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S. Bloch and M. Vlasenko recently introduced a theory of motivic
Gamma functions, given by periods of the Mellin transform of
a geometric variation of Hodge structure. They tie properties of
these functions to the monodromy and asymptotic behavior of
certain unipotent extensions of the variation. In this article, we
further examine their Gamma functions and the related Apéry
and Frobenius invariants of a VHS, and establish a relationship to
motivic cohomology and solutions to inhomogeneous Picard-Fuchs
equations.
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1. Introduction

The Frobenius method for solving linear ODEs in the neighborhood of a
regular singular point (see for example [IKSY]) goes all the way back to [Fr].
The significance of the resulting basis of solutions in Hodge theory and mirror
symmetry has recently been elevated by two seminal papers.

In their proof of the Gamma Conjecture for rank-one Fano threefolds
[GZ], Golyshev and Zagier studied the Frobenius solutions for the regularized
quantum differential equations of these Fanos, using the solutions’ monodromy
to define constants kg, K1, k2, k3 and matching those to the coefficients of the
Gamma-class of each Fano; they also obtain a natural extension of the {x;}
to a (more mysterious) infinite sequence. Subsequently, Bloch and Vlasenko
[BV] generalized these Frobenius constants to a broader class of Picard-
Fuchs equations, and gave them a new interpretation, as periods of the
limiting mixed Hodge structure of the underlying variation and its unipotent
extensions. They also showed that the generating series x(s) := ijo I€j8j is
essentially a motivic Gamma function, that is, a period of the Mellin transform
(as defined by [LS]) of the underlying D-module.
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2 Matt Kerr

In this paper, we study the properties of k(s) for a particular class of
Picard-Fuchs equations, attached to polarized variations of Hodge structure
over a Zariski open set U C P! with all Hodge numbers equal to 1 (and a few
other properties detailed below).

Our first main goal is simply to give a streamlined presentation of the
main results of Bloch and Vlasenko in this case, making occasional technical
improvements (Theorems 6.6 and 9.2), and using the polarization to make
the “I' = k" result more explicit (Theorem 8.2). We also highlight how their
work can be used to compute LMHSs (Example 6.8) and produce a limiting
motive in the hypergeometric case (Remark 8.7).

Our second goal is to interpret certain features of x in terms of motivic
cohomology and admissible normal functions. For instance, if the variation
has weight n (and rank n + 1), then k,,1; is the first Frobenius number not
related to its LMHS; in Theorem 9.7, we obtain a motivic interpretation of the
“first unipotent extension” of [BV, §5], and hence of this number, confirming a
speculation in the closing pages of [loc. cit.]. In §10, we investigate the values
of K at positive integers, which we term Apéry constants. After characterizing
them as special values of solutions to inhomogeneous equations (Theorem
10.1), we interpret them in some cases as regulators of higher cycles (Theorems
10.8 and 10.11).

* ok ok

In the remainder of this Introduction, we offer a brief mathematical
dramatis personae for the reader’s reference (beginning on the next page).

To set the scene:' let X = {0,c,...,00} C P! be finite, with |c| < || for
all ¢ € ¥\ {0,c}. Let D be an open disk centered about 0 with D N> =
{0,c}; and, writing U := P!\ %, fix p € DN U. Consider a Q-motivic,
polarized Q-VHS M on U, of weight n with Hodge numbers hP"P = 1
(0 < p < n).2 Suppose the underlying local system has maximal unipotent
monodromy at ¢t = 0, and strong conifold monodromy (Remark 4.3) at t = ¢,
represented by Ty, T, € Aut(Mg,,) (with Ny := log(7p)); assume in addition
that ker(Ty — I) Nker(7, — 1) = {0}. Write 79,7, € m(DNU) for loops based
at p winding once about 0, c.

For simplicity, we impose assumptions largely avoided in the text: strong
conifold monodromy at ¢ (which goes a bit beyond rk(7, — I) = 1, see §4), self-
adjointness of L (see §§5-6), and M arising from a family defined over Q.

2Since M has a rational polarization @, it is self-dual, so that the dual of D™L
is LD™ below. We still find it useful however to formally distinguish M and MY
for some purposes: we use Q(-,-) to denote the pairing on M (or MY), and (-, -)
for the pairing of M and MV; see §4.
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Betti periods. Fixing ¢g € (M67P)T0, there is a unique basis {eg,...,e,} C
ML), such that Noej = ;-1 and (T.—1I)e; = 0 for j > 0. Set § := (Te—1I)ep €
My, and put Qo := Q(go,€n), Qe := Q(g0,0) (both in Q). Choose u €
HO(PL, F? M.) the (unique) section of the canonically extended Hodge line
which is nowhere zero on P!\ {oc}, and normalized so that the “fundamental
period”

(g0, 1) =1 A(t) = Ypso ant™  (also written eo(t))

has ag = 1. Write 9(t) := (6, ) and €;(t) := (g5, 1) (j > 0) for other periods,
and €3*(t) for the analytic (at 0) part of ¢;(t). The left-hand column of the
period matrix of the LMHS of M at 0 is given by (27i)7¢3*(0), 0 < j < n.

Picard-Fuchs. L := Z;'lzo t/P;(D) € Cl[t, D] is the minimal operator with
Vi =0 (hence Le; = 0 = Lt)). It has order n + 1 and degree d.

Conifold Gamma. The function
FC(S> — Zi—é(_1>n+l—k(n2—1)e2niks f»y(;k w(t)ts% + ( 2mis _ n+1 f ts%

is entire, with Y°7_ Pj(—s—j)Te(s+7) = 0, and e(—k) = (=1)"* &= (27i)ax
for k € ZZO.

Frobenius periods. ®(s,t) = > ;50 ¢t )s is uniquely defined by L® =
s and Ty® = e?™5®. Write ¢y (t ) 30w logl (1), (1) and ¢(t) =:
> k>0 a,(f)tk. Then Ax(s) = >y ak Js! satisfies B(s,t) = Yoo Ar(s)t*TF.
(Note that agjo) = a; and a(()bo) = 0, so that A(t) = ¢o(t) is the generating
series of constant terms of the {Ag(s)}, and Ag(s) is identically 1.) The
¢o(t), ..., on(t), which satisfy L(-) = 0, are called Frobenius periods, as opposed
to the Betti periods €y(t), ..., €en(t).

Kappa series. (T. — I)®(s,t) =: r(s)(t), with s(s) =: Y32, ;8 and
r(s)™h = Y520 ays?. We have kg = ap = 1 and a; = (27i)/€3*(0) for 0 <

Ak (s)
ag

J < n. Moreover, we have the asymptotic formulas k(s) = ¢* - limg_,

(£—3)
. a
and k; = E] 07 L log?(c) - limp— o m
(1 eZﬂls)n+1

and kappa is I'c(s) = Wﬁ( s) in this self-dual setting. At s ~ —Fk

we therefore have (s) ~ %ak
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Unipotent extension. Fix m € Z-g. There is a unique extension 0 —
K — En — M — 0 of admissible Q-VMHS on A (a small punctured disk
about 0) with underlying Q-local system E,, extending to D N U, underlying
D-module D/DD™L, and with KC,,, of rank m with Hodge numbers h=™~™ =
oo =h7b7 = 1. The coefficients {a; }o<j<n+m of k(s)! yield the left-hand
column of the period matrix of the LMHS of &, at 0.

Key Example 1: if ¢ € Q[z7!, ... ,xfil} is reflexive and tempered, and
f= é : X — P! the resulting CY-n-fold family (with M C R"f£,Q as above),
the box extension — arising from fiberwise restriction of (roughly) the

symbol {z1,..., 241} € KM, (Q(X)) — is £/(1).

Inhomogeneous equations. For any ¢ € Z-, let V¥ (¢) denote the unique
solution to L(-) = —t! analytic on D; then x(¢) = (**1V1(0). Each embedding
of a Tate object Q(—a) — IH'(P'\{co}, M) produces an admissible extension
0—- M —=YV, = Q(—a) — 0 with higher normal function V,,(¢) of this type
for ¢ < d.

Key Example 2: if d = 2, then IH' (P*\ {0}, M) = Q(—a) for some %5 <
a < n+1, and the resulting higher normal function V), satisfies LV, = —£t
for some € € C*, and (1) = £71V,(0). Of course, M usually arises from a

family X defined over Q, and then ¢ € Q.

Summary. We record the basic properties of the kappa series, which is
really a meromorphic function on C with poles at negative integers:

(1) At s = —k € Z<p, the leading term in the Laurent expansion of
k(s) is k*(=k) = (=k)""tay. Here {az} are the coefficients of the unique
holomorphic period of M on Ag; in Key Example 1, a = [gok]g are constants
in the powers of the Laurent polynomial.

(2) At s = 0, the power series coefficients of x (more precisely, of k1)
compute the LMHS of M — and, more generally, of &,, — at t = 0. These
are the numbers arising in [GZ]. In Key Example 1 (with ¢ the Minkowski
polynomial mirror to a Fano X°), by the Gamma Conjecture they should
match the coefficients of powers of ¢; in the regularized [-class of X° — and,
more generally, of its “progenitors” (see [Gol]). (In the case of &1, Kpqq is
related to the LMHS of the box extension at ¢ = 0; but this is not the special
value of the corresponding higher normal function, which blows up at 0 in
any normalization — the eztension of VMHS cannot be specialized there.)

(3) At s = k € Z~y, the values (k) reflect the value at 0 of the unique
solution to the inhomogeneous equation L(-) = —t* analytic on the big disk
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D. When certain hypotheses are satisfied,® for small values of k these will
be special values of higher normal functions arising from motivic cohomology
classes on X'\ X. These are the numbers that arise in [Go2], and are expected
to be the correct B-model interpretation of Apéry constants of homogeneous
varieties tabulated in [Ga]. Moreover, they are the numbers which arise in
the “spirit of Apéry” (in taking a linear combination of two exponentially
increasing solutions to a recurrence that then dies exponentially).

In light of (2) and (3), it seems reasonable to call the {k(k)} Apéry
numbers and the {x;} Frobenius numbers. Evidently, these constants are
global arithmetic invariants of the VHS M.

Some mundane notational conventions: we write d;; for the Kronecker delta,
i:=+—-1,and D := t%.

Acknowledgments. We thank S. Bloch, V. Golyshev, and A. Klemm for
many helpful discussions, and the two referees for numerous suggestions which

have helped to clarify the exposition. This work was partially supported by
Simons Collaboration Grant 634268 and NSF Standard Grant DMS-2101482.

2. Periods of connections

Fix a coordinate ¢ on P'. We work in the setting of algebraic connections on
U =P\ 3, where X is a set of at least three points including 0 and oo. That
is, one has a differential operator of the form

d T
L=>Y #Py(D)=Y"q_i(t)D' € C[t,D] (ged({ge}) = 1),
=0 i=0

of degree d and order r, with singularities only in >, and accompanying
D := Dpi-module D/DL on P! with solution sheaf Hompan(D/DL, O3L).
Its restriction to U is a connection (M,V: M — M ® Q,) with underlying
local system Mg := ker(V*") C M?®" of rank r, and solution sheaf Sol(M) :=
HOII]D%H (M, O%n) = M@\é

Write € HY(U,M) for the image of 1 € D/DL, so that Vpu =
0. Local analytic sections € of My may be paired with p to yield periods
(e, ), which are local sections of O satisfying D(e, u) = (g, Vppu) hence
Lie,u)y = (¢,Vu) = 0. On a simply connected subset S C U?", each such
period is simply the image of 1 € D/DL under ¢ regarded as an element of
Homp,(D/DL,Os).

3namely, that TH* (A, M) be split Hodge-Tate (or at least have “enough” Hodge
classes), as well as the Beilinson-Hodge Conjecture for the family X underlying M.
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In our setup, the connection is regular at oo if deg(q,) < deg(qo) (V0), at
o€ ¥ =%\ {0,00} if ord,(qr) > ord,(qo) — ¢ (V¢), and at 0 if ordg(qs) >
ordp(qo) (V¢). The latter (together with ged({ge}) = 1) implies that ¢o(0) # 0,
and we assume henceforth that ¢o(0) = 1.

Example 2.1. Let X be a smooth projective (n+1)-fold, f: X — P! a proper
morphism whose restriction fi: Xy := f~1(U) — U is smooth, and consider
the exact sequence of complexes

0= [ @ Q% 1] = Q% = Q%0 — 0.

Applying R¥(fy). to its terms yields a long exact sequence in which the
(everywhere regular) Gauss-Manin connection appears as a connecting homo-
morphism: writing M := R"(fy).Q%, s We obtain

MR (o) (500 © O, (1)) = O © R (fu)-Q, 0 = U & M.

