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Abstract: In this paper, we introduce a novel multi-scale network model of two epidemics: HIV
infection and opioid addiction. The HIV infection dynamics is modeled on a complex network. We
determine the basic reproduction number of HIV infection, R,, and the basic reproduction number
of opioid addiction, R,. We show that the model has a unique disease-free equilibrium which is
locally asymptotically stable when both R, and R, are less than one. If R, > 1 or R, > 1, then the
disease-free equilibrium is unstable and there exists a unique semi-trivial equilibrium corresponding
to each disease. The unique opioid only equilibrium exist when the basic reproduction number of
opioid addiction is greater than one and it is locally asymptotically stable when the invasion number
of HIV infection, Réi is less than one. Similarly, the unique HIV only equilibrium exist when the
basic reproduction number of HIV is greater than one and it is locally asymptotically stable when
the invasion number of opioid addiction, Rﬁi is less than one. Existence and stability of co-existence
equilibria remains an open problem. We performed numerical simulations to better understand the
impact of three epidemiologically important parameters that are at the intersection of two epidemics: ¢,
the likelihood of an opioid user being infected with HIV, g, the likelihood of an HIV-infected individual
becoming addicted to opioids, and 6 recovery from opioid addiction. Simulations suggest that as the
recovery from opioid use increases, the prevalence of co-affected individuals, those who are addicted
to opioids and are infected with HIV, increase significantly. We demonstrate that the dependence of
the co-affected population on ¢, and ¢, are not monotone.
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1. Introduction

In the last 15 years, US deaths due to the opioid epidemic have quadrupled from nearly 12,000 in
2002 to more than 47,000 in 2017 [1]. In October 2017, the US Department of Health and Human
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Services declared the opioid crisis a national public health emergency [2]. The increase in injection
drug use and reduction of behavioral inhibition have also contributed to the spread of infectious
diseases, particularly HIV [3]. The two epidemics — opioid and HIV — are intertwined and modeling
them in tandem will lead to understanding their interdependence [4].

The HIV epidemic, which begun in 1981, has been modeled extensively both on immunological
level and on epidemiological level. On within-host level typically models involve healthy and infected
CD4 cells and the virus [5-9]. On the between-host scale, the very basic models include susceptible,
infected and AIDS classes [10, 11]. Multi-scale models of HIV, mostly of the nested type [12], have
also received significant attention in the recent years [13-16].

Modeling of the opioid epidemic is more recent and picked up with the increasing importance of
the substance abuse disorder. Early models [17] assume opioid use can be modeled similarly to
infectious disease spread and that assumption has been used in current models of heroin use [18-21].
The transition to opioid use typically starts from prescription drug misuse and modeling of that has
also been drawing attention lately [22].

Despite the importance of the HIV and the opioid epidemics and the clear interdependence
between the two, relatively little modeling has been done at the interface of the two epidemics. The
within-host modeling of the interplay between opioid and HIV has first drawn attention. Based on
experiments in monkeys, Vaidya et al. [23-26] model the within-host dynamics of HIV and an opioid.
The between host dynamics has been addressed even less. Duan et al. [27] models the two epidemics
on population level and finds that the best control strategy should reduce the probability of opioid
affected individuals getting HIV and should target the drug abuse epidemic. In this paper, we
investigate the interplay of the two epidemics with a multi-scale model that incorporates both a
within-host component and a between host component.

The sexual contacts leading to HIV are not homogeneous across the population. Typically, few
individuals in the population partake in a lot of contacts, while most of the members of the population
partake in few contacts. This type of heterogeneity of contacts in HIV transmission is modeled by
scale-free networks. Modeling infectious disease dynamics on networks has been also drawing
attention in the recent years, resulting in a book devoted to this topic [28]. We use here a network
modeling approach introduced in [29] which gives a closed form model equations [30]. In this
modeling framework of networks, ODE and age structured models have been investigated but the only
multi-scale model on networks in closed form seems to be [16]. Here we expand the modeling
framework developed in [16] to include the opioid epidemic thus considering for the first time a
multi-scale network model of two diseases. This model is in closed form and we are able to perform
analysis on it.

In Section 2 we introduce the multi-scale network model of HIV and opioid which consists of
within-host component, between-host component and linking functions used to connect the two
scales. In Section 3 we discuss the existence and stability of the disease-free equilibrium and compute
an explicit form of the reproduction numbers. In Section 4 we focus on the existence and stability of
the semi-trivial equilibria. In Section 4 we also compute the invasion numbers of the two epidemics.
In Section 5 we perform simulations and consider different scenarios with differing parameter values.
In Section 6 we summarize our results.
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2. The model

2.1. The within-host model

We modify a well-known within-host model of HIV by explicitly including the opioid drug
concentration C(7) and its impact on the average susceptibility of target cells. The model takes the
following form.

dT

— = s—diT -k(C)VIT,
dr

dT;

—— = kOVT -6T,

dr

av, .1
— = NG&T;—cV,

dr

dC

— = A-dC,

dr

Here T are the target cells, 7 are the infected target cells and V; is the virus (HIV). Target cells are
produced at rate s and cleared at rate dr. Infected cells die at a rate ¢;, releasing N, viral particles at
death. The clearance rate of the virus is denoted by c. Opioid is taken at doses A is degraded at rate d..
Infection rate of target cells by HIV in the presence of opioid is given by

kiC(7)

(Obrg e

where Cj is the half saturation constant, & is the transmission coefficient in the absence of opioid and
ky is a maximal increase in infection rate due to opioids.

Table 1. List of parameters of the within-host model.

Notation Meaning

Production rate of healthy T-cells

)

dr Clearance rate of healthy T-cells

T Number of healthy cells

T; Number of infected cells

Vi Number of virions

0; Death rate of infected cells

c Clearance rate of virions

ko Transmission coeffiecient in absence of opioid
ki Maximal increase in infection rate due to opioid
Co Half saturation constant

d. Rate of degradation of opioid

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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A shortcoming of this model is that it does not consider multiple infection routes and drug resistant
viral strains. This problem could have been remedied if a model such as the one formulated in [31]
was used instead, as the base model. But because of the network structure, the system is already
complicated, and addition of strains and infection route would further complicate it. We believe
addition of strains and infection route would not give any different insights with the network
structures.

