st at es.

A. S u m m a r y

We pr o vi d e d a p e d a g o gi c al i ntr o d u cti o n t o t h e c urr e nt
u n d erst a n di n g of t h e b e h a vi or of t h e e nt a n gl e m e nt e ntr o p y
of p ur e q u a nt u m st at es.  We d eri v e d a n al yti c al e x pr essi o ns
f or t h e a v er a g e e nt a n gl e m e nt e ntr o p y of g e n er al a n d  G a us-
si a n st at es, a n d c o nsi d er e d st at es  wit h a n d  wit h o ut a fi x e d
n u m b er of p arti cl es.  A c o m pr e h e nsi v e s u m m ar y of t h e
r es ults dis c uss e d c a n b e f o u n d i n  T a bl e I,  w h er e  w e c o n-
tr ast r es ults f or: ( 1) ar bitr ar y p arti cl e n u m b er, ( 2) fi x e d
p arti cl e n u m b er N , a n d ( 3) fi x e d  w ei g ht p ar a m et er w f or

b ot h ( a) g e n er al p ur e st at es a n d ( b)  G a ussi a n st at es.  T his
yi el ds t h e si x st at e e ns e m bl es ( 1 a) t hr o u g h ( 3 b).

F or b ot h  G a ussi a n a n d g e n er al p ur e st at es, t h e l e a di n g-
or d er b e h a vi or S A at h alf- filli n g N = V / 2 c oi n ci d es  wit h
t h e f ull a v er a g e  wit h o ut fi xi n g t h e t ot al p arti cl e n u m b er,
w hil e t h e n e xt-t o-l e a di n g- or d er t er ms di ff er. F or g e n er al
p ur e st at es,  w e c o n fir m e d a n a d diti o n al c o ntri b uti o n pr o-
p orti o n al t o

√
V at f = 1

2
i n  E q. ( 5 4), pr e vi o usl y f o u n d

i n  R ef. [4 3 ]. F or  G a ussi a n st at es,  w e d eri v e d t h e e x a ct
f or m ul a,  w hi c h d o es n ot c o nt ai n s u c h a t er m a n d h as a
n e xt-t o-l e a di n g- or d er t er m of or d er 1 / V [ E q. ( 1 1 4)].  H o w-
e v er,  w e di d fi n d a c o ntri b uti o n of or d er 1 /

√
V i n t h e

as y m pt oti c a v er a g e S A G ,w at fi x e d w wit h f = ¯n , i. e.,
w h e n e v er t h e s u bs yst e m fr a cti o n f e q u als t h e a v er a g e
filli n g r ati o n̄ = N / V = 1 /( 1 + e w ).

We tr a c e d b a c k t h es e c o ntri b uti o ns t o t h e n o n a n al yti c
b e h a vi or of t h e a v er a g e e nt a n gl e m e nt e ntr o p y as a f u n c-
ti o n of t h e s u bs yst e m fr a cti o n f a n d t h e filli n g r ati o n .
I n t h e c as e of  G a ussi a n st at es,  w e i d e nti fi e d t h e a d diti o n al
p arti cl e-s u bs yst e m s y m m etr y n ↔ f ,  w hi c h is r es p o nsi bl e
f or t h e 1/

√
V t er m. Fr o m a  m at h e m ati c al p ers p e cti v e, t h e

ori gi n of t h e
√

V t er m i n S A N i s t h er ef or e t h e s a m e as
t h at of t h e 1/

√
V t er m i n S A G ,w , n a m el y, b ot h c al c ul a-

ti o ns i n v ol v e t h e a v er a g e of a n o n a n al yti c f u n cti o n  wit h
r es p e ct t o a n a p pr o xi m at el y  G a ussi a n st atisti c al distri b u-
ti o n. S q u ar e r o ot p o w ers of V a p p e ar e x a ctl y  w h e n t h e
m e a n of t h e  G a ussi a n li es i n a n ei g h b or h o o d of t h e n o n-
a n al yti cit y, i. e., t h er e is a j u m p i n o n e of t h e f u n cti o n’s
d eri v ati v es.

Fi n all y,  w e c o n n e ct e d t h e r es ults o bt ai n e d f or t h e a v er-
a g e e nt a n gl e m e nt e ntr o p y i n t h e si x e ns e m bl es of st at es
m e nti o n e d b ef or e t o t h e a v er a g e e nt a n gl e m e nt e ntr o p y
i n ei g e nst at es of s p e ci fi c r a n d o m  m atri c es a n d of p h ys-
i c al  H a milt o ni a ns.  M a y b e t h e  m ost s ur prisi n g r es ult i n
t h e c o nt e xt of q u a nt u m- c h a oti c i nt er a cti n g  H a milt o ni a ns
is t h at n ot o nl y d o es t h e l e a di n g t er m i n t h e a v er a g e a gr e e
wit h t h e c orr es p o n di n g e ns e m bl e a v er a g e, b ut als o s u b-
l e a di n g t er ms t h at ar e O (1 ) or l ar g er i n t h e v ol u m e, e. g.,
O (

√
V ).  W h y t his is s o is a q u esti o n t h at d es er v es t o b e
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f urt h er e x pl or e d.  E q u all y i ntri g ui n g is t o u n d erst a n d  w h y
t h e s a m e is n ot tr u e i n t h e c as e of q u a nt u m- c h a oti c
q u a dr ati c  H a milt o ni a ns.

B.  O utl o o k

L o o ki n g f or w ar d, a n i m p ort a nt q u esti o n is h o w g e n er al
ar e t h e  m et h o ds a n d r es ults dis c uss e d h er e.  We f o c us e d o n
f er mi o ni c s yst e ms, f or  w hi c h  w e c a n c o m p ar e g e n er al p ur e
st at es  wit h  G a ussi a n p ur e st at es, a n d u n v eil e d t h e e ff e ct
of fi xi n g t h e t ot al p arti cl e n u m b er.  O ur r es ults f or g e n er al
p ur e st at es a p pl y e q u all y t o h ar d- c or e b os o ns a n d s pi n- 1

2
s y st e ms. I n t h e l att er, t h e t ot al  m a g n eti z ati o n pl a ys t h e r ol e
t h at t h e t ot al p arti cl e n u m b er pl a ys i n f er mi o ni c a n d h ar d-
c or e b os o n  m o d els.

1.  T y pi c al ei g e nst at e e nt a n gl e m e nt e ntr o p y as a
di a g n osti c of q u a nt u m c h a os a n d i nt e gr a bilit y

As  m e nti o n e d i n t h e I ntr o d u cti o n, a n o v el pi ct ur e t h at
t h e r e c e nt n u m eri c al st u di es s u c h as t h os e dis c uss e d i n
S e c. V h a v e st art e d t o c o ns oli d at e is t h at t y pi c al  m a n y-
b o d y ei g e nst at es of q u a nt u m- c h a oti c i nt er a cti n g  H a milt o-
ni a ns h a v e si mil ar e nt a n gl e m e nt pr o p erti es as t y pi c al p ur e
st at es i n t h e  Hil b ert s p a c e. I n p ar all el, t y pi c al  m a n y- b o d y
ei g e nst at es of q u a nt u m- c h a oti c q u a dr ati c  H a milt o ni a ns
h a v e si mil ar e nt a n gl e m e nt pr o p erti es as t y pi c al  G a ussi a n
p ur e st at es.  We q u a nti fi e d h o w si mil ar t h e y ar e b y s h o w-
i n g t h at t y pi c al ei g e nst at es of a s p e ci fi c q u a nt u m- c h a oti c
i nt er a cti n g  H a milt o ni a n e x hi bit O (1 ) a n d gr e at er t er ms i n
t h e e nt a n gl e m e nt e ntr o p y t h at ar e t h e s a m e t h a n i n t y pi-
c al p ur e st at es i n t h e  Hil b ert s p a c e. F or t y pi c al  m a n y- b o d y
ei g e nst at es of q u a nt u m- c h a oti c q u a dr ati c  H a milt o ni a ns,
w e s h o w e d t h at t h e O (V A ) t er m is t h e s a m e as i n t y p-
i c al  G a ussi a n p ur e st at es.  T h es e st at e m e nts (f or V A =
f V ≤ V / 2) ar e tr u e i n d e p e n d e ntl y of  w h et h er o n e d e als
wit h st at es i n  w hi c h t h e n u m b er of p arti cl es is fi x e d or
n ot.

I n t h e c o nt e xt of  H a milt o ni a ns t h at d o n ot e x hi bit
m a n y- b o d y q u a nt u m c h a os, n a m el y, i n  w hi c h t h e  m a n y-
b o d y l e v el s p a ci n g distri b uti o ns ar e n ot d es cri b e d b y
t h e  Wi g n er s ur mis e [2 9 ],  w e s h o w e d t h at t y pi c al  m a n y-
b o d y e n er g y ei g e nst at es of tr a nsl ati o n all y i n v ari a nt n o n-
i nt er a cti n g f er mi o ns e x hi bit a n O (V A ) t er m t h at b e h a v es
q u alit ati v el y si mil ar ( b ut is n ot e q u al) t o t h at o bt ai n e d
f or t y pi c al  G a ussi a n p ur e st at es, n a m el y, t h e pr ef a ct or
of s u c h a t er m is a f u n cti o n of t h e s u bs yst e m fr a c-
ti o n f .  T h e s a m e b e h a vi or  w as f o u n d i n  R ef. [5 5 ]
f or t h e t y pi c al e nt a n gl e m e nt e ntr o p y of  m a n y- b o d y
ei g e nst at es of t h e i nt e gr a bl e s pi n- 1

2
X X Z c h ai n.  T his

is f u n d a m e nt all y di ff er e nt fr o m  w h at h a p p e ns i n t y pi-
c al  m a n y- b o d y ei g e nst at es of q u a nt u m- c h a oti c i nt er a ct-
i n g  H a milt o ni a ns, i n  w hi c h t h e pr ef a ct or is  m a xi m al
(it d e p e n ds o nl y o n t h e filli n g n ) as i n t y pi c al p ur e
st at es.

H e n c e, as c o nj e ct ur e d i n  R ef. [ 5 5 ], t h e e nt a n gl e m e nt
e ntr o p y of t y pi c al  m a n y- b o d y e n er g y ei g e nst at es c a n b e
us e d t o disti n g uis h  m o d els t h at e x hi bit  m a n y- b o d y q u a n-
t u m c h a os ( w h os e l e v el s p a ci n g distri b uti o ns ar e d es cri b e d
b y t h e  Wi g n er s ur mis e, a n d ar e e x p e ct e d t o t h er m al-
i z e  w h e n t a k e n f ar fr o m e q uili bri u m [2 9 ]) fr o m t h os e
t h at d o n ot.  T his is a  w el c o m e a d diti o n t o t h e t o ol b o x
f or i d e ntif yi n g q u a nt u m c h a os as it r eli es o n t h e pr o p-
erti es of t h e ei g e nst at es as o p p os e d t o t h e pr o p erti es of
t h e ei g e n e n er gi es.  Ot h er e nt a n gl e m e nt- b as e d di a g n osti cs
of q u a nt u m c h a os a n d i nt e gr a bilit y h a v e b e e n pr o p os e d
i n r e c e nt y e ars, a m o n g t h e m ar e t h e o p er at or e nt a n gl e-
m e nt gr o wt h [ 2 0 3 – 2 0 5 ]; t h e di a g o n al e ntr o p y [2 0 6 ,2 0 7 ],
t h e  m ut u al i nf or m ati o n s cr a m bli n g [2 0 4 ], a n d e nt a n gl e-
m e nt r e vi v als [ 2 0 8 ] aft er q u a nt u m q u e n c h es; t h e tri-
p artit e o p er at or  m ut u al i nf or m ati o n [ 2 0 9 ,2 1 0 ]; a n d t h e
e nt a n gl e m e nt n e g ati vit y b et w e e n t w o s u bs yst e ms i n a
tri p artiti o n of  m a n y- b o d y e n er g y ei g e nst at es [2 1 1 ].

It is i m p ort a nt t o e m p h asi z e t h at a n a d v a nt a g e of usi n g
t h e e nt a n gl e m e nt pr o p erti es of e n er g y ei g e nst at es, i nst e a d
of t h e pr o p erti es of t h e ei g e n e n er gi es, is t h at o n e d o es n ot
n e e d t o r es ol v e all t h e s y m m etri es of t h e  m o d el n or d o es
o n e n e e d t o d o a n u nf ol di n g of t h e s p e ctr u m,  w hi c h ar e
of p ar a m o u nt i m p ort a n c e t o i d e ntif y q u a nt u m c h a os usi n g
t h e ei g e n e n er gi es, as dis c uss e d i n S e c. I D. I n a d diti o n, i n
c o m p aris o n t o s o m e of t h e e nt a n gl e m e nt di a g n osti cs t h at
w er e  m e nti o n e d a b o v e, o n e d o es n ot n e e d t o st u d y d y n a m-
i cs. F urt h er  w or ks ar e n e e d e d o n i nt er a cti n g i nt e gr a bl e
m o d els t o est a blis h  w h et h er t h e l e a di n g t er m of t h e e nt a n-
gl e m e nt e ntr o p y of t y pi c al  m a n y- b o d y e n er g y ei g e nst at es
is u ni v ers al or n ot, a n d t o u n d erst a n d t h e n at ur e of t h e
s u bl e a di n g t er ms. S o f ar, r es ults ar e a v ail a bl e o nl y f or t h e
i nt e gr a bl e s pi n- 1

2
X X Z c h ai n [ 5 5 ].

2.  B e y o n d q u bit- b as e d s yst e ms

T h e a n al yti c al t o ols i ntr o d u c e d a n d e x pl ai n e d i n t his
t ut ori al c a n b e us e d b e y o n d t h e f er mi o ni c s yst e ms  w e st u d-
i e d ( a n d b e y o n d t h e s pi n- 1

2
a n d h ar d- c or e b os o n s yst e ms

w e  m e nti o n e d), a n d f a cilit at e t h e st u d y of b os o ni c s yst e ms
wit h a fi x e d p arti cl e n u m b er.  T o b e c o n cr et e, a b os o ni c s u b-
s yst e m  wit h V A o ut of V b os o ni c  m o d es a n d t ot al p arti cl e
n u m b er N c a n b e tr e at e d a n al o g o usl y t o  E q. ( 4 5), b ut  wit h
di m e nsi o ns r es p e cti n g t h e b os o ni c c o m m ut ati o n st atisti cs,
i. e.,

d A (N A ) =
(N A + V A − 1 )!

N A ! (V A − 1 )!
, ( 1 4 0)

d B (N − N A ) =
(N − N A + V − V A − 1 )

(N − N A )! (V − V A − 1 )!
, ( 1 4 1)

d N =
(N + V − 1 )!

N ! (V − 1 )!
, ( 1 4 2)
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w hi c h f oll o ws fr o m t h e c o m bi n at ori cs of s a m pli n g  wit h
r e pl a c e m e nt  wit h o ut c ari n g a b o ut t h e or d er, e. g., f or
d A ,  w e as k h o w  m a n y  w a ys t h er e ar e t o distri b ut e N A

i n disti n g uis h a bl e p arti cl es o v er V A sit es ( w h er e e a c h sit e
c a n h ol d ar bitr aril y  m a n y p arti cl es).  A n e w, it h ol ds t h at

N
N A = 0 d A (N A )d B (N − N A ) = d N .
F oll o wi n g P a g e’s a p pr o a c h,  w e a g ai n c h o os e a n ar bi-

tr ar y u nif or ml y distri b ut e d r a n d o m v e ct or st at e i n t h e
Hil b ert s p a c e H N .  T h us, t h e i n v ari a n c e of t h e st at e u n d er
t h e u nit ar y gr o u p U (d N ), n o w  wit h a di ff er e nt di m e nsi o n
d N , still a p pli es.  T h er ef or e,  w e c a n f oll o w t h e s a m e str at-
e g y as i n S e c. II  B, i n p arti c ul ar  w e c a n e x pl oit  E q. ( 4 5)
wit h di m e nsi o ns ( 1 4 0).  T his yi el ds, i n t h e t h er m o d y n a mi c
li mit  wit h fi x e d f ∈ (0, 1

2
) a n d n ∈ (0, ∞ ),

S A b os, N = f V[n l n(1 + n − 1 ) + l n(1 + n )]

+
√

V
n + n 2

8 π
l n(1 + n − 1 ) δ f , 1/ 2

+
f + l n(1 − f )

2
+ o (1 ), ( 1 4 3)

S A b os, w = S A b os, N = ¯n V −
f

2
+ o (1 ), ( 1 4 4)

w h er e t h e  w ei g ht e d a v er a g e is o nl y  m e a ni n gf ul f or w > 0,
f or  w hi c h n̄ = 1 /( e w − 1 ).  N ot e t h at t h er e is n o p arti cl e-
h ol e s y m m etr y f or b os o ns, a n d t h at n = N / V c a n b e
ar bitr aril y l ar g e.

Ot h er n at ur al g e n er ali z ati o ns ar e s pi n- s s yst e ms  wit h
s > 1

2
a n d s yst e ms c o nsisti n g of disti n g uis h a bl e p arti-

cl es.  T h es e c as es c a n als o b e st u di e d usi n g t h e  m et h o ds
dis c uss e d i n t his t ut ori al aft er c arr yi n g o ut t h e r es p e c-
ti v e c o m bi n at ori cs of t h e  Hil b ert s p a c e di m e nsi o ns d A

a n d d B .  Als o, s yst e ms  wit h gl o b al s y m m etri es s u c h as
ti m e-r e v ers al i n v ari a n c e or c hir alit y c a n b e c o nsi d er e d,
w hi c h h a v e a n i m p a ct o n t h e r es p e cti v e s y m m etr y gr o u p
s o t h at t h e  Hil b ert s p a c e is n ot i n v ari a nt a n y m or e u n d er
U (d N ) b ut o nl y u n d er O (d N ) or U (d N 1

) × U (d N 2
). T h e

l e a di n g t er ms ar e e x p e ct e d t o b e t h e s a m e, as t h e r es p e c-
ti v e r a n d o m  m atri x e ns e m bl es s h ar e t h e s a m e l e v el d e n-
siti es.  D e vi ati o ns ar e e x p e ct e d t o o c c ur i n s u bl e a di n g
t er ms.

3.  Ot h er e ns e m bl es a n d e nt a n gl e m e nt  m e as ur es

We f o c us e d o n e ns e m bl es of st at es, g e n er al a n d  G a us-
si a n p ur e st at es f or ar bitr ar y a n d fi x e d p arti cl e n u m-
b ers,  w hi c h  mirr or t h e e nt a n gl e m e nt pr o p erti es of t y pi-
c al ( “i n fi nit e-t e m p er at ur e ”) ei g e nst at es of p h ysi c al l atti c e
m o d els. It is als o p ossi bl e t o c o nstr u ct e ns e m bl es of p ur e
st at es i n  w hi c h o n e fi x es t h e e n er g y,  w hi c h  mirr or t h e
e nt a n gl e m e nt pr o p erti es of " fi nit e-t e m p er at ur e " ei g e nst at es
of p h ysi c al l atti c e  m o d els. St e ps i n t his dir e cti o n h a v e
alr e a d y b e e n t a k e n usi n g di ff er e nt t o ols; s e e, e. g.,  R efs.

[3 3 ,4 7 ,5 1 ,5 2 ,1 5 7 ,2 1 3 ]. I n t h e c o nt e xt t h e s c ali n g of t h e
ei g e nst at e e nt a n gl e m e nt e ntr o p y at di ff er e nt e n er g y d e n-
siti es ( “t e m p er at ur es ”), l et us als o e m p h asi z e t h at all t h e
a v er a g e e nt a n gl e m e nt e ntr o pi es c o m p ut e d i n t his t ut ori al
e x hi bit e d a l e a di n g v ol u m e-l a w t er m, n a m el y, t h e l e a d-
i n g t er m i n t h e a v er a g e e ntr o pi es s c al es  wit h t h e n u m b er
of  m o d es V a n d is t h us a g n osti c t o t h e i n di vi d u al s h a p e
or ar e a of t h e s u bs yst e m. I n c o ntr ast, as dis c uss e d i n
t h e I ntr o d u cti o n, it is  w ell k n o w n t h at l o w- e n er g y st at es
of  m a n y p h ysi c al s yst e ms of i nt er est e x hi bit a l e a di n g
ar e a l a w t er m.  A n i m p ort a nt o p e n q u esti o n is  w h et h er
o n e c a n d e fi n e e ns e m bl es of p ur e st at es t h at e x hi bit
l e a di n g t er ms i n t h e e nt a n gl e m e nt e ntr o p y t h at ar e ar e a
l a w.

I nst e a d of c o nsi d eri n g t h e v o n  N e u m a n n e nt a n gl e m e nt
e ntr o p y, o n e c a n als o c o nsi d er ot h er q u a ntiti es t h at ar e
d e fi n e d  wit h r es p e ct t o t h e i n v ari a nt s p e ctr u m of t h e
r e d u c e d d e nsit y o p er at or ρ̂ A = Tr H B |ψ ψ | of a p ur e
st at e |ψ . S u c h q u a ntiti es i n cl u d e t h e  w ell- k n o w n  R e n yi

e ntr o pi es S (n )
A (|ψ ), a n d t h e ei g e nst at e c a p a cit y [2 1 4 ].  We

f o c us e d o n t h e v o n  N e u m a n n e ntr o p y, as it is ar g u a bl y
t h e  m ost pr o mi n e nt  m e as ur e of bi p artit e e nt a n gl e m e nt.
N o n et h el ess,  w e e x p e ct t h at o ur fi n di n gs c a n als o b e
e xt e n d e d t o t h e af or e m e nti o n e d q u a ntiti es; s e e, e. g.,  R efs.
[6 2 ,8 6 ,8 8 ,2 1 5 ] f or st u di es of  R e n yi e ntr o pi es a n d  R efs.
[1 7 8 ,2 1 6 ] f or st u di es of t h e ei g e nst at e c a p a cit y.

It  w o ul d als o b e i nt er esti n g t o e x pl or e  m ulti p ar-
tit e e nt a n gl e m e nt  m e as ur es f or di ff er e nt e ns e m bl es of
p ur e st at es.  T his  will li k el y r e q uir e n e w t e c h ni q u es,
a n d it is n ot cl e ar  w h at t h e  m ost s uit a bl e  m e a-
s ur e is.  T h e l att er q u esti o n is t h e s u bj e ct of o n g oi n g
r es e ar c h.

A C K N O W L E D G M E N T S

We  w o ul d li k e t o t h a n k Pi etr o  D o n à, P et er F or-
r est er, P atr y cj a  Ł y dż b a,  L or e n z o Pir oli, a n d  Ni c h ol as
Witt e f or i ns piri n g dis c ussi o ns.  E. B. a c k n o wl e d g es s u p-
p ort fr o m t h e  N ati o n al S ci e n c e F o u n d ati o n,  Gr a nt  N o.
P H Y- 1 8 0 6 4 2 8, a n d fr o m t h e J o h n  T e m pl et o n F o u n d ati o n
vi a t h e I D 6 1 4 6 6 gr a nt, as p art of t h e “ Q u a nt u m I nf or-
m ati o n Str u ct ur e of S p a c eti m e ( QI S S) ” pr oj e ct ( qiss.fr).
L. H. gr at ef ull y a c k n o wl e d g es s u p p ort fr o m t h e  Al e x a n-
d er v o n  H u m b ol dt F o u n d ati o n.  M. K. a c k n o wl e d g es s u p-
p ort fr o m t h e  A ustr ali a n  R es e ar c h  C o u n cil ( A R C) u n d er
Gr a nt  N o.  D P 2 1 0 1 0 2 8 8 7.  M. R. a c k n o wl e d g es s u p p ort
fr o m t h e  N ati o n al S ci e n c e F o u n d ati o n u n d er  Gr a nt  N o.
2 0 1 2 1 4 5.  L. V. a c k n o wl e d g es s u p p ort fr o m t h e Sl o v e ni a n
R es e ar c h  A g e n c y ( A R R S),  R es e ar c h c or e f u n di n gs  Gr a nts
N o. P 1- 0 0 4 4 a n d  N o. J 1- 1 6 9 6.  L. H. a n d  M. K. ar e als o
gr at ef ul t o t h e  M A T RI X I nstit ut e i n  Cr es wi c k f or h ost-
i n g t h e o nli n e r es e ar c h pr o gr a m m e a n d  w or ks h o p “ Str u c-
t ur e d  R a n d o m  M atri c es  D o w n u n d er ” ( 2 6 J ul y – 1 3  A u g ust
2 0 2 1).
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A P P E N DI X  A:  G E N E R A L  P U R E S T A T E S  WI T H  A
FI X E D  N U M B E R  O F  P A R TI C L E S

1.  A v e r a g e e nt a n gl e m e nt e nt r o p y

I n s u m ( 4 5) w e h a v e di ff er e nt c o ntri b uti o ns. Si n c e o ur
g o al is t o as y m pt oti c all y e x p a n d t h e s u m as a  w h ol e u p
t o O (1 ),  w hi c h i n cl u d es t hr e e di ff er e nt or d ers, n a m el y V ,√

V , a n d 1,  w e n e e d t o a p pr o a c h it s yst e m ati c all y.  T h e
first st e p is t o i d e ntif y t h e v ari o us c o ntri b uti o ns of s u c h
a n e x p a nsi o n.  L et us list t h e m as f oll o ws.

