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Abstract. We consider the issues of stability and reconstruction of the electrical anisotropic conductivity of
biological tissues in a domain \Omega \subset R3 by means of the hybrid inverse problem of magneto-acoustic
tomography with magnetic induction (MAT-MI). The class of anisotropic conductivities considered
here is of type \sigma (\cdot ) =A(\cdot , \gamma (\cdot )) in \Omega , where [\lambda  - 1, \lambda ]\ni t \mapsto \rightarrow A(\cdot , t) is a one-parameter family of matrix-
valued functions which are a priori known to be C1,\beta , allowing us to stably reconstruct \gamma in \Omega in
terms of an internal functional F (\sigma ). Our results also extend previous results in MAT-MI where
\sigma (\cdot ) = \gamma (\cdot )D(\cdot ), with D an a priori known matrix-valued function on \Omega to a more general anisotropic
structure which depends nonlinearly on the scalar function \gamma to be reconstructed.
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1. Introduction. In many physical situations, it is important to determine certain physical
properties of the interior of a body that cannot be measured directly. Inverse problems are
employed to infer such information from external observations. If one is interested in imaging
biological tissue inside the human body, its electrical conductivity distribution can provide
valuable information about its state. A recently developed noninvasive imaging modality
based on the determination of the electrical conductivity distribution of biological tissue is
magnetoacoustic tomography with magnetic induction (MAT-MI).

If a biological conductive body, modelled by a domain \Omega \subset R3 with smooth boundary \partial \Omega ,
is placed in a static magnetic field B0 = (0,0,1), it starts to emit ultrasound waves that can
be measured around the body, i.e., at a series of locations on \partial \Omega . To be more precise, to cause
an eddy current within the conductive tissue, a pulsed time-dependent magnetic field B(t) is
applied to excite the tissue in \Omega , which, in turn, emits the ultrasound waves. For the sake
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 615

of simplicity, we follow the research line already initiated in [8], [37]. The pulsed magnetic
field is of the form B1u(t), where the vector field B1 is constant and u(t) is a scalar function
representing the time variation. As the magnetic permeability of biological tissue and that
of a vacuum are approximately equal, the tissue does not have any noticeable effect on the
magnetic field itself. Therefore, only the spatial dependence of the magnetic fields needs to be
considered. MAT-MI is an example of hybrid inverse problems , which typically combine a high
contrast modality with a high resolution one and they typically involve two steps. In the first
step, a well-posed problem involving high resolution and low contrast modality is solved from
the knowledge of boundary measurements. In the second step, a quantitative reconstruction of
the parameters of interest (describing a physical property of the medium in question) is solved
by knowledge of a so-called internal functional which has been reconstructed during the first
step. Hybrid methods are mainly concerned with the solution of the second step (assuming
that the first step has been successfully performed). For a review on hybrid imaging modalities,
we refer to [11].

The first step in MAT-MI is to retrieve the acoustic source from the measurements around
the object in the scalar wave equation. Then, in the second step, MAT-MI reconstructs the
distribution of electrical conductivity from acoustic source information (see [8], [37]). This
second step is the focus of this paper, where we study, in the MAT-MI experiment, the issues
of stability and reconstruction for a special type of anisotropic conductivity \sigma in terms of
internal measurements of the acoustic sources (which are assumed to be known after the first
step has been performed) modelled by the internal functional

(1.1) F (\sigma ) =\nabla \cdot (\sigma E\sigma \times B0) in \Omega ,

where E\sigma solves the Maxwell's equations

(1.2)

\Biggl\{ \nabla \times E\sigma =B0 in \Omega ,
\nabla \cdot \sigma E\sigma = 0 on \Omega ,
\sigma E\sigma \cdot \nu = 0 on \partial \Omega 

and \sigma \in C1,\beta (\Omega ) is symmetric on \Omega and satisfies a uniform ellipticity condition (the precise
formulation of the problem is given in section 2).

For clinical and research purposes, the electrical conductivity of biological tissues can
provide valuable information as the conductivity varies significantly within the human body.
Other and more established medical imaging modalities, like computerized tomography (CT),
magnetic resonance imaging (MRI), and ultrasound imaging, are typically capable of creating
images of the human body with very high resolution. These modalities often fail to exhibit
a sufficient contrast between different types of tissues. Imaging modalities like optical to-
mography (OT) and electrical impedance tomography (EIT) do, on the other hand, display
such high contrast at the expense of a poor resolution (see [9], [13], [41]). EIT, similarly to
MAT-MI, also provides information about materials and biological tissues in terms of their
conductivity. The resulting images from measurements of electrostatic voltages and current
flux taken on the surface of the body under investigatio, are often blurred, due to the EIT
poor resolution. MAT-MI, on the other hand, has the potential to overcome this issue by
providing images of the conductivity of a body in terms of internal measurements that have
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616 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

been obtained by means of a high resolution imaging modality performed in the first step
of MAT-MI. Hence MAT-MI has the potential to provide high contrast images of a body in
terms of its internal conductivity that also benefits from a reasonably good resolution.

Biological tissues are known to have anisotropic conductivity [31]. In EIT, since its first
mathematical formulation by Calder\'on in his 1980 seminal paper [16], a lot of progress has
been made, but the problem of uniquely determining the anisotropic conductivity of a body by
means of EIT measurements is still considered an open problem. Partial results of uniqueness
and stability for this inverse problem have been obtained in [1], [2], [3], [4], [5], [6], [10], [12],
[18], [19], [20] [21], [28], [33], [34], [35], [36], [39].

In the MAT-MI experiment, results of stability and reconstruction of the conductivity \sigma in
terms of the internal functional F (\sigma ) given in (1.1), have been obtained in [37] and [8], where
the isotropic case \sigma = \gamma I (here I denotes the 3\times 3 identity matrix and \gamma is a positive scalar
function on \Omega ) and the special anisotropic case \sigma = \gamma D, with D a known 3 \times 3 symmetric
matrix and \gamma is a positive scalar function on \Omega , were considered, respectively. In the present
paper, we extend these results to the case where the anisotropic conductivity \sigma is of type
\sigma =A(\cdot , \gamma (\cdot )), and A(\cdot , t) is known for t\in [\lambda  - 1, \lambda ].

More precisely, we start by considering the simpler case where \sigma is a symmetric, uniformly
positive definite matrix which is a priori known to have the structure \sigma (x) =A(\gamma (x)), x \in \Omega ,
where the one-parameter family of matrix-valued functions

t \mapsto \rightarrow A(t), t\in [\lambda  - 1, \lambda ]

is assumed to be known and to belong to a certain class \scrA defined below (Definition 2.2) and
\gamma = \gamma (x), x \in \Omega is an unknown scalar function to be determined. The above structure for
\sigma is also generalized to the case \sigma = A(x,\gamma (x)), x \in \Omega , where the one-parameter family of
matrix-valued functions

t \mapsto \rightarrow A(x, t) for any x\in \Omega , t\in [\lambda  - 1, \lambda ]

is assumed to be known and to belong to a certain class \scrA \prime defined below (Definition 2.5)
and \gamma = \gamma (x), x \in \Omega is again an unknown scalar function to be determined. The latter, in
particular, extends the results in [37] and [8], where the problem of stability and reconstruction
in MAT-MI has been addressed in the isotropic case and in the anisotropic case \sigma (x) =
\gamma (x)D(x), where D, in this case, is a known matrix-valued function and \gamma = \gamma (x), x\in \Omega is the
unknown scalar function to be determined. For both cases when A\in \scrA and A\in \scrA \prime considered
in this manuscript, we prove that we can stably reconstruct the scalar function \gamma in terms
of F .