2.2. The between-host model

To introduce the model, we define a complex network with size (number of nodes) N where each
node is either occupied by an individual or vacant. The states for the epidemic transmission process
on the network are divided into vacant state E, susceptible state S, opioid state U, infected state V,
co-affected state i(t,t) and AIDS state A. Nodes change states at rates to be introduced, and HIV
transmission is governed by the network connections. A vacant state becomes susceptible state at the
recruitment rate. Susceptible, opioid, infected, co-affected and AIDS states can change their state into
a vacant state at natural death rate u or at disease-induced death rates d,, d,, di(1), d,, respectively. A
susceptible state can be infected with HIV and change into an infected state, or can become opioid-
dependent and change into opioid state. HIV and opioid states can get co-affected by adding the
other disease. An opioid state or co-affected state can move to a susceptible or HIV-infected states
respectively due to treatment denoted as 6. HIV-infected or co-affected states can move to the AIDS
state at rates vy, and y;(7).

For an epidemic network, degree of a node is the number of contacts the node has with other nodes.
We assume that the network contacts are HIV type contacts. That is an edge between any two nodes
represents a potential for transmission of HIV, either through sexual contact or intravenous drug usage.
For a network with maximal degree n, the average network degree is given by

<k>= Z kp(k),
k=1

where p(k) is the probability that a randomly chosen node has degree k. That is, < k > is a constant,
when n is pre-specified. This is a standard notation for average degree. For further background, [32] is
a good source for network science. Empirical studies suggest that many real-life HIV networks have
scale-free degree distribution p(k) ~ k™", where 2 < n < 3 [33,34]. The conditional probability p(jlk)
that a node with degree k is connected to a node with degree j, is given by

jr(j)

<k>"

p(jlk) =

Basically, p(jlk) gives probability that an individual with k£ contacts is connected to an individual
with j contacts. We assume contacts that lead to opioid addiction are homogeneous (transmission of
opioid addiction can be between two nodes with the same probability). With the structure of a complex
network and infection age, let S ((¢), U (¢), Vi(¢), Ax(?), be the number of susceptible, opioid-dependent,
HIV infected and AIDS nodes respectively with degree k at time ¢ for k € {1,2,...,n}. Let ix(7, ) be
the density of co-affected nodes of degree k at time ¢ and with infection age 7. Then we can formulate
the following network multi-scale model of HIV and opioid epidemics.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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ds

;t(t) = A= DS K1) = kA, (DS (1) = uS (1) + SUK),
dU

dkt(t) = 1,(DS (1) — kg, 1,(DU(0) = (u + d,, + O Ux(2),
dvi(o) = kA, (DS (D) = quduOVi(D) = (i + d, + o) Vild) + 5]“’" o(7)ix(t, 7)dT,

‘dt ' 0 2.2)
alk(l, T) + akslk(t’ T) — —(/J + di(T) + yi(‘[') + (50'(7'))ik(la T)’

dt dr
kgir(t,0) = kq, A,(OU(t) + @A, () Vi(£)
dA(1)

o -+ L Yi(Di(t, T)dT — (1 + da)Ar(2).

The total population size of degree k is Ni(¢) = S (1) + U (t) + Vi () + Ii () where [;(t) = fooo I (t, T)dr.
The force of HIV infection, 4,(7) takes into account the heterogeneous mixing in the network:

5 Vi) + f i By, (Din(t, T)dT
0
Ni(1)

A,(t) = % ; kp(k)A*(t)  where A1) = (2.3)

Thus A%(#) denotes the force of infection from a node with degree k, where g% is the infection
rate from V,(f) (HIV-infected node with degree k) per effective contact, and similarly, l‘fz(T) is the
time-since-infection dependent infection rate from i, (7, f) (co-affected node with degree k) per effective
contact. Then the force of infection 4,(¢) for the heterogeneous network model is obtained by summing
over all the degrees of the network A%(7) times the probability that the node with degree  is linked to the
node with degree j. This is the average force of infection from each contact, and is therefore multiplied
by k in the equations (2.2) for HIV transmission to nodes of degree k. The force of opioid addiction,
A,() is then given by,

U(t) + foo ik(l, T)dT
0
Ni (1)

A=Y A where  Ai(n) =B, (2.4)
k=1

Since the opioid contacts are homogeneous within the network, the force of addiction is obtained by
summing over all the force of addictions of degree k, A%(f). The within-host model remains the same
as in (2.1) and the linking functions are given below.

2.3. Linking functions

To link the within-host and between host models, we use data [35] to determine the form of the
linking of the transmission coefficient ﬁ’v‘z(T) [36] to the viral load. Fitting to the data [36], we obtain
the following function for ,8’;2 (7):

BV (1)
Bl (1) = =,
B+ V(1)
where r ~ 1. Further, we use the suggested functions in [37] to link the remaining 7-dependent rates:

di(t) = do (T(0) = T) + di, Yi(1) =y (TO0)-T), o (1) = o,

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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where ,8’5, B, dy, d;,yy, 00, are constants. Disease-induced death rate d; and transition to AIDS rate vy;
do not depend explicitly on the viral load because the viral load is high during the acute HIV phase but
these rates are low during this same stage.

Table 2. Definitions of parameters and dependent variables of the between-host model.

Parameter/Variable Description

Si(0)
Vi()
Ui(0)
i(t,7)
A(?)
Ag

Yy
Yi(7)

Number of susceptible individuals at time ¢ with degree k

Number of HIV infected individuals at time ¢ with degree k
Number of opioid addicted individuals at time ¢ with degree k
Density of co-affected individuals with coinfection age 7 at time ¢ with degree k
Number of individuals with AIDS at time ¢ with degree k

Constant recruitment rate for nodes with degree k

Transmission rate of opioid addiction

Transmission rate of HIV infection of HIV infected only individuals
Transmission rate of HIV infection of coinfected individuals
Natural death rate

Death rate induced by opioid addiction

Death rate induced by HIV infection

Death rate induced by coaffection at coaffection age 7

Death rate induced by AIDS

Recovery rate from opioid addiction

Recovery rate from coinfection to HIV only

Increase coefficient of HIV infection due to opioid usage

Increase coefficient of opioid usage due to HIV infection

Rate of transition from HIV to AIDS

Rate of transition from coinfection to AIDS

3. Existence and stability of the disease free equilibrium

Equilibria are time-independent solutions of the system and often determine its long-term behavior.
We find the equilibria of this system by setting the derivatives with respect to ¢ equal to zero.

kA4, (S k() — quA (O Vi(t) — (u + d, +y,)Vi(2) + 6[00 o(D)i(t,7)dr =0,
0

8ksik(t, T) _
dr
kslk(o) = kQV/lv(t)Uk(t) + QM/lu(t)Vk(t)-

Ak = (DS (1) = kA, (DS 1 (1) = uS k(1) + 6Uk(1) = 0,
(DS (1) = kqy A (DU(D) = (u + dy + 6)Ui(1) = 0,