Viewed in the analytic topology, V annihilates Mg := R"( fU)*Kxgn for any
subring K C C. The solution sheaf Sol(M) identifies with the local system
{Hn(Xt; C)}tEU-

Without loss of generality, we may assume that M is irreducible cyclic,
so that for some u € HO(U, M), M is generated as an Op-module by’
w, Vpu, Vau, ..., Vit So there exists L € O(U)[D], which we may
normalize as above, with Vyu = 0. Local analytic sections & of My, may
be paired with p to yield K-periods (e, u), refining the (C-)periods above.

Fix a base point p € U(C) N R near 0, and a point p € Uan above D
on the universal cover P: Uam — U?". Also fix paths 7, in U?" based at p
and winding once counterclockwise about each o € ¥\ {oo}. Write T, for the
action of monodromy (parallel transport along 7, ) on the stalks M), and M;,/ .
In dual bases the matrices of these actions will be transpose-inverse to one
another.

Example 2.2. Suppose only that M has a regular singularity at 0, and that
rk(M°) = 1. (Since qo(0) = 1, these imply that Py(D) = D".) Normalizing
w (and replacing L accordingly), we may assume that the unique invariant
period in a neighborhood of 0 takes the form A(t) = 1+ Yo, axt®. A
first motivation for the construction of Bloch-Vlasenko I-functions is: can

4In the sequel we make no explicit assumption about u generating M in this
strong sense, though in the setting imposed in §4ff, it will always generate M on a
smaller Zariski open.
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we interpolate the {a}, i.e. produce an entire function with F(—m) = a,, for
all m € Z~o?

If L = D +t then the period is et = > k>0 (_k—l!)ktk, and the sort of
function we are after is

2mwis 1 o0 dt
F(s) = QTF(S), where T'(s) —/0 e_ttST.

Since I'(s) ~ m(!z;)r:l) for s ~ —m, and 6237_1

EU™  The Bloch-Vlasenko I' in this case would be (€25 —1)I'(s), see Example

m!

3.5.

~ s+ m, we get F(—m) =

Henceforth (with the exception of Example 3.5) we shall assume that M
has reqular singularities. Choose a section m € H°(U, M), not necessarily the
section p annihilated by L. For each ¢ € My, by (e, m) we shall mean the

holomorphic function on U (or multivalued function on U/*") obtained by
pairing m with the section of P~} (M) extending & from p. Let Co(U??; K)
be the complex of topological chains on the universal cover; then

§= [Z v ® €j] € Hi(U™ M) := H1(Co(U; K) @k, (on ) My ,)

J

is paired with w = m ® % € H}p (U, M) by

Co) =3 [ tem T

This is called a period of the connection M.

Remark 2.3. (i) The H, above also identifies with Hy (7, (U*", p), My ) (group
homology), computed by the complex Co — C; — Cy, where Cy := Ml\é,p and
(for n =1,2)

Cp = {free abelian group on symbols [g1, ..., gn]} ® My ,.

The differential is given by ([y1,72] ® €) = [12] @77 e — [1172] ® e + ] ® &
and 9([y] ® €) = v~ e — &, which reflects the multivaluedness of the sections
of M.

(ii) The pairing is well-defined: if £ € 9Cy holds or w is a dR~coboundary,
then (£,w) = 0. In the first case, this follows from

dt dt dt
/ <€7w>_ = / <E7w> - / <6:w>_ +/ <’71_157w>_a
(mvy2)~? t vyt t it t 5t t
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which holds because 77! has acted on ¢ before we start along 75 '. For the
second, if w =Vn=Vpn® % then

€)=Y [ vT =% [ penT

= (O (il —e€i)m) =(0,n) =0
J
by the Fundamental Theorem of Calculus.

3. Gamma functions and interpolation

Consider the rank-1 connection on Oy with Vpl := s, so that the differential
operator is D — s and the period is t*. By abuse of notation we write this
connection as “t°”, and set M(s) := M ® t°. The action of 71 (U*",p) on its
stalk Mi(s)y , = My , ®x K[e*2™5] is the tensor product of the monodromy
representation for My with the monodromy of #* = 18! on C*. (We take
1 € K[e*2™9] to correspond to the branch with log(p) € R.) Our interest lies
in certain periods of this “Mellin-transformed” connection:

Definition 3.1. Given m € M(U) and

E=0>_ 7 ®e ®e™¢] € Hy (U™, M(s)g),
J

with n; € Z, the associated Bloch-Vlasenko Gamma function is

Tin;s sdt
Lem(s) i= e /1<€jvm>t t
J 7. )

It is called motivic if M arises as in Example 2.1.

Remark 3.2. (i) This function is entire: U|y;| avoids singularities of the integrand,
which is thus uniformly bounded for s in any compact set.

(ii) Given m, I'¢ , depends only on £ (and not its representative) by
Remark 2.3(ii) applied to M(s), with w = m ® 1 @ %. Hence the set of
all Gamma functions for (M, m) is an image of Hy(U, M(s)y), and is finitely
generated as a K[e*?™¢]-module.

Recall that  is the section of M annihilated by L = S°4_, t*Py(D).
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Theorem 3.3. The Gamma functions for (M, ) satisfy the difference equa-
tion
ZPk k)¢ (s + k) = 0.
Proof. Applying the Fundamental Theorem of Calculus to
0= 0 = ;oo !~ 1)(e 1)
yields

0=, e*mn® f D((ej, m)t*) % = Tevpu(s) + sTeuls).

Moreover, I'c 4,,(s) = I'¢ (s + 1) is evident from the definition. So

> HPi(Vp)u =
J
gives
0= FE,O(S) = Zj Fg,tjpj(vp)u(s)
=2 Tepwpuls +7) =3 Pi(=s = j)leuls +J). 0

Remark 3.4 (Recurrence relations). In the setting of Example 2.2, we have

d
0= LA(t Z t*P.(D) Z amt™ = Z Z Pr(m)a,t™*

m>0 k=0m>0
—Z (ZPkm k) — k)
m>0
hence Zk o Pr(m — k)am,—r = 0 for all m, which determines a,, from the
{@m—k }mm{m 4} Setting s = —m in Theorem 3.3, we have

d
Z Pi(m = k)¢ u(=m+ k) = 0.
k=0

So if we assume I'¢ ,(0) = 2ri, and T'¢ ,(¢) = 0 for £ € Z, then I'¢ ,(—m) =
2mia,,. As we shall see, in the confluence of the settings of Examples 2.1
and 2.2, these formulas will turn out to be true up to a nonzero rational
factor. Therefore, the Bloch-Vlasenko I'-function interpolates the power-series
coefficients {ay, }.
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To conclude with the “simplest example”, we have to break the rule about
regular singularities.

Example 3.5. Let M be the connection on Og,, with Vpl = —t. The
differential operator is D + ¢, its period e (= (g,1) for a section & of
MY). Consider the path 4 which runs from oo to € > 0 along R+, once
counterclockwise around 0, then back to co along R~ . Due to the subpolyno-
mial decay of e ! at 0o, £ = Yy®e®1 is a “rapid decay cycle” in HRP(C*, M(s)")
(see [BE]), so that

dt . o0 .
Iea(s) = /(s, 1>t‘9? = (e*™s — 1)/ et ldt = (e*™ — DT(s)
¥ 0
as advertised. But this is “ur-Gamma” is not a motivic Gammal

4. Conifold monodromy

For the remainder of this paper we work in the following setting,
which is motivated and typified by the simplest D-modules arising from
Landau-Ginzburg models:

o (M, V) is motivic, which is to say that it underlies a sub-Q-PVHS of
an R"(fu)«Q%, iy (defined as in Example 2.1). This implies:
— M has regular singularities;
— fiberwise Q-Betti cohomology provides a Q-local system Mg under-
lying M, whose monodromies T, = T5%¢™N are thus defined over
Q;
— fiberwise integration yields a polarization Q(-,): M x M — O
sending Mg x Mg — Q;® and
— M has a varying Hodge flag F*, with VF®* C F*~1@Q}, satisfying
the Hodge-Riemann relations.
We will use M also to denote this PVHS in what follows.
o M is principal: the G’z M are all of rank 1 for p =0, 1,...,n, so that

n := weight of M and r := rank of M = order of L are related by
r=n+1

5That is, @ is a morphism of VHS of weight —2n. The induced isomorphism
Q(): M — MY defined by Q(a,b) = (Q(a),b) sends Mg — My); and the
polarization on M" defined by Q(a,b) := (a,Q~1(b)) restricts to the intersection
form on Q-Betti homology M(\é (The “missing” (271)" twist will eventually show
up.)
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o« M has mazimal unipotent monodromy at t = 0: k(M) = 1. According-
ly, fixing € € (M(\é’p)TO once and for all, there exists a basis €g, €1, ..., &,
of M(é,p with Ngg; = ;1. Though this basis is not unique, Qg :=
Q(g0,en) € Q is independent of the choice (which in any case we will
specify below).

o There is a “minimal” ¢ € ¥ (= X\ {0, 00}), with |¢| < |o| for all other
o € ¥*; and M has conifold monodromy at t = c: vk(T, — I) = 1. That
is, there exists § € M), such that:

— the linear span (9) = im(7, — I)My) ;

— for n odd, T, is a symplectic transvection, sending d — ¢ and some
B B+0;

— for n even, T,: 0 — —¢ is an orthogonal reflection; and

—c€ Mé,p is invariant under 7, if and only if Q(e,d) = 0.

 Finally, assume that T.eq # 5. We may then rescale § so that (7. —
Ieg = 0, and set Q. := Q(gp,0) # 0.

Writing T, = T*T5S for the Jordan decomposition and N, := log(T") for
the monodromy logarithms, the assumptions just made imply Ty = e™° and
Noeg = 0, as well as:

Lemma 4.1. ¢ generates M;,/ under Ny.

Proof. First note that if i +j < n, then n —i > j = N"%; = 0
— Q(&i,55) = QIN" ", g,,65) = (=1)"'Q(en, N"P¢;) = 0. (In particular,
Q(g0,ex) = 0 for k < n; and since @ is nondegenerate, we must then have
Q(g0,en) # 0 as mentioned in the third bullet above.)

Now suppose that 6 = 2, c;&;, with & < n. Then for any ¢ € Mé,p’
Qe, (To! = Dey) = QUTe — D)e,gj) = Qeed,eg) = Yicp Cic=Q(ei,€5) s 0
for all j < n — k. Hence €, ...,e,_r_1 are T-invariant, which in the case of
go contradicts the last bullet above. O

Before proceeding, we make some final calibrations to the Q-Betti homology
classes as follows:

Lemma 4.2. Given g, there exists a unique choice of €1,...,&, satisfying
Nogj =¢j—1 and (T, — I)e; =0 for j > 0.

Proof. Given initial choices €7, ..., &) (and ef = o) satisfying Noej = €7_,
write (1, — I)ej, =: dd (with dy = 1), and inductively define ¢, = e} —
Z?Zl djex—j for k = 1,...,n. One easily checks the desired properties (by
induction).
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Suppose €, . .., ¢} also satisfy the two properties in the statement of the
Lemma. Inductively assuming that €; = ¢; for i < k, we have Ny(e), —ex) =
€)_y — €g—1 = 0 hence &} = e} + agg; whence 0 = (T, — I)e}, = (T, — I)ex, +
a(T, —Ieg =ad = a=0. O

Remark 4.3. In the event that the geometry Ay — U underlying M extends
over ¢ to a degeneration with smooth total space and nodal singular fiber
X, we will say that M has strong conifold monodromy at c. In this case,
there is a conifold vanishing sphere dy with Q(dg, dg) = (—1)<n;1) (1+(—=1)™),
which controls the monodromy via the Picard-Lefschetz formula T.e = ¢ —
(—1)@)@(5,50)50. (We then have § = My for some M € Q*, and Q. =
—(—1)(;)M 2) We shall only assume this where indicated, since there are
times when one merely has a differential operator in hand.

Turning to the de Rham structure, let M, be the canonical extension
of M to P!, whose logarithmic connection V: M, — M, ®@ QL (log¥) has
residues Res, (V) = —2= — Log(T5*) (with Log the branch of 52 with real
part in [0,1)). The extended Hodge sub-bundles F? satisfy V(F.) C F2~ ! ®
Q}n (log¥). In particular, the line bundle F is positive, and so has nonzero
holomorphic sections; we take p € HO(PY, F?) to be the unique such section
with zeroes only at oo and normalized so that (eo, ) = A(t) = 50 amt™
has ag = 1. The assumption that T,y # ¢ implies that A(t) has moanromy
at ¢, and so limsup,,_, an™ = c 1.