1.  T h e di ff er e n c e of t h e di g a m m a f u n cti o ns i n  E q. ( 4 5)
c a n al w a ys b e as y m pt oti c all y e x p a n d e d b e c a us e t h e
di m e nsi o ns d N , d B (N − N A ), a n d d A (N A ) gr o w  wit h
V .  T h e o nl y e x c e pti o ns ar e  w h e n eit h er t h e v ol u m es
of s u bs yst e m A ar e V A = 0, V or t h e o c c u p ati o n
n u m b ers ar e N = 0, V .  T h es e sit u ati o ns c orr es p o n d
t o t h e tri vi al c as es t h at  w e d o n ot s plit t h e s yst e m
i nt o t w o s u bs yst e ms or t h at all sit es ar e e m pt y or
o c c u pi e d,  w hi c h  w e al w a ys e x cl u d e.  W h e n ass u m-
i n g n = N / V a n d f = V A / V b ei n g of or d er o n e a n d
h a vi n g a fi nit e dist a n c e fr o m 1, t h e di m e nsi o ns gr o w
e x p o n e nti all y i n V .
T h e di m e nsi o n d o es n ot gr o w or o nl y gr o ws p ol y-
n o mi all y i n V w h e n N A ≈ 0, V A f or d A (N A ) or N −
N A = 0, V − V A f or d B (N − N A ).  H o w e v er, t h e pr ef-
a ct or N A = d A (N A )d B (N − N A ) /d N will b e e x p o-
n e nti all y s m all f or t h es e c as es, as  w e  will s e e b el o w.

T h us,  w e c a n e x p a n d t h e di ff er e n c e of t h e di g a m m a
f u n cti o ns as

[d N + 1] − [d B (N − N A ) + 1]

= l n
d N

d B (N − N A )
+ O (e − γ 1 V ),

[d N + 1] − [d A (N A ) + 1]

= l n
d N

d A (N A )
+ O (e − γ 2 V ), ( A 1)

w h er e γ 1 , γ 2 > 0 ar e t w o n o n v a nis hi n g r at es t h at
o nl y st at e h o w f ast t h e e x p o n e nti al c orr e cti o n of
t his a p pr o xi m ati o n v a nis h es.  T h es e l o g arit h ms of
t h e r ati os ar e e x p a n d e d i n  A p p e n di x A 1 a .

2.  A s e c o n d c o ntri b uti o n r es ults fr o m N crit ,  w hi c h
d et er mi n es t h e fr a cti o n of t h e c o ntri b uti o n of t h e
t w o s u ms. It is d e fi n e d b y t h e l ar g est p ositi v e i nt e g er
s u c h t h at it still h ol ds t h at d A (N A ) ≤ d B (N − N A ).
We n e e d a 1 / V e x p a nsi o n of t his i nt e g er as sli g ht
d e vi ati o ns  m a y yi el d or d er- o n e t er ms.  We d eri v e
s u c h a n e x p a nsi o n i n  A p p e n di x A 1 b .

3.  O n c e  w e k n o w t h e 1 / V e x p a nsi o n of N crit ,  w e c a n
c o m bi n e it  wit h a p pr o xi m ati o n ( A 1) a n d c o nsi d er
t h e first p art of t h e s u m,  w hi c h is

1 =

N crit

N A = 0

d A (N A )d B (N − N A )

d N
( [d N + 1] − [d B (N − N A ) + 1] )

+

N

N A = N crit + 1

d A (N A )d B (N − N A )

d N
( [d N + 1] − [d A (N A ) + 1] )

=

N crit

N A = 0

d A (N A )d B (N − N A )

d N
l n

d N

d B (N − N A )
+

N

N A = N crit + 1

d A (N A )d B (N − N A )

d N
l n

d N

d A (N A )
+ O (e − γ̃ V ) ( A 2)

wit h a fi x e d γ̃ > 0.  We n ot e t h at  w e c a n e xt e n d t h e
s e c o n d s u m t o t h e u p p er t er mi n al N as t h e bi n o mi al
f a ct or is e q u al t o 0  w h e n e v er N A > V A .
W h at is still n e e d e d is t o e x p a n d t h e di m e nsi o ns.
T h e f a ct or N A = d A (N A )d B (N − N A ) /d N i s a cr u-
ci al i n gr e di e nt f or t his p ur p os e, as alr e a d y p oi nt e d
o ut. F or l ar g e V , it  will h a v e a p pr o xi m at el y a  G a us-
si a n s h a p e i n N A wit h a c e nt er n̄ A V a n d a  wi dt h σ A .
T h e pr o bl e m ati c p oi nt is t h at t h e t w o s u ms cr e at e
a ki n k at N crit .  T h e n c e, o n e n e e ds t o  m a k e a c as e
dis c ussi o n  w h e n |N crit − ¯n A V | is  m a xi m all y of or d er
σ V or n ot.  We h a v e alr e a d y p oi nt e d o ut a b o v e  E q.
( 5 1) t h at n̄ A = nf a n d σ f (1 − f )n (1 − n ) /

√
V .

T h e l o g arit h m of t h e r ati o of t h e di m e nsi o ns  will
b e  T a yl or e x p a n d e d i n (N A / V − nf ) a n d  will b e of
or d er 1 /

√
V .  T h er ef or e,  w e o nl y n e e d t o u n d erst a n d

t h e as y m pt oti c e x p a nsi o n of t h e  m o m e nts

M j = c −

N crit

N A = 0

d A (N A )d B (N − N A )

d N

N A

V
− nf

j

+ c +

N

N A = N crit + 1

d A (N A )d B (N − N A )

d N

×
N A

V
− nf

j

, ( A 3)
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w h er e c − a n d c + ar e s o m e N A -i n d e p e n d e nt c o ef-
fi ci e nts,  w hi c h i n pri n ci pl e d e p e n d o n t h e or d er j
of t h e  m o m e nt, t h o u g h. We s h o w i n  A p p e n di x A 1 b
t h at n̄ A V i s n e v er l ar g er t h a n N crit s o t h at t h e  m a x-
i m u m of N A i s al w a ys i n t h e first s u m  w hil e t h e
s e c o n d s u m o nl y c o nt ai ns a n e x p o n e nti al t ail; s e e
Fi g. 1 7 .  T h us, it is s uit a bl e t o c o nsi d er t h e s plitti n g

M j = c −

N

N A = 0

d A (N A )d B (N − N A )

d N

N A

V
− nf

j

+ (c + − c − ) M j ,

M j =

N

N A = N crit + 1

d A (N A )d B (N − N A )

d N

N A

V
− nf

j

.

( A 4)

T h e a d v a nt a g e is t h at t h e first s u m  wit h N A r u n ni n g
fr o m 0 t o N c a n b e s e e n as a c o ntri b uti o n t h at is
al w a ys pr es e nt.  O nl y  w h e n |N crit − ¯n A V | is at  m ost
of or d er σ V = f (1 − f )n (1 − n )V will t h e s e c-
o n d s u m M j b e of i m p ort a n c e.  We c arr y o ut t h e
e x p a nsi o n of M j i n  A p p e n di x A 1 c .

4.  T h e r e m ai ni n g p art of s u m ( 4 5) is

2 =

N crit

N A = 0

d A (N A )d B (N − N A )

d N

d A (N A ) − 1

2 d B (N − N A )

+

N

N A = N crit + 1

×
d A (N A )d B (N − N A )

d N

d B (N − N A ) − 1

2 d A (N A )
.

( A 5)

As  m e nti o n e d, t h e di m e nsi o ns d A (N A ) a n d d B (N −
N A ) us u all y gr o w e x p o n e nti all y i n V , a n d  w h er e t h e y
d o n ot gr o w li k e t h at t h e y  will b e s u p pr ess e d b y t h e
e x p o n e nti al t ails of N A

.  T h us,  w e c a n o mit t h e t er ms
1 / [ 2d B (N − N A )] a n d 1/ [ 2d A (N A )], r es ulti n g i n a n
e x p o n e nti all y s u p pr ess e d c orr e cti o n. S e c o n dl y, t h e
t w o s u ms c a n b e c o m bi n e d i nt o t h e f or m

2 =
1

2

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N

× mi n
d A (N A )

d B (N − N A )
,
d B (N − N A )

d A (N A )

+ O (e − γ̃ V ) ( A 6)

wit h a n ot h er fi x e d γ̃ > 0.
O n e  m a y as k  w h y  w e d o n ot d e al  wit h t his s u m
i n t h e s a m e  w a y as  w e h a v e d o n e f or t h e di ff er-
e n c e of t h e di g a m m a f u n cti o ns. First,  w e c a n n ot

e xt e n d t h e u p p er t er mi n al of t h e s u m t o N as t h e
r ati o d A (N A ) /d B (N − N A ) c a n c a n c el t h e z er o of t h e
w ei g ht N A . S e c o n d, t h e r ati o d A (N A ) /d B (N − N A )
c a n e x p o n e nti all y gr o w as  w ell as s hri n k i n V w hi c h,
i n pri n ci pl e, c a n s hift t h e  m a xi m u m of t h e  w ei g ht

N A .  We a n al y z e t his b e h a vi or i n  A p p e n di x A 1 d .

O n c e all t h es e c o ntri b uti o ns h a v e b e e n a n al y z e d a n d
e x p a n d e d i n 1 /

√
V ,  w e c o m bi n e t h e i nt er m e di at e r es ults

i n  A p p e n di x A 1 e .

a.  As y m pt oti c e x p a nsi o n of t h e l o g a rit h m of t h e r ati o
of di m e nsi o ns

As  w e h a v e s e e n i n a p pr o xi m ati o n ( A 1) of t h e di ff er-
e n c es of t h e di g a m m a f u n cti o ns, it is s uit a bl e t o e x p a n d
t h e l o g arit h m of t h e r ati o

l n
d N

d A (N A )
= l n

V ! N A ! (V A − N A )!

N ! (V − N )! V A !

= l n
V ! (n A V )! ([f − n A ]V )!

(n V )! ([ 1 − n ]V )! (f V)!
. ( A 7)

T h e a p pr o xi m ati o n of t h e ot h er l o g arit h m f oll o ws fr o m
t h e s y m m etr y r el ati o n (N A , V A ) → (N − N A , V − V A ) or,
e q ui v al e ntl y, (n A , f ) → (n − n A , 1 − f ).

We c arr y o ut t h e s eri es e x p a nsi o n of  E q. ( A 7) i n t w o
st e ps. First,  w e t a k e t h e as y m pt oti c e x p a nsi o n i n V . F or
t his p ur p os e,  w e t a k e i nt o a c c o u nt t h e f a cts t h at f , 1 −
f , n , 1 − n > 0 ar e of or d er o n e s o t h at o n e c a n us e of
t h e Stirli n g f or m ul a ( A 8) f or f o ur of t h e si x f a ct ori als,
n a m el y V !/( n V )! ([ 1 − n ]V )! (f V)!. F or t h e ot h er t w o t er ms
(n A V )! ([f − n A ]V )!,  w e e x pl oit t h e k n o wl e d g e t h at t h e
m a xi m al c o ntri b uti o n of t h e bi n o mi al distri b uti o n is gi v e n
at n̄ A = nf .  H e n c e, it als o f oll o ws t h at t h e ar g u m e nt i n t h e
r e m ai ni n g f a ct ori als gr o ws li n e arl y  wit h V .  T h er ef or e,  w e
e x pl oit t h e Stirli n g a p pr o xi m ati o n

(k V )! =
√

2 π k V (k V + 1 )k V e − k V − 1 [ 1 + O (V − 1 )]

=
√

2 π k V (k V )k V e − k V [ 1 + O (V − 1 )] ( A 8)

wit h k b ei n g of or d er o n e, f or a n y of t h e si x f a ct ori als.
C oll e cti n g t h es e a p pr o xi m ati o ns, t h e l ar g e- V e x p a nsi o n
yi el ds

l n
d N

d A (N A )
= V [n A l n(n A )

+ (f − n A ) l n(f − n A ) − n l n(n )

− (1 − n ) l n(1 − n ) − f l n(f )]

+
1

2
l n

n A (f − n A )

n (1 − n )f
+ O (V − 1 ). ( A 9)
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FI G. 1 7. Ill ustr ati o n of t h e c o ntri b uti o ns of s u m ( 4 5) f or V = 5 0 0, f = 1
2
, a n d n = 1

4
− 4 /

√
L ,  w h er e  w e pl ot t h e d e nsit y N A

=
d A (N A )d B (N − N A ) /d N ( bl u e cir cl es) a n d t h e a p pr o xi m at e o bs er v a bl e g (N A ) ( y ell o w cir cl es),  w hi c h is gi v e n b y l n d N / d A (N A ) f or
d A (N A ) ≤ d B (N − N A ) a n d l n[ d N / d B (N − N A )] ot h er wis e.  N ot e t h at  w e us e di ff er e nt s c al es f or N A

a n d g (N A ).  As r ef er e n c e p oi nts  w e
h a v e a d d e d t h e c e nt er of t h e  G a ussi a n a p pr o xi m ati o n of N A

( bl u e v erti c al li n e) a n d t h e p oi nt N crit of t h e ki n k of t h e s u m m a n ds ( y ell o w
v erti c al li n e).

I n t h e s e c o n d st e p,  w e r e pl a c e n A = nf + δ n A wit h δ n A of
or d er 1 /

√
V t o o bt ai n

l n
d N

d A (N A )
= V (f − 1 )[n l n(n ) + (1 − n ) l n(1 − n )]

+ V δ n A l n
n

1 − n

+
V δ n 2

A

2 n (1 − n )f
+

1

2
l n(f ) + O (V − 1 / 2 ).

( A 1 0)

As af or e m e nti o n e d, t h e as y m pt oti c f or t h e s e c o n d l o g-
arit h m l n (d N / d B (N − N A )) c a n als o b e o bt ai n e d usi n g
E q. ( A 1 0) w h e n e x pl oiti n g t h e s y m m etr y (n A , f ) ↔ (n −
n A , 1 − f ).  We c a n i n d e e d a p pl y t his s y m m etr y t o  E q.
( A 1 0) as t h e  w ei g ht N A al s o s h ar es t his s y m m etr y.  H er e,
w e n ot e t h at t h e  m a xi m u m of t h e  w ei g ht n̄ A = nf i n d e e d
i m pli es t h at n − ¯n A = n (1 − f ), r e fl e cti n g t h e s y m m etr y.
T h e n c e,  w e h a v e

l n
d N

d B (N − N A )
= − Vf [n l n(n ) + (1 − n ) l n(1 − n )]

+ V δ n A l n
1 − n

n

+
V δ n 2

A

2 n (1 − n )(1 − f )

+
1

2
l n(1 − f ) + O (V − 1 / 2 ). ( A 1 1)

F or c o m p ut ati o n al p ur p os es i n t h e e ns ui n g s e cti o n,  w e
n e e d t o t a k e t h e di ff er e n c e of  E qs. ( A 1 0) a n d ( A 1 1); r e c all
t h e t hir d st e p of t h e o utli n e of c o m p uti n g t h e as y m pt oti c
e x p a nsi o n. I n p arti c ul ar,  w h e n 1 − 2 f is  m u c h s m all er t h a n
o n e, t his is i m p ort a nt b e c a us e t h e e x p e ct ati o n v al u e of t h e
t w o t er ms t ells us h o w  m a n y t er ms  w e n e e d t o t a k e i nt o
a c c o u nt i n t h e c o m p ut ati o n.  T h e di ff er e n c e is

l n
d B (N − N A )

d A (N A )
= − V (1 − 2 f )[n l n(n )

+ (1 − n ) l n(1 − n )]

+ 2 V δ n A l n
n

1 − n
+ o (1 ),

( A 1 2)

w h er e  w e h a v e s et 1 − 2 f 1.  H e n c e, t his a p pr o xi m a-
ti o n is o nl y tr u e i n t his c as e. F or t h e ot h er c as e t h at f
is n ot cl os e e n o u g h t o 1

2
,  w e d o n ot n e e d t h e r es p e cti v e

e x pr essi o n, as  w e  will s e e.

b.  C o m p ut ati o n of N c rit

A s alr e a d y  m e nti o n e d, N crit i s gi v e n b y t h e c o n diti o n
d A (N A ) /d B (N − N A ) = 1.  T his r ati o c a n b e a p pr o xi m at e d
vi a Stirli n g’s f or m ul a ( A 8),
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d A (N A )

d B (N − N A )
=

V A ! (N − N A )! (V − V A − N + N A )!

N A ! (V A − N A )! (V − V A )!

=
(f V)! ([n − n A ]V )! ([ 1 − f − n + n A ]V )!

(n A V )! ([f − n A ]V )! ([ 1 − f ]V )!

=
f (n − n A )(1 − f − n + n A )

n A (f − n A )(1 − f )

f f (n − n A )n − n A (1 − f − n + n A )1 − f − n + n A

n
n A
A (f − n A )f − n A (1 − f )1 − f

V

[ 1 + O (V − 1 )]. ( A 1 3)

As i n t h e pr e vi o us s u bs e cti o n,  w e n e e d t o g o e v e n f urt h er a n d t a k e i nt o a c c o u nt t h e f a cts t h at n A i s c o n c e ntr at e d at n̄ A = nf
a n d t h e s m all d e vi ati o n δ n A = n A − ¯n A i s of or d er 1/

√
V .  T h us, t h e  T a yl or e x p a nsi o n i n δ n A a b o ut t his p oi nt l e a ds t o

d A (N A )

d B (N − N A )
=

1 − f

f
[n n (1 − n )1 − n ]V (1 − 2 f ) e x p 2 V δ n A l n

1 − n

n
+

V (2 f − 1 ) δ n 2
A

2 nf (1 − f )(1 − n )
[ 1 + O (V − 1 / 2 )]. ( A 1 4)

We  w o ul d li k e t o r e c all t h at  w e c h o os e 0 < f ≤ 1
2

d u e t o t h e s y m m etri es of t h e s etti n g.  T h e n c e, t h e l e a di n g pr ef a ct or

s h o ws t h at t h e r ati o v a nis h es e x p o n e nti all y  w h e n 1 − 2 f is l ar g er t h a n or d er 1/ V b e c a us e of 1
2

≤ n n (1 − n )(1 − n ) < 1

f or a n y 0 < n ≤ 1
2
.  T h er e is, h o w e v er, a tr a nsiti o n r e gi m e li k e i n t h e P a g e s etti n g  wit h o ut p arti cl e- n u m b er c o ns er v ati o n,

n a m el y,  w h e n 1 − 2 f ∝ 1 / V .  T h e n t h e t w o di m e nsi o ns b e c o m e c o m p ar a bl e. Fr o m t h e e q u ati o n a b o v e,  w e c a n als o r e a d
o ff t h at o nl y f or f ≈ 1

2
i s t h e  m a xi m u m n̄ A V = nf V or, e q ui v al e ntl y, δ n A ≈ 0 of t h e  w ei g ht N A = d A (N A )d B (N − N A ) /d N

cl os e t o N crit .  Alt h o u g h it d o es n ot s a y, y et,  w h e n N crit i s i n a dist a n c e of or d er
√

V a w a y fr o m t h e  m a xi m u m n̄ A V = nf V .
I n d e e d,  w h e n δ n A a n d 1 − 2 f ar e of or d er 1 /

√
V , t h er e is a p ossi bilit y t h at t h e t w o gr o wi n g t er ms c a n c el e a c h ot h er s o

t h at it is n ot n e c ess ar y t h at 1 − 2 f n e e ds t o b e of or d er 1 / V as 1 /
√

V is alr e a d y s uit a bl e.  T his is e x a ctl y  w h at h a p p e ns i n
a p arti c ul ar r e gi m e, as  w e  will s e e b el o w.

O n e a d diti o n al c o m m e nt,  w h e n 1 − 2 f > 0 is  m u c h l ar g er t h a n 1 / V ,  w e h a v e d A (N A ) d B (N − N A ).  T h us, t h e  m a xi-
m u m n̄ A V li es i n t h e first p art of s u m ( A 2).  T h us, i n t h e c as e t h at t h e t er mi n al N crit i s i n t h e e x p o n e nti all y s u p pr ess e d p art
of t h e t ail of N A ,  w e c a n c o n c e ntr at e o nl y o n t h e first p art of s u m ( A 2) a n d disr e g ar d t h e s e c o n d p art.

T h e n c e,  w e o nl y n e e d t o u n d erst a n d  w h at N crit − nf V is  w h e n 1 − 2 f 1 i n t h e li mit V → ∞ f or t h e a v er a g e of
E q. ( A 1 1). It is cr u ci al t o k n o w  w h e n t o c ut t h e s u m of N A i n t h e l o w er t er mi n al a n d e x pl oit t h e ot h er br a n c h of t h e
P a g e c ur v e f or t h e r e m ai ni n g s u m.  A s u btl e p oi nt is t h at  w e n e e d t o fi n d δ n crit = N crit / V − nf u p t o or d er 1 / V , si n c e
N crit = V (nf + δ n crit ) i s  m ulti pli e d b y V a n d t h e s p a ci n g b et w e e n t h e st e p si z e of t h e s u m m ati o n i n d e x is 1.  T h er ef or e,  w e
h a v e t o r e fi n e t h e e x p a nsi o n i n  E q. ( A 1 4).