In this paper we also present several numerical experiments in which we reconstruct the
scalar function \gamma = \gamma (x), x \in \Omega for both types of anisotropic conductivities \sigma (x) = A(\gamma (x))
and \sigma (x) = A(x,\gamma (x)), x \in \Omega . We start by considering a number of examples in which
A \in \scrA only (Examples 1--4). The more general case of A \in \scrA \prime is exploited in Examples 5
and 6. The reconstruction is based on an algorithm introduced in [37], [8], which relies on
projecting its iterates into a convex subset of C1,\beta (\Omega ) in order to restore well posedness in
the inverse problem. We note that in the particular examples considered here, the projection
step seems unnecessary for the convergence of the iterates. Moreover, in two of our examples,
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 617

the true conductivity \gamma \ast we wish to reconstruct is not C1, hence is less regular than the
classes of conductivities we considered in our theoretical framework. This not only allows
us to test the performance of the reconstruction algorithm on nonsmooth data, but it also
provides insights about possibly lowering the regularity of the conductivity considered in
our theoretical framework (the stability estimates in section 2 and the convergence analysis
we carry out in subsection 4.2). It will be part of future work to extend our theoretical
framework to a class of conductivities with lower regularity assumptions and a more general
anisotropic structure. The anisotropic structures considered in the current paper are one-
parameter families of symmetric and uniformly positive definite matrices that depend on the
unknown scalar function \gamma in a nonlinear way, extending the results in [8] to the case of a
more realistic dependence of the anisotropic structure on the unknown scalar function \gamma . If,
for example, \gamma was representing the temperature of \Omega , then the dependence of A on \gamma might
not be linear. We wish to stress that this paper aims at providing a first step in the treatment
in MAT-MI of anisotropic structures that depend nonlinearly on (possibly) a finite number
of unknown scalar functions to be stably reconstructed in the MAT-MI experiment. It will
be the subject of future work to consider the fully anisotropic case and to which extent the
MAT-MI experiment can be employed to determine the anisotropic structure itself.

This paper is organized as follows. In section 2 we introduce notation, state our main
assumptions, and define precisely the two classes \scrA and \scrA \prime for A, corresponding to both the
simpler and spatially dependent anisotropic case, respectively. The main stability results are
also contained in this section. Section 3 contains the proofs of our main stability results and
includes estimates for the electromagnetic boundary value problem. In section 4 we describe
the reconstruction algorithm (subsection 4.1) and prove convergence results (subsection 4.2),
again corresponding to both classes of A. Section 5 contains several numerical experiments
demonstrating accurate reconstructions, including two cases of nonsmooth true scalar func-
tions \gamma \ast and one fully three dimensional reconstruction. Some final concluding remarks are
included in section 7.

2. Main assumptions and stability estimates. Throughout this paper the medium to be
imaged is a bounded domain \Omega in R3 with C1,\beta boundary \partial \Omega (see Definition 2.1), diameter
diam(\Omega ) =M , for some constant M > 0, and Lebesgue measure \mu (\Omega ). For a point x\in R3, we
will denote x = (x\prime , x3), where x\prime \in R2 and x3 \in R. We will also denote by Br, B

\prime 
r the open

balls Br(0) and B\prime 
r(0) in R3 and R2, respectively, and by Qr the cylinder Qr(0) in R3 defined

by

Qr(0) =B\prime 
r \times ( - r, r).

From here onwards we fix a number \beta satisfying 0<\beta \leq 1.

Definition 2.1. Given a bounded domain \Omega \subset R3, we say that \partial \Omega is of class C1,\beta with
constants r0,L > 0 if for every P \in \partial \Omega , there exists a rigid transformation of coordinates
under which P = 0 and

\Omega \cap Qr0 =
\bigl\{ 
(x\prime , x3)\in Qr0 | x3 >\varphi (x\prime )

\bigr\} 
,

where \varphi is a C1,\beta function on B\prime 
r0 satisfying

\varphi (0) = | \nabla \varphi (0)| = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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618 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

and

| | \varphi | | C1,\beta (B\prime 
r0
) \leq Lr0,

where we use the normalization convention

| | \varphi | | C1,\beta (B\prime 
r0
) = | | \varphi | | L\infty (B\prime 

r0
) + r0| | \nabla \varphi | | L\infty (B\prime 

r0
) + r1+\beta 

0 sup
x\prime ,y\prime \in B\prime 

r0
, x\prime \not =y\prime 

| \nabla \varphi (x\prime ) - \nabla \varphi (y\prime )| 
| x\prime  - y\prime | \beta 

.

Once and for all it is understood that \Omega \subset R3 is a bounded domain with diameter
diam(\Omega ) = M and C1,\beta boundary \partial \Omega . We define below the two classes of admissible an-
isotropic structures considered in this paper.

Definition 2.2. Given \Lambda , \scrE 1 > 0 and denoting by Sym the class of 3\times 3 real-valued sym-
metric matrices, we say that A(\cdot )\in \scrA if the following conditions hold:

A\in C1,\beta ([\lambda  - 1, \lambda ], Sym),(2.1)

sup
t\in [\lambda  - 1,\lambda ]

\bigm| \bigm| \bigm| dA
dt

(t)
\bigm| \bigm| \bigm| + sup

t1, t2\in [\lambda  - 1,\lambda ]

t1 \not =t2

| dAdt (t1) - 
dA
dt (t2)| 

| t1  - t2| \beta 
\leq \scrE 1(2.2)

and

(2.3) \Lambda  - 1| \xi | 2 \leq A(t)\xi \cdot \xi \leq \Lambda | \xi | 2 for every t\in [\lambda  - 1, \lambda ], \xi \in R3.

Proposition 2.3. If A\in \scrA and \gamma satisfies

\lambda  - 1 \leq \gamma (x)\leq \lambda for almost every x\in \Omega ,(2.4)

| | \gamma | | C1,\beta (\=\Omega ) \leq K,(2.5)

for some constants \lambda ,K > 0, then we have

(2.6) A(\gamma (\cdot ))\in C1,\beta (\=\Omega , Sym),

and furthermore,

(2.7) | | A(\gamma (\cdot ))| | C1,\beta (\=\Omega ) \leq \Lambda +K\scrE 1M(1 + 2M\beta ) :=\scrF 1,

where M , \scrE 1, and \Lambda have been introduced above.

Remark 2.4. Note that in Proposition 2.3, as the L\infty bound \lambda on \gamma is absorbed by the
C1,\beta bound K on \gamma , \lambda does not appear explicitly in the expression for \scrF 1 in (2.7). As [\lambda  - 1, \lambda ]
is the interval of variability of t, we find it convenient to distinguish in Proposition 2.3 and
in what follows, \lambda from K. It is understood that such distinction will be kept through this
entire manuscript.
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 619

Proof. The proof is a straightforward consequence of equality

| | A(\gamma (\cdot ))| | C1,\beta (\=\Omega ) = | | A(\gamma (\cdot ))| | L\infty (\=\Omega )

+M sup
1\leq i\leq 3

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \partial A
\partial xi

(\gamma (\cdot ))
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\=\Omega )

+M1+\beta sup
1\leq i\leq 3

sup
x,y\in \=\Omega 

x\not =y

| \partial A\partial xi
(\gamma (x)) - \partial A

\partial xi
(\gamma (y))| 

| x - y| \beta 

(2.8)

and our assumptions.