Henceforth L = Z?:o t1Pj(D) = >1_o gr—i(t) D" shall denote the (Picard-
Fuchs) differential operator associated to this pu, written so the {¢; };_, have no
common factor and ¢o(0) = 1. That is, L annihilates x4 and all of its periods.
(From this point on we drop V when convenient, writing Dy, etc.) We shall

be interested in the particular Q-periods

er(t) : = (ek, 1) (k=0,1,...,n)
bt = (6, ),

where of course €(t) = A(t). Recalling that ¢g(t) ~ h(t) at ¢ = o means
limy_,, % =1, here is what we can say about their asymptotic behavior:

Lemma 4.4. (i) At t =0, e(t) ~ kl!o(g;;(ig)k.

(ii) Write E,(2) == 2"% forn even and 2T log(z) for n odd. If M has
strong conifold monodromy (Remark /.3), then about t = ¢ we have

eo(t) = Co(1 + O(t — ¢))E,(t — ¢) + analytic function
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and P(t) ~ C(t — )T

for some constants Cy,C € C*, and ords—.(qo) = 1.

Proof. Applying repeatedly that (27i) D(e, p) = (27i)(ex, V pp) is asymptotic
to (27i)(ek, (ResoV)u) = —(eg, Nop) = (Noeg, ) = (eg—1, ) yields (i). For
(i), the period exponent of a node 3 + - -+ + x2 is 2 (see [KLa, (4.6-7)
and Prop. 4.1]), and by the assumptions above £y maps onto the (rank one)
vanishing cohomology. Since X, is still K-trivial, and p. nonvanishing as a
section of F', = H 9(Kx,), the period ¢y = er w realizes this exponent in [op.
cit., (4.6)], yielding the claim about €. For ¢, use (T, — I)eg = 9.

Choose a local coordinate w ~ t — ¢ so ¢y = E, (w)+analytic terms, and
write 0 = %. Then M. is generated by

n+l1

by O, ...,871771#, w@nTHM, 8108%1#,..., (9”7711087# resp.
W, O, ..., 7 p, wéawéagu, 8w%8w%8%p,..., 83_1111%(9111%8%#,

and 8HT+1w8nT+1,u resp. 8%10%810%8%# belong to M .. From this one deduces
that wd" !y (and not 9"*1y) is a Clw]-linear combination of p, Ay, ..., 0" .
]

Here is a basic geometric example invoked repeatedly in §§9-10.

Example 4.5. Let ¢ € Clz7,...,z1,] be a Laurent polynomial whose
Newton polytope A is reflexive, i.e. has integral polar polytope. (In particular,
it has a unique integral interior point given by 0.) We shall call ¢ itself
reflexive if in addition there exists a smooth blowup 5: X — P, on which é
extends to a proper morphism f: X — P! Xy = f~1(0) C X is a normal-
crossing divisor, and (* of) dlog(z) := dm—zll ARRRYA %ﬁ extends to a nowhere-
vanishing section of Q%™ (log Xy). An immediate consequence, writing ¥
for the discriminant locus of f, is that (by adjunction) X; := f~1(¢) is a
smooth CY n-fold for each t € P!\ ¥ (=: U), given by a crepant resolution
of {1 —tp(z) =0} C Pp. We call (X, f) the compact Landau-Ginzburg model
associated to ¢ [GKS, §3.1].

Put Xy = f~1(U), so that (R™(fu)«Qx, v, V) underlies a Q-VHS %,
and write M C HY for the minimal sub-Q-VHS containing the line bundle
Fi= F'HYE. It M satisfies the assumptions of the beginning of this section,
we will call ¢ good. (For instance, in the n = 2 case where Xy is a family
of K3 surfaces, the assumption that Hodge numbers of M are (1,1, 1) forces
the generic Picard rank to be 19.) Taking a section p of FJ' as above with
corresponding Picard-Fuchs operator L, it is enough to have L of order n + 1
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with unique exponent 0 at ¢ = 0° and a single integer exponent of multiplicity
two or half-integer exponent of multiplicity one (for n odd resp. even) at t = c.

In fact, we can identify the section p explicitly. Denoting by wy 1= wxy ®
f *wlgll the relative dualizing sheaf, by a result of Kollar [Ko, Thm 2.6] we have
FI' = fuwy. Clearly dlog(@) g o section of w2 wy(log Xo) @ f*wp (log 0)~*

f(dt/t)
vanishing to first order on X, and nowhere else. Hence i := {ﬁ dg}g/(f)}

[ m

HO(P', F7') is a section with a simple zero at oo, demonstrating that F.”

O(1). Moreover, for each t € U we have L+ 4@ _ undf/f _ pndf

(2mi)m 1—tp 1—te f—t
A dlog(f — 1) =

e = e Resy, (1288 € 0"(X,).

From this one easily shows (e.g. see [DK, (4.1)]) that a, is the constant term
in ¢™; in particular, ag = 1 as desired.

Finally, we can broaden this construction by allowing Laurent polynomials
which define families with an automorphism over ¢ — e’ t for some w € N,
and which fail to be good only insofar as there are w conifold points of minimal
modulus in Y. Replacing X with its quotient by this automorphism and ¢ by
t*, and assuming the new Ty remains unipotent, p still produces the desired
section. In the sequel, all constructions and results stated for good reflexive
polynomials ¢ are also valid in this setting.

5. Frobenius periods

Since M has maximal unipotent monodromy at ¢t = 0 and A(0) # 0, it follows
that L has the unique local exponent 0 there. The indicial equation Py(T) =0
thus has unique root T =0, and so Fy(D) = D".

Definition 5.1. A Frobenius deformation for L at 0 is a formal series

t) = Z ¢7n(t)5m7

m>0

with each ¢,, analytic on a neighborhood of p (and by continuation, on (751),
such that L& = s"t° (= s"T1t%) and Ty® = e*™$®. We shall call ¢, ..., o,
the Frobenius periods, since they satisfy L(-) = 0.

6This condition forces the underlying local system to be rational, since it implies
Ng # 0, and a Galois-conjugate system inside H could not also have this property
(since A0 = 1).
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In our setting (as bulleted in §4), ® is unique [BV]. To the author’s knowledge,
Frobenius deformations were first written down in the form of Definition 5.1

in [GZ, (6.4)].
Example 5.2. If L has order 3 (n = 2), then
L(Z ms™) = s3etlo8t = 710(%::;)(,7“‘) ™
m>0 m>3

implies Lo, L1, Loa = 0 (morally, 3 C-periods of a family of Picard rank 19
K3 surfaces) while Los = 1, Loy = log(t), Los = log b ete.

The monodromy condition To® = €2™¢® forces t~*® to be Ty-invariant
(after expanding t=° = e¢~*'2() and rearranging in powers of s). Since the
¢m have at worst log poles, the coefficients {¢2"} of powers of s in t~*®
are thereby analytic in a disk about ¢t = 0. Writing ¢2*(t) = > >0 a,(gm)tk,
expanding t° gives -

m
O(s,t) = Y gm)tss™ = s 10%, Lgpn (1) (m=m'+1)
m’>0 m>0 (=0
Z 9J+elog t (J)fk Ztk slog(t) ZG(J) _. Ztk+sAk<9)
7,k 0>0 k>0 7>0 k>0

in which the first line yields ¢,,(t) = >_)%, 10%4’ Lgan (t). Furthermore, taking
t=101n

=t L =7 (D" 4 t(- ) (Lyz0af s + () 10
=2 af’s 1)

J=0

G

gives 1 = 3 .~ a((]] s7, so that ag ) = = 0p;. Immediate consequences are that

Ap(s) =2 a(J )i =1, and (from a( ) = 1 and uniqueness of the holomorphic
period) that ¢o(t) = 8" (t) = €o(t) = A(t), so that a( ) = .

Remark 5.3. A priori the {Ar(s)}x>0 and ®(s,t) are formal in s. However,
LY 5o tF15 A(s) = s"t* implies the recurrence

Am(s) = —(m + )7 i Amj(s)Pi(m — j + 9),

where deg(P;) < r for each j and Ay(s) := 0 for k& < 0. This exhibits A,,(s)
as a rational function with poles (of order < r) in Z N [—m, —1]. Moreover,
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the asymptotics of A, (s) as m — oo are governed by the degree r terms of
the {P;}; these are the coefficients of ¢o(¢), whose smallest root is nothing
but ¢. One deduces that: for s in any compact subset of C \ Z.g and ¢ in
any disk about 0 of radius less than |c|, the series @™ :=¢t=5® = 3", Ay (s)t*
converges uniformly to an analytic function; and ®*", ® continue to analytic
functions on U x (C\ Z<o).

We note here for reference the consequences that ®(0,¢) = A(t) and
d2"(s,0) = 1; from the latter, one has for example that ®(¢,¢) is an analytic
function vanishing at ¢ = 0 for each £ € Z~,.

Remark 5.4. In view of the equality of the 0*" Frobenius and Q-Betti periods
¢o(t) = A(t) = €o(t), it is natural to ask whether the remaining Frobenius
periods are Q-periods. It turns out that if this were the case, then the limiting
mixed Hodge structure (LMHS) of M at ¢t = 0 would be Q-split, without even
renormalizing ¢! This is almost never true.

To see the relationship, recall that the LMHS is given by the limiting

. og(t) . . .
Hodge flag lim;_,o G%Noft' written with respect to the Q-basis €,...,&),
together with the weight monodromy filtration W (No)a; = (g5, 60_;)-

But for computing the periods of the LMHS it is better to apply e No ¢
the Q-basis and compare with F2 in the limit. More precisely, we have the

Definition 5.5. By the period matriz Oy of the LMHS, we shall mean the
. log(t
change-of-basis matrix between” {(27i) /e~ 2gw(i)NO€Jv 7o (untwisted Q-Betti)

and p1, Vpi, ..., Vhu (de Rham) at ¢ = 0. Its 0*' column is
lim((2miy' e~ 50, ) = (2 i (1) = (2mi)€°(0),

where €3%(¢) is the “analytic part” obtained from ¢;(t) by formally setting

log(t) to zero. Since Noey = —ef,; and Reso(V) = F2¢, each column is

obtained from the previous one by shifting the entries down, yielding a lower-

triangular matrix with ones on the diagonal.

If the Frobenius periods {¢;(t)} were Q-linear combinations of the Betti
periods {¢;(t)}, the {€"(¢)} would be Q-linear combinations of the {¢%"(¢)}.
Since ¢$*(0) = do;, all €*(0) would be rational, and the (j,j — 0)h entries of
the matrix would belong to Q(¢), making the LMHS Q-split.

"Here (e——loﬁff) NOEJV)\tZO belongs to W (No)2(n—j) Miim,g, and V%u to MM Im—d,

lim

the (27i) 77 rescaling makes them project to the same element of Gr;‘{é]j;;Mnm.
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6. The kappa series

We now turn to the analytic continuation of the Frobenius deformation around
the conifold point. If £ =3I ¢,—;(t)D" is a differential operator underlying
an algebraic connection, then its adjoint

L= (=1)" X _o(=D)ig—i(t)

underlies the dual connection [BV, Lemma 34]. (In a slight abuse of notation,
we shall write Sol,(£) for the stalk Sol,(D/DL) below.) Note that (L) = £
and (DL)' = L1D.

Now remember that ¢» = (0, ) denotes the period over the conifold
vanishing cycle. If £ satisfies (T.—I)Sol, (L) = Ct, then also (T.—I)Sol, (L")
has rank one; and since Sol,(£1D) = [Sol, (LM%, (T. — I)Sol,(LID) =
ﬁye Sol,(LT)4 has rank one too. (That is, all but one function in a basis of
Sol, (L") is analytic at c.) Therefore (T, — I)Sol,(DL) = C¢. Applying this
argument to get from £ = D¥"1L to D¥L, we find that (T, — I)Sol,(D*L) =
Cy for all k € Z>o. But the coefficients ¢,, of & = > <, ¢ms™ satisty
D'L¢,, = 0 for m < £+ r, hence (T, — ¢y, = K for some k,, € C.
(In particular, by the normalization in §4, we have ko = 1.) So the following
makes sense:

Definition 6.1. The kappa series r(s) = 35 kjs? of L is the analytic
function on C \ Z«q given by

(Te — I)P(s,t) =: k(s)(t).

The coefficients {x;} are called the Frobenius constants of L.

Remark 6.2. The {k;} were called “Apéry constants” in the original version
of [BV]. In our view this terminology is more appropriate for the values x(¢),
¢ € ZNIl,d—1]; see Remark 10.3 and Example 10.4. As this paper was in the
finishing stages, the final version of [op. cit.] appeared in which the language
of Definition 6.1 is used.