T h e  T a yl or e x p a nsi o n of t h e Stirli n g a p pr o xi m ati o n o n e or d er hi g h er is gi v e n b y  E q. ( 5. 1 1. 1) of  R ef. [ 1 6 4 ]:

l n[(k V )!] =
1

2
l n[ 2π k V ] + k V l n(k V ) − k V −

1

1 2 k V
+ O (V − 2 ). ( A 1 5)

We e x pl oit t his e x p a nsi o n i n  E q. ( A 1 3) a n d us e t h e n ot ati o n N crit = nf V + δ n crit V . As N crit i s d e fi n e d b y t h e c o n diti o n
d A (N crit ) /d B (N − N crit ) = 1,  w e t a k e its l o g arit h m a n d e v al u at e t h e r es ulti n g e q u ati o n u p t o or d er 1 / V ,

0 = l n
d A (N crit )

d B (N − N crit )

=
1

2
l n

f [n (1 − f ) − δ n crit ][(1 − f )(1 − n ) + δ n crit ]

[nf + δ n crit ][f (1 − n ) − δ n crit ](1 − f )

+ V l n
f f [n (1 − f ) − δ n crit ]

n (1 − f )− δ n crit [(1 − f )(1 − n ) + δ n crit ]
(1 − f )(1 − n )+ δ n crit

(nf + δ n crit ) nf + δ n crit [f (1 − n ) − δ n crit ]f (1 − n )− δ n crit (1 − f )1 − f

−
1

1 2 V

1

f
+

1

n (1 − f ) − δ n crit
+

1

1 − f (1 − n ) + δ n crit
−

1

nf + δ n crit

−
1

f (1 − n ) − δ n crit
−

1

1 − f
+ O (V − 2 ). ( A 1 6)

T h e v er y l ast t er m b ef or e t h e c orr e cti o n is at l e ast of or d er (1 − 2 f ) /V 1 / V w h e n δ n crit i s of or d er 1/
√

V b e c a us e
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1

1 2 V

1

f
+

1

n (1 − f ) − δ n crit
+

1

1 − f (1 − n ) + δ n crit
−

1

nf + δ n crit
−

1

f (1 − n ) − δ n crit
−

1

1 − f

=
1 − 2 f

1 2 Vf (1 − f )
1 −

1

n (1 − n )
+ O (V − 3 / 2 )

= O
1 − 2 f

V

= o (V − 1 ) ( A 1 7)

a n d 1 − 2 f 1.  T h us,  w e c a n n e gl e ct it.
T h e ot h er t er ms still n e e d t o b e  T a yl or e x p a n d e d i n δ n crit a s t h e y ar e of or d er 1 /

√
V or s m all er.  E x p a n di n g t his e x pr essi o n

i n δ n crit u p t o or d er 1 / V ,  w hi c h is e q ui v al e nt  wit h t h e f o urt h or d er i n δ n crit a s  w e  m ulti pl y o n e t er m  wit h V ,  w e fi n d t h at

0 =
1

2
l n

1 − f

f
+

(2 n − 1 ) δ n crit

2 n (1 − n )f (1 − f )
+

(1 − 2 f ) δ n 2
crit

4 f 2 (1 − f )2

1

n 2
+

1

(1 − n )2

+ V (1 − 2 f ) l n[n n (1 − n )1 − n ] + 2 V δ n crit l n
1 − n

n
+

V (2 f − 1 ) δ n 2
crit

2 nf (1 − f )(1 − n )

+
V (1 − 2 n ) δ n 3

crit

6 n 2 (1 − n )2

1

(1 − f )2
+

1

f 2
+

V (2 f − 1 )(f 2 − f + 1 ) δ n 4
crit

1 2 f 3 (1 − f )3

1

n 3
+

1

(1 − n )3

+ o (V − 1 )

=
1

2
l n

1 − f

f
+

(2 n − 1 ) δ n crit

2 n (1 − n )f (1 − f )
+ V (1 − 2 f ) l n[n n (1 − n )1 − n ] + 2 V δ n crit l n

1 − n

n

+
V (2 f − 1 ) δ n 2

crit

2 nf (1 − f )(1 − n )
+

V (1 − 2 n ) δ n 3
crit

6 n 2 (1 − n )2

1

(1 − f )2
+

1

f 2
+ o (V − 1 ). ( A 1 8)

I n t h e s e c o n d e q u alit y,  w e h a v e o mitt e d all t er ms t h at ar e of l o w er or d er t h a n 1/ V ,  m a ki n g us e of t h e f a ct t h at 1 − 2 f 1.
T h e e q u ati o n a b o v e c a n b e r e c ast i nt o a n i m pli cit e x pr essi o n f or δ n crit .  O n e first p uts all δ n crit - d e p e n d e nt t er ms o n o n e

si d e, t h e n p ulls o ut t h e c o m m o n f a ct or δ n crit , a n d fi n all y di vi d es t h e e ntir e e x pr essi o n b y t h e pr ef a ct or of δ n crit , yi el di n g

δ n crit = −
(2 n − 1 )

2 n (1 − n )f (1 − f )
+ 2 V l n

1 − n

n
+

V (2 f − 1 ) δ n crit

2 nf (1 − f )(1 − n )

+
V (1 − 2 n ) δ n 2

crit

6 n 2 (1 − n )2

1

(1 − f )2
+

1

f 2

− 1 l n[(1 − f ) /f ]

2
+ V (1 − 2 f ) l n[n n (1 − n )1 − n ] + O (V − 3 / 2 ). ( A 1 9)

I n t h e n e xt st e p,  w e n e e d t o fi n d o ut t h e l e a di n g c o ntri b uti o n of t h e d e n o mi n at or.  We p ull o ut t h e f a ct or l n[ (1 − n ) /n ]
i n t h e d e n o mi n at or.  T h e n it is i m m e di at e t h at t h er e ar e o nl y t w o p ossi biliti es si n c e t h e r ati o (1 − 2 n ) / l n[(1 − n ) /n ] is
of or d er o n e  w h e n e v er n , 1 − n > 0 ar e of or d er o n e.  Eit h er (1 − 2 f ) δ n crit /( 1 − 2 n ) is of or d er o n e or l ar g er or it is
m u c h s m all er t h a n 1. I n t h e f or m er c as e, n n e e ds t o b e v er y cl os e t o 1

2
a s (1 − 2 f ) δ n crit = o (V − 1 / 2 ).  T his  m e a ns t h at

V (1 − 2 f ) l n[n n (1 − n )1 − n ] ≈ − 2 l n (2 )V (1 − 2 f ) is t h e d o mi n a nt t er m i n t h e n u m er at or.  T h e l att er, h o w e v er, i m pli es
t h at δ n crit a n d V (1 − 2 f ) /[V (1 − 2 f ) δ n crit ] = 1 / δ n crit ar e of t h e s a m e or d er.  H e n c e, δ n crit m u st b e of or d er o n e,  w hi c h is
i n c o ntr a di cti o n  wit h t h e f a ct t h at it is of at  m ost of or d er 1/

√
V . I n c o n cl usi o n, t h e r ati o (1 − 2 f ) δ n crit /( 1 − 2 n ) is n e v er

of or d er o n e or l ar g er, a n d t h e d e n o mi n at or is al w a ys d o mi n at e d b y 2 V l n[(1 − n ) /n ] a b o ut  w hi c h  w e n e e d t o e x p a n d.
T h e q u esti o n is h o w f ar  w e n e e d t o g o  wit h t his e x p a nsi o n.  H er e,  w e h a v e t o dis c uss di ff er e nt r e gi m es.

1.  T h e l e a di n g- or d er t er m of δ n crit ,  w hi c h is gi v e n i n  E q. ( A 2 0), t ells us t h at, f or 1 − 2 n
√

V (1 − 2 f ), t h e t er mi n al
V δ n crit i s of a n or d er l ar g er t h a n

√
V ,  m e a ni n g t h at t h e  m a xi m u m of t h e  w ei g ht N A

= d A (N A )d B (N − N A ) /d N pl us
t h e st a n d ar d d e vi ati o n is o ut of r e a c h of N crit .  T h us,  w e c a n disr e g ar d t h e s e c o n d s u m i n  E q. ( A 2) a n d c a n e xt e n d
t h e first s u m t o t h e u p p er t er mi n al N .
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2.  W h e n V (1 − 2 f ) /(1 − 2 n ) r a n g es b et w e e n or d er
√

V a n d o n e, t h e n it h ol ds t h at

δ n crit = −
(1 − 2 f ) l n[n n (1 − n )1 − n ]

2 l n[ (1 − n ) /n ]
+ o (V − 1 ). ( A 2 0)

T his  m e a ns t h at N crit i s t h e i nt e g er s m all er t h a n or e q u al t o nf V − V (1 − 2 f ) l n[n n (1 − n )1 − n ]/ 2 l n[ (1 − n ) /n ].
3. I n t h e c as e (1 − 2 n ) V (1 − 2 f ), δ n crit i s s o cl os e t o 0 t h at  w e c a n s et N crit a s t h e i nt e g er s m all er t h a n or e q u al t o

nf V .  T his c as e c a n als o b e s e e n as a p arti c ul ar li mit of t h e s e c o n d c as e.

N ot e t h at, f or all t hr e e c as es,  w e h a v e 1 − 2 f 1.  H o w e v er, c as e 1 s h o ws t h at, f or 1 − 2 f 1 /
√

V (1 − 2 n ) /
√

V ,
w e  will n e v er fi n d a c o ntri b uti o n fr o m N crit a s it  will al w a ys b e e x p o n e nti all y s u p pr ess e d b y t h e  w ei g ht N A .  We r e c all

t h at t h e c as es 1 − 2 f 1 /
√

V ar e al w a ys s u p pr ess e d d u e t o t h e e x p o n e nti all y s m all r ati o d A (N A ) /d B (N − N A ) r e g ar dl ess
w h at n is.  T h us, t h e e arli est o c c urr e n c e of or d er

√
V a n d or d er- o n e t er ms i n t h e e nt a n gl e m e nt e ntr o p y  will b e  w h e n f

e nt ers t h e r e gi m e a b o ut f ≈ 1
2

at a dist a n c e of or d er 1 /
√

V .
L et us hi g hli g ht t h at t his a p pr o xi m ati o n of N crit o nl y  w or ks f or t h e a v er a g e o v er  E q. ( A 1 1). F or t h e a v er a g e o v er t h e

r ati o  mi n{d A (N A ) /d B (N − N A ), d B (N − N A ) /d A (N A )},  w e n e e d t o b e  m or e c ar ef ul as t h er e ar e a d diti o n al e x p o n e nti al t er ms
i n δ n A t h at  m a y s hift t h e  m a xi m u m of t h e s u m m a n ds i n t h e a v er a g e o v er N A .

c.  M o m e nts of N A

T o c o m p ut e t h e e nt a n gl e m e nt e ntr o p y,  w e n e e d t h e  m o m e nts of t h e  w ei g ht N A = d A (N A )d B (N − N A ) /d N eit h er f or t h e
f ull s u m  wit h t er mi n als at 0 a n d N or f or t h at  wit h a c ut o ff d u e t o N crit . I n g e n er al,  w e n e e d t o c o m p ut e M j d e fi n e d i n
E q. ( A 4). It c a n b e r e writt e n i n t er ms of a d eri v ati v e a cti n g o n a s u m, i. e.,

M j = ( ∂λ − nf )j

× c −

N

N A = 0

V A ! (V − V A )! N ! (V − N )!

V ! N A ! (V A − N A )! (N − N A )! (V − V A − N + N A )!
e N A λ / V

+ (c + − c − )

×

N

N A = N crit + 1

V A ! (V − V A )! N ! (V − N )!

V ! N A ! (V A − N A )! (N − N A )! (V − V A − N + N A )!
e N A λ / V

λ = 0

( A 2 1)

wit h j ∈ N .  T h e t w o c o e ffi ci e nts c ± gr o w  m a xi m all y  wit h V , a n d c = c + − c − gr o ws at  m ost li k e
√

V f or j = 0 a n d li k e
V f or j = 1; cf.  E qs. ( A 1 1) a n d ( A 1 2).  T h e s e c o n d s u m  wit h o ut c h as b e e n d e n ot e d b y M j [ s e e ( A 4)],  w hil e t h e first
s u m  will b e l a b el e d as

M j = ( ∂λ − nf )j
N

N A = 0

V A ! (V − V A )! N ! (V − N )!

V ! N A ! (V A − N A )! (N − N A )! (V − V A − N + N A )!
e N A λ / V

λ = 0

. ( A 2 2)

E v al u ati o n of t h e first s u m ( A 2 2). As  w e h a v e s e e n, t h e  m a xi m u m of N A i s cl os e t o n̄ A = nf V ,  w hi c h al w a ys li es b el o w

N crit . It c a n b e a p pr o xi m at e d b y a  G a ussi a n  wit h v ari a n c e
√

V .  H e n c e,  w h e n N crit − nf V is l ar g er t h a n or d er
√

V , o nl y t h e

first s u m c o ntri b ut es, a n d  w e c a n a p pr o xi m at e  E q. ( A 2 1) as M j = M j + o (1 ).  T h e err or is e x p o n e nti all y s m all d u e t o
t h e  G a ussi a n t ail.  Ot h er wis e, t h e s u m M j will c o ntri b ut e, t o o.  Yet, t h e e ns ui n g c o m p ut ati o n still a p pli es f or t h e first
s u m ( A 2 2) as it o nl y t a k es i nt o a c c o u nt t h e f a ct t h at t h e u p p er t er mi n al i n t h e s u m is N .

T o c o m p ut e  E q. ( A 2 2),  w e  m a k e us e of t h e c o nt o ur i nt e gr al

(V − N )!

(V A − N A )! (V − V A − N + N A )!
=

|z | =1

d z

2 π iz

(1 + z )V − N

z V A − N A
, ( A 2 3)
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w hi c h is b as e d o n t h e bi n o mi al s u m (1 + z )V − N = V − N
l= 0

V − N
l

z l.  T h e n,  w e c a n c arr y o ut t h e s u m e x a ctl y a n d fi n d

t h at

M j = c −
V A ! (V − V A )!

V !
( ∂λ − nf )j

|z | =1

d z

2 π iz

(1 + z )V − N (1 + z e λ / V ) N

z V A
λ = 0

. ( A 2 4)

C o m p ari n g  wit h  E q. ( A 1 0),  w e o nl y n e e d t h e first a n d s e c o n d c e nt er e d  m o m e nts.  We n ot e t h at, d u e t o t h e pr o p er
n or m ali z ati o n of N A , it h ol ds t h at M 0 = 1.  T h e first c e nt er e d  m o m e nt,

M 1 =
V A ! (V − V A )!

V ! |z | =1

d z

2 π iz
[nz − nf (1 + z )]

(1 + z )V − 1

z V A
+ o (1 )

=
V A ! (V − V A )!

V !
n (1 − f )

(V − 1 )!

(V A − 1 )! (V − V A )!
− nf

(V − 1 )!

V A ! (V − V A − 1 )!

=
n (1 − f )V A

V
− nf

(V − V A )

V

= 0, ( A 2 5)

v a nis h es e x a ctl y  wit h o ut a n y a p pr o xi m ati o n; n ot e t h at V A / V = f . I n t h e s a m e  m a n n er  w e c o m p ut e t h e s e c o n d c e nt er e d
m o m e nt,  w h er e  w e h a v e t o g o u p t o or d er 1 / V as  w e  m ulti pl y b y V [s e e  E q. ( A 1 1)]:

M 2 =
V A ! (V − V A )!

V ! |z | =1

d z

2 π iz
n 2 (1 − f )2 z 2 +

n

V
− 2 n 2 f (1 − f ) z + n 2 f 2 (1 + z )V − 2

z V A

=
V A ! (V − V A )!

V !
n 2 (1 − f )2 (V − 2 )!

(V A − 2 )! (V − V A )!

+
n

V
− 2 n 2 f (1 − f )

(V − 2 )!

(V A − 1 )! (V − V A − 1 )!

+ n 2 f 2 (V − 2 )!

V A ! (V − V A − 2 )!

= n 2 (1 − f )2 f f +
f − 1

V
+

n

V
− 2 n 2 f (1 − f ) f (1 − f ) 1 +

1

V

+ n 2 f 2 (1 − f ) 1 − f −
f

V
+ O (V − 2 )

=
n (1 − n )f (1 − f )

V
+ O (V − 2 ). ( A 2 6)

T h e t hir d e q u alit y f oll o ws b y  T a yl or e x p a n di n g i n 1 / V ,  w hi c h a m o u nts t o a n err or t er m st arti n g  wit h t h e or d er 1/ V 2 .
A ct u all y, t h e l e a di n g or d ers of t h e t w o c e nt er e d  m o m e nts ar e n ot v er y s ur prisi n g as t h e y ar e t h e  m e a n a n d t h e v ari a n c e of

N A .  T his c al c ul ati o n o nl y c h e c ks t h at t h er e ar e n o a d diti o n al c orr e cti o ns t h at  m a y b e c o m e r el e v a nt.

R et ur ni n g t o t h e a p pr o xi m ati o n M j = M j + o (1 ) f or N crit − nf V
√

V , t h e first  m o m e nt M 1 i s e x p o n e nti all y s u p-
pr ess e d as it is o nl y gi v e n b y t h e s e c o n d s u m M 1 t h at li es i n t h e e x p o n e nti all y s m all t ail of N A . I n c o ntr ast, t h e
c orr e cti o n t o t h e l e a di n g or d er i n t h e s e c o n d c e nt er e d  m o m e nt M 2 i s of or d er 1/ V w h e n c − i s of or d er V ,  w hi c h is i n d e e d
t h e c as e; s e e  E q. ( A 1 1).

Fi n all y,  w e c o m bi n e t h e t w o  m o m e nts M 1 a n d M 2 wit h e x p a nsi o n ( A 1 1) t o c o m p ut e t h e s u m

N

N A = 0

d A (N A )d B (N − N A )

d N
l n

d N

d B (N − N A )

= − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f

2
+

l n(1 − f )

2
+ O

1
√

V
. ( A 2 7)
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T his is o ur first i nt er m e di at e r es ult,  w hi c h  will b e n e e d e d  w h e n c o m bi ni n g it  wit h t h e f ull e nt a n gl e m e nt e ntr o p y.
T h e c as e  N crit − nf V ≤ O (

√
V ) a n d t h e t er m M j . W h e n N crit i s i n t h e vi ci nit y of n̄ A V = nf V = n V / 2 + n (2 f − 1 )V / 2

( n a m el y of or d er
√

V ),  w e n e e d t o t a k e i nt o a c c o u nt t h e f a ct t h at b ot h s u ms, M j a n d M j , c o ntri b ut e.  R e c all t h at

δ f = 1 − 2 f m ust b e of or d er 1 /
√

V or s m all er a n d δ n = 1 − 2 n c a n n ot b e l ess t h a n or d er
√

V (1 − 2 f ) t o fi n d t his
r e gi m e.  T his i m pli es t h at t h e c o e ffi ci e nt f or t h e c o nst a nt t er m (j = 0) of  E q. ( A 1 2) will b e at  m ost of or d er

√
V . T h us, w e

n e e d t o e x p a n d t h e s u m f or t his c as e u p t o or d er 1 /
√

V . F or j = 1,  w e still n e e d t o e x p a n d u p t o or d er 1 / V , t h o u g h t his
e x p a nsi o n d o es n ot h a v e a t er m of or d er o n e, as  w e  will s e e.

We c o nsi d er t h e s u m

M j = ∂ λ +
N crit + 1

V
− nf

j

×

N

N A = N crit + 1

V A ! (V − V A )! N ! (V − N )!

V ! N A ! (V A − N A )! (N − N A )! (V − V A − N + N A )!
e (N A − N crit − 1 ) λ /V

λ = 0

( A 2 8)

f or j = 0, 1,  w h er e  w e h a v e p us h e d a f a ct or e x p[ − (N crit + 1 ) λ /V ] i nt o t h e d eri v ati v e as it  will b e b e n e fi ci al f or t h e
e ns ui n g c al c ul ati o n.  T h e s u m m a n ds c a n b e e xt e n d e d b y (N − N crit − 1 )! N crit ! (N A − N crit − 1 )! i n t h e n u m er at or a n d t h e
d e n o mi n at or t o e x pl oit t h e i d e ntit y

N crit ! (N A − N crit − 1 )! (V − N )!

N A ! (V A − N A )! (V − V A − N + N A )!

=
1

0

d x
|z | =1

d z

2 π iz

(1 + z )V − N

z V − V A − N + N A
x N A − N crit − 1 (1 − x )N crit . ( A 2 9)

T h e i nt e gr a n d o v er t h e a u xili ar y v ari a bl e x is als o k n o w n as t h e b et a distri b uti o n.  L et us u n d erli n e t h at it al w a ys h ol ds t h at
N crit < N A ≤ N f or M j .  T h e s u m c a n b e c arri e d o ut e x a ctl y a n e w, a n d  w e fi n d t h at, f or t h e z er ot h  m o m e nt,

M 0 =
V A ! (V − V A )! N !

N crit !(N − N crit − 1 )! V !

1

0

d x
|z | =1

d z

2 π iz

(1 + z )V − N

z V − V A
(1 − x )N crit (x + z )N − N crit − 1 ( A 3 0)

a n d, f or t h e first  m o m e nt,

M 1 =
V A ! (V − V A )! N !

N crit ! (N − N crit − 1 )! V !

×
1

0

d x
|z | =1

d z

2 π iz

N − N crit − 1

V
x +

N crit + 1

V
− nf (x + z )

×
(1 + z )V − N

z V − V A
(1 − x )N crit (x + z )N − N crit − 2 . ( A 3 1)

T his ti m e t h e i nt e gr al is t o o i n v ol v e d t o c o m p ut e t h e r es ults dir e ctl y i n a cl os e d f or m.  We us e a s a d dl e p oi nt a p pr o xi m ati o n.
T h e d eri v ati v es i n x a n d z of t h e l o g arit h m of t h e i nt e gr a n d yi el d i n l e a di n g or d er t h e s a d dl e p oi nt e q u ati o ns

N − N crit

x 0 + z 0
−

N crit

1 − x 0
= 0 a n d

V − N

1 + z 0
−

V − V A

z 0
+

N − N crit

x 0 + z 0
= 0. ( A 3 2)

Si n c e N crit = nf V + N crit wit h N crit = O (
√

V ), a n d t h e st a n d ar d d e vi ati o n a b o ut t h e s a d dl e p oi nts is of or d er 1/
√

V , w e
c a n r e pl a c e N crit b y nf V i n t h e s a d dl e p oi nt e q u ati o ns  wit h o ut c h a n gi n g t h e i nt e gr als.  T h e s a m e h ol ds f or t h e d e vi ati o n of
f fr o m 1

2
a s 1 − 2 f is at  m ost of or d er 1/

√
V i n t h e pr es e nt c as e.  T his yi el ds t h e a p pr o xi m at e s a d dl e p oi nt s ol uti o ns

x 0 = 0 a n d z 0 = 1. ( A 3 3)

T h us,  w e e x p a n d x = δ x /
√

V a n d z = 1 + iδ z /
√

V wit h δ x ∈ R + a n d δ z ∈ R .
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F or t h e first  m o m e nt, t his yi el ds a dr asti c si m pli fi c ati o n b e c a us e of t h e f a ct or

N − N crit − 1

V
x +

N crit + 1

V
− nf (x + z )

=
n

2
√

V
δ x +

N crit

V
+

1

2 V
2 +

√
V (1 − 2 f )n δ x + 2 i

N crit
√

V
δ z

+ O (V − 3 / 2 ), ( A 3 4)

w hi c h alr e a d y st arts  wit h or d er 1 /
√

V .  T h er ef or e,  w e o nl y n e e d t o g o t o or d er 1/
√

V i n all ot h er f a ct ors i n M 1 li k e i n
M 0 .
T h e si n gl e t er ms  w e n e e d t o e x p a n d ar e [ n ot e t h at 1 − 2 f = O (1 /

√
V ) or s m all er]

(1 + z )V − N = 2 (1 − n )V 1 + i
1

2
√

V
δ z

(1 − n )V

= 2 (1 − n )V e x p i

√
V (1 − n )

2
δ z +

1 − n

8
δ z 2 1 − i

1 − n

2 4
√

V
δ z 3 + O (V − 1 ) , ( A 3 5)

z − V + V A − 1 = 1 + i
δ z
√

V

− (1 + 1 − 2 f )V / 2 − 1

= e x p − i

√
V

2
δ z −

1

4
(2 i

√
V (1 − 2 f ) δ z + δ z 2 )

× 1 − i
δ z
√

V
−

1 − 2 f

4
δ z 2 + i

δ z 3

6
+ O (V − 1 ) , ( A 3 6)

(1 − x )N crit = 1 −
δ x
√

V

n (1 − 1 + 2 f )V / 2 + N crit

= e x p −
n
√

V

2
δ x −

N crit
√

V
−

√
V (1 − 2 f )n

2
δ x −

n

4
δ x 2

× 1 −
1

2
√

V

N crit
√

V
−

√
V (1 − 2 f )n

2
δ x 2 −

n

6
√

V
δ x 3 + O (V − 1 ) , ( A 3 7)

a n d

(x + z )N − N crit − j = 1 +
δ x + iδ z

√
V

n (1 + 1 − 2 f )V / 2 − N crit − j

= e x p
n
√

V

2
−

N crit
√

V
+

√
V (1 − 2 f )n

2
( δ x + iδ z ) −

n

4
( δ x + iδ z )2

× 1 −
j

√
V

( δ x + iδ z ) +
N crit

2 V
−

(1 − 2 f )n

4
( δ x + iδ z )2

+
n

6
√

V
( δ x + iδ z )3 + O (V − 1 ) , ( A 3 8)
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wit h j = 1, 2.  A d diti o n all y,  w e e x p a n d t h e f a ct ori al pr ef a ct ors usi n g Stirli n g’s f or m ul a,

V A ! (V − V A )! N !