3.1

= —(u + di(7) + (1) + 60(7))ix (2, 7),
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At the disease-free equilibrium U(t), Vi(¢) and i (t,7) are zero for all k. So, the disease-free
equilibrium is given by

A A
80:(—1,0,0,0,--- .22.0,0,0].
u u

To determine the stability of the disease free equilibrium and to find the basic reproduction numbers
of HIV infection and opioid addiction, denoted by R, and R, respectively, we linearize the system
around the disease-free equilibrium. We take S4(f) = S 2 + x1(1), Up(®) = u (1), Vi(t) = vi(t), Ni(t) =
N,? + ni () and ir(t, 7) = yi(¢, 7). Then linearizing the system (2.2) takes the following form

d);"t(’) = — A0S = kA(DSY = pxe(r) + 61 (1),
db;"t(t) = (S0 = (u + dy + O)ugr),
D — kA, 089 1+ dy + 30 + 0 f oo, (3.2)
0
Ot ) + Okt 7 = —(u + di(7) + yi(7) + 60(7)yi(t, 7),
dt dr
ksyi(2,0) =0
where,
n I/lk(t) + f yk(ta T)dT
D= ) B 0 :
2A N,
| kvi(t) + f ) B, (yi(t, T)dT A
_ 0 0 _ ¢0 _ _k
0= = ;kp(k) v . and Ny =SP="R

We look for solutions of the form x;(f) = xgoeV, ui(t) = uoe™, vi(t) = vigeV, e(t, 7) = yu(r)e and
obtain the following eigenvalue problem,

A+ Wxp0 + 1,(DS Y + kA, (H)S Y — o = 0,
A+u+d, + g — 0SS =0,

A+u+d, +y,)vio — kA, (HS =6 f o (T)y(1)dt = 0,
0

(3.3)
W + (1) = —(u + di(7) + yi(7) + 607 (7)) yi(7),
ksy(0) = 0
Solving the fourth equation of (3.3) we get
(@) = y(Om()e =0 (34)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040-4068.
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where

1 T
- fo [+ di(€) + i(é) + 6 (&)dé

n(t)=e

Substituting (3.4) in the second equation of (3.3) we have,

Sg & Ujo
. 3.5
o = A+u+d, +6)ﬁZlNO (52)
We notice that all u, have the same sign. Summing both sides from 1 to n after dividing with N?,
we get
O Uk Bu Ujo
= = 3.6
L N) (A+p+d, +6)ZN,?]Z; .6)

If Y, —8 0 then u = O for all K which is not the case. So cancelling };_ B K from both sides of
the equatlon we obtain,

Bu nBy 3.7)
(/l+,u+d +6) (/1+,u+du+6)
since N) = §9 = A". We define
ng,
= —. 3.8
u+d,+06 (3-8)
Substituting (3.4) in the third equation of (3.3) we have,
kS ¢ (IR Blvio
_ in()— 3.9
Vio (ﬁ+ﬂ+dv+%)<k>;m(1) N7 3.9)

k
We note that all vy have the same sign. Multiplying both sides by <1+> Diet kp(k)% and summing
k
from 1 to n we obtain,

! ik(k)ﬁé'v"(’——1 ikz (k) WSy Z <)/3”‘ 0 (3.10)
<k > £ P N <k>& P NYQA+p + d, +'yv)<k> P ' '

ﬁvl k0

B 1 VkO

If == >, kp(k)
from both sides we get

= 0, then vy = O for all k which is not the case. So cancelling —— == 21 kp(k)—;

Ly h L3 ;
g ;kzp(k)N;?(/Hﬂ +];1v vy <k> kZ::‘kzp(k)(/H,u +d, +y,) ©-11)
So we define
R e i
R=—< kz:;k QT (3.12)

Now we can prove the following theorem,

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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Theorem 1. If max{R,,R,} < 1 then the disease free equilibrium is locally asymptotically stable. If
max{R,, R,} > 1, then the disease-free equilibrium is unstable.

Proof. Suppose

B nB,
G1() = A+u+d,+6
1 n k (3.13)
- _ 2 Vi
G2 = <k> ;k p(k)(/1+,u+dv+yv)'

Then we notice that G1(0) = R,, G»(0) = R,, Alim G = O,Alim G>(1) =0.
We claim that if max{R,,R,} < I then the disease free equilibrium is locally asymptotically stable,
that is all the solutions of G;(1) = 1 and G»(1) = 1, have negative real parts. To show this, we proceed

by way of contradiction. Suppose one of the equations G(1) = 1 and G,(4) = 1 has a solution A, with
R(Ag) > 0. Then,

1 =1G1(0)| < 1G1(RA)| < 1G1(0)] = Ry,
or

1 =1G2(A0)l < 1G2(B )| < 1G2(0)] = R..

This is a contradiction. Hence &° is locally asymptotically stable when max{R,,R,} < 1. If

max{R,,R,} > 1, let us assume, without loss of generality, R, > 1. Then G;(1) = 1 has a positive
solution, A*. Thus, the disease free equilbrium is unstable.

4. Semi-trivial (Boundary) equilibria

4.1. Existence of semi-trivial equilibria

In this section, we prove the existence and stability of the two boundary equilibria E} and E7
corresponding to opioid addiction and HIV transmission in a single population respectively. To obtain
E} we let Sy() = S;, U®) = U and Vi(t) = 0 and i(z,7) = O for all k, ie.,
E} =(S57,,U7,,0,0,---,87,,U",,0,0). We get the following equations

11° 2 11° nl?
Ak =St = S5 AU + 68U =0

SpuAU) —u+d,+6)U;;, =0

"y 4.1
Ay Uy = u a
UD =B )+
k=1 "kl
From the second equation of (4.1) we get,
# M + du +0 UZI
S = T
Bu no
=LN
Summing both sides of the equation from k = 1 to k = n, and dividing by N;| we get,
n Szlzl,t+du+5:£ (42)
—~i Ny, Bu Ru

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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We know Yu L =1, and so
kl
M=y (4.3)
k=1 Nkl
i.e.,

S U ( 1 )
—=n(l-—

k=1 Nkl R

Plugging in the values in the first equation of (4.1) and solving for U}, we get

A A
U = , k Y
o tu+d, (u+d)d- TR

Now when R, < 1, >i_, II\J,—I’: < 0, which implies U}, < O for at least one k. When R, > 1, U}, > 0.
Thus, E7 exists if and only if R, > 1.