Definition 2.5. Given \Lambda , \scrE 2 > 0, we say that A(\cdot , \cdot )\in \scrA \prime if the following conditions hold:

(2.9) A\in C1,\beta (\=\Omega \times [\lambda  - 1, \lambda ], Sym),

sup
t\in [\lambda  - 1,\lambda ]

\Biggl\{ 
sup

1\leq i\leq 3

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \partial A
\partial xi

(\cdot , t)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\=\Omega )

+
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \partial A
\partial t

(\cdot , t)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\=\Omega )

+ sup
1\leq i\leq 3

sup
x,y\in \=\Omega 

x\not =y

| \partial A\partial xi
(x, t) - \partial A

\partial xi
(y, t)| 

| x - y| \beta 
+ sup

x,y\in \=\Omega 

x\not =y

| \partial A\partial t (x, t) - 
\partial A
\partial t (y, t)| 

| x - y| \beta 

\Biggr\} 

+ sup
1\leq i\leq 3

sup
t1, t2\in [\lambda  - 1,\lambda ]

t1 \not =t2

\Biggl\{ 
| | \partial A\partial xi

(\cdot , t1) - \partial A
\partial xi

(\cdot , t2)| | L\infty (\=\Omega )

| t1  - t2| \beta 
+

| | \partial A\partial t (\cdot , t1) - 
\partial A
\partial t (\cdot , t2)| | L\infty (\=\Omega )

| t1  - t2| \beta 

\Biggr\} 
\leq \scrE 2

(2.10)

and

(2.11) \Lambda  - 1| \xi | 2 \leq A(x, t)\xi \cdot \xi \leq \Lambda | \xi | 2 for a.e. x\in \=\Omega \forall t\in [\lambda  - 1, \lambda ], \forall \xi \in R3.

We observe that (2.3), (2.11) are conditions of uniform ellipticity.

Proposition 2.6. If A\in \scrA \prime and \gamma satisfies (2.4), (2.5), then we have

(2.12) | | A(\cdot , \gamma (\cdot ))| | C1,\beta (\=\Omega ) \leq \Lambda +M\scrE 2(1 +K)(1 +M\beta (2 +K\beta )) :=\scrF 2,

where M , \scrE 2, and \Lambda have been introduced above.

Proof. This is a straightforward consequence of equalities

(2.13)
\partial A

\partial xi
(x,\gamma (x)) =

\partial A

\partial xi
(x, t)| (x,t)=(x,\gamma (x)) +

\partial A

\partial t
(x, t)| (x,t)=(x,\gamma (x))

\partial \gamma 

\partial xi
(x),

together with our assumptions.

Below are our two stability estimates of \gamma in terms of the internal functional F for the
two classes of admissible anisotropic structures \scrA and \scrA \prime , respectively.
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620 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

Theorem 2.7. Let A \in \scrA and assume \gamma i satisfies (2.4), (2.5) for i = 1,2, \gamma 1 = \gamma 2 on \partial \Omega 
and

| | \nabla (\gamma 1  - \gamma 2)| | L2(\Omega ) \leq \scrC | | \gamma 1  - \gamma 2| | L2(\Omega )(2.14)

for some constant \scrC > 0. Denoting

(2.15) Fi :=\nabla \cdot (A(\gamma i)EA(\gamma i) \times B0) for i= 1,2

if \scrC 
\Bigl( 
C1(\scrE 1+1)+\Lambda C3

\Bigr) 
< 1

2 , where C1,C3 are the positive constants appearing in (3.6), (3.7),

respectively (with C3 =\Lambda \scrE 1C1), then

(2.16) | | \gamma 1  - \gamma 2| | L2(\Omega ) \leq C| | F1  - F2| | L2(\Omega ),

where C > 0 is a constant that depends on \scrC , K, \scrE 1, \Lambda , M , r0, L, and \mu (\Omega ) only.

More generally, we obtain the following main stability result.

Theorem 2.8. Let A\in \scrA \prime and \gamma i be as in Theorem 2.7, for i= 1,2. Denoting

(2.17) \~Fi :=\nabla \cdot (A(\cdot , \gamma i)EA(\cdot , \gamma i) \times B0) for i= 1,2

if \scrC 
\Bigl( 
C2(\scrE 2+1)+\Lambda C4

\Bigr) 
< 1

2 , where C2,C4 are the positive constants appearing in (3.8), (3.9),

respectively (with C4 =\Lambda \scrE 2C2), then

(2.18) | | \gamma 1  - \gamma 2| | L2(\Omega ) \leq \~C| | \~F1  - \~F2| | L2(\Omega ),

where \~C > 0 is a constant that depends on \scrC , K, \scrE 2, \Lambda , M , r0, L, and \mu (\Omega )only.

3. Proof of the stability estimates. To prove our main stability results, we proceed by
reducing the Maxwell system (1.2) into a Neumann boundary value problem for which we
recall standard estimates that will be needed for the arguments in the proofs of our stability
results.

3.1. Technical results. In what follows we recall standard estimates for the solution of
Neumann boundary value problems of type

(3.1)

\Biggl\{ 
\nabla \cdot (\sigma \nabla u) = - \nabla \cdot E in \Omega ,
(\sigma \nabla u+E) \cdot \nu = 0 on \partial \Omega .

Such estimates are standard in the theory of elliptic partial differential equations and we recall
them, together with their proof, for the sake of completeness. For a detailed proof, we recall
[8, section 2], [37, section 2].

Proposition 3.1. Let \sigma \in C1,\beta (\Omega ) be a matrix-valued function satisfying the uniform ellip-
ticity condition

(3.2) \Lambda  - 1| \xi | 2 \leq \sigma (x)\xi \cdot \xi \leq \Lambda | \xi | 2 for a.e. x\in \=\Omega \forall \xi \in R3,

and let E \in L2(\Omega ) be a vector-valued function. The Neumann problem (3.1) has a unique
solution u\in H1(\Omega ) (up to an additive constant) that satisfies

(3.3) | | \nabla u| | L2(\Omega ) \leq \Lambda | | E| | L2(\Omega ).
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 621

Proof. As a straighforward consequence of

(3.4)

\int 
\Omega 
\sigma \nabla u \cdot \nabla u dx= - 

\int 
\Omega 
E \cdot \nabla u dx,

we obtain

\Lambda  - 1| | \nabla u| | 2L2(\Omega ) \leq 
\bigm| \bigm| \bigm|  - \int 

\Omega 
E \cdot \nabla udx

\bigm| \bigm| \bigm| \leq | | E| | L2(\Omega )| | \nabla u| | L2(\Omega ),(3.5)

which concludes the proof.

Proposition 3.2. Let \gamma i satisfy (2.4), (2.5) for i= 1,2.

1. If A\in \scrA and \sigma i(x) =A(\gamma i(x)), x\in \Omega for i= 1,2, then we have

| | EA(\gamma i)| | C1,\beta (\Omega ) \leq C1 for i= 1,2,(3.6)

| | EA(\gamma 1)  - EA(\gamma 2)| | L2(\Omega ) \leq C3| | \gamma 1  - \gamma 2| | L2(\Omega ),(3.7)

where EA(\gamma i) is the unique solution to (1.2), with \sigma i = A(\gamma i) for i = 1,2 and C1, C3

are positive constants depending only on \Lambda , r0, L, K, \scrE 1, M , and \mu (\Omega ).
2. Similarly, if and A\in \scrA \prime and \sigma i(x) =A(x,\gamma i(x)), x\in \Omega for i= 1,2, then we have

| | EA(\cdot ,\gamma i)| | C1,\beta (\Omega ) \leq C2 for i= 1,2,(3.8)

| | EA(\cdot ,\gamma 1)  - EA(\cdot ,\gamma 2)| | L2(\Omega ) \leq C4| | \gamma 1  - \gamma 2| | L2(\Omega ),(3.9)

where EA(\cdot ,\gamma i) is the unique solution to (1.2), with \sigma i = A(\cdot , \gamma i) for i = 1,2, with C2,
C4 being positive constants depending only on \Lambda , r0, L, K, \scrE 1, \bfitM , and \mu (\Omega ).