N crit ! (N − N crit − 1 )! V !

=
2 (n − 1 )V (1 − 1 + 2 f )(1 − 1 + 2 f )V / 2

[ 1 − 1 + 2 f + 2 N crit /( n V )]n (1 − 1 + 2 f )V / 2 + N crit

×
(1 + 1 − 2 f )(1 + 1 − 2 f )V / 2

[ 1 + 1 − 2 f − 2 N crit /( n V )]n (1 + 1 − 2 f )V / 2 − N crit

× 1 + 1 − 2 f −
2 N crit

n V

V
√

n

2
[ 1 + O (V − 1 )]

= 2 (n − 1 )V V
√

n

2
e x p

V

2
(1 − 2 f )2 −

(V (1 − 2 f )n − 2 N crit )
2

2 n V

× 1 + (1 − 2 f ) −
2 N crit

V
+ O (V − 1 ) . ( A 3 9)

C oll e cti n g all o ur pr e vi o us r es ults, a n d i nt e gr ati n g o v er δ x ∈ R + a n d δ z ∈ R ,  w e fi n d t h at

M 0 =
1

2
erf c

2

n (1 − n )V
N crit −

1
√

2 π n (1 − n )V
e x p −

2 N 2
crit

n (1 − n )V
+ O (V − 1 ) ( A 4 0)

a n d

M 1 =
(1 − n )n + 2 N crit / V

√
8 π ( 1 − n )n V

e x p −
2 N 2

crit

n (1 − n )V
+ O (V − 3 / 2 ). ( A 4 1)

T h es e t w o e q u ati o ns ar e o ur s e c o n d i n gr e di e nt. I n p arti c ul ar,  w h e n c o m bi ni n g t h es e  wit h  E q. ( A 1 2),  w e fi n d t h at

N

N A = N crit + 1

d A (N A )d B (N − N A )

d N
l n

d B (N − N A )

d A (N A )

= − V (1 − 2 f )[n l n(n ) + (1 − n ) l n(1 − n )]

×
1

2
erf c

2

n (1 − n )V
N crit −

1
√

2 π n (1 − n )V
e x p −

2 N 2
crit

n (1 − n )V

+
√

V l n
n

1 − n

(1 − n )n + 2 N crit / V
√

2 π ( 1 − n )n
e x p −

2 N 2
crit

n (1 − n )V
+ o (1 ), ( A 4 2)

w hi c h is o ur s e c o n d i nt er m e di at e r es ult.  As o n e c a n r e a dil y c h e c k, t his t er m st arts at  m ost  wit h or d er
√

V as 1 − 2 f is at
m ost of or d er 1 /

√
V i n t h e pr es e nt c as e.  A d diti o n all y, it  will c o ntri b ut e or d er- o n e t er ms.

d.  A v e r a g e o v e r di m e nsi o n r ati os

We n o w t ur n t o e v al u at e s u m ( A 6).  We n e e d t o e x p a n d t h e a v er a g e

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N
mi n {d A (N A ) /d B (N − N A ), d B (N − N A ) /d A (N A )}

=

N crit

N A = 0

d 2
A (N A )

d N
+

mi n (N ,V A )

N A = N crit + 1

d 2
B (N − N A )

d N
. ( A 4 3)

F or t h at p ur p os e, it is p ar a m o u nt t o t a k e t h e c orr e ct b o u n ds of t h e s u m mi n g i n d e x as eit h er d B (N − N A ) or d A (N A ) ar e
c a n c el e d i n t h e  w ei g ht N A = d A (N A )d B (N − N A ) /d N b y t h e o bs er v a bl e  mi n {d A (N A ) /d B (N − N A ), d B (N − N A ) /d A (N A )}.
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N ot e t h at, i n  E q. ( A 2 1), t h e  w ei g ht N A all o w e d us t o e xt e n d t h e s u m fr o m N A = 0 t o N A = N i nst e a d of N A = mi n (N , V A ).
T h e  w ei g ht N A

i m pl e m e nt e d t h e c orr e ct t er mi n al.

We n e e d t o u n d erst a n d  w h er e d A (N A ) a n d d B (N − N A ) b e c o m e  m a xi m al.  T his is i n d e e d gi v e n f or N̄ (1 )
A = V A / 2 = f V/ 2

f or d A (N A ) a n d N̄ (2 )
A = N − (V − V A ) /2 = (2 n − 1 + f )V / 2 f or d B (N − N A ) b e c a us e b ot h ar e bi n o mi al  w ei g hts  w h os e

m a xi m u m is al w a ys at t h e c e nt er of t h e distri b uti o n.
T o s e e  w hi c h of t h e t w o di m e nsi o ns is l ar g est,  w e t a k e t h eir r ati o a n d e x p a n d i n l ar g e V :

d A ( N̄ (1 )
A )

d B (N − N̄ (2 )
A )

=
V A !

(V − V A )!

[(V − V A ) /2]!

(V A / 2 )!

2

=
(f V)!

[(1 − f )V ]!

[(1 − f )V / 2]!

(f V/ 2 )!

2

=
1 − f

f
2 (2 f − 1 )V [ 1 + O (V − 1 )]. ( A 4 4)

H e n c e, f or s uit a bl y l ar g e V , it is al w a ys d A ( N̄ (1 )
A ) ≤ d B (N − N̄ (2 )

A ) b e c a us e f ≤ 1
2
.  N ot e t h at  w e c o m p ar e t h e  m a xi m u ms of

t h e t w o di m e nsi o ns at di ff er e nt N A a n d n ot at t h e s a m e o n e.  H o w e v er, t h e r ati o of t h e t w o di m e nsi o ns at t h e s a m e N A = N̄ (2 )
A

will al w a ys b e t h e s m all er o n e, i. e., d A ( N̄ (2 )
A ) ≤ d A ( N̄ (1 )

A ) ≤ d B (N − N̄ (2 )
A ) [t h e first i n e q u alit y f oll o ws fr o m t h e f a ct t h at t h e

m a xi m u m of d A (N A ) is a c hi e v e d at N̄ (1 )
A ].  H e n c e, it is cl e ar t h at N̄ (2 )

A ≤ N crit . I n p arti c ul ar, t h e  m a xi m u m of d 2
B (N − N A ) /d N

c a n n ot b e a c hi e v e d at N̄ (2 )
A b ut is o nl y gi v e n at t h e l o w er t er mi n al N A = N crit + 1. Si n c e d 2

B (N − N A ) /d N < N A f or N A ≥

N crit , t h e s e c o n d s u m c a n o nl y c o ntri b ut e  w h e n N crit h a s a dist a n c e of or d er
√

V t o t h e  m a xi m u m n̄ A V = nf V of N A . A s w e

h a v e s e e n, t his is o nl y t h e c as e  w h e n 1 − 2 f is of or d er 1/
√

V or l ess a n d 1 − 2 n
√

V (1 − 2 f ).
L et us first c o nsi d er t h e c as e 1 − 2 f V − 1 / 2 a s it is still u n cl e ar  w h et h er s u m ( A 4 3) yi el ds a n yt hi n g of or d er o n e i n

t his c as e.  W h e n N A ≤ N crit ,  w e h a v e, f or t h e first p art of t h e s u m,

d 2
A (N A )

d N
<

d A (N A )d B (N − N A )

d N
= N A . ( A 4 5)

T his  m e a ns t h at d 2
A (N A ) /d N i s e x p o n e nti all y s u p pr ess e d  w h e n N A h as a dist a n c e l ar g er t h a n or d er

√
V t o t h e  m a xi m u m

n̄ A V = nf V of N A
.  T h e  m a xi m u m N̄ (1 )

A = f V/ 2 of d A (N A ) is e vi d e ntl y f ar a w a y  w h e n n is n ot cl os e t o 1
2
.  W h e n e x p a n di n g

d 2
A (N A ) /d N a b o ut N A = nf V + δ n A V wit h δ n A of or d er 1 /

√
V , t h e e x p a nsi o n u p t o or d er o n e is

d 2
A (N A )

d N
=

1

2 π V n (1 − n )f 2

1 − n

n

2 V δ n A

[(1 − n )1 − n n n ]V (1 − 2 f )

× e x p −
V δ n 2

A

n (1 − n )f
[ 1 + O (V − 1 / 2 )]. ( A 4 6)

Si n c e f , n ∈ (0, 1
2
], t h e l e a di n g t er m i n V e x p o n e nti all y s u p pr ess es all s u m m a n ds if 1 − 2 f V − 1 / 2 . Si mil arl y,  w e h a v e a n

e x p o n e nti al s u p pr essi o n of d 2
B (N − N A ) /d N < d A (N A )d B (N − N A ) /d N = N A f or a n y N A > N crit b e c a us e t h e n n̄ A V = nf V

is c ert ai nl y f urt h er a w a y t h a n a dist a n c e
√

V fr o m N A .  T h er ef or e, t h e s e c o n d p art ( A 6) of t h e e nt a n gl e m e nt e ntr o p y d o es
n ot c o ntri b ut e f or 1 − 2 f V − 1 / 2 i n t h e t h er m o d y n a mi c li mit.

W h e n 1 − 2 f = O (V − 1 / 2 ), t h e l e a di n g t er m i n  E q. ( A 4 6) sli g htl y s hifts t h e  m a xi m u m of t h e s u m m a n ds, as  w e h a v e s e e n
f or N crit .  A ct u all y, N crit ,  w hi c h is (nf + δ n crit )V wit h  E q. ( A 2 0) i n t his s c ali n g,  will b e t h e  m a xi m u m si n c e (1 − n ) /n ≥ 1
f or n ≤ 1

2
, s u c h t h at,  w h e n e v er N crit / V − n A = δ n crit − δ n A i s l ar g er t h a n or d er 1/ V , t h e r ati o d 2

A (N A ) /d N will a g ai n b e

e x p o n e nti all y s u p pr ess e d.  Als o, f or d 2
B (N − N A ) /d N , t h e  m a xi m u m li es at N crit w h e n N A > N crit , as  w e h a v e s e e n t h at

t h e  m a xi m u m N̄ (2 )
A < N crit a n d d B (N − N A ) is  m o n ot o n o usl y d e cr e asi n g f or N A > N̄ (2 )

A . Its e x p a nsi o n a b o ut N A = (nf +

0 3 0 2 0 1- 4 9
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δ n A )V is e q u al t o

d 2
B (N A )

d N
=

1

2 π V n (1 − n )(1 − f )2

n

1 − n

2 V δ n A

[(1 − n )1 − n n n ]V (2 f − 1 )

× e x p −
V δ n 2

A

n (1 − n )(1 − f )
[ 1 + O (V − 1 / 2 )]. ( A 4 7)

L et us tr y t o si m plif y b ot h e x p a nsi o ns ( A 4 6) a n d ( A 4 7) f urt h er.  We k n o w t h at t h e y ar e o nl y v ali d  w h e n N crit h a s a dist a n c e
of or d er

√
V t o n̄ A V = nf V . I n  A p p e n di x A 1 b ,  w e s h o w e d t h at t his is o nl y t h e c as e  w h e n

√
V (1 − 2 f ) is  m a xi m all y of

or d er 1 − 2 n .  H e n c e, 1 − 2 f m ust b e  m a xi m all y of or d er 1 /
√

V i n  w hi c h  w e c a n e x p a n d.  H o w e v er, t h er e ar e t w o c as es t o
dis c uss i n t h e s c ali n g of t h e v ari a bl e n d e p e n di n g o n t h e e x a ct s c ali n g of 1 − 2 f .

W h e n 1 − 2 f = O (V − 1 / 2 ),  w e h a v e alr e a d y  m e nti o n e d t h at N A t a k es its  m a xi m u m at N crit = nf + δ n crit )V ,  w hi c h
is t h e l ar g est i nt e g er t h at is s m all er t h a n or e q u al t o (nf + δ n crit )V = (nf − ( 1

2
− f ) l n[n n (1 − n )1 − n ]/ l n[(1 − n ) /n ])V +

o (1 ); s e e  E q. ( A 2 0).  T his h ol ds f or b ot h s u ms ( A 4 3).  O n e c a n r e a dil y s e e fr o m t h e  E qs. ( A 4 6) a n d ( A 4 7) t h at o nl y
s u m m a n ds  w h er e |N A − N crit | i s of or d er o n e ar e of t h e s a m e or d er as t h e  m a xi m u m  w hil e t h e ot h er t er ms ar e s u p pr ess e d.
T h us,  w e s u bstit ut e N A = N crit − j = nf V + N crit − j f or N A ≤ N crit a n d N A = N crit + 1 + j = nf V + N crit + 1 + j f or
N A > N crit wit h j = 0, 1, 2, . . . a n d

N crit = N crit − nf V = δ n crit V + O (1 ) = −
V (1 − 2 f ) l n[n n (1 − n )1 − n ]

2 l n[ (1 − n ) /n ]
+ O (1 ), ( A 4 8)

w h er e t h e err or is o nl y a n u m b er i n [ 0, 1 ). S u bstit uti n g e x p a nsi o ns ( A 4 6) a n d ( A 4 7) i nt o  E q. ( A 4 3),  w e fi n d t h at

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N
mi n {d A (N A ) /d B (N − N A ), d B (N − N A ) /d A (N A )}

=

∞

j = 0

1

2 π V n (1 − n )f 2

1 − n

n

2 N crit − 2 δ n crit V − 2 j

e x p −
( N crit − j )2

n (1 − n )f V

+

∞

j = 0

1

2 π V n (1 − n )(1 − f )2

n

1 − n

2 N crit − 2 δ n crit V + 2 + 2 j

× e x p −
( N crit + 1 + j )2

n (1 − n )(1 − f )V
+ O (V − 1 ), ( A 4 9)

si n c e i n t h e first s u m it is δ n a V = N crit − j a n d i n t h e s e c o n d s u m it is δ n A V = N crit + 1 + j .  We h a v e e xt e n d e d t h e
s u m t o ∞ b e c a us e  w e o nl y a d d e x p o n e nti all y s u p pr ess e d t er ms t o it, a n d  w e h a v e us e d t h e e x pr essi o n of δ n crit fr o m
E q. ( A 2 0). T h e j d e p e n d e n c e i n t h e  G a ussi a n p art of  E q. ( A 4 9) c a n b e dr o p p e d si n c e j /

√
V is of or d er 1/

√
V ; n ot e t h at

N crit = O (
√

V ).  Usi n g t h e f a ct t h at t h e g e o m etri c s eri es c o n v er g e b e c a us e 1 − 2 n ∈ (0, 1 ) is of or d er o n e a n d all t h e
s u m m a n ds ar e of or d er 1 /

√
V d u e t o t h e pr ef a ct or, it b e c o m es i m m e di at e t h at s u m ( A 6) still v a nis h es; alt h o u g h it n o w

v a nis h es li k e 1 /
√

V .
A si mil ar ar g u m e nt h ol ds  w h e n 1 − 2 n 1 /

√
V is of or d er o n e e v e n if (1 − 2 f )

√
V is  m a xi m all y of or d er 1 − 2 n

a n d, h e n c e, r a pi dl y v a nis hi n g. I n t his c as e t h e v ari a bl e x = (1 − 2 n )j b e c o m es q u asi c o nti n u o us,  m e a ni n g t h at j will
b e of or d er 1 /( 1 − 2 n ).  We n e e d t o s c al e j wit h 1 − 2 n si n c e t h e q u a dr ati c p art fr o m t h e  G a ussi a n, n a m el y j /

√
V =

x / [
√

V (1 − 2 n )] 1.  T his yi el ds a n i nt e gr al o v er a n e x p o n e nti al f u n cti o n s h o wi n g t h at b ot h s u ms i n  E q. ( A 4 3) v a nis h
li k e 1/ [

√
V (1 − 2 n )]. It is c ert ai nl y  m u c h  w e a k er, b ut it is v a nis hi n g n o n et h el ess.

T h er ef or e, o nl y i n t h e c as e (1 − 2 f )
√

V 1 − 2 n 1 c a n s u m ( A 6) c o ntri b ut e t o t h e e nt a n gl e m e nt e ntr o p y of or d er
o n e a n d a b o v e.  T h e t w o e x p a nsi o ns ( A 4 6) a n d ( A 4 7) si m plif y i n t his c as e t o

d 2
A (N A )

d N
= 2 V (2 f − 1 ) 8

π V
e x p[ − 8 V δ n 2

A + 4 V (1 − 2 n ) δ n A ][ 1 + O (V − 1 / 2 )],

d 2
B (N A )

d N
= 2 V (1 − 2 f ) 8

π V
e x p[ − 8 V δ n 2

A − 4 V (1 − 2 n ) δ n A ][ 1 + O (V − 1 / 2 )].

( A 5 0)
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T h e v ari a bl e δ n A b e c o m es q u asi c o nti n u o us as it is of or d er 1 /
√

V ,  m e a ni n g t h at t h e s u m is r e pl a c e d b y a n i nt e gr al.  T h us,
t h e fi n al c o m p ut ati o n of s u m ( A 4 3) is

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N
mi n {d A (N A ) /d B (N − N A ), d B (N − N A ) /d A (N A )}

= 2 V (2 f − 1 )
l n(2 )(1 − 2 f ) /[ 4(1 − 2 n )]

− ∞

4
√

V d δ n A
√

2 π
e x p[ − 8 V δ n 2

A + 4 V (1 − 2 n ) δ n A ]

+ 2 V (1 − 2 f )
∞

l n(2 )(1 − 2 f ) /[ 4(1 − 2 n )]

4
√

V d δ n A
√

2 π
e x p[ − 8 V δ n 2

A − 4 V (1 − 2 n ) δ n A ] + o (1 )

= 2 V (2 f − 1 )− 1 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 − l n(2 )(1 − 2 f )
√

2 (1 − 2 n )

+ 2 V (1 − 2 f )− 1 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 + l n(2 )(1 − 2 f )
√

2 (1 − 2 n )
+ o (1 ), ( A 5 1)

w h er e  w e h a v e  m a d e us e of t h e c o m pl e m e nt ar y err or f u n cti o n.
Als o, i n t his f or m ul a o n e c a n r e a dil y c h e c k t h e v ari o us as y m pt oti c li mits. If eit h er 1 − 2 n 1 /

√
V or 1 − 2 f 1 / V ,

t h e t er m v a nis h es, as alr e a d y p oi nt e d o ut. F or t h e t hr e e c as es dis c uss e d i n  A p p e n di x A 1 b , t h e f oll o wi n g c o n cl usi o ns
h ol d.

C as e 1: (1 − 2 n )
√

V (1 − 2 f ) = O (1 /
√

V ). It h ol ds t h at

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N
mi n

d A (N A )

d B (N − N A )
,
d B (N − N A )

d A (N A )

= 2 V (2 f − 1 ) + o (1 ). ( A 5 2)

C as e 2: (1 − 2 n ) = O [
√

V (1 − 2 f )] = O (1 /
√

V ).  We n e e d t o k e e p t h e r es ult as is.
C as e 3:  O (1 /

√
V ) = (1 − 2 n )

√
V (1 − 2 f ).  We o bt ai n

mi n (N ,V A )

N A = 0

d A (N A )d B (N − N A )

d N
mi n

d A (N A )

d B (N − N A )
,
d B (N − N A )

d A (N A )

= e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )
√

2
+ o (1 ). ( A 5 3)

T h e t hir d c as e c o v ers p art of t h e s e c o n d c as e a n d t h e t hir d c as e i n  A p p e n di x A 1 b . I n t h e first c as e, t h e e x p o n e nti al d e c a y
is n ot al w a ys c o m pl et el y c orr e ct as  w e h a v e s e e n i n t h e dis c ussi o n a b o v e.  T h e r e as o n is t h at t h e err or t er m still c o nt ai ns
al g e br ai c d e c a yi n g t er ms t h at  will t a k e o v er.

e.  R es ulti n g f o r m ul a

C oll e cti n g all i nt er m e di at e r es ults ( A 2 7), ( A 4 2), a n d ( A 5 1),  w e arri v e at

S A N = − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f

2
+

l n(1 − f )

2

− V (1 − 2 f ) l n[n n (1 − n )1 − n ]

×
1

2
erf c

2

n (1 − n )V
N crit −

1
√

2 π n (1 − n )V
e x p −

2 N 2
crit

n (1 − n )V
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+
√

V l n
n

1 − n

(1 − n )n + 2 N crit / V
√

2 π ( 1 − n )n
e x p −

2 N 2
crit

n (1 − n )V

− 2 V (2 f − 1 )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 − l n(2 )(1 − 2 f )
√

2 (1 − 2 n )

− 2 V (1 − 2 f )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 + l n(2 )(1 − 2 f )
√

2 (1 − 2 n )
+ o (1 ). ( A 5 4)

W h at r e m ai ns t o b e dis c uss e d is t h e p ar a m et er

N crit = −
V (1 − 2 f ) l n[n n (1 − n )1 − n ]

2 l n[ (1 − n ) /n ]
+ O (1 ). ( A 5 5)

T w o t er ms i n  E q. ( A 5 4) c a n b e c o m bi n e d  wit h t h e h el p of t his e x p a nsi o n, i. e.,

V (1 − 2 f ) l n[n n (1 − n )1 − n ]
√

2 π n (1 − n )V
e x p −

2 N 2
crit

n (1 − n )V

+ l n
n

1 − n

2 N crit
√

2 π ( 1 − n )n V
e x p −

2 N 2
crit

n (1 − n )V

= o (1 ), ( A 5 6)

i m pl yi n g t h at  w e c a n o mit t h es e t w o t er ms.  T his yi el ds t h e si m pli fi c ati o n

S A N = − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f

2
+

l n(1 − f )

2

−
V (1 − 2 f )

2
l n[n n (1 − n )1 − n ] erf c

2

n (1 − n )V
N crit

+
(1 − n )n V

2 π
l n

n

1 − n
e x p −

2 N 2
crit

n (1 − n )V

− 2 V (2 f − 1 )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 − l n(2 )(1 − 2 f )
√

2 (1 − 2 n )

− 2 V (1 − 2 f )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 + l n(2 )(1 − 2 f )
√

2 (1 − 2 n )
+ o (1 ). ( A 5 7)

T h e t w o t er ms i n t h e s e c o n d a n d t hir d li n es c a n gi v e ris e t o a d diti o n al or d er- o n e t er ms fr o m t h e f a ct t h at N crit h a s a n

or d er- o n e dist a n c e t o t h e s m all est i nt e g er.  T o s e e  w h et h er t his is i n d e e d t h e c as e,  w e s plit N crit = N (1 )
crit + N (2 )

crit wit h

N (1 )
crit = −

V (1 − 2 f ) l n[n n (1 − n )1 − n ]

2 l n[ (1 − n ) /n ]
. ( A 5 8)

We n e e d t o e x p a n d

erf c
2

n (1 − n )V
N crit

= erf c
2

n (1 − n )V
N (1 )

crit −
8

π n (1 − n )V
e x p −

2 ( N (1 )
crit )

2

n (1 − n )V
N (2 )

crit + O (V − 1 ) ( A 5 9)
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a n d

e x p −
2 N 2

crit

n (1 − n )V

= e x p −
2 ( N (1 )

crit )
2

n (1 − n )V
−

4 N (1 )
crit

n (1 − n )V
e x p −

2 ( N (1 )
crit )

2

n (1 − n )V
N (2 )

crit + O (V − 1 ). ( A 6 0)

Pl u g gi n g i n N (1 )
crit ,  w e n ot e t h at t h e l e a di n g- or d er c orr e cti o n d u e t o a n o n z er o N (2 )

crit v a nis h es, a n d t h e n e xt or d er is of

or d er 1 /
√

V .
T h e n c e, t h e fi n al r es ult f or t h e a v er a g e e nt a n gl e m e nt e ntr o p y r e a ds

S A N = − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f

2
+

l n(1 − f )

2

−
V (1 − 2 f )

2
l n[n n (1 − n )1 − n ] erf c

2

n (1 − n )V
N (1 )

crit

+
(1 − n )n V

2 π
l n

n

1 − n
e x p −

2 ( N (1 )
crit )

2

n (1 − n )V

− 2 V (2 f − 1 )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 − l n(2 )(1 − 2 f )
√

2 (1 − 2 n )

− 2 V (1 − 2 f )− 2 e x p
V (1 − 2 n )2

2
erf c

√
V

(1 − 2 n )2 + l n(2 )(1 − 2 f )
√

2 (1 − 2 n )
+ o (1 ). ( A 6 1)

W h e n n > 1
2

a n d/ or f > 1
2
,  w e n e e d t o a p pl y t h e s y m m etri es a n d r e fl e ct (f , n ) ↔ (1 − f , n ) ↔ (f , 1 − n ) ↔ (1 − f ,

1 − f ).
N ot e t h at t h e r es ult i n  E q. ( A 6 1) n at ur all y h ol ds e v er y w h er e as l o n g as f , n , (1 − n ), (1 − f ) st a y of or d er o n e.  O nl y at

t h es e b o u n d ari es ar e t h er e si g ni fi c a nt d e vi ati o ns.  W h e n, a d diti o n all y, 1 − 2 f a n d/ or 1 − 2 n ar e of or d er o n e, t h e l ast f o ur
t er ms v a nis h n at ur all y as t h e y ar e e x p o n e nti all y s u p pr ess e d t h e n.

