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The basic objects of algebraic geometry, such as subvari-
eties of a projective space, are defined by polynomial equa-
tions. The seemingly innocuous observation that one can
vary the coefficients of these equations leads at once to un-
expectedly deep questions:

• When are objects with distinct coefficients equivalent?
• What types of geometric objects appear if those coeffi-

cients move “towards infinity”?
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• Can we make sense of “equivalence classes at infinity”?

Searching for answers leads to the discovery of moduli
spaces and their compactifications, parametrizing equiva-
lence classes of said objects.

The construction of compact moduli spaces and the
study of their geometry amounts nowadays to a busy and
central neighborhood of algebraic geometry. Any vibrant
district in an old city, of course, has toomany landmarks to
visit, and the first job of a tour guide is to curate a selection
of sites and routes— includingmultiple routes to the same
site for the different perspectives they afford. Our tour to-
day has three main stops: elliptic curves, Picard curves (to-
gether with “points on a line,” their alter ego), and a brief
panoramic glimpse of the general theory.

As for the routes, we first approach the elliptic curve
example along the unswerving path that compactifies
algebro-geometric moduli spaces with “limiting” algebro-
geometric invariants. The way is straight, but entails scal-
ing a brick wall to discover what is meant by “limits.” Our
subsequent turn down 19th-century vennels will unveil a
connection as old as algebraic geometry itself: associated
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to our algebraic varieties are analytic periods, producing a
period map from our moduli space to a classifying space for
periods. While lacking the ideological consistency of the
former route, the “limits” of this one are more conceptu-
ally straightforward — with Calculus providing a door in
the wall.

For the Picard curve example, we reverse the order of
these two approaches; this example is important because
it is the simplest one where there are multiple natural com-
pactifications of both sorts. Both examples have two very
nice features, besides involving objects one can draw on
paper. First, the period map is close to being an isomor-
phism and is inverted by modular forms, an observation go-
ing back in the elliptic case to work of Weierstraß. Second,
the period map extends to isomorphisms of the various
algebraic and analytic compactifications.

These examples will illustrate techniques and methods
in moduli theory, preparing the stage for our last stop,
high above the city. From there we shall be able to see a
vague outline of the modern definition of moduli spaces,
as well as various algebro-geometric (GIT, KSBA, K-stable)
and Hodge-theoretic (Baily-Borel, toroidal, etc.) compact-
ifications of the same moduli space. The aim of our brief
journey is to travel towards understanding their differences
— and especially their spectacular coincidences.

1. Elliptic Curves
With a rich history going back to Abel, Jacobi, and Weier-
straß in their guise as complex 1-tori (think of the surface
of a donut), elliptic curves are central objects inmany areas
of mathematics, from cryptography to complex analysis.
At this first stop on our tour, we’ll use their moduli space
to illustrate constructions such as geometric quotients and
the period map (and its inversion).
1.1. Algebraic perspective. Our starting point is the fact,
first hinted at by Jacobi in 1834, that any complex 1-torus
can be realized as a smooth plane cubic — that is, an alge-
braic curve defined as the zero-locus in (ℂ)ℙ2 of a homo-
geneous polynomial of degree three in 3 variables

𝐹(𝑥0, 𝑥1, 𝑥2) = 𝑎300𝑥30 +⋯+ 𝑎012𝑥1𝑥22 + 𝑎003𝑥32,

with certain conditions on the coefficients to guarantee the
smoothness of {𝐹(𝑥0, 𝑥1, 𝑥2) = 0}. Conversely, for an alge-
braic geometer, it is natural to approach the set of elliptic
curves via a suitable quotient of the set of all such cubics.

Without the smoothness requirement, the coefficients of
such equations comprise all ordered 10-tuples of complex
numbers [𝑎300∶𝑎210∶⋯∶𝑎012∶𝑎003], not all zero, defined
up to scaling (by ℂ×). Since an equation 𝐹(𝑥0, 𝑥1, 𝑥2) = 0
is determined uniquely by its coefficients up to scaling, we
conclude that the set of all plane cubics can be identified
with the set of complex points of the projective space ℙ9.
(Outside the open set parametrizing smooth cubics, there

Figure 1. Classification of plane cubics.

are 8 different flavors of singular cubics as displayed in Fig-
ure 1.)

The fact that the set of all plane cubics is itself a com-
plex algebraic variety is not a coincidence! Instead, it is
our first encounter with one of the most important objects
in moduli theory: the Hilbert scheme. Indeed, to keep track
of the complex solutions of polynomial equations within
projective space, we need to fix an invariant known as the
Hilbert polynomial. This polynomial records geometric
information about our solutions such as their dimension
and degree. It was shown in 1961 by Grothendieck that
there exists an algebro-geometric space (that is, a projective

scheme) Hilb𝑝(𝑚)
𝑟 which parametrizes all the closed com-

plex solutions of polynomial equations in ℙ𝑟 with Hilbert
polynomial 𝑝(𝑚). In our particular example, all plane cu-
bics have Hilbert polynomial equal to 𝑝(𝑚) = 3𝑚, and the
associated Hilbert scheme is ℙ9. Every point in ℙ9 corre-
sponds to a curve with this Hilbert polynomial and vice
versa.

At this juncture the reader will point out that ℙ9 is cer-
tainly not the sought-for “moduli space of elliptic curves,”
because it includes singular cubics. But the open subset
parametrizing smooth cubics is not the solution either.
The reason is that given an elliptic curve defined by the
equation {𝐹(𝑥0, 𝑥1, 𝑥2) = 0}, we can use an invertible lin-
ear change of coordinates 𝑥𝑖 ↦ 𝑎𝑖0𝑥0 + 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 with
𝑎𝑖𝑗 ∈ ℂ, to obtain another equation {𝐺(𝑥0, 𝑥1, 𝑥2) = 0}.
The elliptic curve defined by this second equation is iso-
morphic as a complex variety to the first one, and yet the
Hilbert scheme tells us that they are different objects.
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The critical observation here is that if we are parametriz-
ing varieties 𝑋 ⊂ ℙ𝑛 with a fixed Hilbert polynomial,
then we want to account for the automorphisms of the
ambient projective space. In our example the ambient
space of elliptic curves {𝐹(𝑥0, 𝑥1, 𝑥2) = 0} is ℙ2 and the
group SL3(ℂ) associated to linear automorphisms 𝑥𝑖 ↦
𝑎𝑖0𝑥0 + 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 has dimension 8. Therefore, of the 9
degrees of freedom associated with the coefficients of the
equation 𝐹(𝑥0, 𝑥1, 𝑥2), only one is intrinsic to the geome-
try of the elliptic curve, while the other eight are related to
linear changes of coordinates in the ambient space.