To obtain E5 we let Si(1) = S,, Vi(H) = V}, and Ur(r) = 0 and ix(r,7) = O for all k, i.e., EJ =
($1,,0,V},,0,---,57,,0,V",,0). We get the following equations

Ap =Sty — kSLAVD) = 0,
kSItZ/lv(V;) - (/J + dv + YV)V*Q =0,
il V;Z

A(V3) = —— k §h<) .

]2

4.5)

From the second equation of (4.5) we get

,u+d + v,

kS; — V..
k2 — AV(VS) k2

Dividing both sides by N;, and multiplying with J? Dk kp(k),B’v‘l and adding from 1 to n we get,

n kS*
Pp)——L = (u+d, +7,). (4.6)

<k>kZ:; Nk2

We know StV =1, and so
k2
1 < (Vi +55)

— ) BPph) 22— = (u+d, +y,)R,, 4.7
<k>g;P“ v (u+dy+7) (4.7)

k

So when R, < 1, E; does not exist. Now

* * * * * :u + dV + )/V
No=Vao+Sn=Vao+t VkZ(W),

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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and so we obtain,

1% 1
N—kf = T den (4.8)
e 1+
1 < 1 2 kA,(V)
(V) = —— ) kp(k)B: = kp(k)B* 2 . 4.9
(2) <k>; p()ﬁwl{-m <k>; p()ﬁ‘}1k/1v(v;)+(/1+dv+’yv) ( )

kA, (V3)

A,(V3) = 0 is a solution to (4.5) which gives the disease free equilibrium. Then for a boundary
equilibrium, 4,(V3) > 0 is a root of f(4,), where

k
vi

_ 1 ” 2 _
f) = <k>;kp(k)kav(vg)+(y+dv+yv) !

As A, increases f decreases. /llim f(4,) =—1. But f(0) =R, —1>0. Thenif R, > 1, f(41,) has a

unique zero, giving us a unique boundary equilibrium for the system.

4.2. Stability of boundary equilibria and invasion numbers

To find the invasion number of HIV and stability of E} we first linearize the system (2.2) around E7.
We set Si(1) = xi (1) + S, Un(t) = (1) + Uy, Vi(®) = wi(0), ix (8, 7) = yi(2, 7) and Ni(2) = mi(t) + Ny,
the system for the perturbations becomes,

dx(t) _ . Ui o Ui .
c; = =S Au(u, y) — xi (DB, Z N_i + 8 11Bu Z J*z = (1) + Oy (1) = kS 3 (v, ),
t =1 'l j=1 le
du® . SUL o, o Ui .
; = 87,41, y) + (DB Z N—’ —S%\Bu Z T — kq, Ui 4,(v,y) — ( + dy + O (1),
t =1 j=1 le
v . S U )
B = kSE A0, Y) = quv(t)Ba Z il —(u+d, +y,)v() + (5f o (T)yi(t, 7)dT,
dt P N 0
ovi(t, Oksy(t,
yi(t, T) N 6,7 _ —(u + di(T) + yi(T) + 60 (1)yi(2, 7),
dt dr
. n U
kyidt, 0) = kU (v, 5) + quvi0Bu Xy 5

(4.10)

where,
T u; +f yi(t, 1)
Ay =, 3 b D
jl

9

j=1

; T vi(t) + f mﬁg(r)y,(r, T)dt
W) T -
. B

J=1

1
MO =S

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.
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We look for solutions of the form xi(f) = xie, ur(t) = ureV, vi(t) = vV, (1, 1) = yu(r)e! and
obtain the following eigenvalue problem,

Uiin }
/lxk - _Skl/l (Lt y) xkﬁu Z] 1 N + Sklﬁu Z] 1 Nzk MXg + 6uk - kS,jl/lv(v,y),

Unk

/luk - Skl/l (u y) + xkﬁu ] 1 N klﬁu ] 1 N2 kqu];k]/lv(V’y) - (,u + du + 6)Mk,

v = kS A0, Y) = GuviBu Koy 7 =+ dy + YV + 6 [~ c@y@dr, 4.11)

Ok,
TXD | k=~ + @) 4 7(0) + b (Oeto),

ksyk(o) kqu,’Zl/l (V )’) + CIuvkﬁu Zk 1 N_k

where,
Aoy =, 3 IO;f o
j=1 Jl
and
; v+ f Bl (r)y]mdr
A0ny) = = ;jpm (4.12)

Now, using the third, fourth and fifth equation of (4.11) we will compute the invasion number of
HIV.

U* 00
A+ o+ dy +y)ve = kS A0, Y) = quvifba Doy 3 + 6 [ oDy,

Okyi(7)
dr

U; il
ksy(0) = kg, Up, 4,(v, ¥) + quviBu 2oy N’

+ Ay = —(u + di(7) + yi(7) + 60 (1)yi(7),

From the second equatlon of (4.2) we get yi(1) = yk(O)ﬂ(T)e kv where 7(7) is as defined before.
Suppose K = B.q. Y- By and o) =4[ fo o(m)n(r)e” ke dt]. Then from the first and third equations
of (4.2) we get,

{ A+p+d, +y, + Kve— QDy(0) = kS5 4,(v,), (4.13)

—Kvi + kgyi(0) = kq,U;,4,(v,y).
Solving for v and y;(0) we obtain,

KKS) + kg UROW
k§A+u+d,+v,+K)— KoL) "~
kg (A +u+d, +y, + KU, + KkS,

k(A+u+d,+vy,+K)—KQ(1)

Vi =

yi(0) = A, y).

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040—4068.



4052

Supplying these values in Eq (4.12), and cancelling 4,(v,y) from both sides of the equation, we
obtain,

ksjS + Jja U3 Q)
<k>Z‘] PU )[N* k§A+u+d,+vy,+K)— KQ(1)
(4.14)
I L@ jgu A+ p+dy + v, + KU + K S
NJ*.1 k§A+u+d,+vy,+K)—KQQ)
We define
Z y )[ kejS'sy + jaU3oL [y o(@n(r)dr]
Ry =2 k S 2 P N o 1K) — Kol [T o] s

I Vz(T)ﬂ(T)dT Jau+d, +y, + KU + KjS*,
+
N k(i +dy + 9, + K) = KoL, o()n(r)dr] |

We call Rii the invasion reproduction number of HIV infection. Now suppose,

kiS5 + ¢ U5 Q)

j(; VZ(T)e_/lTﬂ'(T)dT A +p+d, +y, + KU + Ksjl]
Ni k(A +u+d,+vy +K)—KQ)

[~ BL@e " n(r)dr = B;(A). B;(A) is bounded above by 3;(0) and Q() is bounded above by Q(0).
Then G,,(0) = Rli and lim,_,, G,i(1) = 0. Suppose (4.14) has a solution A = x + iy with R(1) = x> 0
and R!, < 1. First we prove the following result.