Proof. As the proof follows the same line of [8, Proof of Proposition 2], we only highlight
the main steps of case 1. and only point out where case 2. differs from it, as such modifications
are minor. For case 1. we start by noticing that for \~E = 1

2( - y,x,0) we have that \nabla \times (EA(\gamma i) - 
\~E) = 0 for i= 1,2 and EA(\gamma i) =

\~E +\nabla ui, where ui solves the Neumann problem

(3.10)

\Biggl\{ 
\nabla \cdot (A(\gamma i)\nabla ui) = - \nabla \cdot (A(\gamma i) \~E) in \Omega ,

(A(\gamma i)\nabla ui +A(\gamma i) \~E) \cdot \nu = 0 on \partial \Omega 

for i= 1,2. Thus, estimate (3.6) is a straightforward consequence of (2.5) and Proposition 2.3
(see also [22, chapter 9], [23]).

To prove (3.7), we start by simplifying our notation. We denote EA(\gamma i), simply with Ei

for i=1, 2. Noting that \nabla \times E1 =\nabla \times E2, we write

(3.11) \nabla v=E1  - E2,

where v is the unique solution to

(3.12)

\Biggl\{ 
\nabla \cdot (A(\gamma 1)\nabla v) = - \nabla \cdot ((A(\gamma 1) - A(\gamma 2))E2) in \Omega ,
(A(\gamma 1)\nabla v+ (A(\gamma 1) - A(\gamma 2))E2) \cdot \nu = 0 on \partial \Omega 
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622 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

and

(3.13)

\int 
\partial \Omega 

v= 0.

Thus by Cauchy--Schwarz we obtain

(3.14)

\int 
\Omega 
A(\gamma 1)\nabla v \cdot \nabla vdx\leq 

\int 
\Omega 
((A(\gamma 1) - A(\gamma 2))E2) \cdot \nabla v dx,

which, combined with (3.6) and the uniform ellipticity condition (2.3), leads to

(3.15) | | \nabla v| | L2(\Omega ) \leq \Lambda C1| | A(\gamma 1) - A(\gamma 2)| | L2(\Omega ).

From the Lagrange theorem, for every x\in \Omega , there exists t(x), 0< t(x)< 1, such that

(3.16) A(\gamma 1(x)) - A(\gamma 2(x)) = (\gamma 1  - \gamma 2)(x)
dA(t)

dt

\bigm| \bigm| \bigm| 
t=c(x)

,

where c(x) = \gamma 2(x) + t(x)(\gamma 1(x) - \gamma 2(x)). Hence we obtain

(3.17) | | \nabla v| | L2(\Omega ) \leq \Lambda C1| | \gamma 1  - \gamma 2| | L2(\Omega )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dA(t)

dt

\bigm| \bigm| \bigm| 
t=c(\cdot )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\Omega )

and

(3.18) | | E1  - E2| | L2(\Omega ) \leq C3| | \gamma 1  - \gamma 2| | L2(\Omega ),

where C3 =\Lambda \scrE 1C1.
For case 2., estimate (3.8) follows, similarly to (3.6), from (2.5) and Proposition 2.6. With

a similar argument to case 1., from the Lagrange theorem, for every x \in \Omega , there exists t(x),
0< t(x)< 1, such that

(3.19) A(x,\gamma 1(x)) - A(x,\gamma 2(x)) = (\gamma 1  - \gamma 2)(x)
\partial A(x, t)

\partial t

\bigm| \bigm| \bigm| 
t=c(x)

,

where c(x) = \gamma 2(x) + t(x)(\gamma 1(x) - \gamma 2(x)), which leads to

(3.20) | | E1  - E2| | L2(\Omega ) \leq \Lambda C1| | \gamma 1  - \gamma 2| | L2(\Omega )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\Omega )

,

hence

(3.21) | | E1  - E2| | L2(\Omega ) \leq C4| | \gamma 1  - \gamma 2| | L2(\Omega ),

where C4 =\Lambda \scrE 2C2.
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 623

3.2. Proof of the stability estimates.

Proof of Theorem 2.7. We write the difference in the data F1  - F2 as

F1  - F2 =\nabla \cdot 
\Bigl( 
A(\gamma 1)E1 \times B0

\Bigr) 
 - \nabla \cdot 

\Bigl( 
A(\gamma 2)E2 \times B0

\Bigr) 
=\nabla \cdot 

\Bigl( 
(A(\gamma 1) - A(\gamma 2))E1 \times B0

\Bigr) 
+\nabla \cdot 

\Bigl( 
A(\gamma 2)(E1  - E2)\times B0

\Bigr) 
,

(3.22)

and from the Lagrange theorem, for every x\in \Omega , there exists t(x), 0< t(x)< 1, such that

(3.23) F1  - F2 =\nabla \cdot 
\biggl( 
(\gamma 1  - \gamma 2)

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

E1 \times B0

\biggr) 
+\nabla \cdot 

\Bigl( 
A(\gamma 2) (E1  - E2)\times B0

\Bigr) 
,

where c(x) = \gamma 2(x)+ t(x)(\gamma 1(x) - \gamma 2(x)). Then, we can split F1 - F2 into three contributions

(3.24) F1  - F2 = I1 + I2 + I3,

where

I1 =\nabla \cdot 
\Bigl( 
(\gamma 1  - \gamma 2)E1 \times B0

\Bigr) 
,

I2 =\nabla \cdot 
\Bigl( 
(\gamma 1  - \gamma 2)

\Bigl( dA
dt

(t)
\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I
\Bigr) 
E1 \times B0

\Bigr) 
,

I3 =\nabla \cdot 
\Bigl( 
A(\gamma 2)(E1  - E2)\times B0

\Bigr) 
,

(3.25)

where I denotes the 3 \times 3 identity matrix. To extract information about \gamma 1  - \gamma 2 in \Omega we
multiply the data difference F1 - F2 by \gamma 1 - \gamma 2 and integrate over \Omega . We do this by considering
each contribution Ii, i= 1,2,3, to the data separately. Starting with I1, we obtain\int 

\Omega 
(\gamma 1  - \gamma 2)I1dx=

\int 
\Omega 
(\gamma 1  - \gamma 2)

2\nabla \cdot (E1 \times B0)

+
1

2
\nabla (\gamma 1  - \gamma 2)

2 \cdot (E1 \times B0)dx

=
1

2

\int 
\Omega 
(\gamma 1  - \gamma 2)

2\nabla \cdot (E1 \times B0)dx

=
1

2
| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

(3.26)

where in the second equality of (3.26) we performed integration by parts and used the fact
that \gamma 1 and \gamma 2 share the same boundary values. In the last equality, we used the fact that
\nabla \cdot (E1 \times B0) = 1.

Multiplying I2 by \gamma 1  - \gamma 2, we have\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)I2dx

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)

2\nabla \cdot 
\biggl( \biggl( 

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
E1 \times B0

\biggr) 
+ (\gamma 1  - \gamma 2)\nabla (\gamma 1  - \gamma 2) \cdot 

\biggl( \biggl( 
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
E1 \times B0

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 
(\gamma 1  - \gamma 2)\nabla (\gamma 1  - \gamma 2) \cdot 

\biggl( \biggl( 
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
E1 \times B0

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \scrC C1(\scrE 1 + 1)| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

(3.27)
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624 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

where in the second equality of (3.27) we again performed integration by parts and again
recalled that \gamma 1 and \gamma 2 share the same boundary. In the inequality, estimate (2.2), (2.14), and
(3.6) have been used.