The relation between elliptic curves and SL3(ℂ)-orbits
is tight; two plane cubics {𝐹(𝑥0, 𝑥1, 𝑥2) = 0} and
{𝐺(𝑥0, 𝑥1, 𝑥2) = 0} represent isomorphic elliptic curves
(algebraically or complex analytically) if and only if 𝑔 ⋅
𝐹(𝑥0, 𝑥1, 𝑥2) = 𝐺(𝑥0, 𝑥1, 𝑥2) for some 𝑔 ∈ SL3(ℂ). There-
fore, the set of elliptic curves up to isomorphism can be
identified with SL3(ℂ)-orbits of smooth plane cubics. Al-
though the set of such orbits exists as a topological space,
it is not at all obvious that this space is itself a complex vari-
ety. We arrive at one of the most delicate problems in alge-
braic geometry: Given the action of a linear group 𝐺 on a vari-
ety 𝑋, does there exist an algebro-geometric space parametrizing
the 𝐺-orbits in 𝑋?

The correct framework for constructing quotients
within algebraic geometry is given by Geometric Invariant
Theory (GIT), initiated by Mumford in 1969 [17]. One of
the key results from GIT is the existence of an open locus
𝒰𝑠 ⊂ 𝑋 called the stable locus and a well-defined geomet-
ric quotient, which in our case is

𝐌1,1 ≔ 𝒰𝑠/ SL3(ℂ) ≅ ℂ.
One of the first exercises in GIT is to show that 𝒰𝑠 is the
locus parametrizing smooth plane cubics, see [17, Example
7.12]. The fact that the quotient is geometric means that
every point of 𝐌1,1 corresponds to a unique SL3(ℂ)-orbit
of a smooth cubic. Therefore, we arrive at our first (and
almost correct!) example of a moduli space: 𝐌1,1 is the
“moduli space” of elliptic curves up to isomorphism.

We also arrive at the crux of our problem: 𝐌1,1 is a non-
compact variety. Is there a natural compact (projective) va-
riety that contains it and that parametrizes a larger class of
algebraic varieties? It will be tempting to consider a naive
quotient of ℙ9 by SL3(ℂ) for constructing a compactifica-
tion of 𝐌1,1. However, these naive quotients are usually
either of the wrong dimension or yield a non-Hausdorff
topological space. Here we use a second key result from
GIT: There exists a (usually larger) open set 𝒰𝑠𝑠, called
the semistable locus, containing 𝒰𝑠 and admitting a well-
defined “categorical quotient.” In our case this is

𝐌
GIT
1,1 ≔ 𝒰𝑠𝑠// SL3(ℂ) ≅ ℙ1,

a complex projective variety compactifying 𝐌1,1.

To understand the geometry of the above compactifica-
tion, we recall that ℙ9 parametrizes all possible plane cu-
bics. This includes our large open set 𝒰𝑠 parametrizing
the smooth plane cubics and smaller loci parametrizing
degenerations such as nodal cubics, the union of a conic
and a line, etc. It is a non trivial fact that our semistable lo-
cus 𝒰𝑠𝑠 parametrizes all curves with at worst a singularity
locally of the form {𝑥𝑦 = 0}; these curves are represented
at the top left section of Figure 1.

The categorical quotient is not the naive one: the points

of 𝐌
GIT
1,1 are not in bijection with the SL3(ℂ)-orbits of

curves parametrized by the semistable locus 𝒰𝑠𝑠. Indeed,
all of the orbits within the eight-dimensional locus𝒰𝑠𝑠⧵𝒰𝑠

are identified with a single point in 𝐌
GIT
1,1 even though

they represent non-isomorphic curves. However, there is
a unique “minimal closed” SL3(ℂ)-orbit associated to the

point𝐌
GIT
1,1 ⧵𝐌1,1: namely, the orbit of the “triangle” cubic

{𝑥0𝑥1𝑥2 = 0}.
1.2. Analytic perspective. Turning to a complex-analytic
perspective, we recall that an elliptic curve 𝐶 can be viewed
as the cartesian product of two circles 𝑆1 × 𝑆1 with a com-
plex structure. By considering these two circles we obtain a
homology basis 𝛼, 𝛽 ∈ 𝐻1(𝐶, ℤ) (oriented so that 𝛼⋅𝛽 = 1).

Up to scale, there is a unique holomorphic form 𝜔 ∈
Ω1(𝐶), with period ratio 𝜏 ≔ ∫𝛽 𝜔/∫𝛼 𝜔 in the upper-half
plane ℌ. This 𝜏 is well-defined modulo the action of
𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ Γ = SL2(ℤ) through fractional-linear trans-

formations 𝛾(𝜏) = 𝑎𝜏+𝑏
𝑐𝜏+𝑑

induced by changing the homol-

ogy basis. We claim that the resulting (analytic) invariant
[𝜏] ∈ ℌ/Γ captures the (algebraic) isomorphism class of 𝐶.

This is closely related to the classical theory of modular
forms. Here “modular” refers to the moduli of complex 1-
tori ℂ/Λ, or equivalently of the lattice Λ; and the “forms”
are essentially functions on this moduli space (i.e., of the
lattice Λ) with certain transformation properties depend-
ing on a weight 𝑘 ∈ ℕ. The (biperiodic) Weierstraß ℘-
function associated to the lattice Λ = ℤ⟨1, 𝜏⟩,

℘(𝑢) ≔ 𝑢−2 + ∑
𝜆∈Λ⧵0

[(𝑢 + 𝜆)−2 − 𝜆−2],

satisfies (℘′)2 = 4℘3 − 𝑔2(𝜏)℘ − 𝑔3(𝜏), where 𝑔2(𝜏) ≔
60∑𝜆∈Λ⧵0 𝜆−4 and 𝑔3(𝜏) ≔ 140∑𝜆∈Λ⧵0 𝜆−6 are modular
forms 𝑀𝑘(Γ) of weights 𝑘 = 4 resp. 6. That is, they trans-
form by the automorphy factor (𝑐𝜏 + 𝑑)𝑘 under pullback

by 𝛾 ∈ Γ, which makes 𝚥𝚥𝚥 ≔ 𝑔32
𝑔32−27𝑔23

∶ ℌ/Γ → ℂ into a

well-defined function. Evidently, the image 𝐸𝜏 of the map
𝑊∶ ℂ/Λ ↪ ℙ2 sending 𝑢 ↦ [1 ∶ ℘(𝑢) ∶ ℘′(𝑢)] is a Weier-
straß cubic

𝑋2
2𝑋0 = 4𝑋3

1 − 𝑔2𝑋1𝑋2
0 − 𝑔3𝑋3

0 = 4
3
∏
𝑖=1

(𝑋1 − 𝑒𝑖𝑋0), (1)

with period ratio 𝜏.
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The key point is that any𝐶 can be brought into this form
(without changing [𝜏]) through the action of SL3(ℂ) on
coordinates. Fix a flex point 𝑜 ∈ 𝐶 (i.e., (𝐶⋅𝑇𝑜𝐶) = 3); since
the dual curve ̌𝐶 has degree 6, there are 3 more tangent
lines {𝑇𝑝𝑖𝐶}