The two Theorems that follow address (respectively) interpretation and
computation of the Frobenius numbers. The intervening Lemma gives a useful
asymptotic description of the power-series coefficients of periods and related
functions.

Theorem 6.3. The first n + 1 coefficients of r(s)™t =: 2250 a;s' yield the
LMHS periods of Remark 5.4.
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Proof. From Ty 3~ d)]s = 2mis 22550 d)J , we have

and thus No¢; = 2mig; 1. Writing €, = 3°7_ ¢ ]gb] (for some constants ¢;),
applying Ny repeatedly gives (27i) e, 1 = Zj Z0 Cln—k)—; 5, hence ex , (0) =
(2mi)*c, 1. Now

Zﬁjwsj T.— 1) Zfbjsj = k= (T. - I)¢;

7>0 7>0
L l
= D gy =Y cj(Te = oy = e (Te — Dee
= (2mi)" (S _gce—jrs)d = (T — I)eg = 80e6
— a; = (271)"¢; = (27i)'€(0) fori =0,...,n,

as desired. O

Remark 6.4. Theorem 6.3 (together with Theorem 9.2(d) below) is our version
of [BV, Prop. 47]. Tt says that Qi [resp. ;1] has (i, j)™ entry a;_; [resp. ;]
for ¢« > j and 0 for ¢ < j. The proof also shows that {2y, is the change-of-basis
matrix from {¢;(t)}7_, to {(27i)"e; (1) }ip.

Lemma 6.5. Suppose a power-series B(t) = >,,5o Bmt™ with radius of

convergence |c| ewtends to cm analytic function on [ﬁb, that the restriction of
its modulus |B(t)| (or | [, B(t)dt|) to the cut disk

De:={t|[t] <lel+e ¢ ¢[L1+)}
is bounded (for some ¢ > 0) by € Rsg, and that its monodromy satisfies
AN:=(T.—I)B~Xt—0c)""' near t=c
for some A € C* and w € 1Z>5. Then

A~ 1
B,, ~ ¢ _(w)x as m — 00.
27i cmm

Proof. Write e, := |c|(w + 1)%, and take m € N sufficiently large that
em < €. By Cauchy, we have

B(t B(t c(I+93) A(¢
27riBm:/ ()d_§£ ()dt+/ AL
oD, "t tl=lclten U1 c el

em
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The first term’s modulus is bounded by

273 _ 273 -~ 27 . B/
(|C|+2m)m |C|m(1+(w+1)%)m |c‘mmw+1 . m*

The second term is asymptotic to

D (=0 e G -

— At m \w—(m+j+1

|/ = 25 Y S (1 (L g
c §>0

~1
1

N Ac;;l / X1 = X)X = ’\ch—m*lB(m —w+1,w)
0

o At D(w) B//

cm mw

where the last line used Stirling’s approximation for the beta function. Since
By, =0, we conclude that 27iB,, ~ B

|B//
If B(t) is not bounded on D, but [, B(t)dt = >, Broim is (e.g.

when w = 1 and B(t) ~ 5 log(t — ¢) as t — ¢), then the argument gives

2mi m wc™ mwtl o

which again gives 27iB,, ~ Bl . O

Theorem 6.6. If M has strong conifold monodromy,® then

i) k(s) = c® limp_oo A’“(s), and thus
ag

s _ m log <y aim_j)

(i) &m =271 Mg o0

ay,

Proof. Observe that ® := ® — k¢ has no monodromy about ¢ = ¢ for any
fixed s = sg, so that

D, (1) == D(sg, t) — L2

K(s0)do(t) = B(s0,t) + (

5 )(50)do(t)

A

has (T, — I)®s, = (1 — £5)k(s0)t. The function

B(t) : = t70%,, = 0™ (s0, 1) — "y (1) = S Ap(so)th — L S gt

k>0 5>0
= (Ax(so) —

k>0

O) ak)tk7

8All we need is the consequence of Lemma 4.4(ii). The final revision of [BV]
includes a result (their Lemma 24) of the same form as our Theorem 6.6, but with
much more restrictive conditions which Lemma 6.5 allows us to avoid.
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which is clearly invariant about ¢ = 0, then has

(Te = DB(t) = (7 — ™) r(s0)1(t) ~ =25 (¢ — )u(t)

for t near ¢, while (T, — I)¢o(t) ~ ¥(t).

By Lemma 4.4(ii) we have ¢(t) ~ C(t—c) "3+, as well as the boundedness
of go(t) = 32,50 amt™ (or its integral) and B(t) =: 3~ b5 ™ required for
the application of Lemma 6.5. This yields

c’ B c’
am ~ n+1 and bm ~ n+3
cm 2 cmm” 2

. bB /A .
and 8o limy, 00 o= = (é—, lim,,— o0 % = 0. That is,
m

0= lim Am(SO) H(SO)am — lim Am(SO) _ K(SO)
m—00 [o7% m—00 U, c50
which gives (i). In fact, since & = —”THSUZS(OS o) this limit is uniform in s in

a neighborhood of s = 0; we may thus expand ¢® and equate power-series

coefficients, whence (ii). O
Remark 6.7. The flavor here is that, while a,, and A,,(s¢) have similar growth
rate, the particular linear combination A,,(sg)— “(fg)am has somewhat slower

so)

growth. This characterization of © is vaguely reminiscent to that of ((3) in
Apéry’s proof, though what happens at positive integer values of sg is much
closer to the Apéry phenomenon; see Remark 10.3 and Example 10.4.

Example 6.8. When L is a hypergeometric operator (cf. [BV, §3]), the results
of this section suffice to compute the matrix ;,, from Definition 5.5. Suppose
that L arises as in §4, with strong conifold monodromy (cf. Remark 4.3) at
c =1, and takes the form L = D" +tPy(D), with P(D) = —[[;_1(D + a;).
Then gy = 1 — ¢ implies ¥* = {1} and (via Prop. 7.1(vi) below) LT = L,
whence {a;} = {1 —a;} as sets and }_ a; = 5. By the recurrence in Remark
5.3, we have

H T(k+s+a)(s+1)
T(s+a)T(k+s+1)

and so Theorem 6.6(1) together with Stirling’s formula yields

Ak(O) F(S + Clj)

()L = ] kg = _
als) = im0 T A ) H (s + (e
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This is enough to recover, for instance, the LMHSs for the complete intersection
CY families in [DM], previously computed (using Iritani’s mirror theorem
[Ir1]) in [dSKP, §4].

To illustrate, consider the mirror quintic family (P4[5] in [op. cit.]),” with
1234 4 _Ttd)
575755

r=4anda=( J=1 T(s+ 1)1 (L)’

). Taking the power-series expansion of []

we obtain *(ag, a1, g, a3) =
' (1,-510g5,10¢(2) + % log?5, ~40((3) - 50(log 5)¢(2) — 2 log®5)

for the 0™ column of ;.. One arrives at the more standard form of this data
by renormalizing the LMHS with respect to the local coordinate 5%, which
means multiplying the column vector by e®189)Nole: this yields

£(1,0,10¢(2), —40((3)).

Moreover, the correct integral basis of the dual local system is not ¢ =
(€0,€1,€2,€3) but rather (e, &1, 59, 5e3); this leads us to multiply the last
two entries of the vector by 5. The resulting invariants 50¢(2) and —200¢(3)
correspond exactly to a = 50 and b = —200 in the table in [op. cit.].

7. Conifold Gamma

The main theorem of [BV], a variant of which is given in the next section, is a
precise relationship between r(s) and a specific Gamma function I'.(s). The
latter involves particular choices of section m. € H°(U, F") and homology
class & € Hy(U,M(s)g). We first explain where the section comes from.

Let {e;j}—g € MY(U) be the dual basis of {D'u} C M(U). Since the
latter are meromorphic as sections of M, on P!, the former are meromorphic

sections of M. Using De; +ej_1 = “=te,, one checks as in [BV, §4] that

LT(Z—Z) = 0. Moreover, by definition e,, pairs to zero with generators of F'M,

and so it belongs to!’ FOMY = Q(F"M), whence e, = % for some Y €
C(t)*. As (e, D) =1,

Y =Y(en, D"p) = (Q(n), D" ) = Q(u, D" 1)

9Take ¢ = Z?:l T + H;lzl x; ! and replace t by t° as at the end of Ex. 4.5.

OWe remind the reader that the polarization Q(,-) induces an isomorphism
Q(): M — MY by Q(a,b) =: (Q(a),b). This is used throughout the remaining
sections. Here the point is simply that M is the orthogonal complement of 7" M
under Q(-,-) and FOM" under (-, -).
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is the Yukawa coupling. Besides being a rational function, it has the following
properties:

Proposition 7.1. In the setting of §4, we have:

) Y10 = b
DY = —%g—éY (recallr =n+1).

q:= go(g) is a polynomial with q(0) = 1.

)
)
(iv) The adjoint operator is given by LT = %Lq.
) If M has strong conifold monodromy (Remark 4.3) at ¢, then q(c) # 0.
) The conditions g =1,Y = %, Lt'=1L,andq = 5Dqo are equivalent.

They hold in particular when |X*| = d and M has strong conifold
monodromy at each point of X

Sketch. (i) Applying D" to Lemma 4.4(i)' gives (g, D"pu) ~ (271) "8y
as t — 0 hence D"y ~ (2ri)™"e). So we have (27i)"Y ~ Q(u,e&)) ~
(1M QED ) = (800) ~ | |

(ii) Take m = [2]. Applying D to Q(D" 'y, D" ') =0 for 1 <i < k
yields Q(D*u, D" %) = (=1)*Y; whence

— —mDY + (~1)" QD™ p, D" ) — LY,

DY = Q(Dp, D" 1) + Q(p1, =¥ "=t D' 1)

in which the middle term is 0 for n odd and %DY for n even.

(iii) At 0 € ¥, ord,qo > rk(T, — I) = rk(Res,(V)) > —ord, Y.

(iv) Writing LT and %Lq in the form 3, p,_;(t)D?, they have the same
po. But then they are equal because both kill Z—g = Q(%): we have Lq(Z—g) =
Q(Lq2) = Q(Ly) = 0.

(v) Using Y = £Q(D"u, D"~ pu) from (ii) above with Lemma 4.4(ii)
shows that Y has a simple pole at ¢ = ¢; this cancels the zero of ¢q.

(vi) The equivalence is clear. By (ii), go has a zero at each zero or pole
of Y, and d strong conifolds exhausts the zeroes of ¢y (as deg(qy) < d). So
on P!\ {oo}, Y has d simple poles at these points, and no other zeroes or
poles. O

Accordingly we shall set

(7.1) me = tp e H'(U,F" M)

USince ex(t) is a period and the monodromy at 0 is unipotent, the Lemma says

that (eg, p) — % is a sum of smaller (than k) powers of log(t) times functions

analytic at 0.
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and A(t) = > om0 Amt™ = (g0, M) = %. Notice that m. and thus A are
annihilated by L. However, we also point out that the situation in (vi) is both

easy to check and quite common for LG-models; and in that case, m. = u
and A = A.
Remark 7.2. In view of Prop. 7.1(iv), we say that L is essentially self-adjoint
(cf. [vS, §2.4]); this reflects the self-duality M = M(n). But the operator
L= \}L\/ﬁ satisfies LT = L i.e. it is self-adjoint on the nose. Why don’t we
replace L by this? First, ¢ may not be a square, even for something as simple
as a family of elliptic curves with an I fiber; in this case, L corresponds
to a quadratic twist of M (not M itself). Second, even if ¢ is a square, L
corresponds to % (in place of p), which is a strictly meromorphic section of
M. (unless of course ¢ = 1). We prefer to work with the true Picard-Fuchs
equation of M, i.e. the one corresponding to p as we normalized it in §4.
However, we feel obliged to point out that in the LG-model setting of
Example 4.5, L itself turns out to be self-adjoint (i.e. ¢ = 1) with striking
frequency. Though one can certainly cook up counterexamples (e.g. see Remark
10.7(ii)), consider the fact that this holds for all 23 of the PF operators of
order 3 arising in the table of “3D Minkowski period sequences” in [Fano]. So
the reader mainly interested in this case might consider ignoring the daggers
from here on out.

Turning to the homology class, we write
P(z):=(z—-1)" Z Ama™
and set!?
= Yl ® 0@ ™ 197 @ 29 @ P(e¥™)] € Hy (U, M(s)).
This is well-defined since applying 0 to the bracketed expression yields
ZAm% (0 @e*™™) = " And ® 7™ + (7. — 1)egg ® P(e”™)
m
=Y AN "0 ®1—6® P(e¥™) + 0 ® P(e’™)
= (:0—1 —1)'d®1=0.