U U
@A+ pu+d, +y, + K|+ g(u+d, +y, + K75 +
Jj1 jl

1

< (4.16)
lkg(A+ p +dy + 7y, + K)| = [KQ(O0)| lks(u +d, + vy + K)| - [KQ(0)|
Proof. To prove (4.16) we write down the left hand side of the inequality,
A+u+d, + +K)U—;fl + KS—;1
PETRTOTR TR g2+ KG @
= = Z )
lks(1+u+d, +vy,+ K| -IKQO)|  kz— KQ(0)
where, C; = £, C, = L and z = \/(x +u+d,+vy,+ K)?+y% Since f'(z) <0, f(z) is a decreasing

function. That 1s when z(O 0) < z(x,y), f(z(0,0)) > f(z(x,y)). But f(z(0,0)) is just the right hand side
of (4.16).
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Using (4.16) we can now state the following,

3P|

1
1= v,’/l =
G <k> = N;f1 k§A+u+d,+vy,+K)—KQQ)

Bi(A) @A+ pu+dy+y, + K)U; + KS7
Ny k@A +p+d+y,+ K) = KO

/ ksS %y + q,U3 0(0)
< ij() ;
<k> N L ks(u +d, +yv+K) KQ(0)
Ui _/l
qv(/l+u+dv+yv+l()N;l+KN;_1

+ |8;(0)

k(A+u+d,+7vy,+K)—KQQ)

/ kiS*) + q,U% 0(0)

<k>z”’() N*k(p+d + 7, + K) = KOO) *.17)
Ui S
qv(/l+y+dv+yv+K)N—;l+ N,

PO AT i d v 9+ B - [KOO)

/ ksS %+ q,U3 0(0)
N*k(u+d +7v+K) K0(0)

<k>ZJp()

gu+d, +y + K)
lks(u + d, +y, + K)I - |KQ(0)|

|+ |5

=1G.(0) = R}; < 1.

This is a contradiction. So (4.14) only has solutions with non-negative real parts when R!, < 1.
Now let us suppose, Rll. > 1. It can be shown that G,;(1) is decreasing. Then since G,;(0) = Rl’_ > 1

and lim,_,., G,;(1) = 0 for real and positive 4, (4.14) must have at least one positive root when R,; > 1.
Now, from (4.1)—(4.3) we get,

§* = n Ui _ Ui
K Run(l—L) R, -1
i.e.,
U; .
RMT1+Uk1_UZ1( 1 +1)_1
N, N\ R -1 '
Solving the equation we get,
Ui 1
=1-—,
N R (4.18)
Sa_ 1 '
Ny TR
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To find the remaining eigenvalues, satisfying the third, fourth and fifth equation of (4.11), y;(r) =0

andv; =0forall j =1,2,---,n. The first two equations then just reduce to
U " U g
— J1
Axg = = 1ﬁu2ﬁ - kﬁuz N +S 1/«%2 N — Xy + Ouy,
j=1 "] j=1 " Jl J=1 J1 (4.19)
" U n Uy '
Auy = S5,B. Z R Z o~ Siibs Z Ao~ (dy O,
j=1 J j=1 "l j=1 Jjl
Adding the two equations and solving for n; we get
dubtk
ng = —
A,
1.e.,
A+u+d,
X = ——————U.
A+u
Replacing x; and n; in the second equation of (4.19) we get,
s S ou; A+u+d, - U;1 o Uj du]
(/1+,Ll+du+6)uk—5k1ﬁusz1_Wuk MZ >‘k1 klﬁu *2(/1+ll)
j=1 J j=1 J j=1
g U (4.20)
1 \A+u+d, ; UNy
= [A+u+d,+5+Bn|l - —|——— v ) —— |1+ .
( H ﬁ”( Ru) Yy ) ’“ﬁZN* Yy
Multiplying both sides of the equation NL and summing over 1 to n,
13!
d, 2
1\A+u+d,\ < ~ S N u; U
(ﬂ+u+du+6+ﬁun(l—R—)ﬂ—) N 2l N 4.21)
] A+p JHN, SN j—lel A+
P N = 0 implies from (4.20) all u; would be zero, which would not be of interest. 3. N # 0 for

non- equ1hbr1um points, and cancelling the expression on both sides, then the characteristic equatlon
becomes,

1 1 n
(/l+/l+du+5)(/1+,u)+,3u(/1+,u+du)n(1—E)=ﬁu(ﬁ+ﬂ+du(1—R—u))R—u- 4.22)

Rewriting this equation as a quadratic equation, we get

/12+(2ﬂ+du+5+,8un—,8u%)/l+(,u+du+(5),U+5un( __)(/’[+d“) Bun (/J+d ( 7; )) =0

(4.23)
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Simplifying the equation, we have A*> + bA + ¢ = 0 where b = u + B,n > 0 and

= (1 - R%,) Bun(u+d,) — (u+d,+06)d,) > 0 since, B,n > (u + d, + 6) when R, > 1. Hence this
quadratic equation has only roots with negative real parts. Combining the work above we can
conclude,

Theorem 2. The unique boundary equilibrium E7 is locally asymptotically stable if Ri’, < 1,and itis
unstable if R} > 1.

To find the invasion number of opioid addiction and stability of E we first linearize the system
(2.2) around E7. We set Si(2) = xi(1) + S, Un(®) = wi(0), Vi(t) = wi(t) + V5, ik(t,7) = (2, 7) and
N (1) = ni (1) + N,jz The system for the perturbations becomes,

dx(t . ) nj
B0 S ) ) + 51 RS0 ) ~ Colons 4 KS fy— Z i Nﬁ -
duy (1) .
;t = S22, y) — kquCy — (u + d, + O)u(b),
dvi(1) . . o ) L Vin;
cl;t = kxiCy + kS [ 0o(v, ) — kSk2< S Z ir(j) sz — 4V ()
=1 72
—(+dy +y)vi(D) + 6 [ o (D)yilt, ),
oyi(t, Ok, yi(t,
ML) HIET) )4 d() + y0) + G0 @lt. 7).
dt dr
ksyk(t’ O) = k(Ivcluk + unZZ/li(u’ y)’
(4.24)
where,
n u-+f°°yj(t,T)
/12 — J 0
u(u’ y) ﬂu Z N*
j=1 J2
X | 1 vi(t) + j(; Bl (Dt )dt
20, .
)= ;me
and
J V*
_ Vi’ 2
C = <k>Z]P(]) N,