3
𝑖=1 passing through 𝑜. The {𝑝𝑖} are collinear,

since otherwise one could construct a degree-1 map 𝐶 →
ℙ1. So we may choose coordinates to have 𝑜 = [0∶0∶1],
𝑇𝑜𝐶 = {𝑋0 = 0}, {𝑋2 = 0} ⋅ 𝐶 = ∑3

𝑖=1 𝑝𝑖, and∑
3
𝑖=1

𝑋1
𝑋0
(𝑝𝑖) =

0, which puts us in the above form (1). In fact, if 𝚥 ≔
𝚥𝚥𝚥(𝜏) ∉ {0, 1,∞} ≕ Σ, then rescaling yields a member of the
family

𝑦2 = 4𝑥3 − 27𝑗
𝑗−1

𝑥 − 27𝑗
𝑗−1

(2)

over ℙ1 ⧵ Σ, whose period map [𝜏]∶ ℙ1 ⧵ Σ → ℌ/Γ com-
posed with 𝚥𝚥𝚥 extends to the identity ℂ → ℂ. Hence
𝐶 ≅

SL3
𝐶′ ⟹ [𝜏] = [𝜏′] ⟹ 𝚥 = 𝚥′ ⟹ 𝐶 ≅

SL3
𝐶′

yields the claimed equivalence of analytic and algebraic
“moduli,” and 𝚥𝚥𝚥 is an isomorphism.

While the choice of 𝑜 does not refine the moduli prob-
lem, keeping track of the ordered 2-torsion subgroup
{𝑜, 𝑝1, 𝑝2, 𝑝3} does. In (1), this preserves the ordering of
the {𝑒𝑖}, which are parametrized by the weight-2 mod-
ular forms ℘( 1

2
),℘( 𝜏

2
),℘( 𝜏+1

2
) with respect to Γ(2) ≔

ker{Γ → SL2(ℤ/2ℤ)}. The roles of 𝚥𝚥𝚥 and (2) are played

by ℓℓℓ ≔ 𝑒3−𝑒2
𝑒1−𝑒2

∶ ℌ/Γ(2) ≅→ ℙ1 ⧵ Σ and the Legendre family

𝑦2 = 𝑥(𝑥 − 1)(𝑥 − ℓ), with 𝚥𝚥𝚥 = 4
27

(1−ℓℓℓ−ℓℓℓ2)3

ℓℓℓ2(1−ℓℓℓ)2
describing the

6:1 coveringℌ/Γ(2) ↠ ℌ/Γ. Notice that ℓ parametrizes the
cross-ratio of 4 (ordered) points on ℙ1.

For any 𝑁 ≥ 3 we can let Γ(𝑁) ⋉ ℤ2 act on ℌ × ℂ by

(𝛾, 𝜆).(𝜏, 𝑧) ≔ (𝛾(𝜏), 𝑧+𝜆
𝑐𝜏+𝑑

) and take the quotient to pro-

duce the universal elliptic curve ℰ(𝑁) with level-𝑁 struc-
ture (marked 𝑁-torsion) over the modular curve 𝑌(𝑁) ≔
ℌ/Γ(𝑁). To produce an algebraic realization, we can use
Jacobi resp. modular forms 𝑀𝑘(Γ(𝑁)) to embed then in
a suitable projective space. (Indeed, [𝑔32∶𝑔23] ∈ ℙ1 and
[𝑒1∶𝑒2∶𝑒3] ∈ ℙ2 already did this for 𝑁 = 1 and 2.)
The “modular compactification” 𝑌(𝑁) of 𝑌(𝑁) so obtained

adds
𝑁2

2
∏𝑝 prime

𝑝∣𝑁 (1 − 1
𝑝2
) points called cusps, over which

the elliptic fiber degenerates to a cycle of 𝑁 ℙ1’s; in fact,
we have 𝑌(𝑁) ⧵ 𝑌(𝑁) = ℙ1(ℚ)/Γ(𝑁). Going around a cusp
subjects a basis of integral homology to a transformation
conjugate to ( 1 𝑁

0 1 ).
Now consider an algebraic realization 𝒞 → 𝐌 of

ℰ(𝑁) → 𝑌(𝑁); e.g., for 𝑁 = 3, the Hesse pencil 𝑡𝑋0𝑋1𝑋2 =
𝑋3
0 + 𝑋3

1 + 𝑋3
2 over (𝑡 ∈)ℂ ⧵ {1, 𝜁3, ̄𝜁3} has a marked (ℤ/3ℤ)2

subgroup as base-locus (where the curves meet the coordi-
nate axes). The monodromy group generated by all loops in
𝐌 (acting on 𝐻1 of some fiber) is tautologically Γ(𝑁). So
the period ratio 𝜏 yields a well-defined period map 𝐌 →
𝑌(𝑁) inverted by modular forms (as for 𝑁 = 1 and 2),

exchanging algebraic and analytic moduli of smooth ob-
jects. The other moral here is that refining the mod-
uli problem (e.g., level structure) produces smaller mon-
odromy group, hencemore boundary components (in this
case, cusps) in the compactification.
1.3. First spectacular coincidence. In Section 1.1, we
used plane cubics and GIT techniques to construct a com-

pactification 𝐌
GIT
1,1 of the moduli space of smooth ellip-

tic curves 𝐌1,1. On the other hand, by using periods and
modular forms 𝑀𝑘(Γ(𝑁)) in Section 1.2 we constructed
the moduli space 𝑌(𝑁) of elliptic curves with a level 𝑁-
structure as well as their compactifications 𝑌(𝑁) ⊃ 𝑌(𝑁)
with 𝑁 ≥ 1. We recall that a level structure on an elliptic
curve is the additional finite information arising from the
choice of Γ(𝑁) ≤ SL2(ℤ).

We arrive then to a natural question: Are any of the Hodge

theoretic compactifications 𝑌(𝑁) isomorphic to𝐌
GIT
1,1 ? The an-

swer turns out to be yes! From our previous discussion
about the invariant 𝜏 it is possible to conclude that

𝑌(1) ≅ 𝐌
GIT
1,1 .

Moreover, isomorphisms of this kind (that is, between
Hodge theoretic and geometric compactifications) also
exist among other geometric realizations of the elliptic
curves. For instance, by keeping track of the ordered 2-
torsion subgroup and the Legendre family, one can show
that 𝑌(2) is isomorphic to a GIT compactification of the
space of 4-tuples of points in ℙ1. And with that remark,
we turn the corner en route to the next stop on our tour.