Finally, multiplying I3 by \gamma 1  - \gamma 2, leads to\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)I3dx

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
\Omega 
\nabla (\gamma 1  - \gamma 2) \cdot 

\Bigl( 
A(\gamma 2)(E1  - E2)\times B0

\Bigr) 
dx

\bigm| \bigm| \bigm| \bigm| 
\leq \scrC \Lambda C3| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

(3.28)

where the first equality in (3.28) is derived again by performing integration by parts and
noticing that \gamma 1 and \gamma 2 share the same boundary values. In the inequality, (2.3), assumption
(2.14), and (3.7) have been used.

Hence, for \scrC C1(\scrE 1 + 1) + \scrC \Lambda C3 <
1
2 , we obtain

(3.29)

\int 
\Omega 
(\gamma 1  - \gamma 2)(F1  - F2)dx\geq C| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

where C = 1
2  - \scrC 

\Bigl( 
C1(\scrE 1 + 1) +\Lambda C3

\Bigr) 
> 0, which concludes the proof.

Proof of Theorem 2.8. Similarly to the proof of theorem 2.7, we write the data difference
as

\~F (\gamma 1) - \~F (\gamma 2) =\nabla \cdot (A(\cdot , \gamma 1)E1 \times B0) - \nabla \cdot (A(\cdot , \gamma 2)E2 \times B0)

=\nabla \cdot ((A(\cdot , \gamma 1) - A(\cdot , \gamma 2))E1 \times B0) +\nabla \cdot (A(\cdot , \gamma 2)(E1  - E2)\times B0).
(3.30)

From the Lagrange theorem, for every x\in \Omega , there exists t(x), 0< t(x)< 1, such that

(3.31) A(x,\gamma 1) - A(x,\gamma 2) = (\gamma 1  - \gamma 2)(x)
\partial A(x, t)

\partial t

\bigm| \bigm| \bigm| 
t=c(x)

,

where c(x) = \gamma 2(x) + t(x)(\gamma 1(x) - \gamma 2(x)). Therefore, we obtain

(3.32) \~F1  - \~F2 =\nabla \cdot 
\Bigl( 
(\gamma 1  - \gamma 2)

\partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(x)

E1 \times B0

\Bigr) 
+\nabla \cdot (A(\cdot , \gamma 2)(E1  - E2)\times B0).

By splitting again \~F1  - \~F2 as

(3.33) \~F1  - \~F2 = I1 + I2 + I3,

where

I1 =\nabla \cdot 
\Bigl( 
(\gamma 1  - \gamma 2)E1 \times B0

\Bigr) 
,

I2 =\nabla \cdot 
\biggl( 
(\gamma 1  - \gamma 2)

\biggl( 
\partial A(\cdot , t)

\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
E1 \times B0

\biggr) 
,

I3 =\nabla \cdot 
\Bigl( 
A(\cdot , \gamma 2)(E1  - E2)\times B0

\Bigr) 
,

(3.34)

with a similar procedure as that of the proof of Theorem 2.7 we obtain the following estimates:\int 
\Omega 
(\gamma 1  - \gamma 2)I1dx=

1

2
| | \gamma 1  - \gamma 2| | 2L2(\Omega ),(3.35)
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 625

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)I2dx

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)\nabla (\gamma 1  - \gamma 2) \cdot 

\biggl( \biggl( 
\partial A(\cdot , t)

\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
E1 \times B0

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| 
\leq \scrC C2(\scrE 2 + 1)| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

(3.36)

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma 1  - \gamma 2)I3dx

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
\Omega 
\nabla (\gamma 1  - \gamma 2) \cdot (A(\cdot , \gamma 2(\cdot )) (E1  - E2)\times B0)dx

\bigm| \bigm| \bigm| \bigm| 
\leq \scrC \Lambda C4| | \gamma 1  - \gamma 2| | 2L2(\Omega ).

(3.37)

By combining (3.35)--(3.37) together and choosing the parameters such that (\scrC C2(\scrE 2 + 1) +
\scrC \Lambda C4)<

1
2 , we finally obtain

(3.38)

\int 
\Omega 
(\gamma 1  - \gamma 2)( \~F (\gamma 1) - \~F (\gamma 2))dx\geq \~C| | \gamma 1  - \gamma 2| | 2L2(\Omega ),

where \~C = 1
2  - (\scrC C2(\scrE 2 + 1) + \scrC \Lambda C4)> 0, which concludes the proof.

4. Reconstruction of \bfitgamma .

4.1. The functional framework and the algorithm. We denote by \gamma \ast the true scalar
function to be reconstructed, leading to the true anisotropic conductivities A\ast := A(\gamma \ast ) and
A\ast :=A(\cdot , \gamma \ast ), when A\in \scrA and A\in \scrA \prime , respectively. When A\in \scrA , the forward operator is

(4.1) F (\gamma ) =\nabla \cdot (A(\gamma )EA(\gamma ) \times B0),

where EA :=EA(\gamma ) solves

(4.2)

\Biggl\{ \nabla \times EA =B0 in \Omega ,
\nabla \cdot A(\gamma )EA = 0 on \Omega ,
A(\gamma )EA \cdot \nu = 0 on \partial \Omega ,

and the scalar function \gamma is updated by solving a stationary advection-diffusion equation as
shown in Algorithm 4.1 below. Similarly, when A\in \scrA \prime , the forward operator is

(4.3) \~F (\gamma ) =\nabla \cdot (A(\cdot , \gamma )EA \times B0),

where EA :=EA(\cdot ,\gamma ) solves

(4.4)

\Biggl\{ \nabla \times EA =B0 in \Omega ,
\nabla \cdot A(\cdot , \gamma )EA = 0 on \Omega ,
A(\cdot , \gamma )EA \cdot \nu = 0 on \partial \Omega ,

and the scalar function \gamma together with the electric field E are updated as per Algorithm 4.1.

4.2. Convergence analysis. Under a smallness condition on dA(t)
dt and \partial A(\cdot ,t)

dt , on [\lambda  - 1, \lambda ]
with respect to I, for A \in \scrA and A \in \scrA \prime , respectively (see (4.9) and (4.13), respectively), we
obtain the following convergence results.
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626 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone (reconstruction)

\bullet We choose an initial conductivity \gamma 1 satisfying (2.4), (2.5) and set k= 1.
\bullet At step k, defining Ak :=A(\gamma k), we solve the boundary value problem

(4.5)

\Biggl\{ \nabla \times Ek =B0 in \Omega ,
\nabla \cdot AkEk = 0 on \Omega ,
AkEk \cdot \nu = 0 on \partial \Omega 

to update the electric field Ek.
\bullet By solving the stationary advection-diffusion equation with the inflow boundary

condition, we calculate the updated conductivity Ak+1/2 :=A(\gamma k+1) as follows:

(4.6)

\biggl\{ 
\nabla \cdot (Ak+1/2Ek \times B0) =\nabla \cdot (A\ast EA\ast \times B0) in \Omega ,

\gamma k+1 = \gamma \ast on \partial \Omega  - ,

where

\partial \Omega  - =

\biggl\{ 
x\in \partial \Omega 

\bigm| \bigm| \bigm| dA(t)

dt

\bigm| \bigm| \bigm| 
t=\gamma \ast (x)

Ek(x)\times B0 \cdot \nu (x)< 0

\biggr\} 
for A\in \scrA ,

and

\partial \Omega  - =

\biggl\{ 
x\in \partial \Omega 

\bigm| \bigm| \bigm| \partial A(x, t)

\partial t

\bigm| \bigm| \bigm| 
t=\gamma \ast (x)

Ek(x)\times B0 \cdot \nu (x)< 0

\biggr\} 
for A\in \scrA \prime .