Definition 7.3. The conifold Gamma is T'c(s) := ¢, . (s).

12This is a rational multiple of the cycle written &, in [BV, Cor. 33|, but for the
dual local system.
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S e e, Let &y and 4. be neighborhoods of 0 and c¢
- containing 7 and 7. respectively (and no other

roots of qp); then ty NU = UF = Uy \ {0} and
FUNU =82 =4\ {e}, and p € Uy N L. Write

s e = ULl and X = U5 UL,

Notice that &. is supported on U*.

Proposition 7.4. Suppose M has strong conifold monodromy at c. Then the
Q[e*™*]-module of Gamma functions (for m.) arising from Hy(4*, M(s)g)
has rank one and is spanned by &..

Proof. By Proposition 7.1(v), m,. is a holomorphic section of F7* on i (actually
on g U SL.). Let Xy — 4 be the extension of f=1(4*) — U* guaranteed by
strong conifold monodromy, with nodal fiber over ¢; then m. ® % belongs to
Q"1 (Xy), so its pairing with Hy (4%, M(s)g) factors through TH; (4, M(s)g).
Since H(4, M(s)g) = {0}, Euler-Poincaré says the rank of TH' (4, M(s)g)
(and its dual) is (r — tk(M(s)%)) — ry(4) = 1 — 0 = 1. Similarly, we have
that TH; (U, M(s)g) = {0} and so TH; (U, M(s)g) — THy(Lh Ue; M(s)) =
Hy (8, {p}; M(s)g) TO—QI Ho({p},M(s)$) (where Ty — I is an isomorphism

thanks to the action on ¢*). The image of & under the whole composition is
just (3 Ay @ 6 @ e?™ms) = —§ ® P(e*™1), which is certainly nonzero. [

Remark 7.5. Under the same hypothesis, for %(s) > 0 we have that I'.(s) =
—P(e?™s) [ %t*ldt [BV, Prop. 15]. However this is not particularly useful
for computing the derivatives of I'. at s = 0 (which interest us below), since
the corresponding integrals do not converge. See Example 8.3 below for a

small but amusing exception.
8. Gamma = kappa

Our main objective in this section is to present Theorem 30 of [BV] in a more
precise form that accounts for the self-duality of M, relating the conifold
Gamma for M to the kappa series for L. The proof is similar to that in [op.
cit.], but with sufficiently many changes that we summarize it here.

Let {pi}1—y € M(U) be the dual basis of {Dj(fl—g) "_o- Arguing as in §7
(for e,), pn belongs to F™ hence equals Fu for some F' € C(t)*. To find it,
write

1= (D”(Z—g),pn> = Q(anOLY;/OTL) = (%Q”Q(menlu)
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= G5 QD) = S = pu=(=1)"qop.

Next, write Lt = i—oPr—j(t)D7 (where pg = qo), and define

n: O — MY by  n(¢) =" (Dig)e; and
X2 0" =M™ by x(0) = G i (D D)

q

Using De; + €;-1 = %en and (dually) Dp; + pi—1 = %Pn = (=1)"pr—ip,

one easily computes that

D(n(¢)) = (Le)e  and  D(x(0)) = (L'9) ¢k = (LO) pfss.

Defining the bracket

[, ;0™ x O™ = 0™ by [6,0]:=(n(),x),
we have the crucial

Lemma 8.1. (i) D[¢, 0] = Y({))p {oLO + (=1)"0Le}.
(ii) If e, B are local sections of M., with periods wo = (o, ) and mg =
(B, 1), then n(ma) = a, Q(x(75)) = B, and [ma, mg] = Qa,

)
Proof. (i) follows immediately from writing (Dn(o), x(0)) + (n(¢), Dx(8)) =
S S (D'2)(, pi) + vt Sio(D'6) (ei, ), since (22, p;) = 8o =
(€i, ). For (ii), notice that Lm, = 0= Lrg = D(n(m,)) = 0 = D(x(mg))
— n(m,) and Q(x(ms)) are sections of M. To see which sections, we pair

€n

them with p: (n(ma), 1) = S0 o(Dima){es, p) = ma; and (Q(x(75)), ) =
(=1)™@Q(n), x(m)) = (=1)"Yqo(2, x(m)) = mg. Hence (n(ma),x(mg)) =
(@, Q7'(B)) = Qe B). 0

Theorem 8.2. In the setting of §4,

N Qo (2mi)"s” .
e

Proof. Rewriting our representative of & in the form }°;v; ®¢; ® e2™inis e
compute

. dt
=yoen [ pig. 0l
. 41 t
J

J
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in two different ways. First, since L® = s"t* and Le; = 0,
€;s"t?
Y(0)q

by Lemma 8.1(i) and ¢(s) = (271)"Qps"['+(s). Second, by the Fundamental
Theorem of Calculus

G (s) = X 2 (yy 1)[61-, @]
=% Ame%m( — D[, @] + P(e*™*) (7 — 1)[eo, ¥
= Y Am€®™m ([ ™), e 2B — [, D))
+ P(e¥™*) (6o + 1, ® + k1] — [eo, D))
= [Py ")y, ®] — P(e*™*)[3), @]
+ P(e¥) [0, @] + P(e*™*)kleo + 1, ]

D[Ej, (I)] = = (27Ti)nQ()Sr<€j, mc>ts

= P(e*™*)k(s)leo + 1, V]

since P(y5") = 0 on My $p- By Lemma 8.1(ii), we have [eg + 1, 9] = Q(g0 +

0,0) = Q(Tez0, (—1)""'Te0) = (=1)"'Q(0,6) = (=1)' Q.. O
Example 8.3. Here is the simplest real example: let X — P! be the family
of “CY 0-folds” arising as in Example 4.5 from ¢ = —z +2 — 27!, and

M its reduced fiberwise H°. We have L = D — 4¢(D + %) =L Qy = 2,

Qc =—4,c=1 A( )= (1—4t)_% = —14(t), and (from Remark 7. 5) [e(s) =

e?™s — 1) [ A(t)t*~ dt. Applying Theorem 8.2 gives r(s) = s 04 f/sllid; =
yk—1
4*8513(5 1y — ngjgl) = oxp (200 EH— (251 = 1)C(R)s").
Corollary 8.4. Writing LT = ?:0 t'Q;(D), the difference equation

—s—k
Zzzo Q’(“S&ky )K,(S +k)=0

holds.

Proof. Divide Theorem 8.2 by s" and apply Theorem 3.3. O
Corollary 8.5. We have I'.(0) = (— 1)7" Q 2mi; and for m € Zso, T'e(m) =0,
Lo(=m) = Te(0)an," and k(s) ~ ((+ )Tam at s = —m.

Proof. In addition to Theorem 8.2, use Theorem 3.3 and Remark 3.4 (applied
to (L', m.)). O

13Gee (7.1)ff for @, (which equals a,, if LT = L).
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The remarks that follow address the implications of Theorem 8.2 for the
LMHS of M at 0, whose periods turn out to be given by derivatives of (a
variant of) the conifold Gamma at s = 0.

Remark 8.6. Replacing L by LT, u by m., and ¥ by ¢! := (6, m.), we may
define ®f and ' as in Definitions 5.1 and 6.1. (Note that we are not replacing
M by MV.) Then Theorem 6.3 remains true; and since m.(0) = p(0) in
Felo, we find that H;— = k; for j = 0,...,n (but not j > r). Moreover,
Theorem 8.2 and Corollary 8.5 hold replacing & by &, @, by a,,, and I,
by Tap = Tg, . (To see this, replace [ej, ®] by [ej, p®f] in the proof.) It

follows that ®(ko, ..., k) is the product of a rational lower-triangular matrix
Tai(0) Ty (0) )
by *( /;ﬂ(i l, BT (27r1)"+1)
Now by Theorem 6.3, *(kq,...,k,) is the leading column of a period

matrix for the dual of the LMHS of M at 0. As the LMHS of a polarized
VHS is (up to twist) self-dual, we conclude that there exists a Q-basis {¢; €
W (No);}j—o of Mg, such that p(0) = %5, (27i) =7~ 1F])( 0)e;(0) in M.y,

~ log(t)
- i 0p.
where ¢;(t) 1= e~ zr O¢;.

Since %P(e%isﬂszo = 0 for j < r, one finds that
F(]) Z . / " <log( ), )j dt
(2t L O S ) S

taking log(p) € R at the start of each path. As a formula for actually
computing the LMHS this seems closely related to the “Cauchy integral
method” in [dSKP, §5], though more unwieldy. Rather, its importance is
theoretical, as the next Remark demonstrates.

Remark 8.7 (Limiting motive). The family L; = (G, {1,t}) of relative
motives underlies the rank-2 connection D/DD? in G,,, with periods 1 and
ell) over the cycles St and [1,¢] in Hy(L;). Write M([n] for the VMHS

27i
M @ Sym"H'(L;) on U, and E; € Hy (U™ Mln]y) for the class of the
cycle o, At @ § @ ([1,t] + mSt) (S (closed for j < r). Putting

@ i=p® (3B A A 5B @ Sl € Hip (U, Mn)), for 0<j<n we recover

2mizy 2mizy, 2mit
(27ri)_j_1F§\],2(0) as periods (Z;,w) of the connection.
These are also periods of a relative variety. Inside our smooth total space
x L P!, consider Xg, = f~YG,). Let D[n] C G?, x G,, be the divisor
defined by [T (z;—1)(z;—t), and write X[n] := Xg,, x G, D[n] := X;,, Xg,,

Din], and X[n] = (X[n],D[n]). Then recalling that p is a holomorphic
section of F', we may regard =; and w as classes in Hop11(X[n]rel, Q) and

e
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F2HL 204 (X [n) e, C€) respectively. A further refinement is obtained by ob-
serving that TH'(G,,, M[n]) yields a sub-MHS/motive of H?"*1(X[n];e), of
which the (Z;, @) remain periods.

Now in general these are only some of the periods, not all of the periods,
of this MHS. (Alas, the part of X[n]. over 4l is not a motive.) But there is
a case in which the {Z;} span IH;(G,,,M[n]), and that is when |¥*| = 1:
indeed, by Euler-Poincaré we find that rk(IH*(G,,,,M[n])) = n+ 1. So in this
“hypergeometric” case, we obtain a motive with Hodge realization equal to the
LMHS of M att=0.

Naturally, we have left aside the messiness of constructing a log-resolution
of (X[n], D[n] U (X[n] \ X[n])) and the required projectors, but it is clear that
this can be done. Moreover, despite various “limiting motive” constructions,
this is the first of which we are aware with the desired Hodge realization outside
of the weight-one setting [Ha], further illustrating the power of the approach
of Bloch and Vlasenko.

9. The unipotent extensions

Closely related to the Frobenius deformation in §5 is an inverse limit of
VMHSs whose periods are annihilated by D™L(-) for some m [BV, §5]. Our
initial intention in this section was to investigate these VMHSs, but (given our
choice of p and thus L) it turns out to be more natural to consider D™ LT,
essentially because the periods of its adjoint LD™ integrate the periods of
p. The warning here is that while L and L' define isomorphic D-modules,
DL and D™L' do not — unless, of course, LT = L. While we won’t need to
make this “self-adjointness” assumption here, we remind the reader that the
assumptions made at the beginning of §4 — e.g., that 0 is a point of maximal
unipotent monodromy — do remain in force.
Fix m € Z~¢, and consider the exact sequence of connections

0=-K—=EDHM—=0
on U given by D/DD™ e D/DD™LT — D/DL. The dual sequence
0= MY =& =K =0

is given by D/DL D{—Z) D/DLD™ — D/DD™, and the solution sheaves by

0 — M 5 EL — K¢ — 0.
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Via 1, the basis o, ..., &, of M, may be regarded as elements of E¢. . Let
Q € £(U) denote the image of 1 € D/DD™LT, so that 7(§2) = m,.

Definition 9.1. The connection £ (or its restriction to a subset of U) under-
lies a Q-VMHS if there is a Q-local system Eq C E¢ = ker(V) with Eg ®
C = E¢, a flag F* C &€ of holomorphic sub-bundles with DF® C F*~1,
and a weight filtration W, on [Eg, such that the pointwise restrictions of
(Eg, W,, F*E) define Q-MHSs.

Here we shall mainly be concerned with the restriction of £ to the punc-
tured neighborhood 4 and (provided this underlies a VMHS) its LMHS
at 0, in which W, is replaced by the relative monodromy weight filtration
W (Np, W)e (whose existence is not an issue here).