2. Picard Curves and Points in a Line
As we begin to dig into this second example (did we men-
tion that the tour includes amateur archaeological activi-
ties?), we shall unearth several ideas that are central for
constructing compact moduli spaces. They include the use
of finite covers to associate periods to varieties without pe-
riods, the use of limits of periods to refine compactifica-
tions, and the first example of “stable pairs.”
2.1. Analytic perspective. We begin this time with the
complex-analytic point of view. Though ordered collec-
tions of 𝑛 points in ℙ1 do not themselves have periods,
we can consider covers 𝐶 ↠ ℙ1 branched over such col-
lections, generalizing the 𝑛 = 4 case of Legendre elliptic
curves.

Let 𝜁3 denote 𝑒
2𝜋𝑖
3 . For 𝑛 = 5, compactifying

𝑦3 = 𝑥4 + 𝐺2𝑥2 + 𝐺3𝑥 + 𝐺4 =
4
∏
𝑖=1

(𝑥 − 𝑡𝑖) (3)

to 𝐶 ⊂ ℙ2 yields a genus-3 curve with cubic automor-
phism 𝜇∶ 𝑦 ↦ 𝜁3𝑦 and (up to scale) unique holomorphic
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differential 𝜔 = 𝑑𝑥
𝑦

with 𝜇∗𝜔 = ̄𝜁3𝜔. The moduli spaces

𝐌ord ≔ ℙ(∑𝑡𝑖 = 0) ⧵ ∪𝑖<𝑗{𝑡𝑖 = 𝑡𝑗} ≅ ℙ2 ⧵ {6 lines}
and 𝐌 ≔ 𝐌ord/𝔖4 parametrize ordered 5-tuples in ℙ1
(namely {𝑡𝑖} and ∞) resp. unordered 4-tuples in ℂ (as
roots of the polynomial determined by {𝐺𝑗}).

Fix 𝗆 ∈ 𝐌. To define period maps, we first describe
the monodromy group Γ through which 𝜋1(𝐌,𝗆) acts on
𝐻1(𝐶𝗆, ℤ). As it sends symplectic bases to symplectic bases
andmust be compatible with 𝜇, it should be plausible that
this takes the form1

Γ = Sp6(ℤ)[𝜇∗] ≅ 𝑈((2, 1); 𝒪), 𝒪 = ℤ⟨1, 𝜁3⟩;
and that for 𝐌ord this is replaced by the subgroup
Γ(√−3) ≔ ker{Γ → 𝑈((2, 1); 𝒪/√−3𝒪)}. Now given a ba-
sis 𝛼, 𝛽1, 𝛽2 ∈ 𝐻1(𝐶, ℤ)𝜇∗= ̄𝜁3 , the period vector 𝜏 ≔ (𝜏1, 𝜏2)
(𝜏𝑖 = ∫𝛽𝑖 𝜔/∫𝛼 𝜔) lies in a 2-ball 𝔹2 (by Riemann’s 2nd bi-

linear relation), on which 𝛾 = (𝛾𝑖𝑗)2𝑖,𝑗=0 ∈ Γ acts via 𝛾(𝜏) ≔
𝚥𝛾(𝜏)−1. (𝛾10 + 𝛾11𝜏1 + 𝛾12𝜏2, 𝛾20 + 𝛾21𝜏1 + 𝛾22𝜏2)

with 𝚥𝛾(𝜏) ≔ 𝛾00 + 𝛾01𝜏1 + 𝛾02𝜏2. So we get period maps

𝜙∶ 𝐌 → 𝔹2/Γ and ̃𝜙∶ 𝐌ord → 𝔹2/Γ(√−3), whose images
omit 1 resp. 6 disk-quotients. Writing 𝐌′

ord resp. 𝐌′ for

ℙ(∑𝑡𝑖 = 0) ⧵ ∪𝑖<𝑗<𝑘{𝑡𝑖 = 𝑡𝑗 = 𝑡𝑘} ≅ ℙ2 ⧵ {4 pts.}
and its 𝔖4-quotient, these maps extend to isomorphisms

𝐌′
ord

≅→ 𝔹2/Γ(√−3) and 𝐌′ ≅→ 𝔹2/Γ.
The Picard modular forms2 describing their inverses are

none other than the 𝑡𝑖 ∈ 𝑀3(𝔹2, SΓ(√−3)) and 𝐺𝑗 ∈
𝑀3𝑗(𝔹2, SΓ) in (3). Indeed, the resulting “modular com-
pactifications” of the ball quotients add only (4 resp. 1)

points, extending (say) ̃𝜙 to ̃𝜙∗ ∶ ℙ2 ≅→ (𝔹2/Γ(√−3))∗.
To understand the meaning of ̃𝜙∗, notice that colliding
two 𝑡𝑖 in (3) and normalizing yields a genus 2 curve
with cubic automorphism, whose (single) period ratio is
parametrized by one of the disk-quotients previously omit-
ted. When 3 𝑡𝑖 collide in (3), the normalization has genus
0 and thus no moduli, which explains the 4 boundary
points in (𝔹2/Γ(√−3))∗. The unnormalized scenarios are
depicted in the left and middle degenerations in Fig. 2.

But this is not the only way to approach the collision of
3 𝑡𝑖. After a linear change in coordinates, the (2-parameter)
degeneration takes the form

𝑦3 = (𝑥 − 𝑠1)(𝑥 − 𝑠2)(𝑥 + 𝑠1 + 𝑠2)(𝑥 − 1)
in a neighborhood of (𝑠1, 𝑠2) = (0, 0). Restricting to 𝑠𝑖 = 𝑎𝑖𝑡
(|𝑡| < 𝜖, 𝑎𝑖 ∈ ℂ fixed) yields a 1-parameter family 𝒳 → Δ

1𝑈((2, 1); 𝒪) is a lattice in a unitary group of signature (2, 1), whose elements
can be represented by matrices with entries in the Eisenstein integers.
2Here𝑀𝑘(𝔹2, Γ0) comprises holomorphic functions on 𝔹2 satisfying 𝑓(𝛾(𝜏)) =
𝚥𝛾(𝜏)𝑘𝑓(𝜏) for all 𝛾 ∈ Γ0; and 𝑆Γ0 ≔ ker(det) ∩ Γ0.