At fi x e d f a n d n ,  w e t h er ef or e fi n d t h at

S A N = − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f + l n(1 − f )

2

−
n (1 − n )

2 π
l n

1 − n

n
δ f , 1/ 2

√
V −

1

2
δ f , 1/ 2 δ n , 1/ 2 + o (1 ), ( A 6 2)

as alr e a d y d eri v e d i n t h e  m ai n t e xt.  T h us, t h er e ar e dis c o nti n uiti es at f = 1
2

a n d f = n = 1
2
,  w hi c h c a n b e f urt h er r es ol v e d

wit h t h e h el p of  E q. ( A 6 1), as dis c uss e d n e xt.

f.  R es ol vi n g t h e c riti c al r e gi m es

I n t h e  m ai n t e xt,  w e f o u n d t h at t h e f or m ul a at fi x e d f , n ∈ (0, 1
2
) c o m pris es a d diti o n al t er ms at t h e li n e f = 1

2
a s  w ell

as at t h e  m ulti criti c al p oi nt f = n = 1
2
.  Wit h t h e h el p of  E q. ( A 6 1),  w e c a n r es ol v e t h es e criti c al p oi nts b y c o nsi d eri n g

d o u bl e s c ali n g li mits as f oll o ws:

z o o mi n g i n at f = n =
1

2
: f =

1

2
+

f

V
, n =

1

2
+

n̄
√

V
, ( A 6 3)

z o o mi n g i n at f =
1

2
: f =

1

2
+

f
√

V
. ( A 6 4)

H er e t h e r el e v a nt s c al es (i. e., p o w ers of V ) ar e d et er mi n e d b as e d o n t h e dis c ussi o n i n t h e pr e vi o us s e cti o n.  W h e n c h o osi n g
di ff er e nt d e p e n d e n ci es i n V f or t h e d e vi ati o ns f a n d n̄ , eit h er cr e at e t h e  Kr o n e c k er d elt as i n  E q. ( A 6 2) ( hi g h er p o w ers
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i n V ) or t h e t er ms t a k e t h eir li mit f or v a nis hi n g d e vi ati o ns (l o w er p o w ers i n V ).  A ct u all y, t h e  m ulti criti c al p oi nt f = n = 1
2

i s  m or e s u btl e.  W hil e t h e l ast t w o t er ms i n  E q. ( A 6 1) s c al e li k e t h os e s h o w n i n  E q. ( A 6 3), t h e t w o t er ms i n t h e s e c o n d
li n e of  E q. ( A 6 1) ar e still r es ol v e d  w h e n k e e pi n g

√
V (1 − 2 f ) /(1 − 2 n ) of or d er o n e.  We d o n ot dis c uss t his s u btl et y i n

t h e pr es e nt s u bs e cti o n.
Criti c al li n e at f = 1

2
a n d n < 1

2
. It is i m p ort a nt t o r es ol v e t h e  Kr o n e c k er d elt a a b o ut f = 1

2
f or fi x e d n . I n t his c as e,  w e

n e e d t o e x p a n d  E q. ( A 6 1) wit h f = 1
2

+ f /
√

V ,  w h er e  w e n e e d t o t a k e i nt o a c c o u nt t h e f a ct t h at  E q. ( A 6 1) is o nl y v ali d

f or f < 0 b e c a us e  w e ass u m e d t h at f , n < 1
2

t o d eri v e t his f or m ul a.  T h e l ast t w o t er ms b e c o m e e x p o n e nti all y s u p pr ess e d
a n d c a n b e o mitt e d.  T h us, t h e e x pr essi o n si m pli fi es t o

S A N = −
V

2
[n l n(n ) + (1 − n ) l n(1 − n )] +

√
V [n l n(n ) + (1 − n ) l n(1 − n )]| f | +

1

4
−

l n(2 )

2

−
√

V | f | l n[n n (1 − n )1 − n ] erf c −

√
2 | f | l n[n n (1 − n )1 − n ]

√
n (1 − n )| l n[(1 − n ) /n ]|

+
n (1 − n )

2 π
l n

1 − n

n
e x p −

2 2
f l n2 [n n (1 − n )1 − n ]

(1 − n )n l n2 [(1 − n ) /n ]
. ( A 6 5)

T h e t er ms of t h e first li n e a gr e e  wit h e x p a nsi o n ( A 6 2) ar o u n d f = 1
2

+ f /
√

V ,  w hil e t h e s e c o n d li n e r es ol v es t h e

Kr o n e c k er d elt a d es cri bi n g t h e s u bl e a di n g t er m − b
√

V gi v e n b y

b = | f | l n[n n (1 − n )1 − n ] erf c −

√
2 | f | l n[n n (1 − n )1 − n ]

√
n (1 − n )| l n[(1 − n ) /n ]|

+
n (1 − n )

2 π
l n

1 − n

n
e x p −

2 2
f l n2 [n n (1 − n )1 − n ]

(1 − n )n l n2 [(1 − n ) /n ]
. ( A 6 6)

T his t er m is vis u ali z e d i n Fi g. 6( d) .  B ot h e q u ati o ns a b o v e ar e alr e a d y  writt e n i n s u c h a  w a y t h at t h e y h ol d f or f , n ∈ (0, 1 ),
m e a ni n g t h at o n e c a n als o pl u g i n v al u es  wit h n > 1

2
a n d f > 0.

M ulti criti c al p oi nt at f = n = 1
2
. W h e n e x p a n di n g t h e fi n al r es ult ( A 6 1) a b o ut f = n = 1

2
,  w h er e  w e ass u m e t h at

f = 1
2

+ f / V a n d n = 1
2

+ n̄ /
√

V ,  w e r es ol v e t h e  Kr o n e c k er d elt a at t h e p oi nt f = n = 1
2
; s e e  E q. ( A 6 2).  N o w all

t er ms i n  E q. ( A 6 1) b e c o m e i m p ort a nt a n d n e e d t o b e t a k e n i nt o a c c o u nt:

S A N =
l n(2 )

2
V − 2

n̄ −
2

π
| n̄ | e x p −

2
f l n2 (2 )

2 2
n̄

− | f | l n(2 ) erf
| f | l n(2 )
√

2 | n̄ |

−
1

4
l n 4 − 1 + e 2 2

n̄ 4 f erf c
2 2

n̄ + f l n 2
√

2 | n̄ |
+ 4 − f erf c

2 2
n̄ − f l n 2
√

2 | n̄ |

+ o (1 ). ( A 6 7)

T h e c o nst a nt t er ms of t h e first li n e ar e t h e r es ult of e x p a n di n g hi g h er- or d er t er ms i n n a n d f ar o u n d n = f = 1
2
. T h e

s e c o n d a n d t hir d li n es t h e n c o nt ai n t h e r es ol uti o n of t h e  Kr o n e c k er d elt a at f = n = 1
2

pl us t h e o ffs et (l n 4 − 1 ) /4.  T h e
o ffs et is n ot t h e r es ult of hi g h er- or d er t er ms,  w hi c h is  w h y  w e h a v e i n cl u d e d it i n t h e n e g ati v e t er m − c t h at is of c o nst a nt
or d er i n V .  T his c o nst a nt is gi v e n b y

c =
1

4
l n 4 − 1 + e 2 2

n̄ 4 f erf c
2 2

n̄ + f l n 2
√

2 | n̄ |
+ 4 − f erf c

2 2
n̄ − f l n 2
√

2 | n̄ |
. ( A 6 8)

We pl ott e d t his t er m i n Fi g. 6( e) .  L et us  m e nti o n t h at o nl y t h e l ast t w o t er ms i n t his c o nst a nt cr e at e t h e  Kr o n e c k er d elt a at
f = n = 1

2
; cf. E q. ( A 6 2).
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2.  Wei g ht e d a v e r a g e o v e r s e ct o rs

Fi n all y,  w e t ur n t o t h e a v er a g e o v er di ff er e nt s e ct ors of fi x e d p arti cl e n u m b er N = 0, . . . , V ,  w hi c h is  w ei g ht e d b y
e x p[ − w N ].  E x pli citl y, t his  m e a ns t h at  w e n e e d t o c o m p ut e

S A w =
1

(1 + e − w ) V

V

N = 0

V !

N ! (V − N )!
e − w N S A N

=
1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
e − w N S A N

+
1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
e w (N − V ) S A N . ( A 6 9)

T h e s e c o n d i d e ntit y f oll o ws fr o m t h e p arti cl e- h ol e s y m m etr y S A N = S A V − N . It is us ef ul t o  writ e t h e s u m i n t his f or m
si n c e  E q. ( A 6 1) is o nl y a p pli c a bl e f or N = n V < V / 2. It b e c o m es s y m m etri c i n n ↔ 1 − n w h e n r e pl a ci n g all t er ms
i n l n[n /( 1 − n )] b y −| l n[(1 − n ) /n ]| a n d i n t h e l ast t w o t er ms (1 − 2 n ) → | 1 − 2 n |.  All t h e ot h er t er ms ar e alr e a d y
s y m m etri c.  B e c a us e of t his s y m m etr y,  w e  m a y als o ass u m e t h at w is p ositi v e,  m e a ni n g t h at t h e a v er a g e p arti cl e n u m b er
is s m all er t h a n 1

2
.

T h e a v er a g e of t h e first f o ur t er ms i n  E q. ( A 6 1) d o es n ot i n v ol v e a n e x p o n e nti al b e h a vi or i n n .  T h us, it is s uit a bl e t o
e x p a n d n a b o ut its  m e a n,  w hi c h is n = N / V = 1 /( 1 + e w ) + δ n i n t h e first s u m a n d n = N / V = 1 /( 1 + e − w ) + δ n
i n t h e s e c o n d o n e,  wit h δ n = O (1 /

√
V ).  T h e or d er of t his d e vi ati o n t ells us  w h e n t h e s e c o n d s u m pl a ys a r ol e, n a m el y,

w h e n w = O (1 /
√

V ).  Ot h er wis e, it is e x p o n e nti all y s u p pr ess e d d u e t o t h e  G a ussi a n t ail of t h e l ar g e-V a p pr o xi m ati o n
of t h e bi n o mi al  w ei g ht. I n d e e d, t his  G a ussi a n  w o ul d als o e x p o n e nti all y s u p pr ess t h e l ast t w o t er ms i n  E q. ( A 6 1) w h e n
w 1 /

√
V , as t h os e o nl y c o ntri b ut e  w h e n 1 − 2 n is of or d er 1/

√
V or s m all er.

H e n c e, f or w 1 /
√

V , t h e a v er a g e e nt a n gl e m e nt e ntr o p y b e c o m es

S A w =
1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
e − w N S A N + o (1 )

=
1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
e − w N

× − Vf [n l n(n ) + (1 − n ) l n(1 − n )] +
f

2
+

l n(1 − f )

2

−
V (1 − 2 f )

2
l n[n n (1 − n )1 − n ] erf c

2

n (1 − n )V
N (1 )

crit

+
(1 − n )n V

2 π
l n

n

1 − n
e x p −

2 ( N (1 )
crit )

2

n (1 − n )V
+ o (1 )

= S A N = N̄ −
f

2 V n (1 − n )

1

(1 + e − w ) V

V

N = 0

V !

N ! (V − N )!
e − w N (N − N )2 + o (1 )

= S A N = N̄ −
f

2
+ o (1 ) ( A 7 0)

wit h N̄ = 1 /( 1 + e w ). T h e − f / 2 r es ults fr o m t h e v er y first t er m i n  E q. ( A 6 1), as it is t h e a v er a g e of t h e s e c o n d- or d er
t er m i n t h e  T a yl or e x p a nsi o n i n (n − n ).  T h e a v er a g es of t h e first- or d er t er ms v a nis h b e c a us e of t h e c e nt er e d  G a ussi a n
a p pr o xi m ati o n of t h e bi n o mi al  w ei g ht.  T his is als o  w h y t h e ot h er t er ms d o n ot c o ntri b ut e as t h e s e c o n d- or d er  T a yl or t er ms
will b e of or d er O (1 /

√
V ) or s m all er.

T h e c al c ul ati o n is  m or e c o m pli c at e d f or w = O (1 /
√

V ) or s m all er.  T h e n N is c o n c e ntr at e d a b o ut V / 2 a n d its di ff er e n c e
is of or d er

√
V .  T h e q u esti o n is  w h er e  w e g et n e w c o ntri b uti o ns i n  E q. ( A 6 1).  C ert ai nl y, t his c a n o nl y h a p p e n  w h e n 1 − 2 f
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is of or d er 1/ V or s m all er as ot h er wis e t h e  m a xi m u m is al w a ys s u ffi ci e ntl y a w a y fr o m t h e  m ulti criti c al p oi nt f = n = 1
2
.

We g o st e p b y st e p t hr o u g h t h e si n gl e t er ms.
T h e t er ms i n t h e first li n e of  E q. ( A 6 1) ar e s y m m etri c a n d s m o ot h a b o ut n = 1

2
, s o t h at t h e  T a yl or e x p a nsi o n a n d a v er a g e

will b e e x a ctl y t h e s a m e as i n t h e c as e f or w 1 /
√

V .  T h e o nl y t hi n g t o c o nsi d er is t h at N = N̄ = V n̄ i s n ot e x a ctl y at
V / 2, b ut 1

2
− ¯n is of or d er 1/

√
V .  T h er ef or e,  w e h a v e a n e x p a nsi o n a b o ut N = V / 2, yi el di n g

S A N = N̄ = S A N = V / 2 − V n̄ −
1

2

2

+ O (V − 1 ). ( A 7 1)

T h e t er m i n t h e s e c o n d li n e of  E q. ( A 6 1) is of or d er V (1 − 2 f ) = O (1 ) or s m all er, s o t h at a n y  T a yl or e x p a nsi o n a b o ut
n = 1

2
l e a ds t o t er ms t h at ar e v a nis hi n g i n t h e l ar g e-V li mit.  T h e t er m i n t h e t hir d li n e of  E q. ( A 6 1) yi el ds a n a d diti o n al

i nt e gr al as t h e l e a di n g or d er v a nis h es a n d t h e first- or d er  T a yl or e x p a nsi o n gi v es a t er m of or d er o n e.  T his i nt e gr al is

(1 − n )n V

2 π
l n

n

1 − n
e x p −

2 ( N (1 )
crit )

2

n (1 − n )V N

= 4 e − V w 2 / 8
∞

0

d δ n
√

2 π
e x p[ − 2 δ n 2 ] c os h[

√
V w δ n ]

2

π
δ n e x p −

(l n 2)2 V 2 (1 − 2 f )2

8 δ n 2

+ O
1

√
V

=
4

π
e − V w 2 / 8

∞

0

d δ n e x p − 2 δ n 2 −
(l n 2)2 V 2 (1 − 2 f )2

8 δ n 2
c os h[

√
V w δ n ]δ n + O

1
√

V
, ( A 7 2)

b e c a us e N (1 )
crit = l n(2 )V 3 / 2 (1 − 2 f ) /(8 δ n ) wit h n = N / V = 1

2
− δ n /

√
V .  We h a v e n ot f o u n d a  w a y t o f urt h er si m plif y

t his i nt e gr al, s o  w e h a v e e v al u at e d it n u m eri c all y.
Als o, f or t h e t w o l ast t er ms i n  E q. ( A 6 1),  w e c a n g o o v er t o a  G a ussi a n i nt e gr al as a n y c orr e cti o n  will b e of v a nis hi n g

or d er i n V → ∞ as t h e t w o t er ms ar e of or d er o n e or s m all er.  H e n c e,  w e h a v e

1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
(e − w N + e w (N − V ) )2 V (2 f − 1 )− 2 e x p

V (1 − 2 n )2

2

× erf c
√

V
(1 − 2 n )2 − l n(2 )(1 − 2 f )

√
2 (1 − 2 n )

= 2 V (2 f − 1 ) e − V w 2 / 8
∞

0

d δ n
√

2 π
c os h[

√
V w δ n ] erf c

4 δ n 2 − l n(2 )V (1 − 2 f )
√

8 δ n
+ O

1
√

V
( A 7 3)

a n d, si mil arl y,

1

(1 + e − w ) V

V / 2

N = 0

V !

N ! (V − N )!
(e − w N + e w (N − V ) )2 V (1 − 2 f )− 2 e x p

V (1 − 2 n )2

2

× erf c
√

V
(1 − 2 n )2 + l n(2 )(1 − 2 f )

√
2 (1 − 2 n )

= 2 V (1 − 2 f ) e − V w 2 / 8
∞

0

d δ n
√

2 π
c os h[

√
V w δ n ] erf c

4 δ n 2 + l n(2 )V (1 − 2 f )
√

8 δ n
+ O

1
√

V
. ( A 7 4)

We e v al u at e t h es e i nt e gr als n u m eri c all y as a n a n al yti c al tr e at m e nt s e e ms t o b e o ut of r e a c h.
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I n s u m m ar y, t h e e nt a n gl e m e nt e ntr o p y a v er a g e d o v er t h e p arti cl e n u m b er N at w = O (1 /
√

V ) or s m all er a n d f or 1 −
2 f = O (V − 1 ) i s

S A w = S A N = V / 2 −
V (1 − 2 n̄ ) 2

4
−

1

4

−
4

π
e − V w 2 / 8

∞

0

d δ n e x p − 2 δ n 2 −
(l n 2)2 V 2 (1 − 2 f )2

8 δ n 2
c os h[

√
V w δ n ]δ n

− 2 V (2 f − 1 ) e − V w 2 / 8
∞

0

d δ n
√

2 π
c os h[

√
V w δ n ] erf c

4 δ n 2 − l n(2 )V (1 − 2 f )
√

8 δ n

− 2 V (1 − 2 f ) e − V w 2 / 8
∞

0

d δ n
√

2 π
c os h[

√
V w δ n ] erf c

4 δ n 2 + l n(2 )V (1 − 2 f )
√

8 δ n
+ O

1
√

V
. ( A 7 5)

L et us str ess t h at

S A N = V / 2 = l n(2 )Vf +
1

4
−

l n(2 )

2
+ l n(2 )V (1 − 2 f ) − 2 V (2 f − 1 )− 1 + O

1
√

V

= l n(2 )V (1 − f ) +
1 − l n(4 )

4
− 2 V (2 f − 1 )− 1 + O

1
√

V
( A 7 6)

f or f ≤ 1
2
.

At l ast,  w e  w o ul d li k e t o c o nsi d er t h e p arti c ul ar c as e f = 1
2

a n d w = 0 t h at c orr es p o n ds t o a  m ulti criti c al p oi nt, t o o. I n
t his c as e  E q. ( A 7 5) si m pli fi es dr asti c all y. I n d e e d, t h e l ast t w o i nt e gr als ar e b ot h e q u al t o

∞

0

d δ n
√

2 π
erf c[

√
2 δ n ] =

1

2 π
. ( A 7 7)

Als o, t h e t hir d, r e m ai ni n g i nt e gr al c a n b e c arri e d o ut as

4

π

∞

0

d δ n e − 2 δ n 2
δ n =

1

π
. ( A 7 8)

C oll e cti n g e v er yt hi n g  w e fi n d t h at, at w = O (1 /
√

V ) or s m all er,

S A w = S A N = V / 2 −
1

4
−

2

π
. ( A 7 9)

T his r es ult c a n b e c o m bi n e d  wit h  E q. ( A 7 1) t o g et  E q. ( 6 7),  w h e n c h o osi n g f a n d n̄ of or d er o n e a n d fi x e d  wit h o ut d o u bl e
s c ali n g.  T h e n, t h e l ast t er m − 2 / π o nl y a p p e ars  w h e n f = ¯n = 1

2
, r es ulti n g i n a  Kr o n e c k er d elt a.

A P P E N DI X  B: I N T E G R A TI O N  F O R M U L A  F O R J A C O BI  P O L Y N O MI A L S

W h e n c o nsi d eri n g t h e a v er a g e a n d t h e v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y f or e ns e m bl es of f er mi o ni c  G a ussi a n st at es,
w e r o uti n el y e n c o u nt er e x pr essi o ns i n v ol vi n g i nt e gr als of J a c o bi p ol y n o mi als gi v e n b y

I
( α1 ,β 1 ,α 2 ,β 2 )
kl =

d

d

1

− 1

(1 − x )α 2 + (1 + x )β 2 P ( α1 ,β 1 )
k P ( α2 ,β 2 )

l
→ 1

. (B 1 )

I n or d er t o e v al u at e t his e x pr essi o n,  w e  writ e t h e J a c o bi p ol y n o mi als usi n g o n e of t h eir t w o r e pr es e nt ati o ns:

P ( α1 ,β 1 )
k (x ) =

k

m = 0

( α 1 + k )!

k ! ( α1 + β 1 + k )!

k
m

( α1 + β 1 + k + m )!

( α1 + m )!
−

1

2

m

= X
( α1 ,β 1 ,k )
m

(1 − x )m ( B 2)
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f or t h e s u m r e pr es e nt ati o n a n d

P ( α2 ,β 2 )
l (x ) =

(− 1 )l

2 ll!

= Y (l)

1

(1 − x )α 2 (1 + x )β 2
∂ l

x [(1 − x )α 2 + l(1 + x )β 2 + l] (B 3 )

f or t h e  R o dri g u es f or m ul a.  N ot e t h at it is i m p ort a nt t h at (1 − x )α 2 (1 + x )β 2 i n  E q. ( B 1) m at c h es t h os e a p p e ari n g i n

P α 2 ,β 2 )
l (x ).  T h e a p p e ari n g i nt e gr als c a n b e e v al u at e d b y first a n i nt e gr ati o n b y p arts a n d t h e n e x pl oiti n g t h e b et a f u n cti o n

i nt e gr al [ E q. ( 5. 1 2. 1) of  R ef. [1 6 4 ] ],  w hi c h c a n b e i d e nti fi e d  w h e n s u bstit uti n g x = 2 t − 1 a n d t ∈ [ 0, 1],

T α 2 ,β 2 ,m ,l( ) =
1

− 1

(1 − x )m + ∂ l
x [(1 − x )α 2 + l(1 + x )β 2 + l]d x

= 2 α 2 + β 2 + m + + l+ 1 ( α 2 + m + + 1 ) ( β2 + l + 1 ) (m + + 1 )

( α2 + β 2 + m + + l + 2 )

×
1

(m − l + + 1 )
, (B 4 )

w h er e (z ) is t h e g a m m a f u n cti o n.  N ot e t h at t his f u n cti o n h as r e m o v a bl e si n g ul ariti es at i nt e g ers  w h e n m ≤ l − 2 i n t h e
li mit → 1.  W h e n 0 ≤ m ≤ l − 2,  w e c a n us e  E ul er’s r e fl e cti o n f or m ul a [ E q. ( 5. 5. 3) of  R ef. [ 1 6 4 ] ],

(z ) (1 − z ) =
π

si n( π z )

⇐ ⇒
1

(m − l + + 1 )
=

si n π ( m − l + + 1 )

π
[ 1 − (m − l + + 1 )],

( B 5)

t o r e m o v e t h os e si n g ul ariti es, s u c h t h at

T α 2 ,β 2 ,m ,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 α 2 + β 2 + m + + l+ 1 ( α 2 + m + + 1 ) ( β2 + l + 1 )

( α2 + β 2 + m + + l + 2 ) (m + + 1 )

×
si n π ( m − l + + 1 ) (l − m − )

π
, m ≤ l − 2,

2 α 2 + β 2 + m + + l+ 1 ( α 2 + m + + 1 ) ( β2 + l + 1 )

( α2 + β 2 + m + + l + 2 ) (m + + 1 )

×
1

(m − l + + 1 )
, m ≥ l − 1.