Theorem 9.2. 5|ug underlies a Q-VMHS which is the unique one on
U with underlying D-module D/DD™L' and

“,Jq having the properties:
g ° (i) Q belongs to F™;
: (ii) o(c0) belongs to By ;
‘ l [ ThH o (iii) Eg) extends to L (i.e. is closed under T.);
and
. (iv) tk(EFn=K) =1 for 0 < k < n, tk(E7F7F) =
° T 1 for 1 <k <m, and all other EP1 are zero.
N} This VMHS satisfies, in addition, the following:
S S (]
gl' MV, (a) 7r|u0x is a morphism of Q-VMHS;
R (b) (T.— I)EY € Qu(o);
i il U4 - (c) the LMHS &y, of € at 0 is Hodge-Tate, with
&l P NGT™ #£0; and
(d) the first n +m + 1 power-series coefficients
.\/ 1 of K'(s)™! yield the LMHS periods at 0

(extending Theorem 6.3/Remark 8.0).

Proof. The Hodge filtration F"*& = O(Q, DQ, ..., D*Q), as well as the
weight filtration W, € = &, W, 1€ = W_2E = K,

WegnporE = OD™*-1LIQ . D™ LLIQ)Y (k=1,...,m),

are forced upon us by Griffiths transversality, D™ LT€ = {0}, and (iv). Sending
Q +— m, projects (£, F®) — (M, F*). We need to construct the Q-local system
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and show that W, is compatible with the resulting Q-structure; this will be
carried out on the dual.

Writing &7 = 37, (bi@k (cf. Remark 8.6), we find exactly as in §6 that

. O j—1 y
(T.— )¢}, = Kjt, Nogf, = 2mig)_,, and Lig] = l(i—_‘T't — DiLt¢,,, =

0. In particular, this yields identifications
M, = Soly(LT) = Clgl,.... of)

and

E(\éyp (%) SO]p(DmLT) = C<¢J(r)’ SRR ¢L+m>

Kl

for the C-local systems. Omitting “u(-)” for simplicity, we must extend the Q-

basis {co,...,en} of Mg, by some e,,41, ..., entm € B, Recalling from the
proof of Theorem 6.3 (with daggers inserted) that eL = (2ni)~* Z?:o az_jgb;
for k = 0,...,n, we can simply use this formula to define GL and g =

(-, Q>_1(€L) for k =n+1,...,n+m. Then we automatically get Noey = 1,
and

_ 1 k P fs_ )0 k=0
(Te — Der = <_(27ri)k 2j=0 “k—j”‘j>5 - {0, k> 0.

The LMHS periods are just the

(2mi)kel™™(0) = Yk g af_ol™(0) = Xk af ;00 = .

The weight filtration dual to W, may be described as WYn =W = Mé
and Wy, = Wy = MY + Q(ens1, .-, Entk) (the point being that this
Wy, = im(NJ"™*) hence kills W_o;_o€ = O(DFLIQ, ..., D™ 1LTQ) because
(NJ7F(), DZFLIQ) = ((-), DZ™LTQ) = 0). This completes the proof of
existence of the Q-VMHS and properties (a)-(d).

For uniqueness, suppose another & satisfies (i)-(iv). Again F* and W,
are forced upon us, so that € and € are the same as bifiltered D-modules.
To show E\@p = Ky, inside B¢, vilritc Ey, := ker(N§) C Ef, and assume
inductively Ex_1 NEY , = Exy NIEY, (with (ii) providing the “base case”
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k =1). We have an isomorphism!*

(No, T, — I): Ejy = Ep_y ® Ca(6),

under which any choice of Q-structure on the left-hand side consistent with
(iii) must go to (Ex_1NEg ,)SQu(d) on the right. So ExNEy) , = ExNEY,. O

Corollary 9.3. Given a Q-VMHS &' over U of type (iv), with a surjective
morphism to the Q-VHS M sendingw € H°(U, F*E') to m,, and D™ Liw = 0.
Then 5’|U0x > Erhm. 9.2 as a Q-VMHS, and in particular (b) resp. (¢)-(d) hold
for E/(\é resp. Elim-

Proof. Clearly (i)-(iii) are immediate from the hypotheses. O

There is a plentiful source of such Q-VMHS in the case m = 1. Let ¢ be a
reflexive Laurent polynomial. With notation as in Example 4.5, and writing
X* = B7YG"), we can take the cup-product of the f*z; € OX(X*) =
Hi(X*,Q(1)) (i = 1,...,n + 1) to get a motivic cohomology class {z} €
HYFPH X%, Q(n + 1)) called the coordinate symbol.*

Definition 9.4. We say that ¢ is tempered if {z} extends to a class ¢ €
HEH X\ Xo,Q(n + 1)). (One may assume without loss of generality that
¢ € Qlat?, ..., 2], since — up to scale — this is a necessary condition for
temperedness [DK, Prop. 4.16]. Minkowski polynomials are expected to be
tempered in general; this is known for n < 2 [dS]. See [DK, §3] for further
discussion.)

Recall that a (graded-polarizable) Q-VMHS V on U is called admissible
(with respect to P1) if it is the restriction of a polarizable mixed Hodge module
from P'. Admissibility always holds for geometric variations, and guarantees
that a LMHS exists at each o € ¥; henceforth these are written 1,).19

4We are not wusing (a)-(c) here (as we must not!), only (ii)-(iii) and the
differential equation D™LT(-) = 0. Since the latter is essentially D™+ at 0,
and Ny = —2miReso(Vp), we get NJ™™ # 0 directly. We saw at the beginning
of §6 that (7. — I)E¢ , C Cd (from the differential equation only). The map is an

isomorphism because we have Ey = ker(Ny) Til Cu(6) by our earlier assumptions

on M in §4.

15For the reader unfamiliar with higher cycles/motivic cohomology and Abel-
Jacobi maps on them, the accounts in [KLi], [DK, §1], and (regarding limits) [7K,
§§5-6] may be useful.

16The LMHS is only well-defined with a choice of local parameter vanishing to
first order at o, and this parameter would usually be written as the subscript; for
us, the parameter is always t — o (o finite) or 71 (0 = c0).
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Definition 9.5. An admissible VMHS of the form
0—=H—=>V—Qu(0)—0,

where H is a Q-PVHS on U, is called an admissible normal function; we
write V € ANF(H). (These are only interesting, i.e. can be non-split, for H of
weight < —1. If the weight is < —1, they are called higher normal functions
since Bloch’s higher Chow groups, or equivalently motivic cohomology, are the
standard source.) Using Exty;s(Q(0), Hy) = Hy ¢/ (FOH; ¢ + Hyg), pointwise
restriction yields a holomorphic section V; of the generalized Jacobian bundle
J(H) :=H/ (FOH + Hg); it is in this sense that V is a “function”.

If  is tempered and good (cf. Example 4.5), we may construct a higher
normal function by applying (to (|, ) the composition

Hy™ (Xy, Q(n + 1)) =8 HiZFH (Xy,Q(n +1))
= EX%EM(XU)I;;(@XU(O), Quxy(n+1))

Grlﬂ n
— EXt}WMHS(U) (Qu(0),H}(n+1)) — EXtJIXVMHS(U) (Qu(0), M(n + 1))

= ANF(M(n+1))

of the absolute-Hodge cycle-class map [KLe, §3], the projection to the bottom
nonzero Leray-graded piece, and the projection from H?% to its direct summand
M. In more concrete terms, the corresponding section!” of J(M(n + 1)) =
M/M(n + 1) is evaluated at ¢ € U by applying the (fiberwise) Abel-Jacobi
map

AJ: HIHX, Q(n + 1)) — Extypns(Q(0), H (n + 1))
= H"(X:,C/Q(n + 1))

to ¢; := 1%, ¢ and projecting to Mg ® C/Q(n + 1).
Definition 9.6. This higher normal function, written

V, € ANF(M(n +1))

is called the bozx extension associated to (.

17 e., produced by taking pointwise restrictions as in Defn. 9.5
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Theorem 9.7. If M arises from a reflexive, good, tempered Laurent polyno-
mial @, then the dual box extension provides a geometric realization of the
unipotent extension with m = 1:

Vg\,f(l)!ug = EThm. 9.2-

Consequently, the periods of wOV;f and YoV, are given by {ag, e ,aILH} and

{rb, ..., ’fiwl} respectively.'®

Proof. Since V, is an extension of Qu(0) by M(n+1) = MY(1), V(1) is an
extension of M by Q(1), and is of the form (iv), with dual maps 7: V(1) —
M and 1: MY — V,(=1). Let w € H(U, F"V}(1)) be the unique section
mapping to m,. We must show that DL annihilates all periods of w. Clearly
(1(g;),w) = (g, m(w)) = (g}, m.) is killed by L for j = 0,...,n; so it remains
to check that the remaining independent period (which will not be killed by
L) is killed by DLT.

Let R € H(U, F°V,) and Rg € Ho(ﬁl,V%Q) be sections mapping to
1 € Q(0); their difference R = Rg — R is a multivalued section of M whose
image in J(M(n + 1)) “is” V,, (as a normal function). By [DK, Cor. 4.1] we
have DR = (27i)" .Y This implies that D*R € F*+1=F for k > 0 so that
Q(D*R,m.) =0for 0 < k <n+ 1.

Now consider the (holomorphic, multivalued) truncated higher normal
function

and calculate

B N 0
LV, = Q(D" 'R, m) + Q(R, Li)

= (2mi)"qoQ(D"p, ) = ETLL (1) Q(p1, D"pr)
_(=2m)"qY _ (=2mD)" _ (=1)"
TY(0)"lgY T (2r)"Qo T Qo

¥Recall that ozj and fi;[ are, by definition, the power series coefficients of ' (s)~t
resp. k1 (s) (and we can drop daggers if L = LT); see Thm. 9.2 (and Rem. 8.6).

19The proof there is long and uses regulator currents; here is a sketch of a more
hands-off proof: we can go from H (X, Q(n+1)) to Hig (U, M) by (a) mapping
to Homyus (Q(0), H" (X, Q(n +1))) and taking the first Leray graded piece, or
(b) taking fiberwise restrictions to get a section of J(M(n + 1)) and applying V.
Tt is a standard exercise to show that these two compositions are equal; and (a) is
given by dlog(z) = (27i)"u ® %, while (b) is exactly VR = DR ® %.
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On the other hand, the duality pairing V, x V(1) = O(1) sends F° x F"
to zero, so that (Rp,w) = 0 and

th = <7é77r(w)> = <va> = <7Q’Qaw>

is a period, independent from {(e;,w)}"_,, and killed by DL*. O

Example 9.8. The (reflexive, good, tempered) Laurent polynomial ¢ = (1—
1 — To+ 109 — T1T2T3) H?:l (1— xi_l) appears in the algebro-geometrization
of Apéry’s irrationality proof for ((3) [Kel, §5.3]. Its Picard-Fuchs operator
L = D? — 1(34D3 + 51D% 4 27D + 5) + t*(D + 1)? is self-adjoint, and we
have ky = 0, ke = —2((2), k3 = H((3) [GZ]. At the end of [BV], Bloch
and Vlasenko “speculate” that the dual box extension V (1)|u0x coincides
with their unipotent extension £ (with m = 1) in this case. So Theorem 9.7
confirms this speculation.

Remark 9.9. 1f we view the {e;}]_ as rational classes in Ml(n+1)q = Mg(,41)
via (2ni)”+1cg—1(-): M — Mg 41y, then in the proof of Theorem 9.7 one
may choose Rg = Q51(27ri)"+15n+1 and extend ey, ..., e, by e,01 = QuRp.
In precise terms, the Theorem is saying that w(0) = Z”H(Qm) —J a;f-é (0) and

log(t)
ent+1(0) = Z”H(Qm)JHILH _;€5(0), where the tilde means to apply e~ i Mo,

More usefully, these can be recast as formulas for

n+1
1N, log" (t)
Qo ntl—k Kl
k=0

QR) = & ((2mi)" enin — S5 2Vl ) )

and

&~
Il

modulo O(tlog™ "' ¢),% i.e. terms which limit to zero with ¢. In particular, we

«

;
have that V2"(0) = &t

It was pointed out in [Ke2] that in Example 9.8, one can use a variant of
[DK, (9.29)] to check that QuV3"(0) = —% 170(3) (Where Qo = —35). Clearly
this laborious partial confirmation of the “speculation” of [BV] is superseded
by Theorem 9.7.
Example 9. 10 Writing ¢, (z) == (14+ Y7, 2;)(1+ X, 2;71), the Feynman
integral I,( wa % arising from the r-banana graph with equal
masses can (up toa Q period of the graph-hypersurface pencil) be interpreted

. 41 (—1)F i\ F
YHere €, 41 —Eny1 = Zil ( kl!) (loﬁfi’)) €nt1_k belongs to MY; so the formula

for R makes sense.
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as V,, (with L = LT) by the methods of [BKV]. So I2*(0) is (up to products
of lower-weight terms) a rational multiple of the relevant c., which in turn
should be the top-degree coefficient of the (inverted, regularized) [-class [GZ,
§5] of the degree-(1,1,...,1) Fano hypersurface in (P')*("*1). See also [Ir2]
and [BFKNS].