𝑡𝑖 = 𝑡𝑗 𝑡𝑖 = 𝑡𝑗 = 𝑡𝑘 𝑡𝑖 = 𝑡𝑗 = 𝑡𝑘
with blowup

𝑞1
𝑞2

𝑞3
𝐸

Figure 2. Degenerating a Picard curve.

over a disk. Blowing 𝒳 up at (𝑥, 𝑦, 𝑡) = 0 produces the
exceptional divisor

𝐸∶ 𝑌3 = (𝑋 − 𝑎1𝑍)(𝑋 − 𝑎2𝑍)(𝑋 + (𝑎1 + 𝑎2)𝑍),
which is an elliptic curve with period ratio 𝜁3. The singular
fiber of the blowup is the union of 𝐸 with the normaliza-
tion (≅ ℙ1) of 𝑦3 = 𝑥3(𝑥 − 1), glued along 𝐸 ∩ {𝑍 = 0} =
{𝑞1, 𝑞2, 𝑞3} (see the rightmost degeneration in Fig. 2), with
𝜇 acting on the lot (and cyclically permuting the 𝑞𝑖). While
the modulus of 𝐸 is just [𝜁3], the ratios 𝜂𝑖 of the semiperi-
ods ∫𝑞𝑖+1

𝑞𝑖 𝜔𝐸 to a period of 𝐸 vary in [𝑎1∶𝑎2] ∈ ℙ1, and are
related by complex multiplication by 𝜁3 (i.e., 𝜇|𝐸). In fact,
as 𝑡 → 0 it turns out that (for some choice of {𝛼, 𝛽1, 𝛽2})
𝜏1 ∼

log(𝑡)
2𝜋√−1

blows up, while 𝜏2 limits to (say) 𝜂1(𝑎), a limit

which becomes well-defined in 𝐸/⟨𝜇⟩ ≅ ℙ1.
The upshot is that if we replace the 4 boundary points of

(𝔹2/Γ(√−3))∗ by copies of 𝐸/⟨𝜇⟩, then these semiperiod ra-
tios extend ̃𝜙 to an isomorphism fromBl{4 pts.}(ℙ2) to the re-

sulting (𝔹2/Γ(√−3))∗∗. (We have to blow up at the 4 triple-
intersection points to make 𝑎2/𝑎1 well-defined.) This is
a first example of using limiting mixed Hodge structures
(here given by the semi-period ratios) to extend period
maps to a toroidal compactification “∗∗” (usually written

𝔹𝑛−3/Γ𝐰
tor

) refining the Baily-Borel “∗” compactification.
2.2. Algebraic perspective. Going back to ordered 𝑛-
tuples of points in ℙ1, and adopting a geometric view-
point, we should phrase the moduli problem in terms of
objects up to an equivalence relation. An “object” here
is an 𝑛-pointed curve (ℙ1, (𝑝1, … , 𝑝𝑛)), which is equivalent
to (ℙ1, (𝑞1, … , 𝑞𝑛)) if 𝑔(𝑝𝑖) = 𝑞𝑖 (1 ≤ 𝑖 ≤ 𝑛) for some
𝑔 ∈ Aut(ℙ1). By considering the open set associated to
𝑛 distinct points, we obtain the quotient

𝐌0,𝑛 = ((ℙ1)𝑛 ⧵⋃
𝑖<𝑘

Δ(𝑖𝑘)) / SL2(ℂ)

Δ(𝑖𝑘) ≔ {(𝑥1, … , 𝑥𝑛) ∈ (ℙ1)𝑛 | 𝑥𝑖=𝑥𝑘}, 1 ≤ 𝑖,𝑘 ≤ 𝑛.
This moduli space 𝐌0,𝑛 is an (𝑛 − 3)-dimensional non-
compact variety, and every point of it parametrizes a
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unique configuration of 𝑛 distinct labelled points in ℙ1 up
to isomorphism. For 𝑛 = 5, it is the same as 𝐌ord above.

Now we describe a new approach to compactify 𝐌0,𝑛:
we expand the set of objects in consideration, so it contains more
than just 𝑛-pointed curves (ℙ1, (𝑝1, … , 𝑝𝑛)). Indeed, it was
discovered in the late 1960s by Grothendieck and later by
Knudsen that we can define pairs of a more general sort,
called stable 𝑛-pointed curves of genus 0. The set of all such
stable pairs corresponds to the points of a smooth, com-
pact algebraic variety known as 𝐌0,𝑛. Moreover, it is the
first example of a so-called “fine moduli space” which will
be described in §3.1.

This new type of “stable pair,” parametrized by the
boundary 𝐌0,𝑛 ⧵ 𝐌0,𝑛 of this compactification, is a con-
nected but possibly reducible complex curve 𝐶 together
with 𝑛 smooth distinct labelled points 𝑝1, . . . , 𝑝𝑛 in 𝐶, sat-
isfying the following conditions:

• 𝐶 has only ordinary double points and every irre-
ducible component of𝐶 is isomorphic to the projective
line ℙ1.

• 𝐶 has arithmetic genus 0, or equivalently 𝐻1(𝐶, ℤ) =
{0}. (Think of a “tree” of ℙ1’s.)

• On each component of 𝐶 there are at least three points
which are either one of the marked points 𝑝𝑖 or a dou-
ble point, i.e., the intersection of two components of
𝐶.

𝐌0,𝑛 is a well-behaved compactification. For example, the
boundary is a normal crossing divisor with smooth irre-
ducible components.

Let’s consider the case of 𝑛 = 5 closely. The mod-
uli space 𝐌0,5 is two-dimensional and isomorphic to the
blow-up of ℙ2 at four points in general position. The
boundary𝐌0,5⧵𝐌0,5 is equal to the union of 10 irreducible
divisors 𝐷𝐼 and they are labelled by subsets 𝐼 ⊂ {1, 2, … , 5}
with |𝐼| = 2. We can explicitly identify these divisors from
our blow up construction. Indeed, they correspond to the
four exceptional divisors obtained from the points we are
blowing up, and the (strict transform of the) lines passing
through pairs of such points. Each divisor parametrizes
a different type of stable curve; e.g., the divisor 𝐷12 gener-
ically parametrizes the union of two ℙ1s with the points
distributed as in Fig. 3.

13

24
5

13

24
5

Figure 3. Generic limit parametrized by 𝐷12.

By now our tourists must all be ready to shout: “But
we already have (from §1.1) a technique for compactiying
moduli spaces! Couldn’t we compactify these𝐌0,𝑛 spaces
by going down the same route as for elliptic curves?” The

answer is yes — there are indeed GIT compactifications —
but with a new twist. We determined already that𝐌0,𝑛 is a
quotient of an open locus within (ℙ1)𝑛 by SL2(ℂ). We also
mentioned that Geometric Invariant Theory and subse-
quent developments imply that there is a semistable open
locus whose quotient yields a projective variety. How-
ever, this semistable locus is not unique! In our particu-
lar case, there are finitely many open loci 𝒰𝑠𝑠

𝐰 , depending
on a collection of rational numbers 𝐰 = (𝑤1, … , 𝑤𝑛) with
0 < 𝑤𝑖 ≤ 1 and 𝑤1 +⋯+𝑤𝑛 = 2, such that

(ℙ1)𝑛 ⧵⋃
𝑖≤𝑘

Δ(𝑖𝑘) ⊂ 𝒰𝑠𝑠
𝐰 ⊂ (ℙ1)𝑛.