( B 6)

We c a n e v al u at e t h e d eri v ati v e i n at = 1 a n al yti c all y t o fi n d t h at

T α 2 ,β 2 ,m ,l(1 )

=

⎧
⎪⎪⎨

⎪⎪⎩

2 2 + m + l+ α 2 + β 2 (m + 1 )!(l+ β 2 )!(m + α 2 + 1 )!(l− m − 2 )!
( α2 + β 2 + l+ m + 2 )!

(− 1 )m + l f or m ≤ l − 2,
2 2 + m + l+ α 2 + β 2 (m + 1 )!(l+ β 2 )!(m + α 2 + 1 )![l n 2+ (2 + m )− (2 + m − l)+ (2 + m + α 2 )− (3 + m + l+ α 2 + β 2 )]

( α2 + β 2 + l+ m + 2 )!(m − l+ 1 )!

f or m ≥ l − 1,

( B 7)

f or t h e r es p e cti v e i nt e g er c as es of m ,  w h er e t h e di v er g e n c es h a v e b e e n r e m o v e d a c c or di n gl y.  T his yi el ds

I
( α1 ,β 1 ,α 2 ,β 2 )
kl = Y l

k

m = 0

X ( α1 ,β 1 ,k )
m T α 2 ,β 2 ,m ,l(1 )

F

. (B 8 )
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T h e s u m m a n d F f or m ≤ l − 2 c a n b e  writt e n as

F = (− 1 )l2 2 + l+ α 2 + β 2
k ! (k + α 1 )! (l + β 2 )!

k !

(1 + m )!

m !

(l − m − 2 )!

(k − m )!

(1 + m + α 2 )!

(m + α 1 )!

×
(k + m + α 1 + β 1 )!

(2 + l + m + α 2 + β 2 )!

= (− 1 )l2 2 + l+ α 2 + β 2 (k + α 1 )! (l + β 2 )! (1 + m )
(l − m − 2 )!

(k − m )!

(1 + m + α 2 )!

(m + α 1 )!

×
(k + m + α 1 + β 1 )!

(2 + l + m + α 2 + β 2 )!
. ( B 9)

T h e di ffi c ult y li es i n t h e e v al u ati o n of t his s u m,  w hi c h si m pli fi es dr asti c all y f or s uit a bl e k a n d l, as  w ell as α 1 + β 1 a n d
α 2 + β 2 .  W hil e t h er e  m a y e xist a  m et h o d t o e v al u at e  E q. ( B 8) f or g e n er al v al u es, it  will s u ffi c e f or o ur p ur p os e t o c o m p ut e
f or t h e s p e ci fi c sit u ati o n  w e e n c o u nt er.

A P P E N DI X  C:  P U R E  F E R MI O NI C  G A U S SI A N S T A T E S

1.  A v e r a g e e nt a n gl e m e nt e nt r o p y

We st art  wit h t h e o n e- p oi nt f u n cti o n R 1 (x ), n or m ali z e d t o
1

0 R 1 (x )d x = V A ,  w hi c h c a n b e s h o w n [1 3 6 ,1 5 9 ] t o b e gi v e n
b y

R 1 (x ) =

V A − 1

n = 0

ψ 2
n (x ) = (1 − x )

V A − 1

n = 0

1

c n
[P ( , )

2 n (x )]2 , (C 1 )

w h er e = V − 2 V A , P ( α ,β )
n r ef ers t o t h e J a c o bi p ol y n o mi als, a n d t h e c o nst a nt c n i s gi v e n b y

c n =
2 2 [(2 n + )!]2

(2 n )! (2 n + 2 )! (4 n + 2 + 1 )
. (C 2 )

A n i m p ort a nt pr o p ert y of ort h o g o n al p ol y n o mi als is t h at t h e y s atisf y t h e  C hrist o ff el- D ar b o u x r el ati o n [ E q. ( 1 8. 2. 1 2) of
R ef. [ 1 6 4 ] ] t h at e x pr ess es t h e a b o v e s u m i n t er ms of t h e p ol y n o mi als a n d t h eir first d eri v ati v es of t h e hi g h est or d ers.
T his is us ef ul f or a n al y zi n g t h e as y m pt oti c b e h a vi or.  T his  C hrist o ff el- D ar b o u x f or m ul a, f or a g e n er al s et of ort h o g o n al
p ol y n o mi als p n (x ) wit h n or m ali z ati o n c n , r e a ds

V A − 1

n = 0

p 2
n (x )

c n
=

k V A − 1

c V A − 1 k V A

[p V A
(x )p V A − 1 (x ) − p V A − 1 (x )p V A (x )], ( C 3)

w h er e t h e c o e ffi ci e nts k n ar e t h e l e a di n g- or d er c o e ffi ci e nts i n p n (x ). I n t h e pr es e nt c as e of t h e J a c o bi p ol y n o mi als,  w e c a n
e x pl oit a n a d diti o n al r e c urr e n c e r el ati o n [ E q. ( 1 8. 9. 1 5) of  R ef. [ 1 6 4 ] ], a n d t h e k n o w n c o e ffi ci e nt k n of t h e hi g h est p o w er
i n t h e J a c o bi p ol y n o mi als,

d

d x
P ( α ,β )

n (x ) =
α + β + n + 1

2
P ( α + 1, β + 1 )

n − 1 (x ) a n d k n =
(2 n + α + β ) !

2 n (n + α + β ) ! n !
. ( C 4)

T his all o ws us t o  writ e R 1 (x ) as

R 1 (x ) = V A [A 1 F 1 (x ) − A 2 F 2 (x )], ( C 5)

w h er e  w e h a v e i ntr o d u c e d t h e a b br e vi ati o ns

A 1 =
k 2 V A − 2

c 2 V A − 2 k 2 V A

2 + 2 V A + 1

2
, F 1 (x ) = (1 − x 2 ) P ( + 1, + 1 )

2 V A − 1 (x )P ( , )
2 V A − 2 (x ), (C 6 )

0 3 0 2 0 1- 5 9



E U G E NI O  BI A N C HI et al. P R X  Q U A N T U M 3, 0 3 0 2 0 1 ( 2 0 2 2)

A 2 =
k 2 V A − 2

c 2 V A − 2 k 2 V A

2 + 2 V A − 1

2
, F 2 (x ) = (1 − x 2 ) P ( + 1, + 1 )

2 V A − 3 (x )P ( , )
2 V A

(x ). (C 7 )

We  m a k e us e of t his si m pli fi e d e x pr essi o n f or t h e l e v el d e nsit y t o c o m p ut e t h e a v er a g e e nt a n gl e m e nt e ntr o p y S A G ,N =
1

0 R 1 (x )s(x )d x f or  G a ussi a n st at es,  w h er e t h e e m piri c al e nt a n gl e m e nt e ntr o p y i n t er ms of t h e ei g e n v al u es x is

s(x ) = −
1 + x

2
l n

1 + x

2
−

1 − x

2
l n

1 − x

2
= l n 2 −

1

2
∂ [(1 − x ) + (1 + x ) ] = 1 , ( C 8)

w h er e s(x ) w as i ntr o d u c e d i n  E q. ( 7 8).  T h e tri c k  wit h g e n er ati n g t h e l o g arit h m b y a d eri v ati v e is a st a n d ar d o n e a n d it is
r el at e d t o t h e r e pli c a tri c k.  T h e a d v a nt a g e is t h at  w e c a n u n d erst a n d t h e f a ct ors (1 ± x ) as a tr a ct a bl e d ef or m ati o n of t h e
ori gi n al  w ei g ht (1 − x 2 ) = (1 − x ) (1 + x ) .

B e c a us e of t h e n or m ali z ati o n of t h e o n e- p oi nt f u n cti o n
1

0 R 1 (x )d x = V A a n d t h e s y m m etr y s(x ) = s(− x ), t h e a v er a g e
b e c o m es

S A G ,N = V A [l n 2 − A 1 I1 + A 2 I2 ], ( C 9)

w h er e  w e h a v e i ntr o d u c e d t h e i nt e gr als

I1 = I ( + 1, + 1, , )
(2 V A − 1 ),(2 V A − 2 ) , I2 = I ( + 1, + 1, , )

(2 V A − 3 ), 2V A
, ( C 1 0)

w h er e I
( α1 ,β 1 ,α 2 ,β 2 )
kl w a s i ntr o d u c e d i n  E q. ( B 8) a n d r e d u c e d t o a s u m i n  E q. ( B 8).  N ot e t h at t h e f a ct ors of 1

2
i n  E q. ( C 8)

w er e c a n c el e d b y t h e s y m m etri zi n g o v er x → − x .  B ot h s u ms c a n b e p erf or m e d a n al yti c all y, l e a di n g t o t h e f ull e x pr essi o n
gi v e n b y ( 8 9).

2.  V a ri a n c e

I n  E q. ( 9 2),  w e h a v e s e e n t h at t h e v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y c a n b e e x pr ess e d i n t er ms of t h e i nt e gr als

s ij =
1

− 1

s (x ) ψi(x ) ψj (x )d x

= −
1

2

d

d

1

− 1

[(1 + x ) + (1 − x ) ]ψ i(x ) ψj (x )
= 1

= − I ( , , , )
ij , ( C 1 1)

w h er e ψ i(x ) a n d s(x ) w er e i ntr o d u c e d i n  E qs. ( 8 8) a n d ( 7 8), r es p e cti v el y, a n d  w e us e d t h e f a ct t h at ψ i(x ) = ψ i(− x ). F or
i < j ,

s 2
ij = (2 j )!(2 + 4 i+ 1 )( + j + 1 )(2 + 2 j + 1 )(2 + 4 j + 1 )[ 2( + i)]![(1 + − 2 2 )i− 2 ( − 1 )i2 + ( + 1 )(2 j + 1 )( + j )]2

2 (2 i)!(2 i− 2 j + 1 )2 (i− j )2 (− 2 i+ 2 j + 1 )2 [ 2( + j + 1 )]!( + i+ j )2 ( + i+ j + 1 )2 (2 + 2 i+ 2 j + 1 )2
, ( C 1 2)

w h er e  E q. ( C 1 2) is o nl y v ali d f or i < j ,  w hi c h is all  w e n e e d f or t h e s u m i n  E q. ( 9 2).  D es pit e all t er ms i n t h e s u m of  E q.
( 9 2) b ei n g n o n z er o f or l ar g e N , it is d o mi n at e d b y t h e s u m m a n d s 2

N A − 1, N A
, s o t h at it  m a k es s e ns e t o c o nsi d er t h e li mit

s 2
l k = li m

N → ∞
s 2
N A − 1 − l,N A + k =

(1 / f − 1 )− 2 (k + l+ 1 ) [ 2k + 2 l + 3 − 4 f (k + l + 1 )]2

4 (k + l + 1 )2 (2 k + 2 l + 1 )2 (2 k + 2 l + 3 )2
( C 1 3)

wit h fi x e d f = V A / V . S u m mi n g o v er  E q. ( C 1 3) t h e n yi el ds  E q. ( 9 3).

A P P E N DI X  D:  P U R E  F E R MI O NI C  G A U S SI A N S T A T E S  WI T H  A  FI X E D  N U M B E R  O F  P A R TI C L E S

1.  A v e r a g e e nt a n gl e m e nt e nt r o p y

T h e i d e a b e hi n d c o m p uti n g t h e e nt a n gl e m e nt e ntr o p y f or  G a ussi a n st at es is b as e d o n a di ff er e nt r a n d o m  m atri x a v er a g e
t h a n t h at i n t h e P a g e s etti n g. Si n c e a f or m ul a f or t h e e nt a n gl e m e nt e ntr o p y à l a P a g e is n ot at h a n d,  w e d eri v e it i n t h e
pr es e nt s e cti o n.  L et us bri e fl y o utli n e t h e str at e g y.
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1.  T h e g o al is t o c o m p ut e S A G ,N =
1

0 s (x )R 1 (x )d x as e x pl ai n e d i n t h e  m ai n t e xt.
2.  We c a n e x pr ess R 1 (x ) as a s u m of J a c o bi p ol y n o mi als a n d s(x ) as d eri v ati v es i n of p o w ers (1 ± x ) e v al u at e d at

= 1.  T his is a cr u ci al tri c k t h at all o ws us t o d e al  wit h t h e l o g arit h m i n s(x ).
3. I n or d er t o si m plif y t h e i nt e gr al,  w e first a p pl y t h e  C hrist o ff el- D ar b o u x f or m ul a (t ur ni n g t h e s u m of V A t er ms i nt o

a s u m o v er t w o t er ms) a n d t h e n e x pr ess o n e J a c o bi p ol y n o mi al as a s u m a n d t h e ot h er as d eri v ati v es vi a  R o dri g u es
f or m ul a.

4.  T his gi v es S A G ,N a s a s u m of k n o w n i nt e gr als ( of  w hi c h s o m e n e e d t o b e r e g ul ari z e d) t h at c a n b e e v e nt u all y
e v al u at e d.

As alr e a d y  m e nti o n e d,  w e st art  wit h t h e l e v el d e nsit y R 1 fr o m  E q. ( 1 1 0) t h at d es cri b es t h e ei g e n v al u es of a tr u n c at e d
u nit ar y  m atri x. It is gi v e n i n t er ms of J a c o bi p ol y n o mi als a n d t h e ass o ci at e d  w ei g ht (1 − x )α (1 + x )β ,  wit h r es p e ct t o
w hi c h t h e y f or m a n ort h o n or m al s et. I n p arti c ul ar, t h e l e v el d e nsit y is

R 1 (x ) =

V A − 1

n = 0

ψ 2
n (x ) = (1 − x )α (1 + x )β

V A − 1

n = 0

1

c n
[P ( α ,β )

n (x )]2 ( D 1)

wit h ψ n (x ) as i n  E q. ( 1 0 9).  A n i m p ort a nt pr o p ert y of ort h o g o n al p ol y n o mi als is t h at t h e y s atisf y t h e  C hrist o ff el- D ar b o u x
r el ati o n [ E q. ( 1 8. 2. 1 2) of  R ef. [1 6 4 ] ] t h at e x pr ess es t h e a b o v e s u m i n t er ms of t h e p ol y n o mi als a n d t h eir first d eri v ati v es
of t h e hi g h est or d ers.  T his is us ef ul f or a n al y zi n g t h e as y m pt oti c b e h a vi or.  T his  C hrist o ff el- D ar b o u x f or m ul a, f or a g e n er al
s et of ort h o g o n al p ol y n o mi als p n (x ) wit h n or m ali z ati o n c n , r e a ds

V A − 1

n = 0

p 2
n (x )

c n
=

k V A − 1

c V A − 1 k V A

[p V A
(x )p V A − 1 (x ) − p V A − 1 (x )p V A (x )], ( D 2)

w h er e t h e c o e ffi ci e nts k n ar e t h e l e a di n g- or d er c o e ffi ci e nts i n p n (x ). I n t h e pr es e nt c as e,  w e c a n a g ai n us e t h e k n o w n
r el ati o ns fr o m  E q. ( C 4).  T h us, R 1 (x ) is e x pr ess e d as

R 1 (x ) = V A [A 1 F 1 (x ) − A 2 F 2 (x )], ( D 3)

w h er e  w e h a v e i ntr o d u c e d t h e a b br e vi ati o ns

A 1 =
k V A − 1 ( α + β + V A + 1 )

2 V A c V A − 1 k V A

, F 1 (x ) = (1 − x )α (1 + x )β P ( α + 1, β + 1 )
V A − 1 (x )P ( α ,β )

V A − 1 (x ), ( D 4)

A 2 =
k V A − 1

c V A − 1 k V A

α + β + V A

2
, F 2 (x ) = (1 − x )α (1 + x )β P ( α + 1, β + 1 )

V A − 2 (x )P ( α ,β )
V A

(x ). ( D 5)

We  m a k e us e of t his si m pli fi e d e x pr essi o n f or t h e l e v el d e nsit y t o c o m p ut e t h e a v er a g e e nt a n gl e m e nt e ntr o p y S A G ,N =
1

0 R 1 (x )s(x )d x f or  G a ussi a n st at es,  w h er e t h e e m piri c al e nt a n gl e m e nt e ntr o p y i n t er ms of t h e ei g e n v al u es x is

s(x ) = −
1 + x

2
l n

1 + x

2
−

1 − x

2
l n

1 − x

2
= l n 2 −

1

2
∂ [(1 − x ) + (1 + x ) ] = 1 , ( D 6)

w h er e s(x ) w as i ntr o d u c e d i n  E q. ( 7 8).

B e c a us e of t h e n or m ali z ati o n,
1

0 R 1 (x )d x = V A a n d t h e s y m m etr y R 1 (x ) = R 1 (− x ) b y c o nstr u cti o n, t h e a v er a g e r e d u c es
t o

S A G ,N = V A l n 2 − 1
2
A 1 I1 + 1

2
A 2 I2 . ( D 7)

H er e,  w e h a v e i ntr o d u c e d t h e t w o s y m m etri z e d i nt e gr als

I1 = I
( α + 1, β + 1, α ,β )
V A − 1, V A − 1 + I

( β + 1, α + 1, β ,α )
V A − 1, V A − 1 , I2 = I

( α + 1, β + 1, α ,β )
V A − 2, V A

+ I
( β + 1, α + 1, β ,α )
V A − 2, V A

, ( D 8)

w h er e I
( α1 ,β 1 ,α 2 ,β 2 )
kl w a s i ntr o d u c e d i n  E q. ( B 8) a n d r e d u c e d t o a s u m i n  E q. ( B 8).  N ot e t h at  w e us e d P ( α ,β )

n (− x ) =

(− x )n P ( β ,α )
n (x ) t o arri v e at t his s y m m etri z ati o n.
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O nl y t h e l ast t w o t er ms i n t h e s u m n e e d t o b e d e alt  wit h i n t h e s e c o n d c as e b e c a us e t h os e c orr es p o n d t o m = n − 1 a n d
m = n wit h n = V A − 1.  T his l e a ds t o t h e f oll o wi n g l e n gt h y e x pr essi o n:

I1 =
2 2 + α + β (2 V A + α + β )( V A + α − 1 )!(V A + β − 1 )!

(V A − 1 )! (V A + α + β + 1 )!

×

V A − 3

m = 0

(m + 1 )

(V A − m − 2 )(V A − m − 1 )

+ ( α + β + 2 V A )(l n 2 − V A + (V A ) − (1 ) − ( α + β + 2 V A ))

+ (V A + α ) (V A + α ) + (V A + β ) (V A + β ) + α + β + 3 V A . ( D 9)

T h e c u m b ers o m e l o o ki n g s u m c a n b e i n f a ct c arri e d o ut e x a ctl y  wit h t h e h el p of t h e f oll o wi n g i d e ntit y t h at is b as e d o n a
s eri es r e pr es e nt ati o n of t h e di g a m m a f u n cti o n [ E q. ( 5. 7. 6) of  R ef. [ 1 6 4 ] ]:

n

m = 0

(m + 1 )

(Z + m )(Z + m + 1 )
=

Z

1 + Z + n
− 1 + (Z + n + 1 ) − (Z ). ( D 1 0)

T h e n c e,  w e arri v e at

∂ I1 =
2 V + 2 − 2 V A N ! (V − N − 1 )! [V A + V l n 2 + N (N ) − V (V ) + (V − N ) (V − N )]

N (V A − 1 )! (V − V A + 1 )!
. ( D 1 1)

I n a v er y si mil ar  w a y,  w e c a n als o e v al u at e I2 a s

I2 =

V A − 2

m = 0

Y (V A ) [X ( α + 1, β + 1, V A − 2 )
m T α ,β ,V A ,m (1 ) + X ( β + 1, α + 1, V A − 2 )

m T β ,α ,V A ,m (1 )]

= 2 2 + α + β (2 V A + α + β )( V A + α − 1 )! (V A + β − 1 )!

V A ! (V A + α + β ) !

×

V A − 2

m = 0

(m + 1 )

(V A + α + β + m + 1 )(V A + α + β + m + 2 )

= − 2 2 + α + β (V A + α ) (V A + β ) [V A − 1 + (2 V A + α + β )( (1 + α + β + V A )− (2 V A + α + β )) ]
V A ! (V A + α + β ) !

= −
2 V + 2 − 2 V A (N − 1 )! (V − N − 1 )! [V A − 1 + T (V + 1 − V A ) − T (V )]

V A ! (V − V A )!
. ( D 1 2)

I n t his c as e,  w e h a v e n ot n e e d e d t o c o nsi d er di ff er e nt c as es of  E q. ( B 7). It al w a ys h ol ds t h at m ≤ n − 2  wit h n = V A − 2.
I n t h e f o urt h li n e,  w e e m pl o y e d a n e w  E q. ( D 1 0) t o e x pr ess t h e s u m i n t er ms of di g a m m a f u n cti o ns.