We look for solutions of the form xi(t) = xxe, up(t) = e, vi(t) = ve, yi(t, 7) = yu(r)e! and
obtain the following eigenvalue problem,
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ﬁyl /2"1

Axy = —SkZ/lz(u y) — Xy + Ouy — kSk2/12(v y) — Cikx; + /’cSk2 o= 2=l ]p(]) ,

Aug = S5, A0(u, y) — kq,uCy — (1 + dy + 8)uy,
ﬁl] 12 J

v = kx Cy + kS ), 50, y) = kS 1y oz Xy jp(N =5 — qu Vi An(u. y)
—(u+d, +y)vi+6 [ o@Dy,

Ok i (T

—Z_( ) + Ay = —(u + di(7) + yi(7) + 60 (7)yi(7),

koyr(0) = kq,Crug + q, Vi, Ao(u, y).

(4.25)

From the fourth equation of (4.25) we get

(T) = yO)m(T)e ™. (4.26)
Let O(1) = fooo ﬂ(T)e;TﬂTdT. From the second equation of (4.25) we get

Sia S uj+y,(00()
uy = 3 0w,
A+u+d, +90+kq,C = sz
Multiplying both sides of this equation with Ni we get,
k2
uk _ BuS i : U+ yj(?)Q(/l). 4.27)
Ny, (A+wp+d,+6+kqC)Np, = sz
From the fifth equation of (4.25) we get,
. O U Y000
koi0) = kg Cou + 4V, ) ==
- 2
j=1 J
Multiplying both sides of this equation with QM) we get,
k2
(00 kq,C1Q(DB.S ;, o i+ y;(0)0() + 0g VB <o 1y + 5,00
N;, k(A + g+ dy + 6 + kg, CONp, 4 N3, Nk J,:l N3,
(4.28)
Summing both side of (4.27) and (4.28) from 1 to n and adding together we get,
C (I + kq,C1Q(D)BuS ;, 4uBu N
S =S + 0@ —= 4.29
@) @) Z k(A +p+d, +6+kq,C)N, oW kg N, ( )

k=1
where, S(1) = Z” Lty f(O)Q(/l) . Since S (1) = 0 implies from (4.27) u; = 0 for all k, S(1) # 0. We
cancel S (1) from both 51des and get,

L 1+ kq,C10(1)B.S B
lzzk(( + kg, C1Q())BuS 1, Q(/l)q’B (4.30)

sA+p+d, +6+kq,C)N;, ks = NZQ.
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LetII = fooo n(t)dt. We define

! (1 + kq,C1IDB,S q.8 «
2 _ K2 uPu
> +II 4.31)

s +d, + 6+ kq,C1)N}, ks & Ny,

We call Rii the invasion reproduction number of opioid addiction. We claim that when Rii < 1 the
boundary equilibrium EJ is locally asymptotically stable, that is all the roots of (4.30) have negative
real parts. Suppose

(1 + kqvcl Q(/l))ﬂus . uPu -
Gl = " = 2y gdibey 22
= s(A+u+d,+06+kqC)N, kg N,

k=1

Then G,;(0) = Rﬁi and lim,_,, G,i(1) = 0. Assume the Eq (4.30) has roots with non-negative real
part R(1) > 0. The Eq (4.30) satisfies,

| = Zn: (1 + quC] Q(/l))ﬁuszz i Q(/l)(hﬁu - k2

& k(A + g+ dy + 6+ kg, CNG, ky &Ny,

- Z (I + kq,C1Q(V)B.S}, +low quﬁu

N k(A+p+d, +06+kq,C)N], ky & N*

S (1 +kg,CO(R()))BLS; B (4.32)
Skt prd, 10+k C)l}if* " Q(%M))qkﬁ N
=1 S M u q,C 1 k2 R k2
< Zn: (1 + kCIvCIH)ﬁMSZQ Hquﬁu -
ks(u +d, + 6 + kq,C1)N}, kg — Ny,

<R <1

This is a contradiction. Hence all roots of (4.30) have negative real parts when ﬂﬁi < 1. Now let us
suppose, Ri_ > 1. Then since G/ (1) < 0 when A > 0, G,i(1) is decreasing when A4 > 0. But we have,
G.i(0) = R> > 1 and lim_,., G,i(4) = 0. Then (4.30) has at least one positive root when R> > 1. If A is
not a solution of characteristic equation (4.30),we have u; = 0, y;(0) = 0, the remaining two equations
of (4.25) then just reduce to

. oo ,35 Vv Vaon,
Axy = —pxg — kS, Z Jp(j Nl* ! kxy + kSkz Z Jip(j) ! ,

<k>4&5 5 N*2
(4.33)

*

) " ) V1 M
v = k€ + kS fy—— Z] D M, ~kSp—rs ijj sz — (u+dy + Y.

Adding the two equations and solving for n; we get

_ (dv + 7v)vk
(A +

b

ie.,
A+u+d,+vy,
X = — Vi.
A+u
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Using these values for n; and x; in the second equation of (4.33) we get

Vi

n jye | A+u+(d +y,)E

kCl(/l+lLl+dV +’)/V) 1 Py ij v v N,

A+u+d, +vy, + = kS* —— ;
( H Y Y Vi k2<k>;m(]) N, T a

(4.34)

Dividing both sides by N}, and readjusting we obtain,

Vi kSZz 1 V*
. (4.35)
N,jz N, (A+u+d, +y‘)(/l+y+kC1)<k> 12

Multiplying both sides of this equation with i Dk kp(k),B’v‘ (A+u+d + yV)N—’?), we get,
k2

A+ + (dy +7)72)

_ 2
T = k Z k p(k)ﬁw N* Atp+d+y)A+u+ icy L (4.36)

where T(1) = <k> pHE 1]p(])ﬁ”' ! (/l +u+d, +vy,) ’2) Since T' (1) = 0 implies from (4.35), v, = 0 for
all k, T(1) # 0 and we get the followmg characteristic equation,
(At p+ (A, +7)72)

- <k Z pik )ﬁ“N* A+u+d, +yv)(/l+,u+kC1)' (4.37)

From (4.8) we obtain,
Yo _ kCy
N,  kCi+u+d,+vy)’

SltZ_ :u+dv+7v
N}, CkCi+u+d,+y

Assume the Eq (4.37) has roots with non-negative real part. Using (4.9), R1 > 0 the Eq (4.37)

satisfies,
| A+ p+ (A, +7)72)
1= s Pl S
<k>k_ N ,(A+p+d, +y)A+u+kC)
kC
Zkz B u+d,+y, Arp+d+7)immnas)
"kCi+u+d, +y, A+ u+d, +y) A+ u+kC)
(4.38)
- +d, +y 1
- k2 k M % v
< <k>kZ:4 p( )'BV‘kCl+,u+dv+yv(/1+,u+dv+)/v)
u+d,+vy, 1

kZ
<k>Z pik )'Gv‘kC +u+d,+vy, (u+d, +,yv)
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This is a contradiction. So we can state the following theorem,
Theorem 3. The unique boundary equilibrium E7 is locally asymptotically stable if Rii < 1, and is
unstable if R > 1.