Furthermore, the categorical quotient

(ℙ1)𝑛//𝐰 SL2(ℂ) ≔ 𝒰𝑠𝑠
𝐰 // SL2 (ℂ)

is a projective variety compactifying 𝐌0,𝑛. The choice of
the numbers 𝐰 reflects a more general fact: GIT uses line
bundles on the space, here (ℙ1)𝑛, and characters of the
group to construct different semistable loci. A framework
known as “variation of GIT” (VGIT), developed by Dol-
gachev, Hu, and Thaddeus, shows that there is only a finite
number of non-isomorphic GIT quotients, and that chang-
ing the values of 𝐰 induces birational transformations
among them. For example, for each 𝑛 there are choices of
𝐰 that yield ℙ𝑛−3 and (ℙ1)𝑛−3 as quotients. In general, it
is difficult to determine all possible GIT compactifications.
In our particular example (of 𝑛 = 5), depending on the
choice of “weights” 𝐰, the quotients (ℙ1)5//𝐰 SL2(ℂ) can
be either ℙ2, ℙ1×ℙ1, or a blow-up of ℙ2 at 𝑘 points in gen-
eral position with 1 ≤ 𝑘 ≤ 4. Two of these cases, of course,
match the compactifications of §2.1.

This plethora of distinct geometric compactifications is
a feature of moduli theory. Moreover, the above GIT quo-
tients are philosophically different from𝐌0,𝑛. Remember
that 𝐌0,𝑛 allows ℙ1 itself to degenerate, so as to keep the
points distinct (as in the figure 3). On the other hand, any
of the GIT quotients (ℙ1)5//𝐰 SL2(ℂ) enables the points to
collide amongst themselves in a controlled manner, and
ℙ1 does not degenerate. This scenario is depicted in Fig. 4.

13

24
5

3
1 = 24

5

Figure 4. GIT limit when 𝑤1 + 𝑤2 < 1.

And so we arrive at one of the main questions within
moduli theory: How are a priori different compactifications
of a moduli space related to each other? In our case, it is a
theorem of Kapranov that for every 𝐰 as above there is a
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morphism

𝐌0,𝑛 → (ℙ1)𝑛//𝐰 SL2(ℂ).
whose restriction to 𝐌0,𝑛 is an isomorphism.
2.3. More spectacular coincidences. Let’s stop and look
at the road traveled thus far. We learned that given a collec-
tion of five ordered points in ℙ1, it is possible to construct
a genus three curve 𝐶 (known as a Picard curve) associ-
ated with them. By using a certain eigenspace of its homol-
ogy𝐻1(𝐶, ℤ)𝜇∗= ̄𝜁3 we can define a periodmap that embeds

𝐌0,5 as a dense open subset of 𝔹2/Γ(√−3). Moreover, this
embedding extends to isomorphisms of algebraic and an-
alytic compactifications in two different ways. It would be
remarkable if such phenomena persist for other moduli of
points 𝐌0,𝑛.

It turns out that they do. [insert gasp here] Deligne and
Mostow showed in 1986, with additional contributions by
Doran in 2004, that for 𝐌0,𝑛 with 𝑛 ≤ 12, there exist cer-
tain ball quotients such that

𝐌0,𝑛/𝑆𝑚 ↪ 𝔹𝑛−3/Γ𝐰 (4)

where 𝑆𝑚 is a certain 𝑚th symmetric group, and Γ𝐰 is a
well-chosen arithmetic group depending on some weights
𝐰 ∈ ℚ𝑛

>0.
Furthermore, the same weights 𝐰 induce GIT compact-

ifications of𝐌0,𝑛/𝑆𝑚 which are isomorphic to Baily-Borel
compactifications of (𝑛 − 3)-dimensional ball quotients:
that is,

(ℙ1)𝑛//𝐰(SL2 ×𝑆𝑚) ≅ (𝔹𝑛−3/Γ𝐰)∗, (5)

where the “∗” adds finitely many points. The isomor-
phisms (5) compactify periodmaps (4) associated to cyclic
covers of ℙ1 branched in a manner dictated by the config-
uration of weighted points. In each case, the cyclic auto-
morphism of the covering curve has an eigenspace in 𝐻1

with Hodge numbers (1, 𝑛 − 3).
Moreover, it is possible to enrich the above picture. In-

deed, by using a slight generalization of the stable pairs de-
scribed before, we obtain the Hassett moduli space𝐌0,𝐰+𝝐
of 𝑛-pointed rational curves with weights𝐰+𝜖. This com-
pactification of 𝐌0,𝑛 is a smooth projective variety, and it
admits morphisms

𝐌0,𝑛 ⟶𝐌0,𝐰+𝝐 ⟶(ℙ1)𝑛//𝐰 SL2(ℂ).

The Hassett compactifications 𝐌0,𝐰+𝝐 allow both colli-
sions of points and degenerations of ℙ1 but in a controlled
manner depending on the weight 𝐰.

From the analytic perspective, we also have a unique

“toroidal” compactification 𝔹𝑛−3/Γ𝐰
tor

, discussed at the
end of §2.1, that refines the Baily-Borel compactification.
(Instead of points, the boundary components are (𝑛 − 4)-
dimensional, meaning that more information about as-
ymptotic behavior of periods is retained.) Recent work of

the authors with L. Schaffler [7] found that there is an iso-
morphism between 𝐌0,𝐰+𝝐/𝑆𝑚 and the toroidal compact-
ification. Thus we arrive at the following commutative di-
agram for 𝑛 ≤ 12:

𝐌0,𝑛 // 𝐌0,𝐰+𝝐/𝑆𝑚

��

≅ // 𝔹𝑛−3/Γ𝐰
tor

��
(ℙ1)𝑛//𝐰 SL2 ×𝑆𝑚

≅ // (𝔹𝑛−3/Γ𝐰)∗

For a list of these cases see Tables 2 and 3 in [7].

3. A Panoramic View of the Theory
Our tour has arrived at the base of the funicular, on which
we now ascend for a theoretical overview.
3.1. What is a moduli space? If there was really a Tem-
ple of Moduli off in the distance, emblazoned on its fa-
cade would be some version of: We desire more than a space
parametrizing objects, such as smooth elliptic curves up to iso-
morphism. We seek to understand all well-behaved families of
them. A delicate question arises from this ideal. What is
meant by adjectives such as “all” and “well-behaved” for a
family of algebraic objects? To answer it, we need to refor-
mulate the moduli problem.