Fi n all y,  w e c o m bi n e b ot h t er ms ( D 1 1) a n d ( D 1 2) a c c or di n g t o  E q. ( D 7).  Aft er c a n c eli n g t h e v ari o us f a ct ori als,  w e
e v e nt u all y arri v e at t h e e x pr essi o n

S A G ,N = 1 −
V A

V
(1 + V ) + V (V ) −

V A

V
[(V − N ) (V − N ) + N (N )]

+ (V A − V ) (V − V A + 1 ), ( D 1 3)

q u ot e d i n t h e  m ai n t e xt.  T his a v er a g e h as t h e p arti cl e- h ol e s y m m etr y N ↔ V − N , as c a n b e r e a dil y s e e n.  L et us hi g hli g ht
t h at t h e s y m m etr y b et w e e n t h e n u m b er of p arti cl es N a n d s yst e m si z e V A i s n ot visi bl e si n c e t h e f or m ul a a b o v e o nl y
h ol ds f or V A ≤ N , V − N .  T h e s y m m etr y is e nf or c e d b y h a n d,  w h er e o n e n e e ds t o r e fl e ct V A ↔ N i n t h e f or m ul a  w h e n
V A > N . I n t his  w a y o n e als o g ets t h e  mirr or s y m m etr y b et w e e n t w o s u bs yst e ms A ↔ B r e fl e ct e d i n V A ↔ V − V A . T h e
l att er s y m m etr y a n d h o w it is i ntr o d u c e d, n a m el y b y h a n d, is s h ar e d  wit h P a g e’s s etti n g.
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2.  V a ri a n c e

I n  E q. ( 9 2),  w e h a v e s e e n t h at t h e v ari a n c e of t h e e nt a n gl e m e nt e ntr o p y c a n b e e x pr ess e d i n t er ms of t h e i nt e gr als

s ij =
1

− 1

s (x ) ψi(x ) ψj (x )d x

= −
1

2

d

d

1

− 1

[(1 + x ) + (1 − x ) ]ψ i(x ) ψj (x )
= 1

= −
1

2
(I

( α ,β ,α ,β )
ij + (− 1 )i+ j I

( α ,β ,α ,β )
ij ), ( D 1 4)

w hi c h ar e o nl y n e e d e d f or t h e i n di c es i < V A ≤ j .  N ot e t h at t h e i nt e gr al i n t h e s e c o n d li n e is of t h e s a m e f or m as t h at i n
E q. ( B 1),  w hi c h  w as r e d u c e d t o a s u m i n  E q. ( B 8).  T h us,  w e c a n e x pr ess t h e r es ult as t h e s u m

Iij =

i

m = 0

Y (j ) [X ( α ,β ,i)
m T α ,β ,m ,j (1 ) + (− 1 )i+ j X ( β ,α ,i)

m T β ,α ,m ,j (1 )], ( D 1 5)

w h er e Y , X , a n d T ar e d e fi n e d i n  E qs. ( B 2), ( B 3), a n d ( B 7), r es p e cti v el y. I n or d er t o c o m p ut e t h e s u m,  w e n e e d t o
disti n g uis h t h e c as es i + 1 = j = V A a n d i + 1 < j d u e t o t h e c as e dis c ussi o n i n T .  T h e r es ulti n g e x pr essi o ns ar e r at h er
u n wi el d y, b ut  w e c a n si m plif y t h e m b y d e fi ni n g i = V A − 1 − l a n d j = V A + k a n d t h e n t a ki n g t h e t h er m o d y n a mi c li mit
V → ∞ t o fi n d t h at

s 2
0 0 = li m

V → ∞
s 2
V A − 1, V A

=
f [f − 2 f n − 2 (f − 1 )(n − 1 )n l n[(1 − n ) /n ]]2

(f − 1 )(n − 1 )n
,

s 2
l k = li m

V → ∞
s 2
V A − 1 − l,V A + k ( D 1 6)

= f 1 + k + l([f (2 + k + l− 2 n )+ (2 + k + l)(n − 1 )]n 1 + k + l− (n − 1 )1 + k + l[(2 + k + l)n + f (k + l+ 2 n )])2

(f − 1 )(k + l)2 (1 + k + l2 )2 (2 + k + l)2 (n − f n− n 2 + f n2 )1 + k + l . ( D 1 7)

S u m ( 9 2) is c ert ai nl y a fi nit e s u m of g e n er ali z e d h y p er g e o m etri c f u n cti o ns aft er t a ki n g t his li mit.  W h at h as b e e n r at h er
s ur prisi n g f or us is t h at it c a n b e p erf or m e d e x a ctl y, yi el di n g t h e r el ati v el y si m pl e e x pr essi o n

li m
V → ∞

( S A ) 2
G ,N =

∞

l,k = 0

s 2
kl

= l n(1 − f ) + f + f 2 + f 2 (2 n − 1 ) l n
1 − n

n

+ f (f − 1 )(n − 1 )n l n2
1 − n

n
, ( D 1 8)

w hi c h is t h e  m ai n r es ult of t his s e cti o n.
W hil e o ur r e pr es e nt ati o n of s ij h a s n ot b e e n s uit a bl e t o p erf or m t h e f ull s u m f or fi nit e si z e V , t h e as y m pt oti c r es ult l o o ks

as if it is p ossi bl e t o c o m p ut e t h e v ari a n c e ( S A )G ,N a s a n e x pr essi o n of di g a m m a f u n cti o ns at fi x e d V , si mil ar t o S A

fr o m  E q. ( 1 1 3). F or t his, it  will li k el y b e b e n e fi ci al t o fi n d cl os e d f or m ul as f or t h e i n n er pr o d u ct of di ff er e nt ort h o g o n al
p ol y n o mi als al o n g t h e li n es of  R ef. [ 1 4 9 ]. I n f a ct, s u c h  m et h o ds h a v e alr e a d y b e e n us e d t o fi n d a cl os e d e x pr essi o n f or t h e
v ari a n c e ( S A )G of t h e e nt a n gl e m e nt e ntr o p y f or t h e e ns e m bl e of all  G a ussi a n st at es [ 1 7 7 ].
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a.  Wei g ht e d a v e r a g e o v e r s e ct o rs

As i n t h e P a g e s etti n g,  w e c a n a v er a g e t h e e nt a n gl e m e nt e ntr o p y o v er all p arti cl e- n u m b er s e ct ors  wit h a bi n o mi al  w ei g ht
f or  G a ussi a n st at es, as  w ell.  E m pl o yi n g t h e s a m e n ot ati o n as i n t h e P a g e c as e, t h e bi n o mi al  w ei g ht

w (N ) =
V
N

p N q V − N =
V
N

e − N w

(1 + e − w ) V

wit h p =
e − w

1 + e − w
a n d q = 1 − p =

1

1 + e − w

( D 1 9)

d e p e n ds o n t h e p ar a m et er w ,  w hi c h t ells us h o w li k el y it is t o fi n d a s yst e m  wit h a p arti c ul ar n u m b er of p arti cl es i n it.
B e c a us e of t h e s y m m etr y  w e c a n ass u m e a n e w t h at w ≥ 0,  w h er e w = 0 c orr es p o n ds t o t h e s y m m etri c pr o b a bilit y  w ei g ht

w (N ) = 2 − V V
N

.

L et us r e c all t h at t his bi n o mi al distri b uti o n is c h ar a ct eri z e d b y t h e  m e a n N̄ , v ari a n c e 2 N , a n d s k e w n ess ν N :

N̄ = V p =
Ve − w

1 + e − w
, ( N )2 = V p q =

Ve − w

(1 + e − w ) 2
, a n d ν N =

q − p
√

V q p
=

2 si n h (w / 2 )
√

V
. ( D 2 0)

We n e e d t h es e q u a ntiti es f or o ur d u al a p pr o a c h  w h e n a v er a gi n g,  w hi c h h as b e e n si mil arl y a p pli e d t o t h e a v er a g e o v er
N A i n  A p p e n di x A 1 c .  As i n t h e P a g e c as e,  w e h a v e t o d e al  wit h ki n ks i n t h e e nt a n gl e m e nt e ntr o p y a v er a g e d o v er all
G a ussi a n st at es,  w hi c h r es ult fr o m t h e f a ct t h at  w e h a v e t o i ntr o d u c e t h e s y m m etr y i n t h e p arti cl e n u m b er N = n V a n d t h e
s u bs yst e m si z e V A = f V.  We  w o ul d li k e t o hi g hli g ht t h at, d es pit e t h e di ff er e n c e i n t h e p h ysi c al ori gi n of t h e a v er a g e, f or
P a g e o v er N A a n d i n t h e pr es e nt c as e o v er N , t h e  m at h e m ati c al pr o bl e m is v er y si mil ar.  T h e a v er a g e  will b e s plit i nt o a
s u m e xt e n di n g o v er t h e  w h ol e r a n g e of N = 0, . . . , V f or t h e p art of t h e q u a ntit y t h at t h e  m a xi m u m of t h e bi n o mi al  w ei g ht

w (N ) li es i n. F or t his q u a ntit y,  w e  m a k e us e of t h e e x a ct c u m ul a nts s h o w n a b o v e. I n t h e r e m ai ni n g p arts,  w hi c h ar e
s u bl e a di n g as  w e  will s e e,  w e a p pr o xi m at e t h e bi n o mi al distri b uti o n b y a n or m al distri b uti o n a n d t h e s u m b y a n i nt e gr al.

I n t h e p arti c ul ar c as e w = 0, t h e s k e w n ess of t h e bi n o mi al distri b uti o n v a nis h es.  T his  will h a v e a n i m p ort a nt i m p a ct, as
w e  will s e e si n c e  m a n y t er ms  will dr o p o ut.

L et us bri e fl y o utli n e t h e str at e g y.

1. I n  A p p e n di x D 2 b ,  w e ass u m e t h at f ≤ 1
2

a n d w ≥ 0 (t h us, t h e a v er a g e p arti cl e n u m b er n̄ ≤ 1
2
) ar e fi x e d a n d d o n ot

f oll o w a d o u bl e s c ali n g i n t h e li mit V → ∞ .
2.  We e x p a n d S A G ,N u p t o or d er 1 / V ,  w h er e  w e  m a k e t h e s ur prisi n g o bs er v ati o n t h at t h er e is n o t er m of or d er 1.

3.  T o g et t h e c orr e ct  w ei g ht e d a v er a g e u p t o or d er 1 / V , it is t h er ef or e s u ffi ci e nt t o e v al u at e S A G ,N at N = N̄ = V n̄ ,

w h er e t h e bi n o mi al distri b uti o n is p e a k e d a n d t h e n t a k e t h e bi n o mi al a v er a g e f or t h e l e a di n g- or d er t er m s G
A i n

S A G ,N = V s G
A + O (V − 1 ) i nt o a c c o u nt.

4. F or t his,  w e e x p a n d s G
A ar o u n d n̄ u p t o f o urt h or d er.  T h e n o n a n al yti citi es al o n g t h e s y m m etr y a xis f = n h a v e t o

b e d e alt, s e p ar at el y, b ut as t h e bi n o mi al distri b uti o n b e c o m es i n cr e asi n gl y n arr o w ar o u n d n̄ ,  w e o nl y n e e d t o t a k e
t h e m i nt o a c c o u nt if n̄ = f .

5.  C o m bi ni n g all t er ms t h a n yi el ds t h e  w ei g ht e d a v er a g e S A G ,w u p t o or d er O (1 / V ) f or fi x e d f a n d n̄ .

6. I n  A p p e n di x D 2 c ,  w e z o o m i nt o t h e criti c al li n e n̄ = f < 1
2

a n d t h e  m ulti criti c al p oi nt n̄ = f = 1
2
.  T h e criti c al

r e gi m e a b o ut t h es e p oi nts is di ct at e d b y t h e  wi dt h of t h e bi n o mi al distri b uti o n,  w hi c h, f or n = N / V , is of or d er
1 /

√
V .  T his all o ws us t o r es ol v e a n y ki n ks i n t h e e x p a nsi o n u p t o or d er O (1 /

√
V ).

b.  R es ulti n g f o r m ul a

W h e n  w e t a k e t h e a v er a g es,  w e n e e d t o r es p e ct t h e v ali dit y of  E q. ( D 1 3),  w hi c h is V A ≤ N ≤ V − V A or, e q ui v al e ntl y,
f ≤ n ≤ 1 − f .  H e n c e,  w e  m ust t a k e i nt o a c c o u nt t h e ki n ks  w e i ntr o d u c e  w h e n  w e e nf or c e t h e s y m m etri es f ↔ n ↔
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T A B L E II.  T h e pr o b a bilit y distri b uti o n w (n ) is p e a k e d ar o u n d n̄ , s o  w e e x p a n d

s G
A = 4

m = 0 s (m )
A (n − ¯n )m + O (n − ¯n )5 fr o m S A G ,N = V s G

A + O (V − 1 ) u p t o f o urt h
or d er f or t h e c as es f < n̄ a n d f > n̄ , s h o wi n g t h e n o n a n al yti cit y of S A G ,N ar o u n d
f = ¯n .  T his n o n a n al yti cit y o nl y s h o ws u p st arti n g  wit h t h e t hir d or d er.  T h e c o ef-
fi ci e nts f or n > 1 − f f oll o w fr o m t h e first c ol u m n  w h e n s u bstit uti n g n̄ → 1 − ¯n
a n d  m ulti pl yi n g b y (− 1 )m ,  w hi c h is a c o ns e q u e n c e of t h e p arti cl e- h ol e s y m m etr y
n ↔ 1 − n of t h e e nt a n gl e m e nt e ntr o p y.

m s (m )
A f or n ≤ f ≤ 1

2
s (m )
A f or f ≤ n ≤ 1 − f

0 (f − 1 ) n̄ l n(1 − f ) − ¯n (1 + f l n f ) (f − 1 ) l n(1 − f )
+ ( n̄ − 1 ) l n(1 − ¯n ) + f [( n̄ − 1 ) l n(1 − ¯n ) − 1 − ¯n l n n̄ ]

1 (f − 1 ) l n(1 − f ) − f l n f + l n(1 − ¯n ) f l n[(1 − ¯n ) / n̄ ]
2 1 / 2 ( n̄ − 1 ) f / 2 ( n̄ − 1 ) n̄
3 − 1 / 6 ( n̄ − 1 ) 2 (f − 2 f n̄ ) /6 ( n̄ − 1 )2 n̄ 2

4 1 / 1 2 ( n̄ − 1 )3 (f / 1 2 )[ 1/( n̄ − 1 )3 − 1 / n̄ 3 ]

1 − n .  We h a v e t h e i d e nti fi c ati o ns

S A G ,N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
N

V
(1 + V ) + V (V )

−
N

V
[(V − V A ) (V − V A ) + V A (V A )]

+ (N − V ) (V − N + 1 ), N ≤ V A ,

1 −
V A

V
(1 + V ) + V (V )

−
V A

V
[(V − N ) (V − N ) + N (N )]

+ (V A − V ) (V − V A + 1 ), V A ≤ N ≤ V − V A ,

1 −
V − N

V
(1 + V ) + V (V )

−
V − N

V
[(V − V A ) (V − V A ) + V A (V A )]

− N (N + 1 ), V − V A ≤ N .

( D 2 1)

H e n c e,  w h e n d e n oti n g t h e  m e a n n̄ = 1 /( 1 + e w ), ar o u n d  w hi c h  w e n e e d t o e x p a n d S A G ,N , it is n e c ess ar y t o disti n g uis h
t h e t hr e e c as es n < f , f < n < 1 − f , a n d 1 − f < n , as e a c h of t h e m r e q uir es a di ff er e nt e x p a nsi o n.  W h at is v er y
b e n e fi ci al is t h at S A G ,N a gr e es u p t o or d er 1 / V i n t h e li mit V → ∞ s o t h at t h e e x p a nsi o n c o e ffi ci e nts  will b e t h e s a m e.

We b e gi n b y e x p a n di n g S A G ,N a s

S A G ,N = V

4

m = 0

s (m )
A (n − ¯n )m +

s A , 0

V
+ o (V − 1 )

wit h s A , 0 =

⎧
⎪⎪⎨

⎪⎪⎩

f (1 − f ) + f n̄ (1 − ¯n )

1 2 (1 − f )(1 − ¯n ) n̄
, f < n̄ ,

n̄ (1 − ¯n ) + f n̄ (1 − f )

1 2 (1 − f )(1 − ¯n )f
, f > n̄ .

( D 2 2)

Si n c e n − ¯n will b e of or d er 1 /
√

V a n d  w e  m ulti pl y b y V , t his  T a yl or e x p a nsi o n c orr es p o n ds t o a n e x p a nsi o n of u p t o

or d er 1 / V .  We list t h e r es p e cti v e e x p a nsi o n c o e ffi ci e nts s (m )
A i n  T a bl e II f or n ≤ 1 − f ,  w hi c h ar e all of or d er o n e  w h e n  w e

d o n ot c h o os e a n y d o u bl e s c ali n g li mit i n f a n d n̄ .  T h e c o e ffi ci e nts f or n ≥ 1 − f c a n b e o bt ai n e d  w h e n e m pl o yi n g t h e
s y m m etr y n → 1 − n i n t h e c as e n < f .  T h e c o nst a nt s A , 0 i s st at e d s e p ar at el y b e c a us e it is t h e o nl y o n e t h at is e x pli citl y
m ulti pli e d b y 1 / V w hil e t h e V d e p e n d e n c e i n t h e ot h er t er ms o nl y e nt ers vi a a v er a gi n g o v er (n − ¯n )m .

W h e n c o m p uti n g t h e l e a di n g- or d er b e h a vi or of t h e r es p e cti v e a v er a g e S A G ,w ,  w e n e e d t o c o m p ut e t h e a v er a g es

(n − ¯n )m of t h es e p o w ers.  As l o n g as |f − ¯n | is l ar g er t h a n or d er 1/
√

V a n d n̄ ≤ 1
2
,  w hi c h is e q ui v al e nt t o w ≥ 0,
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t h e p o w er s eri es  will b e t h e s a m e o n b ot h si d es of t h e  m a xi m u m, i. e., f or n > n̄ a n d n < n̄ .  T h e n, t h e ki n ks ar e n ot vis-
i bl e as t h e y ar e t o o f ar a w a y t o h a v e a n o n e x p o n e nti al s u p pr essi o n. S o  w e c a n us e t h e k n o w n a v er a g es of t h e bi n o mi al
distri b uti o n gi v e n b y

(n − ¯n )m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, m = 0,

0, m = 1,
p q

V
, m = 2,

p q (q − p )

V 2
, m = 3,

p 2 q 2

V 2
3 +

1 − 6 q p

V p q
, m = 4,

( D 2 3)

wit h

p =
1

1 + e w
= ¯n a n d q =

1

1 + e − w
= 1 − ¯n .

H e n c e, i n t h e c as e |f − ¯n | 1 /
√

V wit h 0 < n̄ ≤ 1
2

t h e f ull a v er a g e is gi v e n b y

S A G ,w = V s (0 )
A + ¯n (1 − ¯n )s (2 )

A +
n̄ (1 − ¯n )(1 − 2 n̄ )

V
s (3 )
A + 3

n̄ 2 (1 − ¯n )2

V
s (4 )
A +

s A , 0

V
+ o (V − 1 ), ( D 2 4)

w h er e  w e h a v e us e d t h e f a ct t h at t h e n e xt- or d er t er m (n − ¯n )5 w o ul d b e of or d er V − 3 si n c e t h e l e a di n g or d er h as a
v a nis hi n g as y m m etr y.

I n  E q. ( D 2 4), o nl y t h e c o e ffi ci e nts s (0 )
A a n d s (2 )

A ar e i m p ort a nt  w h e n o n e is i nt er est e d i n t er ms u p t o or d er 1.  T a bl e II
s h o ws t h at t h e e x p a nsi o n c o e ffi ci e nts u p t o or d er 2 ar e c o nti n u o us at f = ¯n .  T h us,  E q. ( D 2 4) still h ol ds u p t o or d er 1 e v e n
w h e n |f − ¯n | is of or d er 1/

√
V or s m all er.  T h e k e y s u btl et y of t his f or m ul a li es i n t h e t hir d a n d f o urt h  m o m e nts.  T h e c a us e

f or t his is a dis c o nti n uit y s h o wi n g i n t h e t hir d a n d hi g h er d eri v ati v es of S A G ,N at f V = V A = N = nf .  T his r e q uir es us t o

c o m p ut e t h e e x p e ct ati o n v al u e of (n − ¯n )3 a n d (n − ¯n )4 , s e p ar at el y,  w h e n |f − ¯n | = O (V − 1 / 2 ).
F or t his p ur p os e,  w e n e e d t o a p pr o xi m at e t h e a v er a g e o v er t h e bi n o mi al distri b uti o n b y a  G a ussi a n i nt e gr al.  H o w e v er,

w e n e e d t o t a k e p arti c ul ar c ar e b e y o n d t h e  G a ussi a n c as e,  w hi c h is gi v e n b y t h e  E d g e w ort h s eri es

w (V n ) =

√
V

√
2 π [n̄ (1 − ¯n ) + O (1 / V )]

e − V (n − ¯n )2 / 2 n̄ (1 − ¯n ) [ 1 + α ( n − ¯n ) + O [(n − ¯n )2 ]]. ( D 2 5)

S u c h a s eri es a p pr o xi m at es t h e ori gi n al pr o b a bilit y distri b uti o n  w hil e c u m ul a nts u p t o a p arti c ul ar or d er ar e c h os e n t o b e
e x a ct. I n o ur c as e, t h e c o nst a nt α is c h os e n s u c h t h at  w e  m at c h t h e s k e w n ess of t h e bi n o mi al distri b uti o n, i. e., t h e c as e
m = 3 fr o m E q. ( D 2 3).  T his l e a ds t o t h e r e q uir e m e nt t h at α = (q − p ) /3 p q = (1 − 2 n̄ ) /3 n̄ (1 − ¯n ).  T h e n or m ali z ati o n
st a ys t h e s a m e u p t o or d er 1 / V as t h e  G a ussi a n  wit h o ut t h e  E d g e w ort h s eri es b e c a us e t h e first- or d er c orr e cti o n dr o ps o ut
w h e n i nt e gr ati n g o v er n .

We c a n st o p  wit h t h e first or d er si n c e (n − ¯n ) = O (V − 1 / 2 ) a n d t h e z er ot h, first, a n d s e c o n d  m o m e nts of t h e bi n o mi al
distri b uti o n d o n ot n e e d t his a p pr o xi m ati o n b e c a us e t h e c o e ffi ci e nts ar e t h e s a m e at f = ¯n .  T h e f o urt h  m o m e nt of t h e
bi n o mi al distri b uti o n alr e a d y c o m es  wit h or d er 1 / V [ cf.  E q. ( D 2 4)], s u c h t h at t h e  E d g e w ort h s eri es is n ot n e e d e d f or
t his t er m as it gi v es o nl y hi g h er- or d er c orr e cti o ns.  T h e o nl y t er m t h at h as b e e n tr e at e d  wit h t h e  E d g e w ort h s eri es is t h e
t hir d- or d er t er m ( n̄ − n )3 t h at a pri ori st arts  wit h a n or d er 1 / V 3 / 2 .  T h e n c e, t h e c orr e cti o n vi a t h e  E d g e w ort h s eri es o nl y
mi x es t h e t hir d  wit h t h e f o urt h  m o m e nts s o t h at t h e 1 / V t er m is c orr e ctl y attri b ut e d.

W h e n e x p a n di n g s G
A fr o m S A G ,N = V s G

A + O (V − 1 ) ar o u n d n̄ = f , t h e e x p a nsi o n c o e ffi ci e nts s (m )
A di ff er at m = 3 f or

n < f a n d n > f .  We r ef er t o t h es e di ff er e nt c o e ffi ci e nts b y s (m − )
A a n d s (m + )

A , r es p e cti v el y.  T h e r es ulti n g a v er a g e is t h e n
gi v e n b y

S A G ,w = V

4

m = 0

s (m − )
A (n − ¯n )m +

s A , 0

V

+ V (s (3 + )
A − s (3 − )

A )
∞

f
w (n )(n − ¯n )3 d n + O (V − 3 / 2 ), ( D 2 6)
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w h er e  w e first e x p a n d e v er yt hi n g f or n < f a n d t h e n c orr e ct f or n > f at t hir d or d er.  M ost e x p a nsi o n c o e ffi ci e nts s (m ± )
A

c a n b e r e a d o ff  T a bl e II e x c e pt f or n̄ = f = 1
2
. I n t his c as e, t h er e is n o r e gi o n  wit h f < n < 1 − f s u c h t h at  w e h a v e t h e

e x p a nsi o n f or n < f = 1
2

a n d n > 1 − f = 1
2
.  T h e c o e ffi ci e nts f or t h e l att er c a n b e r etri e v e d vi a t h e n → 1 − n mirr or

s y m m etr y,  w hi c h i m pli es t h at s (m + )
A = (− 1 )m s (m − )

A .  W h e n e x p a n di n g s G
A ar o u n d n̄ = f = 1

2
, t his yi el ds s (3 + )

A − s (3 − )
A = 4

3
.

R e c all t h at  w e c o nsi d er n̄ ≤ 1
2

a n d h ol d n a n d f fi x e d,  w h e n t a ki n g t h e li mit V → ∞ .  T h e d o u bl e s c ali n g li mits,  w h e n
z o o mi n g i nt o t h e criti c al p oi nts,  will b e dis c uss e d i n  A p p e n di x D 2 c .

W h e n e v er f = n , t h e err or is e x p o n e nti all y s u p pr ess e d f or V → ∞ ,  w hi c h is  w h y  w e o nl y n e e d t o t a k e t his t er m f or
f = ¯n i nt o a c c o u nt.  W hil e t h e a v er a g es (n − ¯n )m fr o m  T a bl e II ar e e x a ct, t h e i nt e gr als i n  E q. ( D 2 6) h a v e a n a d diti o n al
err or d u e t o t h e f a ct t h at  w e a p pr o xi m at e t h e bi n o mi al s u m b y a c o nti n u o us i nt e gr al.  H o w e v er, at t hir d or d er t his  will o nl y
i n d u c e a s u bl e a di n g err or of or d er V − 5 / 2 ( e v e nt u all y of or d er V − 3 / 2 aft er  m ulti pl yi n g b y V ).