5. Numerical simulations

5.1. Numerical scheme and simulation

We present a numerical scheme for the immuno-epidemiological models (2.1) and (2.2). The
within-host model, consisting of ordinary differential equations can be solved by a stiff ODE solver in
MATLAB.

For the between-host model we introduce a finite-difference method. We discretize the domain

D={t71): 0<t<T,0<7<A}

where A is a maximal infection age and time 7 < oo, a maximal time. We take At = At, with k; = 1,
and so the points in age and line direction can be computed as,

T, =mAt t; = jAt.

Setting M = [g] and N = [Alt], we obtain A = MAt, T = NAt. The numerical method computes
approximations to the solution at the mesh points. We assume S(¢;) = § ,{, Ui(t)) = U,{, Vi(t)) = V,{
and ix(t, T,n) = ifn T We summarize the numerical method below,

J M J+1
By Vit Zon=y ABvy, Gk

J_ 1 n . .
/lv_%Zk:I N/{ ) J_()’“"N_la
; Ul+sM | Al
J _ n :Bu k m=1 mk . .
Ay = Yy~ j=0,-- ,N-1;
k
g+l Sy +AA+SU] At —0.--- N-1
K= Trre 1l ) J=Y ) ;
1+kA, At+2;, At+uAt

Ul+AlST Ar

j+1
Uj — : =0.--- . N-1
k 1+kq, ) Ar+(u+d, +6)At’ J ’ ’ ’
(5.1
Vil = V]+k[ ST ArroAr S| oilt) AL 20 N1
k —_— ] b J - b b b
14+qu A, At+(u+d,+yy ) At
l.j+1 _ i'r/n.k i=0.--- . N—-1:
m+1.k = 1+pAt+(dp+yn+60,)At’ J=Y ’ ’
m=0,---,M-1,
g+l Jj+14J Jj+147j .
I =kq, U 4+ q.V, A, j=0,--- ,N—-1;
i+l NAA-d U -y VI -S0 dnryd)
N = Ty , j=0,--- ,N—-1.
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To study the coexistence equilibrium analytically is not feasible for this model. So we take the
help of simulations to predict the existence of coexistence equilibrium in a scale free network
scenario. We consider specific parameter values for which Rﬁi and R},i are greater than 1. The
simulations suggest that the coexistence equilibrium exists and is stable. Given parameter values are
constant, the invasion number of HIV, Rii, seem to show dependence on the size of the network used.
With the same parameter values given in Table 3, when the network contains 200 nodes, Réi is close to
1.4, while with 300 nodes, R, increases to 2.9. The invasion number of opioid addiction R remains
stable near the same value 1.2 when size of the network is increased from 200 nodes to 300 nodes.
This is to be expected since the spread of opioid has been considered homogeneous over the network.
Simulations suggesting a coexistence equilibrium are shown in Figure 1.

Table 3. Parameter estimation results from [38].

Parameter Estimated Value Units

Bu 0.385676 1/time

B, 0.0551 1/time

ko 0.00011046 1/time

B 15318.9 VRNA/ml

) 0.118227 1/time

qu 0.867138 Unitless

q» 30.6189 Unitless

d, 0.00817752 1/time

d, 0.0144092 1/time

d, 1.2766e+11 1/time

dy 2.72895e-07 ml/(time X cells)

d; 3.4671e-06 1/time

Yy 0.0223488 1/time

Yo 1.63927e-12 1/time

o 0.000270006 Unitless

S 22843.6 CD4 count/(time X ml)
d 0.0766824 1/time

kq 2.02785e-05 VvRNA/(CD4 count X time)
0; 0.725266 1/time

N,0; 8465.63 vVRNA/(CD4 count X time)

Mathematical Biosciences and Engineering

Volume 20, Issue 2, 4040—4068.



4061

Co-affected nodes with degree k HIV infected nodes with degree k

20F

0 400 800 1200 1600 2000 400 800 1200 1600 2000
Time (days) Time (days)
Opioid dependent nodes with degree k

0 400 800 1200 1600 2000
Time (days)

Figure 1. Simulations with the network model. In this simulation the average degree is 7.63
and R, = 1.2173, R2, = 1.1607. The number of nodes is 100. The maximal degree is 28 but
there are no occupied nodes with degree 1, 2, 3.

5.2. Effects of the parametric values of q,, q, and 6

We define U(t)=};_, Ui(?) as the total opioid addicted population. Similarly we define V(7), I(¢)
and S (7) as the total HIV infected, total co-infected and total susceptible population respectively. The
network utilized had 200 nodes. The parameters S, and ,8’;1 are estimated by the following formulas,
B = Ru(u+d,+9); and ,8’;1 = R,(u +d, +v,). Since the model we consider does not include treatment
for HIV, we consider R, = 5.5. This estimate is an average value collected from [39], which gives an
estimation of basic reproduction number of HIV in Rural South West Uganda. Estimated value of R,
according to [27] would be close to 1.1. Given the fact that a high percentage of US citizens mentioned
it would be easy for someone to access opioids for illicit purposes, according to a poll conducted in
2018 (46 percent) and people who misuse opioids often get them from a family member or friend who
has a prescription [40], we considered the R, to be higher in range, around 3.25. The maximal degree
n for the following simulations (except Figure 1) is 43, with number of nodes being 200.