Let’s start with a family 𝒳 → 𝐵 where 𝐵 is an algebraic
variety such as 𝐵 = ℂ. As a first guess, we might ask that
key invariants such as the dimension and the degree — or
more precisely, the Hilbert polynomial alluded to in §1.1
— be the same for all fibers 𝒳|𝑏 over (geometric) points
𝑏 ∈ 𝐵. This intuition turns out to be correct, but does not
yield a complete answer. For one thing, we need to con-
sider families over a base 𝐵 which is not an algebraic vari-
ety but rather a scheme (which is a more general object).
The right well-behavedness condition for families is due
to Serre, and it is called flatness. We won’t define it here,
but only say that if 𝐵 is an algebraic variety, then flatness
is equivalent to the fibers 𝒳|𝑏 having constant Hilbert poly-
nomial. Part of the reformulated moduli problem, then,
is to understand all flat families 𝒳 → 𝐵 where 𝐵 is any
scheme.

With the above remarks inmind, letΩ be a “reasonable”
class of objects — for example, either the stable 𝑛-pointed
curves of genus 0 described in §2 or the smooth elliptic
curves of §1. Let 𝔖𝔠𝔥𝔢𝔪𝔢𝔰 be the category of schemes, and
let 𝔖𝔢𝔱𝔰 be the category of sets. For every scheme 𝐵, we
consider the set of all flat families 𝒳 → 𝐵. This yields the
moduli functor

ℳ ∶ 𝔖𝔠𝔥𝔢𝔪𝔢𝔰 → 𝔖𝔢𝔱𝔰

defined as

ℳ(𝐵) = {flat families 𝒳 → 𝐵 with fibers 𝑋𝑏 ∈ Ω}.
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Well, that escalated quickly, didn’t it? We started with 𝑛
points in ℙ1 and now we have a functor from the cate-
gory of all schemes. Here another insight is required: to
any variety or scheme 𝐌, we can associate a functor from
𝔖𝔠𝔥𝔢𝔪𝔢𝔰 to 𝔖𝔢𝔱𝔰 by defining

ℎ𝐌 ∶ 𝔖𝔠𝔥𝔢𝔪𝔢𝔰 → 𝔖𝔢𝔱𝔰, ℎ𝐌(𝐵) ≔ Mor(𝐵,𝐌).

The functor ℎ𝐌 determines 𝐌 completely. This result
(based on Yoneda’s lemma) tells us roughly that to deter-
mine a variety or scheme, we just need to understand all
maps from other objects to it.

With such ideas in mind, we can return to our moduli
problem. We say that a moduli functorℳ is represented by
a scheme 𝐌 if there is a natural isomorphism from ℳ to
ℎ𝐌. In that event,𝐌 is called a fine moduli space for𝐌, and
constructing a family of objects over a base 𝐵 is equivalent
to defining a morphism 𝐵 → 𝐌.

We already have seen two examples of a fine moduli
space. The smooth algebraic variety 𝐌0,𝑛 presented in
§2 represents the moduli functor associated to stable 𝑛-
pointed curves of genus 0 up to isomorphism. Our second

example is the Hilbert scheme Hilb𝑝(𝑚)
𝑟 , which represents

the functor

ℌ𝔦𝔩𝔟𝑝(𝑚)
𝑟 (𝐵) = {flat families 𝒳 → 𝐵 where 𝑋𝑏 ⊂ ℙ𝑟

has Hilbert polynomial 𝑝(𝑚)}.

The fact that the Hilbert scheme represents a moduli
functor has profound applications in algebraic geometry:
Many moduli spaces are constructed by taking GIT quo-
tients of an appropriate Hilbert scheme, as in §1.1.
3.2. A Faustian bargain. Unfortunately, most moduli
functors are not represented by a variety or even a scheme.
For example, the moduli functor associated with isomor-
phism classes of smooth elliptic curves fails to be repre-
sented by 𝐌1,1. So we are left with two options.

Our first option is to weaken our expectations. In this
case, we look for a scheme 𝐌 that best approximates our
moduli functor. 𝐌 still parametrizes all our objects, but
maps into it will not parametrize all of their families. This
scheme is known as a coarse moduli space. If a moduli func-
tor has a coarse moduli space, the latter is unique (up to
canonical isomorphism). For example, the GIT quotient
𝐌1,1 is the coarse moduli space for smooth elliptic curves
up to isomorphism.

Our second choice is the Faustian one. We greatly gener-
alize the idea of “geometric space” via categorical tools. In-
deed, to keep track of all the families, we need new geomet-
ric objects known as stacks. Introduced by Deligne, Mum-
ford, and Artin in the 1970s, they are (loosely speaking) en-
richments of schemes obtained by attaching an automor-
phism group to every point. In our particular context, the
stack of objects Ω is a category whose objects are families

{𝒳 → 𝑇} of our “reasonable” objects, and the morphisms
are maps among such families, for details see [18].

Both choices, coarse moduli spaces and stacks are avail-
able for a well-behaved moduli problem. For example,
when automorphisms of all parametrized objects are fi-
nite and the stack is “Hausdorff,” Keel and Mori showed
in 1997 that besides the stack ℳ representing our mod-
uli functor there is also a coarse moduli space 𝐌. Re-
cent results by Alper, Halpern-Leistner, and Heinloth have
generalized this result to a larger class of stacks, whose
parametrized objects can have positive-dimensional auto-
morphism groups.
3.3. Algebraic compactifications. Suppose we are given
a moduli problemℳ for which the corresponding (coarse
or fine) moduli space𝐌 is noncompact. To go further, we
are faced with another delicate question: Can we define a
moduli problemℳ with a larger “reasonable” set of objects such
that its associated (coarse or fine) moduli space 𝐌 is compact
and contains 𝐌? The answer depends on the types of vari-
eties we are parametrizing.

If the varieties 𝑋 parametrized by ℳ are “positive”
enough (that is, their canonical bundles 𝐾𝑋 are ample),
then we add degenerations of 𝑋 which have ample canon-
ical bundles and “well-behaved” singularities known as
semi-log-canonical (slc) singularities, see [1, Def 1.3.1].
Unfortunately, this case does not include many varieties
of interest, such as plane cubics.

As a result, it is common to “enrich” our objects to pairs
(𝑋, 𝐷) where 𝐷 is a codimension one subvariety (that is, a
divisor) such that𝐾𝑋+𝐷 is ample. Examples of pairs (𝑋, 𝐷)
include 𝑛-pointed curves (ℙ1, (𝑝1, … , 𝑝𝑛)) with 𝑛 > 2. In
the presence of 𝐷, the “correct” new objects for compacti-
fying our moduli problem are called stable pairs: They are
degenerations of (𝑋, 𝐷) such that 𝐾𝑋 +𝐷 is ample and cer-
tain invariants are the same, but we allow for singularities
that are at worst slc.