I n s u m m ar y,  w e e v al u at e  E q. ( D 2 6) t o fi n d  E q. ( 1 1 8) of t h e  m ai n t e xt,  w h er e  w e i n cl u d e d all t er ms u p t o or d er 1 / V a n d
i n di c at e d t h e c orr e ct n e xt or d er b as e d o n t h e n u m eri c al r es ults s h o w n i n Fi g. 1 1 .

c.  R es ol vi n g t h e c riti c al r e gi m es

T h e a v er a g e S A w i s d es cri b e d b y a c o nti n u o us f u n cti o n at li n e ar a n d c o nst a nt or d er i n V , b ut t h e t er m of or d er 1/
√

V
o nl y a p p e ars  w h e n f = ¯n .  B as e d o n o ur pr e vi o us a n al ysis, it is t h er ef or e a n at ur al q u esti o n t o a n al y z e t his t er m t o u n d er-
st a n d h o w t his criti c al r e gi m e is r es ol v e d  w h e n b ei n g cl os e t o n̄ = f .  T h e  wi dt h of t h e a p pr o xi m at e bi n o mi al distri b uti o n

w (n ) s c al es as 1 /
√

V , s o o nl y if n̄ = f + n̄ /
√

V will t h e dis c o nti n uit y i n t h e t hir d d eri v ati v e c o ntri b ut e t o t h e a v er a g e.
We t h er ef or e a n al y z e t his li mit t o r es ol v e t h e t er m of or d er 1 /

√
V ar o u n d f = ¯n .

I n t h e f oll o wi n g,  w e o nl y a n al y z e t h e c o ntri b uti o n t o w ar ds t h e 1/
√

V t er m.  W hil e t h er e is als o a dis c o nti n uit y at or d er
1 / V , t h e a ct u al c al c ul ati o n is r at h er t e di o us a n d t h e r es ult is q uit e l e n gt h y, b ut c a n b e c arri e d o ut  wit h t h e s a m e t e c h ni q u es
pr es e nt e d h er e. F or o ur p ur p os e, it is i n d e e d s u ffi ci e nt t o r es ol v e all dis c o nti n uiti es u p t o or d er 1 /

√
V .

Tr a nsiti o n at n̄ = f = 1
2
. Ar o u n d t h e  m ulti criti c al p oi nt n̄ = f = 1

2
, t h e c orr e cti o n of or d er 1/

√
V is d u e t o t h e dis c o n-

ti n uiti es of t h e t hir d d eri v ati v e i n s G
A (f , n ) wit h t h e t w o c as es n̄ < f a n d 1 − f > n̄ > f t h at n e e d t o b e disti n g uis h e d.  We

r e c all t h at S A G ,N = V s G
A + O (V − 1 ).  T h e r el e v a nt s c ali n gs of n̄ a n d f ar e gi v e n b y

n̄ =
1

2
+

n̄
√

V
a n d f =

1

2
+

f
√

V
. ( D 2 7)

T h e t w o ki n ks r es ult i n t w o dis c o nti n uiti es i n t h e t hir d d eri v ati v e of s G
A (f , n ), n a m el y at n = 1

2
± f /

√
V .  T h os e i m pl y

di ff er e nt f or m ul as i n t h e e nt a n gl e m e nt i n t h e f oll o wi n g r e gi o ns (s e e Fi g. 1 8 ):

s G
A (n , f ) i n r e gi o n 1, n ≤

1

2
−

| f |
√

V
,

s G
A (f , n ) i n r e gi o n 2,

1

2
−

| f |
√

V
< n <

1

2
+

| f |
√

V
,

s G
A (1 − n , f ) i n r e gi o n 3,

1

2
+

| f |
√

V
≤ n .

H er e t h e f u n cti o n s G
A (f , n ) r e pr es e nts t h e l e a di n g or d er i n S A G ,N = V s G

A (f , n ) + O (1 ) ( c o m p ut e d f or f ≤ n ≤ 1
2

a n d t h e n
a n al yti c all y c o nti n u e d), a n d is gi v e n b y

s G
A (f , n ) = (f − 1 ) l n(1 − f ) + f [(n − 1 ) l n(1 − n ) − n l n n − 1] ( D 2 8)

i n t h e r e gi o n f ≤ n ≤ 1
2
,  w hi c h is a ct u all y als o v ali d f or 1

2
≤ n ≤ f (s o t h at  w e di d n ot h a v e t o s plit u p r e gi o n 2).

T h e  m ai n i d e a of t h e e ns ui n g c o m p ut ati o n is t o c h o os e t h e r e gi o n  w h er e n̄ li es i n a n d t h e n us e  E q. ( 1 1 8) f or t his
p arti c ul ar r e gi o n. Si n c e t h er e ar e als o c o ntri b uti o ns fr o m t h e ot h er r e gi o ns b e c a us e t h e  wi dt h of t h e bi n o mi al  w ei g ht als o
c o v ers p arts t h er ei n,  w e n e e d t o a d diti o n all y c o m p ut e t h e a v er a g e o v er t h e di ff er e n c e b et w e e n t h e c orr es p o n di n g c as es
i n  E q. ( 1 1 8) o v er t h es e r e gi o ns.  L et us u n d erli n e t h at,  w h e n w ≥ 0, it h ol ds t h at n̄ ≤ 1

2
.  T h e n c e, it h ol ds t h at n̄ < 0 a n d

t h er e ar e t h e t w o c as es, n̄ < f a n d 1 − f > n̄ > f , t o disti n g uis h t h at ar e r e fl e ct e d i n n̄ < −| f | a n d 0 > n̄ > −| f |.
C as e 1: n̄ < −| f |. As n̄ < f , t h e  m a xi m u m of t h e bi n o mi al distri b uti o n li es i n r e gi o n 1.  H e n c e,  w e r e writ e t h e t hr e e

s u ms t h at c o nstit ut e t h e e nt a n gl e m e nt e ntr o p y i nt o a s u m  w h er e t h e i n d e x f or s G
A (n , f ) r u ns o v er t h e  w h ol e r a n g e fr o m 0
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n

f

n

f

FI G. 1 8. Ill ustr ati o n of i nt e gr als.  We ill ustr at e t h e c al c ul ati o n of d S A w ar o u n d n̄ = f = 1
2
,  w h er e ( a) r ef ers t o c as e 1 ( wit h f =

− 1, n̄ = − 1. 2, V = 3 0) a n d ( b) r ef ers t o c as e 2 ( wit h f = − 1, n̄ = − 0. 8, V = 3 0).  N ot e t h at  w e us e di ff er e nt s c al es f or w a n d
s G
A .  Als o, t h e pr o p orti o ns ar e sli g htl y o ff si n c e  w e h a v e us e d a r el ati v el y s m all V .  T h e si z e of r e gi o n 2 is c o m p ar a bl e t o t h e  wi dt h of t h e

bi n o mi al distri b uti o n  w h e n V 1.

t o V a n d t h e n s u m o v er t h e c orr e cti o n,  w hi c h is t h e di ff er e n c e t o s G
A (n , f ), i n t h e ot h er t w o s u ms. I n p arti c ul ar,  w e  writ e

S A G ,w = V

V A

N = 0

w (N )s G
A (n , f ) + V

V − V A − 1

N = V A + 1

w (N )s G
A (f , n )

+ V

V

N = V − V A

w (N )s G
A (1 − n , f ) + O (V − 1 )

= V

V

N = 0

w (N )s G
A (n , f ) + V

V − V A − 1

N = V A + 1

w (N ) δ2 1 s
G
A (f , n )

+ V

V

N = V − V A

δ 3 1 w (N )s G
A (f , n ) + O (V − 1 ). ( D 2 9)

T h e di ff er e n c es ar e d e fi n e d as

δ 2 1 s
G
A (f , n ) = s G

A (f , n ) − s G
A (n , f ), δ 3 1 s

G
A (f , n ) = s G

A (1 − n , f ) − s G
A (n , f ), ( D 3 0)

a n d t h e y ar e ill ustr at e d i n Fi g. 1 8 . F or t h e first s u m,  w e c a n e m pl o y t h e first c as e i n  E q. ( 1 1 8).  T h e ot h er t w o s u ms si m plif y
w h e n n oti n g t h at t h e di ff er e n c es δ 2 1 s

G
A (f , n ) a n d δ 3 1 s

G
A (f , n ) h a v e v a nis hi n g p arti al d eri v ati v es at f = ¯n = 1

2
u p t o or d er

2.  T h us,  w e c a n r e pl a c e w (V n ) b y its  G a ussi a n a p pr o xi m ati o n  wit h o ut t h e  E d g e w ort h s eri es c orr e cti o n b e c a us e t h e t er ms
will alr e a d y st art  wit h or d er 1 /

√
V .  T h e t ot al c orr e cti o n c a n t h e n b e s u m m ari z e d as t h e i nt e gr al

d S A
n̄ = f = 1 / 2
G ,w = V

3

m = 0

δ 2 1 s
(m )
A

1 − f

f
w (V n )(n − ¯n )m d n + δ 3 1 s

(m )
A

∞

1 − f
w (V n )(n − ¯n )m d n

+ o (1 /
√

V ), ( D 3 1)

w h er e δ ij s
(m )
A ar e t h e r es p e cti v e e x p a nsi o n c o e ffi ci e nts fr o m  E q. ( D 3 0) e x p a n d e d i n (n − ¯n )m .  We dir e ctl y c o m bi n e t h e

r es ult  wit h t h e s e c o n d c as e.
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C as e 2: 0 > n̄ > −| f |.  N o w, t h e  m ai n c o ntri b uti o n c o m es fr o m r e gi o n 2  w h er e 1
2

− f /
√

V ≤ n ≤ 1
2

+ f /
√

V .
T h er ef or e,  w e s plit t h e s u ms as

S A G ,w = V

V

N = 0

w (N )s G
A (f , n ) + V

V A

N = 0

w (N ) δ1 2 s
G
A (f , n ) + V

V

N = V − V A

δ 3 1 w (N ) δ3 2 s
G
A (f , n ) + O (V − 1 ) ( D 3 2)

wit h

δ 1 2 s
G
A (f , n ) = s G

A (n , f ) − s G
A (f , n ), δ 3 2 s

G
A (f , n ) = s G

A (1 − n , f ) − s G
A (f , n ). ( D 3 3)

T h e l att er ar e ill ustr at e d i n Fi g. 1 8( b) .  As i n c as e 1,  w e r e pl a c e t h e first s u m b y t h e s e c o n d c as e i n  E q. ( 1 1 8), a n d
a p pr o xi m at e t h e r e m ai ni n g t w o s u ms b y t h e  G a ussi a n i nt e gr als

d S A
n̄ = f = 1

2
G ,w = V

3

m = 0

δ 1 2 s
(m )
A

f

− ∞
w (V n )(n − ¯n )m d n + δ 3 2 s

(m )
A

∞

1 − f
w (V n )(n − ¯n )m d n

+ o (1 /
√

V ), ( D 3 4)

w h er e δ ij s
(m )
A ar e t h e r es p e cti v e e x p a nsi o n c o e ffi ci e nts fr o m  E q. ( D 3 3) e x p a n d e d i n (n − ¯n )m .

We c o m bi n e b ot h c as es a n d e xt e n d t h e r es ult t o p ositi v e a n d n e g ati v e f a n d n̄ b y a p pl yi n g t h e s y m m etri es of t h e
e nt a n gl e m e nt e ntr o p y r es ulti n g i n t h e a bs ol ut e v al u es of f a n d n̄ :

d S A
n̄ = f = 1 / 2
G ,w =

1

1 2

2

π
(e − 2 (| f | −| n̄ |)2 [ 1 + 2 (| f | − | n̄ |)

2 ]

+ e − 2 (| f | +| n̄ |)2 [ 1 + 2 (| f | + | n̄ |)
2 ])

− (| f | + | n̄ |)[ 3 + 4 (| f | + | n̄ |)
2 ] erf c[

√
2 (| f | + | n̄ |)]

− || f | − | n̄ ||[ 3 + 4 (| f | − | n̄ |)
2 ] erf c(

√
2 || f | − | n̄ ||)

1
√

V

+ o (1 /
√

V ). ( D 3 5)

We still n e e d t o e x p a n d r es ult ( 1 1 8) ar o u n d f = 1
2

+ f /
√

V a n d n = 1
2

+ n̄ /
√

V ,  w h er e  w e e x p a n d t h e c as e f < n̄ ≤

1 / 2 i n E q. ( 1 1 8) f or t h e c as e 1 of t h e pr es e nt s u bs e cti o n a n d t h e c as e n̄ < f ≤ 1
2

f or t h e c as e 2 of t h e pr es e nt s u bs e cti o n.
A d di n g t h e c orr e cti o n fr o m  E q. ( D 3 4) l e a ds t o t h e fi n al r es ult

S A
n = f = 1

2
G ,w = l n 2 −

1

2
V −

1

4
+ 2

f + 2
n̄

−
m a x (| f |, | n̄ |)

6
(3 + 1 2  mi n ( 2

f , 2
n̄ ) + 4 m a x ( 2

f , 2
n̄ ))

1
√

V

+ d S A
n̄ = f = 1 / 2
G ,w + O (1 / V ). ( D 3 6)

T his r es ult r e fl e cts t h e f a ct t h at t h e n o n a n al yti citi es o nl y s h o w i n t h e 1 /
√

V c orr e cti o ns a n d l o w er or d ers. I n Fi g. 1 0( d) ,

w e s h o w d S A
n = f = 1 / 2
G ,w ,  w hi c h r es ol v es t h e  Kr o n e c k er d elt a δ f ,n̄ δ f , 1/ 2 c o nt ai n e d i n  E q. ( 1 1 8).

T h e c o m p ut ati o n a b o v e c o ul d h a v e als o b e e n c o m p ut e d i n di ff er e nt  w a ys. F or i nst a n c e, a n e x p a nsi o n of all q u a ntiti es
a b o ut f = ¯n = n = 1

2
w o ul d h a v e l e d t o t h e s a m e r es ult.  T his a p pr o a c h  w o ul d n ot n e e d a n y c as e dis c ussi o n at t h e e x p e ns e

t h at t h e err or f u n cti o ns i n v ol v e d h a v e t o b e e x p a n d e d as t h e y c o nt ai n t er ms t h at ar e pr o p orti o n al t o
√

V .
Tr a nsiti o n at n̄ = f < 1

2
. Ar o u n d n̄ = f < 1

2
wit h 1 − 2 f 1 /

√
V , t h e c orr e cti o n of or d er 1/

√
V is e x cl usi v el y d u e

t o t h e dis c o nti n uit y of t h e t hir d d eri v ati v e i n S A G N , s o  w e o nl y n e e d t o a n al y z e t his c as e.  A p pl yi n g t h e s a m e str at e g y as
b ef or e, b y l o o ki n g f or t h e  m ai n c o ntri b uti o n i n t h e s u m,  w e n e e d t o disti n g uis h if n̄ < f a n d n̄ > f .  We e m p h asi z e t h at

0 3 0 2 0 1- 6 9
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FI G. 1 9. Ill ustr ati o n of i nt e gr als.  We ill ustr at e t h e c al c ul ati o n of d S A w ar o u n d f = 1
4
,  w h er e ( a) r ef ers t o c as e 1 ( wit h f = − 0. 1,

V = 3 0) a n d ( b) r ef ers t o c as e 2 ( wit h f = 0. 1, V = 3 0). I n c o ntr ast t o t h e pr e vi o us c as e ar o u n d f = ¯n = 1
2
,  w e c a n i g n or e t h e t hir d

r e gi o n n > 1 − f , as t h e e ff e ct is e x p o n e nti all y s u p pr ess e d.  N ot e t h at  w e us e di ff er e nt s c al es f or w a n d s G
A . A s i n Fi g. 1 8 , t h e pr o p orti o ns

ar e a bit o ff d u e t o t h e r el ati v el y s m all V t h at h as b e e n c h os e n (t o e n h a n c e r e a d a bilit y).  A ct u all y, t h e d as h e d v erti c al li n e li es i nsi d e t h e
wi dt h of t h e bi n o mi al distri b uti o n f or V 1.

c o ntri b uti o ns fr o m r e gi o n 3,  w h er e n > 1 − f , ar e al w a ys e x p o n e nti all y s u p pr ess e d b e c a us e t his r e gi o n li es at a dist a n c e
t h at is  m u c h l ar g er t h a n t h e  wi dt h of t h e bi n o mi al distri b uti o n.

C as e 1: n̄ < f . I n t his c as e, t h e  m ai n c o ntri b uti o n li es i n r e gi o n 1 [s e e Fi g. 1 9( a) ] s o t h at  w e e x pr ess t h e a v er a g e as

S A G ,w = V

V

N = 0

w (N )s G
A (f , n ) + V

V

N = V A + 1

w (N ) δ1 2 δ s G
A (f , n ) + O (V − 1 ) ( D 3 7)

wit h δ s G
A (f , n ) = s G

A (n , f ) − s G
A (f , n ) a n d s G

A (f , n ) gi v e n b y t h e first c as e i n  E q. ( 1 1 8).  We r e c all t h at t h e s u m o v er t h e t hir d
r e gi o n is e x p o n e nti all y s m all.  W h e n e x p a n di n g a b o ut n̄ < f ,  w e n e e d t o t a k e i nt o a c c o u nt t h e n o n a n al yti cit y t h at s h o ws
u p  wit h t h e t hir d p arti al d eri v ati v es i n n a n d f .  As b ef or e, t h es e or d ers of t h e  T a yl or e x p a nsi o n c o m e  wit h t h e or d er 1/

√
V

o n c e  w e h a v e  m ulti pli e d  wit h t h e pr ef a ct or V .  T h er ef or e, t h e c orr e cti o n is gi v e n b y

d S A
n̄ = f < 1 / 2
G ,w = V

3

m = 0

δ s (m )
A

∞

f
w (n )(n − ¯n )m d n + o (1 / V ), ( D 3 8)

w h er e t h e a d diti o n al err or b y a p pr o xi m ati n g t h e dis cr et e bi n o mi al s u m b y a n i nt e gr al o v er w (n ) is s u bl e a di n g, as it

will c o ntri b ut e t o w ar ds t h e o v er all err or of or d er 1 / V .  T h e c o e ffi ci e nts δ s (m )
A ar e t h e  T a yl or e x p a nsi o n c o e ffi ci e nts of t h e

di ff er e n c e δ s G
A (f , n ).  T h os e ar e gi v e n b y

δ s G
A (f , n ) = −

(f − ¯n )3 [f (4 f − 2 n̄ − 3 ) + ¯n ]

1 2[ (f − 1 )2 f 2 ]
+

(f − ¯n )2 [f (7 f − 4 n̄ − 5 ) + 2 n̄ ]

6 (f − 1 )2 f 2
(n − ¯n )

−
(f − ¯n )[ 3f 2 − 2 f ( n̄ + 1 ) + ¯n ]

2[ (f − 1 )2 f 2 ]
(n − ¯n )2 +

[f (5 f − 4 n̄ − 3 ) + 2 n̄ ]

6 (f − 1 )2 f 2
(n − ¯n )3

+ O [(n − ¯n )4 ]. ( D 3 9)

T h es e c o e ffi ci e nts ar e t h e fi n al i n gr e di e nt t o e v al u at e  E q. ( D 3 8).  B ef or e  w e d o t his,  w e als o c o nsi d er t h e s e c o n d c as e a n d
t h e n dir e ctl y c o m bi n e t h e r es ults.

C as e 2: n̄ > f .  N o w, t h e  m ai n c o ntri b uti o n li es i n r e gi o n 2 [s e e Fi g. 1 9( b) ], a n d  w e e m pl o y t h e s plitti n g

S A G ,w = V

V

N = 0

w (N )s G
A (n , f ) − V

V A

N = 0

w (N ) δ1 2 δ s G
A (f , n ) + O (V − 1 ) ( D 4 0)
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wit h t h e v er y s a m e δ s G
A (f , n ) = s G

A (n , f ) − s G
A (f , n ) as i n c as e 1.  R e p e ati n g t h e s a m e st e ps as i n t h e pr e vi o us c as e,  w e fi n d

t h e c orr e cti o n t er m

d S A
n̄ = f < 1 / 2
w = − V

3

m = 0

δ s (m )
A

f

− ∞
w (n )(n − ¯n )m d n + o (1 /

√
V ), ( D 4 1)

w h er e t h e o v er all  mi n us si g n c o m es fr o m t h e f a ct t h at t h e err or f or n < f is j ust o p p osit e t o t h at pr e vi o usl y c al c ul at e d,

i. e., t h e e x p a nsi o n c o e ffi ci e nts δ s (m )
A ar e still t h os e list e d i n  E q. ( D 3 9).

Usi n g t h e a bs ol ut e v al u e t o u nif y t h e pr e vi o us r es ults of b ot h c as es f or a g e n er al n̄ = f + n̄ /
√

V ,  w h er e n̄ c a n b e
b ot h p ositi v e or n e g ati v e,  w e arri v e at

d S A
n̄ = f < 1 / 2
G ,w =

e − 2
n̄ / 2 f (1 − f ) (2 f 5 / 2 − 2 f 3 / 2 − f 1 / 2 2

n̄ )

6
√

1 − f f
√

2 π

+
| n̄ |[ 3(1 − f )f + 2

n̄ ] erf c(| n̄ |/ 2 f (1 − f ))

1 2 (1 − f )f

1
√

V
+ o (1 /

√
V ). ( D 4 2)

We c a n r el at e t his r es ult t o o ur pr e vi o us fi n di n g i n  E q. ( D 3 4). If w e s et n̄ → f + n̄ i n  E q. ( D 3 4) a n d t h e n c o nsi d er

t h e li mit f → ∞ ,  w e r e pr o d u c e  E q. ( D 4 2) at f = 1
2

fr o m a b o v e.  C o ns e q u e ntl y, t h e di ff er e nt li mits c o n n e ct at f = 1
2
, a s

e x p e ct e d.

T h e f ull as y m pt oti c of S A
n̄ = f = 1 / 2
G ,w i s gi v e n b y first e x p a n di n g f or m ul a ( 1 1 8) i n t h e r es p e cti v e r e gi o ns f or f < n a n d

f > n ( d e p e n di n g o n t h e si g n of n̄ ) a n d t h e n a d di n g t h e c orr e cti o ns ( D 4 2). F or n = f + n̄ /
√

V ,  w e e v e nt u all y fi n d t h at

S A
n̄ = f < 1 / 2
G ,w = [(f 2 − 1 ) l n(1 − f ) − f (1 + f l n f )]V + n̄ f [l n(1 − f ) − l n f ]

√
V

−
1

2

2
n̄

1 − f
− f

+
( n̄ )

3
n̄ (1 − 2 f )

6 f (1 − f )2
−

(− n̄ )

6
3 +

2
n̄

(1 − f )2

1
√

V

+ d S A
n̄ = f < 1 / 2
G ,w + O (1 / V ), ( D 4 3)

w h er e is  H e a visi d e st e p f u n cti o n [ wit h (x ) = 1 f or x > 0 a n d (x ) = 0 ot h er wis e].  We s h o w d S A
n = f < 1 / 2
G ,w i n Fi g.

1 0( e) ,  w hi c h r es ol v es t h e  Kr o n e c k er d elt a δ f ,n̄ c o nt ai n e d i n  E q. ( 1 1 8).
A n e w, o n e c o ul d h a v e t a k e n a g ai n a di ff er e nt a p pr o a c h  wit h o ut c as e dis c ussi o n a n d a n e x p a nsi o n a b o ut n̄ = n = f .

T his  w o ul d h a v e gi v e n t h e s a m e r es ult o nl y t h e  H e a visi d e st e p f u n cti o n  w o ul d h a v e b e e n e n c o d e d i n a d diti o n al err or
f u n cti o ns  w h os e ar g u m e nt  w o ul d h a v e b e e n pr o p orti o n al t o

√
V .
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