Theorem 4.1. Suppose that the true scalar function \gamma \ast satisfies (2.4), (2.5) and that the
true conductivity A\ast =A(\gamma \ast ) satisfies

(4.7) \nabla \cdot (A\ast \xi \times B0)\leq \widetilde \scrF 1\nabla \cdot (\gamma \ast \xi \times B0) for any x\in R3, for any \xi \in R3

for some constant \widetilde \scrF 1 > 0. Let A\in \scrA and, additionally, assume that

(4.8)
dA

dt
\in C1

\bigl( 
[\lambda  - 1, \lambda ], Sym

\bigr) 
and that there is a constant \~\scrE 1, 0< \~\scrE 1 < 1 such that

(4.9) sup
t\in [\lambda  - 1,\lambda ]

sup
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| \nabla \cdot 
\biggl[ \biggl( 

dA

dt
 - I

\biggr) 
Ek \times B0

\biggr] \bigm| \bigm| \bigm| \bigm| \leq \~\scrE 1.

If either

1.

\gamma k = \gamma \ast on \partial \Omega , for any k, k\geq 1;

or
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 627

2.

\gamma k = \gamma \ast on \partial \Omega  - and sup
t\in [\lambda  - 1,\lambda ]

dA

dt
Ek \times B0 \cdot \nu \geq 0 on \partial \Omega +,

for any k, k\geq 1,

then, for an appropriate choice of \scrC , \Lambda , C1, \~C3, \scrE 1, and \~\scrE 1, there exists a constant C, 0<C < 1
such that

(4.10) | | \gamma k+1  - \gamma \ast | | L2(\Omega ) \leq C| | \gamma k  - \gamma \ast | | L2(\Omega ).

Theorem 4.2. Suppose that the true scalar function \gamma \ast satisfies the conditions of Theorem
4.1 above and that the true conductivity A\ast =A(\cdot , \gamma \ast ) satisfies

(4.11) \nabla \cdot (A\ast \xi \times B0)\leq \widetilde \scrF 2\nabla \cdot (\gamma \ast \xi \times B0) for any x\in R3, for any \xi \in R3

for some constant \widetilde \scrF 2 > 0. Let A\in \scrA \prime , and, additionally, assume that

(4.12)
\partial A(\cdot , t)

\partial t
\in C1(\Omega \times [\lambda  - 1, \lambda ], Sym)

and there exists a constant \~\scrE 2, 0< \~\scrE 2 < 1 such that

(4.13) sup
t\in [\lambda  - 1,\lambda ]

sup
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla \cdot 
\biggl[ \biggl( 

\partial A

\partial t
(\cdot , t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
Ek \times B0

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \leq \~\scrE 2.

If either

1.

\gamma k = \gamma \ast on \partial \Omega for any k, k\geq 1;

or
2.

\gamma k = \gamma \ast on \partial \Omega  - and sup
t\in [\lambda  - 1,\lambda ]

\partial A(\cdot , t)
\partial t

Ek \times B0 \cdot \nu \geq 0 on \partial \Omega +

for any k, k\geq 1.

Then, for an appropriate choice of \scrC , \Lambda , C2, \~C4 \scrE 2, and \~\scrE 2, there exists a constant C 0<C < 1
such that

(4.14) | | \gamma k+1  - \gamma \ast | | L2(\Omega ) \leq C| | \gamma k  - \gamma \ast | | L2(\Omega ).

Proof of Theorem 4.1. We start by subtracting \nabla \cdot (A\ast Ek \times B0) from both sides of the
first equation in (4.6), which leads to

(4.15) \nabla \cdot ((Ak+1  - A\ast )Ek \times B0) =\nabla \cdot (A\ast (E\ast  - Ek)\times B0).
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628 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

Multiplying by \gamma k+1  - \gamma \ast and integrating over \Omega yields

(4.16)

\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot ((Ak+1  - A\ast )Ek \times B0) =

\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0).

Using the property that

(4.17) A\in C1
\bigl( 
[\lambda  - 1, \lambda ], Sym

\bigr) 
from the Lagrange theorem, for every x\in \Omega , there exists t(x), 0< t(x)< 1, such that

(4.18) Ak+1  - A(\gamma \ast ) = (\gamma k+1  - \gamma \ast )
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(x)

,

where c(x) = \gamma k+1(x) + t(x)(\gamma \ast (x) - \gamma k+1(x)), hence we get

(4.19)

\int 
\Omega 
(\gamma k+1 - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1 - \gamma \ast )

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek\times B0

\Bigr) 
=

\int 
\Omega 
(\gamma k+1 - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0).

The term on the left-hand side of (4.19) can be estimated from below as follows:\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1  - \gamma \ast )

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\Bigr) 
dx

=
1

2

\int 
\partial \Omega 

(\gamma k+1  - \gamma \ast )
2 \cdot 

\biggl( 
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\biggr) 
\cdot \nu ds(x)

+
1

2

\int 
\Omega 
(\gamma k+1  - \gamma \ast )

2\nabla \cdot 
\biggl( 
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\biggr) 
dx,

\geq 1

2

\int 
\partial \Omega 

(\gamma k+1  - \gamma \ast )
2 \cdot 

\biggl( 
dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\biggr) 
\cdot \nu ds(x)

+
1

2
| | (\gamma k+1  - \gamma \ast )| | 2L2(\Omega )

 - 1

2

\int 
\Omega 
| \gamma k+1  - \gamma \ast | 2 sup

\Omega 

\bigm| \bigm| \bigm| \nabla \cdot 
\biggl( \biggl( 

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
Ek \times B0

\biggr) \bigm| \bigm| \bigm| dx.

(4.20)

In the second equality in (4.20) we performed integration by parts twice. In either cases 1. or
2., (4.20), combined with (4.9), leads to\int 

\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1  - \gamma \ast )

dA

dt
(t)

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\Bigr) 
dx

\geq 1

2
(1 - \~\scrE 1)| | (\gamma k+1  - \gamma \ast )| | 2L2(\Omega ).

(4.21)

The term on the right hand side of (4.19) can be estimated from above as\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0)

\bigm| \bigm| \bigm| \bigm| 
\leq | | \gamma k+1  - \gamma \ast | | L2(\Omega ) | | \nabla \gamma \ast | | L\infty (\Omega ) | | (E\ast  - Ek)| | L2(\Omega ),

\leq KC3
\widetilde \scrF 1\| | \gamma k+1  - \gamma \ast | | L2(\Omega )| | \gamma \ast  - \gamma k| | L2(\Omega ),

(4.22)
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 629

where we combined estimates (4.7), together with (2.5) and (3.7). Choosing KC3
\widetilde \scrF 1

1 - \~\scrE 1

\leq 1
2 , we

finally derive

(4.23) | | \gamma k+1  - \gamma \ast | | L2(\Omega ) \leq C| | \gamma k  - \gamma \ast | | L2(\Omega ),

where 0<C < 1.

Proof of Theorem 4.2. As this proof is very similar to the one above, we only point where
the two proofs slightly differ. In particular, we take care to point out what are the a priori
constants that come into play. As above, subtracting \nabla \cdot (A\ast Ek \times B0) from both sides of the
first equation in (4.6) leads to

(4.24) \nabla \cdot ((Ak+1  - A\ast )Ek \times B0) =\nabla \cdot (A\ast (E\ast  - Ek)\times B0).

Multiplying by \gamma k+1  - \gamma \ast and integrating over \Omega yields

(4.25)

\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot ((Ak+1  - A\ast )Ek \times B0) =

\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0).

Using the property that

(4.26) A\in C1
\bigl( 
\Omega \times [\lambda  - 1, \lambda ], Sym

\bigr) 
from the Lagrange theorem, for every x\in \Omega , there exists t(x), 0< t(x)< 1, such that

(4.27) A(x,\gamma k+1) - A(x,\gamma \ast ) = (\gamma k+1  - \gamma \ast )(x)
\partial A(x, t)

\partial t

\bigm| \bigm| \bigm| 
t=c(x)

,

where c(x) = \gamma k+1(x) + t(x)(\gamma \ast (x) - \gamma k+1(x)), hence we have

(4.28)\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1  - \gamma \ast )

\partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\Bigr) 
=

\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0).