10. Inhomogeneous equations and normal functions

Recall from the proof of Theorem 6.6 that ®(s,t) = ®(s,t) — r(s)¢o(t) has
no monodromy about ¢ = ¢ for any fixed s. Taking s = ¢ € Z~y,

LO(0,t) = LB, 1) — k(0) Lottt = 7t

Moreover, ®(¢,t) = S ks0 Ar(OtF T — K(0)po(t) is analytic at 0. The set of
solutions to L(-) = ¢"t* which are analytic at 0 is clearly then {®(f,t) +
z¢o(t) }zec, and if z # 0 these solutions have monodromy about c. Since ¢
is a positive integer and ®((,t) = 3,50 Ax(0)t"**, we have ®(¢,0) = 0; and
recalling in addition that ¢o(0) = 1 gives ®(¢,0) = —x(f). This proves the

Theorem 10.1. Let VI4(t) be the unique solution to the inhomogeneous

equation L(-) = —t* analytic at 0 with no monodromy about c. Then k(f) =
rvI1(0).

Definition 10.2. The values {x(¢)}sen are called the Apéry constants of L.
Remark 10.3. If we take ¢ € [1,d — 1] N Z,*! then

Bl . 0, k<t
B Apme(0), k>

is evidently a solution to the recurrence attached to L. (If L € Q[t, D], then
the bgf] are also rational.) Its gencrating series +®(¢,¢) and the holomorphic
period ¢o(t) = 3 ;=0 axt® both have monodromy about ¢, but VI(t) =
Zkzo(#ak - b;f])t’“ =: Y30 vkt® does not. So if the a; are nonzero for
sufficiently large k, we have

[
0= tm % — Oy b
k—oo V4 k—oo ap

2'Remember that d is the degree of L (in t).



36 Matt Kerr

Note that in the strong conifold monodromy case, the nonvanishing of axs.q
is guaranteed by the asymptotics in the proof of Theorem 6.6; moreover,
the description of x(¢) just given is consistent with Theorem 6.6(i) since

limg_s o “Z;e = ¢! by those same asymptotics.

Example 10.4. Revisiting Example 9.8 (d = n = 2) and taking ¢ = 1,
Remark 10.3 reproduces the pair of sequences {ax} = 1,5, 73,1445, ... and*?
{bx} = {bg]} = 0,1,2106, 1253&, ... in Apéry’s irrationality proof for ((3),

with limit /(1) = limg_00 Z—Z = %. Though the difference between this and

K3 = %Q (3) may seem trivial, this is an artifa(ltt of the VHS M underlying

Apéry possessing an “involution” under ¢ +— ¢ (cf. [Kel, §5.3] and [GKS,
§5.2]). In general the Apéry constants {x(¢)} and Frobenius constants {x;}
describe completely different things. The {x(¢)} are closely related, as we shall
see, to special values at 0 of normal functions nonsingular at 0, as well as to
Galkin’s Apéry constants of Fano varieties [Ga]. The {x;} are extension-class
invariants of the LMHS at 0 of the unipotent extensions of §9 (but cannot
be evaluated as the limit of an extension at 0), and are closely tied to the

Gamma constants of Fano varieties [GGI, GZ].

We shall conclude this article by saying something about these special
values of normal functions. Given a polarized Q-VHS H on U (of negative
weight), there are singularity invariants

(10.1) sing, : ANF(H) — Homyps(Q(0), (YoH)1, (—1))

attached to each o € ¥ [KP, §2.12]. (This is essentially the restriction map
HY(U,H) — H'(AX, H) applied to Hodge-(0,0) classes, where AX is a punc-
tured disk about ¢.) One says that V € ANF(H) is singular at o if sing, (V) #
0.

Example 10.5. Given a cycle Z € CH*(Xy,b) = HZ(Xy, Q(a)) with 2a—
b—1 = n, taking fiberwise Abel-Jacobi maps produces a normal function V €
ANF(M(a)). (Recall that M is a sub-VHS of the n'® = middle cohomology
of the fibers; so M(a) has weight —b — 1.) The composition

CH(Xy, b) % CH* (X, b— 1) S Homyms(Q(0), H,(X,) (b — a))

of residue and cycle-class maps factors through (10.1) (with H = M(a)). If

22In most of the literature, the second sequence is multiplied by 6. Note that any
solution to the recurrence is determined by its first two terms.



Unipotent extensions and differential equations 37

= is the restriction of a cycle in CH*(Xy U X,,b),%* then Res,(Z) = 0 and
sing,, (V) = 0. See [7TK, Thm. 5.2] for more details.

Writing h := deg(F.) for the degree of the Hodge line bundle, we have
the

Lemma 10.6 ([GKS]). Givena € Z~ and v € ANF(M(a))\{0} nonsingular
away from oo, let v be a (multivalued) lift to M of the associated section of
the generalized Jacobian bundle J(M(a)), and v(t) := Q(v, ) the resulting
(multivalued, holomorphic) truncated HNF on U. Then Lv is a nonzero poly-
nomial in t vanishing at t =0, of degree < d — h.

The following is a technical remark related to how Lemma 10.6 will be
applied in the proofs and examples below; it makes use of the polynomial ¢
from Proposition 7.1, and may be skipped on a first reading.

Remark 10.7. (i) If » is nonsingular away from 0 instead, the result in [GKS]
(which works in greater generality than our setting) says that deg(Lv) <
d—h —1if T is unipotent and < d — h otherwise. (However, Lv need not
vanish at 0.) The box extensions V, from §9 are of this type, with h = 1,
and the proof of Theorem 9.7 shows — writing v, = Q(ﬁ,u) = qV, —
that Lv, = qLV, = %q. So in the setting of Definition 9.4, we get that
deg(q) < d—2 resp. d — 1 (depending on T.,).

(ii) Continuing with this setting, there are immediate consequences for
the lowest degrees. Clearly if d = 1 then deg(q) = 0, T, is non-unipotent,
and LT = L. In fact, if d = 2 we also have LT = L. To see this, write ¢ for
the second root of gg. If ¢ € U, then p, du, ..., 0"u do not span My (9" p
is not an Oy-linear combination of them); so there is a gap in the Kodaira-
Spencer maps and Y'(¢/) = 0. A similar argument shows Y (¢) = 0 if ¢ = ¢
(ord.(qo) = 2). Either way, ¢ has (at least) a double zero at ¢, contradicting
deg(q) < 1. So ¥* = {c¢,d} and 1 = ordu(qy) > rk(Ty — I) forces conifold
monodromy at ¢’; moreover, no Kodaira-Spencer maps vanish anywhere?* on

C*. So qY is constant => ¢ =1 = L' = L. (In contrast, if d = 3

there are examples like the family generated by ¢ = i

ZHere Xy U X, is the union inside X' (gluing that singular fiber back in). Note
that “classical” algebraic cycles (case b = 0) never have residues — they always
extend by taking Zariski closure. The corresponding fact for normal functions is
that when H has weight —1, the invariants (10.1) are always zero.

24 Any vanishing of a K-S map at a conifold monodromy point is away from the
center, hence duplicated by the self-duality; so Y has odd order. Any vanishing of
a K-S map (equivalently, of Y) on U makes gy vanish.
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¥ ={—15,—%}, o = (1 + 16t)(1 + 8¢)2, and ¢ = 1 + 8t. The trouble is the
I; fiber at t = —%.)

(iii) If » is nonsingular everywhere (and nontrivial), then M/(a) must
have weight —1 (<= n odd and a = 1), which corresponds to “classical”
normal functions. In this case, deg(Lv) < d—h—1resp. d—h and Lv vanishes

at 0. See Example 10.12(b) below.

We shall use the Lemma to prove a result which, together with Theorem
10.1, produces an interpretation of (some) x(¢)’s as special values (at ¢t = 0)
of normal functions.

Theorem 10.8. Suppose there exists an embedding

¥: Q(—a) — TH' (A, M)

where At = P\ {oo}. Then there is a normal function®
% € ANF(M(a)) \ {0},

nonsingular away from oo, with vy := Q(wvy, ) satisfying Lvy(t) = tPy(t),
where Py € C[t] \ {0} has deg(Py) < d— h— 1. The lift vy can be chosen so
that vy is analytic on a disk of radius > |c| about the origin.

Proof. Recall that M is a summand of the n*® cohomology of some fi: Xy —
U, or more precisely of its quotient H? by Hf = H°(U, R"(fy).Qx,) (the
so-called “fixed part”). Let X D A be our smooth compactification, and
consider the extension in AVMHS(U) with fibers

0— H”

var

(X)) = H"™H X\ Xoo, X)) = ker{ H"TH (X \ Xoo) = HET' — 0.

Pushing forward by H}\ . — M on the left and pulling back by the composition
of ¥ with the inclusion of IH'(A', M) on the right, we get an element vy €
Ext}WMHS(U)(Q(—a), M) = EXt}AVMHS(U) (Q(0), M(a)). Its topological invari-

ant [oy] € Homyps(Q(0), H (U, M)(a)) is tautologically the (nonzero) image
of 1 under Q(0) &y IH'(A',M(a)) — H'(U,M(a)). In particular, it has no
singularities on A!. Apply Lemma 10.6 to this oy.

It remains to check existence of a lift 7y with no monodromy on 0*.
This boils down to whether [op] restricts to zero in H'(4*, M). Writing 4 =
U*U{0,c}, [v9]]six clearly lies in the image of IH' (4, M). But in the Mayer-
Vietoris sequence

M® @ Me — M, — TH' (86, M) — IH" (tlo, M) @& TH" (&L, M)

25See the proof for the precise correspondence with .
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the first arrow is surjective (replace M by MY and argue that (M))™ contains
g0 and (M) contains e1,...,e,) and the final term is zero; so we are done.
O

Remark 10.9. The existence of the single-valued lift on 4* is made out to be
a harder result in more special cases in [DK, BKV, Kel]; but this is because
for the applications in those works, an exact identification of the current
representing the lift was required.

Definition 10.10. The extension of Q-VMHS
0= M— 99— Q(—a)—0

corresponding to the normal function in Theorem 10.8 is called an Apéry
extension.

Since vy is nonsingular at 0, the associated section of J(M(a)) has a well-
defined “limit” (or value at 0) in the sense of [7K, Thm. 5.2(a)]. If 7y comes
from an algebraic cycle 3y € CH*(X \ X, 2a —n — 1)g, as predicted by the
Beilinson-Hodge conjecture, then this leads to an explicit prescription (up to
Q(a)) for the special value vy(0) [7TK, Cor. 5.3]. We shall now spell out what
this means.

First, 34(0) := ¢}, 39 € Hyj ' (X0, Q(a)) has

AJx,(39(0)) € Extys(Q(0), H"(Xo, Q(a)))-

(Xt)TO(n) ﬂ; Hn(XO) of
) =: px,; and so pairing

Next, the composition Q(0) = (YoM, — Hf,
MHS-morphisms sends 1 — Q (o) — Resx,(

dlog(z)
(2mi)™

with px, induces a projection H"(Xy, Q) — Q(0). By [loc. cit.] we therefore

have

vo(0) = lim Q(AJx, (39(1)), 1)
= (AJx,(30(0)). x,) € C/Q(a) = Extyyys (Q(0), Q(a)).

In this scenario, the second line typically factors through the “Borel” regulator
Hi(Spec(K),Q(a)) — C/Q(a), with K the field of definition of 35. When
K = Q, one then has vy(0) € Q((a). Note that for families of K3 surfaces
(n = 2), there are two possibilities: @ = 3 and a = 2. Both do occur ([GKS];
and see Example 10.13 below). Similarly, for elliptic curves (n = 1), Example
10.12 below shows that both a = 2 and a = 1 happen.

Putting everything together, provided one can find enough embeddings 19,
and either assuming the BHC or constructing the cycles, one would obtain
that:
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e k(1),...,k(d—h) are of the form vy(0) = (AJx,(39(0)), ux,), hence are

periods; and
e with an assumption on the field of definition, they are actually rational
multiples of Riemann zeta values.