In fact, this approach is already familiar from §2. We be-
gan with a moduli problemℳ0,𝑛 parametrizing 𝑛-pointed
curves (ℙ1, (𝑝1, … , 𝑝𝑛)), which was represented by a (non-
compact, fine) moduli space 𝐌0,𝑛. Then, we allowed for
more general curves as in Figure 3. The resulting moduli
functor ℳ0,𝑛 was then represented by a compact variety.

The above theory fails when 𝐾𝑋 + 𝐷 is not ample, so
a new perspective is necessary. Here, the concept of 𝐾-
(semi)stability is central. Introduced in 1997 by Tian, it
became a leading conjecture — now theorem — that the
existence of a (Kähler-Einstein) KE metric on a smooth
Fano variety 𝑋 is equivalent to satisfying a K-stability con-
dition defined via the so-called Donaldson-Futaki invari-
ant. There is a local-to-global interplay that restricts the
geometry of 𝐾-semistable varieties. For example, by work
of Odaka, a reasonable 𝐾-semistable Fano surface is ir-
reducible. The construction and explicit description of
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the moduli space of 𝐾-semistable varieties constitutes the
ongoing work of many people, including Alper, Blum,
Halpern-Leistner, Li, Liu, Wang, Xu, and Zhuang, among
others. A particular case involving pairs is described by the
first author’s work with Martinez-Garcia and Spotti [8].

The reader who wants to go beyond mathematical
tourism is referred (in the ample case) to [4] and [10] for
curves, [1] and [15] for higher-dimensional cases, and [13]
(and references therein) for technical details. For more de-
tails about K-stability see [20].
3.4. Analytic compactifications. Our tour has reached
the crenellations in the walls above our city — no one said
getting into (or out of) Algebraic Geometry was easy! —
from which distant vantage §§1.2–2.1 suggest the outline
of a completely different idea for compactifying 𝐌.

Suppose (i) we have a period map 𝜙∶ 𝐌 → 𝐷/Γ where
𝐷 is a “period domain” like ℌ or 𝔹2 and Γ a monodromy
group. Next, say that (ii) 𝜙 is injective (which is called a
“Torelli theorem”), and (iii) 𝜙(𝐌) is a dense open subset
of 𝐷/Γ, as in the examples we saw. Finally, we need that
(iv) 𝐷/Γ has a “natural” compactification 𝐷/Γ by “asymp-
totic period data” — which can mean different things as
in §2.1. Then taking the closure of 𝜙(𝐌) in 𝐷/Γ gives a
compactification of 𝐌; and if we are lucky and make the
right choices then (v) 𝜙 extends to amap from an algebraic
compactification 𝐌 to 𝐷/Γ (as in §2.3).

Here we briefly address (i) and (iv). Given a family
{𝑋𝗆}𝗆∈𝐌 of smooth projective varieties, we can identify
the cohomologies 𝐻𝑛(𝑋𝗆, ℚ) with a fixed ℚ-vector space
𝑉 up to the action of monodromy. By the Hodge the-
orem, each 𝐻𝑛(𝑋𝗆, ℂ) decomposes into a direct sum of
subspaces 𝐻𝑝,𝑞(𝑋𝗆, ℂ) represented by differential forms of
type (𝑝, 𝑞) with 𝑝 + 𝑞 = 𝑛. This amounts to a decomposi-
tion 𝑉 ⊗ ℂ = ⊕𝑉𝑝,𝑞

𝗆 which varies over 𝐌. More precisely,
the flag 𝐹•𝗆 ≔ ⊕𝑝≥•𝑉𝑝,𝑛−𝑝

𝗆 varies holomorphically over 𝐌,
satisfying the differential condition 𝑑𝐹• ⊂ 𝐹•−1, and yields
what is called a variation of Hodge structure, as first defined
by Griffiths.

It also yields a holomorphic map — this is our 𝜙 —
into a Hodge domain 𝐷, modulo the action of monodromy.
This domain is an analytic open subset of a generalized
flag variety which depends on the Hodge numbers ℎ𝑝,𝑞 ≔
dimℂ(𝑉𝑝,𝑞), the (orthogonal or symplectic) intersection
form on 𝑉 , and possible additional “symmetries” of the
variation. In §1.2 𝐷 was ℌ, while in §2.1 it was 𝔹2. These
are both instances of what Hodge theorists call the classical
case, where the above differential condition is vacuous and
𝐷/Γ is an algebraic variety.

In the classical case, we can use generalizations of
the modular forms encountered above to embed 𝐷/Γ
in a projective space. The resulting compactification
(𝐷/Γ)∗ is called the Baily-Borel compactification. Given a

normal-crossing compactification 𝐌 ⊃ 𝐌, there is an ex-
tension 𝜙∗ ∶ 𝐌 → (𝐷/Γ)∗ recording the limits of the flag
as 𝑋𝗆 degenerates. More refined limiting invariants for
Hodge flags (limiting mixed Hodge structures), together

with a choice of fan, lead to toroidal compactifications𝐷/Γ
tor

,
which are typically resolutions of singularities of (𝐷/Γ)∗.

When 𝐷/Γ is not algebraic, the obvious question is
“what about the image of the period map?” Using
algebraization results in 𝑜-minimal geometry, Bakker,
Brunebarbe, and Tsimerman proved in 2018 that a projec-
tive compactification of 𝜙(𝐌) always exists [3]. The con-
struction of Hodge-theoretic completions of 𝜙, or partial
compactifications of 𝐷/Γ that complete 𝜙(𝐌), remain ar-
eas of active research; cf. the book by Kato and Usui [11]
and ongoing work of Green, Griffiths, Laza, and Robles.
3.5. Some final spectacular coincidences. Cubic hyper-
surfaces in ℙ3 have captivated the imaginations of alge-
braic geometers since the discovery by Cayley and Salmon
(circa 1850) that each smooth one contains exactly 27
lines. They provide another case in which the entire pro-
gramme (i)–(v) from §3.4 can be worked out.3 Since the
Hodge decomposition on 𝐻2 of a smooth cubic surface 𝑋
is trivial, we pass to 3-to-1 cyclic covers of ℙ3 branched
along 𝑋 . The associated period map 𝜙 sends the moduli
space 𝐌 of cubic surfaces to a four-dimensional ball quo-
tient 𝔹4/Γ.

Figure 5. A cubic surface with three 𝐴2 singularities. (Image
created by Oliver Labs.)

In 2000, Allcock, Toledo, and Carlson showed that 𝜙
extends to an isomorphism between the GIT compactifi-
cation of 𝐌 and the Baily-Borel compactification of 𝔹4/Γ,
which adds only one point. The associated cubic surface,

3An expanded version of this article at arXiv:2107.08316 provides several
additional examples and further technical details of the general theory.
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defined by {𝑥0𝑥1𝑥2 + 𝑥33 = 0}, is depicted in Figure 5. A
related isomorphism, involving stable pairs and a toroidal
compactification, was recently discovered by L. Schaffler
and the authors [7].
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