Arguing as above, the left-hand side of (4.28) can be estimated from below as\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1  - \gamma \ast )

\partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\Bigr) 
dx

\geq 1

2

\int 
\partial \Omega 

(\gamma k+1  - \gamma \ast )
2 \cdot 

\biggl( 
\partial A(\cdot , t)

\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\biggr) 
\cdot \nu ds(x)

+
1

2
| | (\gamma k+1  - \gamma \ast )| | 2L2(\Omega )

 - 1

2

\int 
\Omega 
| \gamma k+1  - \gamma \ast | 2 sup

\Omega 

\bigm| \bigm| \bigm| \nabla \cdot 
\biggl( \biggl( 

\partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

 - I

\biggr) 
Ek \times B0

\biggr) \bigm| \bigm| \bigm| dx.
(4.29)

and again, in either case, 1. or 2., (4.29), combined together with (4.13), leads to\int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot 

\Bigl( 
(\gamma k+1  - \gamma \ast )

\partial A(\cdot , t)
\partial t

\bigm| \bigm| \bigm| 
t=c(\cdot )

Ek \times B0

\Bigr) 
dx

\geq 1

2
(1 - \~\scrE 2)| | (\gamma k+1  - \gamma \ast )| | 2L2(\Omega ).

(4.30)
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630 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

The right-hand side of (4.28) can be estimated from above as\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(\gamma k+1  - \gamma \ast )\nabla \cdot (A\ast (E\ast  - Ek)\times B0)

\bigm| \bigm| \bigm| \bigm| 
\leq KC4

\widetilde F2| | \gamma k+1  - \gamma \ast | | L2(\Omega )| | \gamma \ast  - \gamma k| | L2(\Omega ),

(4.31)

where we combined estimates (4.11), together with (2.5) and (3.9). Therefore, choosing
KC4

\widetilde F2

1 - \~\scrE 2

\leq 1
2 , we derive

(4.32) | | \gamma k+1  - \gamma \ast | | L2(\Omega ) \leq C| | \gamma k  - \gamma \ast | | L2(\Omega ).

5. Numerical experiments. In this section we present several numerical experiments
where we implement the algorithm described in section 4. In each case, a scalar reference
medium \gamma \ast \in \~S (the true scalar function to be reconstructed) is chosen, along with a specific
choice of a 3\times 3 matrix function A belonging to either \scrA or \scrA \prime . We start by considering a
number of examples in which A\in \scrA only (Examples 1--4). We consider the more general case
of A\in \scrA \prime in Examples 5 and 7, and in Example 6 we add noise to the source data to test the
algorithm's resistance to noise.

We then compute the synthetic acoustic source data

(5.1) F (\gamma \ast ) =\nabla \cdot (A\gamma \ast E\ast \times B0),

where E\ast is the electric field solution to (4.5) corresponding to \gamma \ast . For simplicity, in our
examples we always choose reference conductivity \gamma 0 = 1. We note that in our examples,
we found that the extra hypotheses for the convergence proof were not needed in practice.
In fact, in three of the examples below, \gamma \ast is not in C1 (Examples 4, 6, and 7, where \gamma \ast is
piecewise affine and piecewise constant). This is to test the reconstruction from nonsmooth
data. Again, it will be part of future work to extend our theoretical framework of sections 2--4
to conductivities with lower regularity assumptions and a more general anisotropic structure.

To compute solutions to both (4.5) and (4.6), we use the Python suite FEniCS. As de-
scribed in the proof of Proposition 3.2, we replace (4.5) with the Neumann problem (3.10) and
solve numerically for uk+1 = u using a standard variational formulation and piecewise linear
finite elements. Recall then that Ek+1 is given by

Ek+1 =\nabla uk+1 + \~E,

where \~E = 0.5[ - y,x,0]T . We note that while (3.10) is always a linear conductivity equation,
(4.6) changes more drastically for different choices of A. To compute solutions to this gener-
ally nonlinear transport equation, we used two different approaches; a discontinuous Galekin
method and a built-in FEniCS nonlinear solver. We give more details about these in the first
two examples.

Example 1. For our first example we choose A to be

(5.2) A(\gamma ) =

\left[  \gamma 0 0
0 \gamma 0
0 0 1

\right]  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

9/
23

 to
 1

31
.1

11
.5

.1
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 631

and reference medium \gamma \ast to be the Gaussian curve independent of z:

\gamma \ast = exp

\biggl( 
 - (x - 0.5)2

0.02
 - (y - 0.5)2

0.02

\biggr) 
+ 1.

In this case the transport equation (4.6) for \gamma k+1 becomes\Biggl\{ 
\nabla \cdot (\gamma k+1(Ek \times B0)) =\nabla \cdot (\gamma \ast (E\ast \times B0)) in \Omega ,

\gamma k+1 = \gamma \ast on \partial \Omega  - ,

which is two-dimensional (2D) linear isotropic, as was studied previously in [8]. To solve this
linear transport equation, we use a discontinuous Galerkin (DG) method with upwinding,
which we now describe briefly. Given a mesh Th of \Omega , we let V be a finite-dimensional
space containing functions not necessarily continuous across mesh elements. We define the
``upwinding"" term on the boundary of a triangle by

\=Ek = 0.5((Ek \times B0) \cdot \vec{}n+ | (Ek \times B0) \cdot \vec{}n| )

and denote the jump of a function on an internal edge E by

[[f ]] = f+  - f - ,

where f+ (f - ) is its restriction to the edge from the outflow (inflow) direction, respectively.
Then the variational formulation for the numerical transport problem is as follows:

find \gamma k+1 = \gamma \in V such that, for all v \in V ,\int 
\partial \Omega 

v\gamma (Ek \times B0) \cdot \vec{}nds+
\sum 
E

\int 
E
[[v]][[\gamma \=Ek]]dS  - 

\int 
\Omega 
\nabla v \cdot \gamma (Ek \times B0)dx=

\int 
\Omega 
F (\gamma \ast )v dx,

where F (\gamma \ast ) is the source data (5.1). Note that the upwinding term provides numerical
stability. We refer to [14] for more details on DG methods and upwinding. Figure 1 shows
the true \gamma \ast , plotted alongside its numerical reconstruction using the above algorithm.

Example 2. In this next example we add nonlinearity in the dependence of A on \gamma . To
solve the transport equation (4.6) in this and all of the examples that follow, instead of DG,
we use the Fenics nonlinear solver with higher order Lagrange elements. We choose here

(5.3) A(\gamma ) =

\left[  0.4(\gamma + 1)2 0.01 0
0.01 3\gamma 0
0 0 \gamma 

\right]  
and reference conductivity \gamma \ast to be a sum of Gaussian curves given by

\gamma \ast = exp

\biggl( 
 - (x - 0.65)2

0.02
 - (y - 0.65)2

0.02

\biggr) 
+ 0.5 \ast exp

\biggl( 
 - (x - 0.25)2

0.05
 - (y - 0.25)2

0.05

\biggr) 
.

With the definitions above, the transport problem (4.6) becomes the nonlinear equation for
\gamma = \gamma k+1:

(5.4) a1\gamma 
2 + a2\gamma + a3\gamma \gamma x + a4\gamma x  - a5\gamma y + c= F (\gamma \ast ) in \Omega ,
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632 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

(a) (b)

Figure 1. A given by (5.2). The resulting transport equation is linear. Ran for 10 iterations on a mesh of
size 150\times 150\times 1.