However, we caution the reader that there are several obstacles to the existence
of such embeddings (especially multiple, independent ones), the first of which
is that TH'(A',M) may not be Hodge-Tate. Even if it is, it can possess
nontrivial extension classes which “obstruct” such embeddings (which are
after all Hodge classes), meaning that one must consider biextensions of
VMHS on U; though in that case it is likely that the resulting x(j)’s can
still be analyzed in terms of (higher) cycles on Zariski-open subsets of the
fibers. Our assumption that M be of type (1,1,...,1) also imposes severe
limitations: if n is even, then there can be at most one’® Hodge class in
IHI(Al, M); but this just means that a more general study is in order.

We finish with one (still fairly broad) case where we only want one
embedding, and that embedding fortunately must exist. This involves certain
families of CY n-folds with 2 conifold points:

Theorem 10.11. Assume M arises from a good, reflexive, tempered Laurent
polynomial ¢ (Example 4.5), and that d = 2. Then we have an isomorphism

IH' (A, M) % Q(—a) for some a € [“F, n+1]NZ. The resulting admissible

normal function satisfies Lvy = —€t for some € € Q*, and k(1) = tvy(0).

Proof. Note that by Remark 10.7(ii), 3* comprises two conifold points (and
also LT = L). By Euler-Poincaré, the rank of TH' (A", M) is given by

Yo foo} TK(Ty = I) =rx(Ah) =n+1+1—(n+1) =1
So one of the end terms in the exact sequence of MHS

0 — IH' (P, M) — TH'(AY, M) = (Yoo M)1(=1) = 0

is zero, and the other has rank one. (Applying E-P to the first term, either
tk(To — I) = n and the first term vanishes, or it = n 4 1 and the last term
vanishes.) A rank-one MHS is of the form Q(—a); and the first term can only
have weight n + 1, while the last term can have weights between n + 2 and
2n + 2. O

26This follows from the proof of Theorem 10.11 below.
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Example 10.12. For n = 1 (and d = 2), we demonstrate the two possibilities
(a =1 or 2) in Theorem 10.11:

(a) THY(P', M) = {0}: o = (1 —271)(1 — 25 1)(1 — 21 — x») yields the “little
Apéry” family of elliptic curves associated with irrationality of vy(0) = ((2),
where 3y € CH*(X \ X.,2) is obtained by pulling the box cycle ¢ back
along the involution (21, z2,t) — (777, 1_1;1‘22352 ,—+) [Kel, §5.2]. (So we have

a = 2.) In direct analogy to [GKS, §5.2], one can show that
valt) — dlog(z) _ ny dlog(z) _ B
o0 = [ S | L _ ((2)+ (3C(2) — B)t+ -

. . +1
2ttele) S rx2 P(z)’

Applying L = D* — ¢(11D? + 11D + 3) — t*(D + 1)? and invoking Theorem
10.11, we find € = 5 hence x(1) = 2.

(b) TH' (P, M) # {0} (= a=1): p = a7 oy (1 + 21 + 29 +12) yields a
family of elliptic curves with singular fibers of types 14,11, I;, I at 0, 12 i
respectively. It has a nontorsmn

(.¢]

2T section given by 39 = [(0,¢3)] — [(0,¢3)] €
CH'(X), where (3 :=¢ %", The Abel-Jacobi map yields

(0 CS d d d
va(t) = / 515 xl/ml azz Zt]/ k,, 222
0 " 27” 1= 1 — tp(z )T
= —Zmi+ (4V3i— g7ri)t + (18v/3i — 127ri)t2 o

where [¢*],, means terms constant in ;. Applying L = (1 — 8t — 48t%)D? —
(8t + 96t%)D — (2t + 36t?) and invoking Theorem 10.11 once more, we find
t=—4v3i and x(1) = ;7.

(c) The simplest example of what we mean by an “obstruction” occurs
for n = 1 and d = 3, for the polynomial ¢ = x7 'y (1 + 21 + 23)? —
8 from the end of Remark 10.7(ii) (with an I; at oo). As in (b), there
is a nontorsion section 3 = [(0,i)] — [(0,—i)] € CH*(X), which limits in

particular to igg;i = 3 —2y2 € C* in the group law on X352 The

difference is that in this case TH'(A', M) has rank 2, and is a (nonsplit)
extension of (Yo M)r, (—1) = Q(—2) by IH (P!, M) = Q(—1) with class

2TObserve that z1 = 3(u—1)"*(u—iv3)?(u— %)2, Ty = (u—1)"2(u+1)2 yields
a normalization P! — X L sending u = 0,00 to the node (3,1). The preimage of

the cycle is [ﬁ] — [iv/3], and ‘/\g 1 € C* has infinite order.

ZNormalize Xoo by 21 = 2(u ) Yu —ivV2 + 1)) (u —i(vV2 — 1))?, 20 =
(u—1)"2(u+ 1)?; the preimage of 3is [I(V2 - 1)] = [(i(vV2 + 1)].
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log(3 — 2v/2) € C/Q(1) = Extys(Q(—2),Q(—1)). So there is no morphism
Q(—2) < TH'(A', M), and one must deal with biextensions. This still may
be treated via a higher cycle, but this cycle lives in CH*(X \ {Xo U |3]},2)
and does not lift to CH*(X \ X, 2).

Example 10.13. The regularized differential operators in Golyshev’s article
[Go2] underlie variations M of the type described in Theorem 10.11, with
n = 2 and d = 2. Geometrically, these correspond to families of (generic)
Picard-rank 19 K3 surfaces with 2 conifold points. They exhibit both of the
possibilities in the Theorem, namely a = 2 or 3. (In both cases, ITH (P*, M) =
{0}.) The corresponding (higher) normal functions are constructed explicitly
in [GKS]. We briefly summarize two of these constructions here, and direct
the interested reader to §§5.3-5.5 of [op. cit.| for more details.

(a) a = 3: Taking ¢ as in Examples 9.8 and 10.4, X — P is the “big Apéry”
family of K3 surfaces, with singular fibers at (t =) 0,00, and (v/24 1)*. The
relevant cycle 3y € CH?(X \ X4, 3) is constructed by pulling the box cycle ¢
back along the birational involution

z3 —(l—z1)(1—x2) 1
(1‘1, T2, T3, t) = (1—x3 P l—z1—zotx172—T12223 7 1—71 t)

of X, and it is shown in [GKS, §5.4] that

vig(t):/R %:2((3)+(—12+10C(3))t+---.

3
<0

Applying L (from Example 9.8) and invoking Theorem 10.11, we get £ = 12
and (1) = £¢(3).

(b) a=2: =y wy (1 — 23 (1 — 2y — 23) (1 — 9 — 23)(1 — 21 — w3 — 3)
defines a family of K 3 surfaces with singular fibers at 0, co, and %‘5‘/5. Each
smooth fiber X; intersects 3 = 0 in a cycle C;U- - -UC5 of P'’s. Writing z; for
coordinates on them, with z; = 0 and oo at intersections (so that the sum of
divisors in X; is zero), 3;(Ci, %) yields an element of CH?*(X;, 1). These are
fiberwise restrictions of a “global” higher Chow cycle 35 € CH*(X \ X, 1).
In [GKS, §5.3], it is shown that vy(t) = ((2) + (=10 + 6¢(2))t + - - -, whence

£ =10 and (1) = 75¢(2).

(c¢) The Landau-Ginzburg models for Fano 3-folds Vig and Vig give two
more examples similar to (a). But in the Vig case, as noticed by [dS], there
is a crucial difference: we have € ¢ Q; in fact € = /=3, and vy(0) €
(27i)3Q. Though the family is defined over Q, the normalization of X, (and
consequently 3y) is only defined over Q(v/—=3). See [GKS, §5.5].
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Remark 10.14. We have argued above that x(1),...,r(d — 1) are interesting
invariants of M related to algebraic cycles; the natural reaction is to wonder
if k(d), k(d + 1), etc. are similarly interesting. In fact, to expand on [BV,
Rem. 32] a bit, they are not: taking L € K|[t, D], they are always contained in
K[r(1),...,s(d —1)] in view of Corollary 8.4. For example, if LT = L ( =
Qj = PJ) then

_gr 4=l
k(d) = Pal=d) > i Pi(=5)R(),
=0

where “07"Fy(0)” is to be read as lims_,o 57" Py(—s) = lims—o % =(=1)".
So in the Apéry ((3) case (Examples 9.8, 10.4, and 10.13(a)), where (1) =
@ (and £(0) = 1), we find k(2) = —8 4+ 2((3); one can also show (in the
notation of Theorem 10.1) that the solutions of the inhomogeneous equations

satisfy VI2I(t) = —1 — 33¢(3)A(t) + 5V ().
Appendix A. On “The Frobenius method”

Given a linear ODE with a regular singular point (say, ¢ = 0), the classical
Frobenius theorem tells us the form of a local basis of solutions at 0 in terms
of the roots of the indicial polynomial. The “Frobenius basis” { ¢, (t) }n,_, of
the present article is, in the case where 0 is a point of maximal unipotent
monodromy (with indicial equation 77! = 0), the simplest basis consistent
with this theorem. It is uniquely specified by the properties ¢, (t) ~ # log™ ()
(so that ¢g = 1 4 O(t) is the unique solution holomorphic at 0) and ¢y, (t) —
% —0ast—0.

At least in the hypergeometric setting, where power series coefficients a
of a holomorphic solution are given in terms of finite products of fractional
values I'(a + k) (a € Q) of the Gamma function, the “Frobenius theorem” is
closely connected to the “Frobenius method”. That is, one perturbs k — k+s
everywhere in the solution, differentiates one or more times in s, and then
sets s = 0, thereby obtaining additional solutions. When 0 is a MUM point,
this gives a basis of solutions, and it is natural to ask how this relates to the
bases of this article. We shall now show that it actually yields the Q-Betti
basis {ex(t)}.

To begin in some greater generality, suppose we have a VHS M over
P!\ ¥ as in §3 — of weight n, with Hodge numbers (1,1,...,1), MUM at
0, etc. — and assume in addition that L = LT. The Frobenius deformation
®(s,t) is defined by L = s"1¢5 and Ty® = 2™ ®. Define the kappa series by
(Te—1)® = k(s)y(t), and the Frobenius periods by ®(s,t) =: 3,50 ¢m(t)s™.
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The Betti periods € () are defined in §4 for m = 0,...,n and for m > n
in §9, as periods of a uniquely determined Q-VMHS that satisfy D> L(-) = 0.
The holomorphic period is

(A.1) eo(t) = ¢o(t) = Y axt".

k>0

By results in §6,§9, the “Betti-period generating series” satisfies

(A.2) E(s,t) = D (27i) "ep (t)s™ =

m>0 H(S)

(While this is not stated there, it can be read off from the statement that
€. (0)k; = 8o in the proof of Theorem 9.2; again we remind the reader
that x(0) = 1.)

Next, recall that the Frobenius generating series can be rewritten as

(A.3) =3 Ay(s)tEte,

k>0

where Ag(s) =1, Ax(0) = ag, and the {Ax(s)} satisfy the recurrence relation
from Remark 5.3. From (A.2)-(A.3) we obviously have that

tk‘+8

(A.4) Es, )= Ar(s)

iz H(5)

Now to state the obvious, if we take s-derivatives of £ [resp. ®] then set
s = 0, we get Betti [resp. Frobenius| periods. So in (A.1), if we replace aj by
a,fff = Ai(s) and t* by t*°, we obtain ® (hence Frobenius periods); while if
we replace ay, by a,?j?’ = jik((sj) and t* by t5+5 we get € (hence Betti periods).

Finally, we specialize to the (hypergeometric) setting of Example 6.8, with
{a;}7_o C Q centered about % and L = D"*! —¢ [[7—o(D + a;). Here we can

compute everything in Closed form: namely,

D D(k+s+a;)0(s+1) o D(k+ay)
o L

) Feraj) (k+s+1)"° a;)I'(k+1)
(A.5) . "
(s +DI'(ay) . A(s H k+s+a])
i Fs+aj) ’ R(s) o ey D(k+s+1)
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Substituting k& + s for k in the formula for a; clearly gives i’“(—i‘? = apt,
justifying our earlier assertion that the Frobenius method yields Q-Betti
solutions.

As a simple example, consider the PF operator L = D? — (D + %)2 for

the Legendre family of elliptic curves, with

o1 (2" 1 r@k+1)? [ T+ O\
“Tr6E\ k) TP T+ )T \TA)D(E+1) )

Replacing k by k + s in the right-hand expression gives exactly

A(s) [ Tlh+s+d \’
k(s)  \IG)(k+s+1)) "

hence the Q-Betti deformation (A.4). Not only does this produce the other
Q-period € (t) of the Legendre family, but all the mixed periods €,,~1(s) as
well.
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