(a) (b)

Figure 2. A given by (5.3), resulting in transport equation (5.4). Ran for 10 iterations on a mesh of size
75\times 75\times 10.

with inflow condition \gamma = \gamma \ast on \partial \Omega  - , where the spatially varying coefficients are functions of
E = [E1,E2,E3]

T , given by a1 = 0.4E2,x, a2 = 0.8E2,x  - 3E1,y, a3 = a4 = 0.8E2, a5 = 3E1, and
c= 0.4E2,x. We show the reconstruction in Figure 2.

Example 3. In this next example we add nonlinearity on the off diagonals. Let

(5.5) A(\gamma ) =

\left[  0.4(\gamma + 1)2 0.01\gamma (1 - \gamma ) 0
0.01\gamma (1 - \gamma ) 3\gamma 0

0 0 \gamma 

\right]  ,

and let \gamma \ast be given by

\gamma \ast (x, y) = cos (75(x - 0.5)2 + 75(y - 0.5)2) exp

\biggl( 
 - (x - 0.5)2

2
 - (y - 0.5)2

2

\biggr) 
+ 1.
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 633

(a) (b)

Figure 3. A given by (5.5), yielding transport equation (5.6). Ran for 10 iterations on a mesh of size
75\times 75\times 10.

In this case the transport equation (4.6) for \gamma k+1 = \gamma becomes

(5.6) a1\gamma 
2 + a2\gamma \gamma y + a3\gamma y + a4\gamma + a5\gamma x + a6\gamma \gamma x + c= F (\gamma \ast ) in \Omega ,

with \gamma = \gamma \ast on \partial \Omega  - , where the coefficients are given by a1 = 0.4E2,x + 0.01E1,x  - 0.01E2,y,
a2 = 0.898E2, a3 = 0.01E2 - 3E1, a4 = 0.8E2,x - 0.01E1,x+0.01E2,y - 3E1,y, a5 = 0.8E2 - 0.01E1,
a6 = 0.02E1, and c= 0.4E2,x. Reconstruction results are in Figure 3.

Example 4. Here we choose a piecewise affine \gamma \ast to test the reconstruction of nonsmooth
conductivity. Let

(5.7) A(\gamma ) =

\left[  0.4(\gamma + 1)2 1
\gamma +20 0

1
\gamma +20 3\gamma 0

0 0 \gamma 

\right]  
and define \gamma \ast by

\gamma \ast (x, y) =

\left\{     
1 + 5(x - 0.3), 0.3\leq x\leq 0.5,

2 - 5(x - 0.5), 0.5\leq x\leq 0.7,

1 else.

With the definitions above, the transport problem (4.6) becomes find \gamma = \gamma k+1 such that

(5.8) (E2,x  - E1,y)\gamma + (E2)\gamma x  - 
\biggl( 

E2

(\gamma + 20)2
+E1

\biggr) 
\gamma y

+

\biggl( 
1

\gamma + 20

\biggr) \biggl( 
E2,y  - E1,x +

E1,x

\gamma + 20

\biggr) 
= F (\gamma \ast ) in \Omega ,

with \gamma = \gamma \ast on \partial \Omega  - . Numerical reconstructions are show in Figure 4.
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634 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

(a) (b)

Figure 4. A given by (5.7). Ran for 10 iterations on a mesh of size 75\times 75\times 10.

(a) (b)

Figure 5. A given by (5.9). Ran for 10 iterations on a mesh of size 100\times 100\times 10.

Example 5. Next we choose A to be spatially varying as well as dependent on \gamma , as
follows:

(5.9) A(\vec{}x, \gamma ) =

\left[  0.4(\gamma + 1)2 0.25(x2 + y2)\gamma 0
0.25(x2 + y2)\gamma 3\gamma 0

0 0 \gamma 

\right]  ,

and we let \gamma \ast be the trigonometric function

\gamma \ast (x, y) = sin(10x) sin(5y) sin(7(1 - x)) sin(y - 1) + 1.

Numerical results are given in Figure 5.

Example 6. Next, we test the model's sensitivity to noisy data by adding random variable
\eta to the source

(5.10) F (\gamma \ast ) =\nabla \cdot (A\gamma \ast E\ast \times B0) + \eta ,
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 635

(a) (b)

Figure 6. A given by (5.9) with noisy acoustic source data. Ran for 20 iterations on a mesh of size 60\times 
60\times 10.

Figure 7. Reconstruction for (5.12) at z = 0.

where \eta is uniformly distributed averaging 9\% of the maximum of the source data. We let

(5.11) A(\gamma ) =

\left[  0.4(\gamma + 1)2 0.01 0
0.01 3\gamma 0
0 0 \gamma 

\right]  ,

and we let \gamma \ast be as in Example 3. The results are presented in Figure 6., where we can see
that the reconstruction is quite stable in the presence of noise.

Example 7. Finally, we present an example in which A is spatially varying, as well as
dependent on \gamma , and \gamma \ast is z-dependent. We let

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

9/
23

 to
 1

31
.1

11
.5

.1
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



636 N. DONLON, R. GABURRO, S. MOSKOW, AND I. WOODS

Figure 8. Reconstruction for (5.12) at z = 0.282.

Figure 9. Reconstruction for (5.12) at z = 0.513.

(5.12) A(\vec{}x, \gamma ) =

\left[  0.4(\gamma + 1)2 0.25((x - 0.5)2 + (y - 0.5)2)\gamma 0
0.25((x - 0.5)2 + (y - 0.5)2)\gamma 3\gamma 0

0 0 \gamma 

\right]  ,

and we let \gamma \ast be a piecewise constant corresponding to a spherical inclusion, that is,

\gamma \ast (x, y, z) =

\Biggl\{ 
2, (x - 0.5)2 + (y - 0.5)2 + (z  - 0.5)2 \leq 0.4,

1, else.

Slices of the three-dimensional reconstruction are shown in Figures 7--11.

6. Conclusions. In this work we studied issues of stability and reconstruction of the
anisotropic conductivity \sigma of a biological medium \Omega \subset R3 by the hybrid inverse problem
of magneto-acoustic tomography with magnetic induction (MAT-MI). More specifically, we
considered a class of conductivities which correspond to a one-parameter family of symmetric
and uniformly positive matrix-valued functions t \mapsto \rightarrow A(x, t), which are a priori known to
depend nonlinearly on t \in [\lambda  - 1, \lambda ]. This gives rise to the family of anisotropic conductivities
A(x,\gamma (x)), x \in \Omega , for which the goal is to stably reconstruct the scalar function \gamma in \Omega .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STABLE RECONSTRUCTION OF ANISOTROPIC CONDUCTIVITY 637

Figure 10. Reconstruction for (5.12) at z = 0.718.

Figure 11. Reconstruction for A given by the z-dependent (5.12) for z = 0.897. Ran for 10 iterations on a
mesh of size 40\times 40\times 40.

We showed that if A belongs to certain classes of admissible anisotropic structures, then a
Lipschitz type stability estimate of the scalar function in terms of the data (internal functional)
holds true. In particular, the argument for our theoretical framework requires that \gamma and A
belong to C1,\beta . Our stability estimates extend the results in [8] to the case where \sigma depends
nonlinearly on \gamma , hence allowing us to consider a more general type of anisotropic structures.
Furthermore, we showed that the convergence of the reconstruction algorithm introduced in
[8] extends to this nonlinear case, and demonstrated its effectiveness in several numerical
experiments also showing that the reconstructions were stable in the presence of noise.

Several questions remain, including, as mentioned in [8], the reconstruction of full anisot-
ropy, which we expect will require more measurements at hand. It will also be interesting to
investigate more precisely to what extent the regularity assumptions considered in this paper
are needed for the convergence of the reconstruction algorithm in practice. These questions
are the subject of future work.
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