The two parameters in (2.2) that are of particular interest are ¢, and g,, which determine how much
one epidemics impacts the other. That is g, determines how likely opioid users are to get infected by
HIV compared to non-users, and g, determines how likely HIV infected people are to become opioid
addicted compared to non-infected people. In [27] the estimated value of the ¢, term equivalent was
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94.5, and in [38], the estimated value of g, was 30.62. Both estimates suggest a high dependence
effect of opioid usage on HIV infection. In our simulations we take the lesser estimate of g, = 30.62.
The total co-affected population due to varying values of ¢, is simulated, such as
0.5¢y, g, 1.59,,2q,,2.5q,,3q,. The estimated value for g, in [38] was below 1, but HIV-infected
persons are more likely to have chronic pain, receive opioid analgesic treatment, receive higher doses
of opioids, and to have substance use disorders and mental illness compared with the general
population, putting them at increased risk for opioid use disorder [41]. So the simulations were done
with the fitted value for g, along with double, five times and ten times the fitted value. While the total
number of co-affected varies according to the network, the trend seems to be similar, with g,
increasing, the total number of co-affected increases (Figure 2). A definite situation of interest is
when ¢, = 4.3, the maximum value seems to be achieved when ¢, is close to 60, not at the highest
value of approximately 90. The simulation was repeated with these values for different network sizes
and provided the same result.

Total coaffected individuals for different values of q, Total coaffected individuals for different values of qa,
14000 4500

0.5qv

0. qu
12000 ——
1.5uv
2q,
2.5uv
3a,

—_,
1.5qv
2q,
2.5qv
3a,

@ &
& S
=3 =]
=1 =1

10000

3000

8000 2500
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Total coaffected individuals
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Total coaffected individuals

g — B —
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (days) Time (days)
Total coaffected individuals for different values of a, Total coaffected individuals for different values of a,
18000 2500
0.5q 0.5q
B je000f |\ i 4 i
E % © ],
T 14000 \ 1.5q, ° 2000 1.5q,
= [\ -2, = -29,
'g 12000 | — 250, '8 — 250,
st | \ 3q, = 1500 3q,
T 1wo00| | \ o
2 T 2
9 socot | A o
[B] (o] |
= = 1000 I
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o oo S
Q Q
W e W 500
5 k=]
= 20001 | [
0 0 . !
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (days) Time (days)

Figure 2. Figure shows total co-affected individuals for six different values of ¢g,. Top Left:
q. = 0.86, Top Right: g, = 1.72, Bottom Left: g, = 4.3, Bottom Right: g, = 8.6. The other
parameters used are given in Table 3.

A second set of simulations were performed, taking the base value of ¢, = 1.72. The four individual
cases have all other parameters and network values same, only ¢, is varied, from 15,31,62 and 93
respectively. While some of the cases do have permutations, over all the trend is similar, and opposite
to the simulations in Figure 2. That is g, increasing causes the total number of co-affected to decrease
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(Figure 3). Again we notice a situation of interest, when g, = 60, the maximum value seems to be
achieved when g, is close to 1.72, not at the lowest value of approximately 0.86. Repeated simulation
with differing sized networks did not show changes in the results.
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Figure 3. Figure shows total co-affected individuals for six different values of ¢,, Top Left:
q, = 15, Top Right: g, = 30, Bottom Left: ¢, = 60, Bottom Right: g, = 90. The other
parameters used are given in Table 3.

Another parameter of interest is ¢, which denotes the rate of recovery from addiction in the
epidemiological model. The estimate for that in [27] is close to 0.033, while in [38] the estimate is
approximately 0.11. If successful treatment is considered without subtracting the relapses, the rate
would probably be close to 0.05 [42]. To simulate for differing values of ¢, we consider 5, and ,8’;1 as
constants, directly taking the values from Table 3. All the other parameter values are as mentioned in
Table 3. We consider four differing situations for 9, with the value being 0.02, the fitted value 0.11,
and target high values of 0.5 and 6 = 1. We also investigated different scenarios with differing
network sizes, with number of nodes being 100, 300 and 500 respectively. Interestingly, irrespective
of network size, the total number of co-affected people appeared to be higher with the value of ¢
increasing (Figure 4). One quite plausible explanation would be the higher recovery would decrease
the number of opioid overdose deaths significantly, thereby increasing the co-affected prevalence.
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Figure 4. Figure shows total co-affected individuals for four different values of 9, Top Left:
Network Size 100, Top Right: Network Size 300, Bottom: Network size 500. The other
parameters used are given in Table 3.

6. Discussion

We formulate a within-host model linked with a dynamic network HIV/opioid coinfection
epidemiological model with demography, through epidemiological parameters. The system is
described by ordinary differential equations coupled with partial differential equations in a nested
fashion. The network multi-scale model here is an extension of the multi-scale model considered
in [38]. The disease free equilibrium of the system always exists and is locally asymptotically stable
when both the basic reproduction numbers of opioid and HIV, R, and R, are less than 1.

The boundary equilibrium E7} exists when R, is more than 1 and EJ exist when R, is more than 1.
We define the invasion reproduction numbers R, and R;, . The invasion reproduction number R;, gives
the reproduction of the opioid users when the population is at the equilibrium E7, that is, when HIV
infection alone is at equilibrium in the single population. The invasion reproduction number 7(&1_ gives
the reproduction of the HIV infection at the equilibrium E7, that is when the opioid transmission
alone is at equilibrium in the single population. When Rli < 1, Ej is locally stable and when Rli > 1,
E7 is unstable. When Rﬁi < 1, E is locally stable and when Rgl_ > 1, E; is unstable. The model is too
complicated to compute or consider the stability of an endemic equilibrium, analytically, but
simulations suggest that there is an interior equilibrium potentially under the condition that both
invasion numbers are larger than one.
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We use fitted parameters from [38], to perform simulations, to explore the effect of the change of
the parameters ¢g,, ¢, and 8. The parameters g, and ¢, represent the effect of one epidemic on the other,
and we simulated for plausible values of ¢, and ¢,, to get estimates of co-affected prevalence. The
estimate of ¢,, the likelihood of a heroin user to be infected with HIV, in [27] was approximately 94,
and since a large number of opioid users progress to becoming heroin users, (Data from 2011 showed
that an estimated 4 to 6 percent who misuse prescription opioids switch to heroin and about 80 percent
of people who used heroin first misused prescription opioids) [43], chances of the g, estimate for all
illicit opioid usage being close to the “heroin only” estimate is high. We notice that increase in ¢,
causes the co-affected population to rise significantly, which indicates that control strategies focusing
on reducing HIV infection among the opioid addicted population would be effective in decoupling the
epidemics, corroborating with the conclusions in [27].

To the best of our knowledge, there have not been previous models with a parameter similar to g,,
that provides an estimate for the effect of HIV infection on opioid use. The simulations from our model
show that increase of g, in general causes the number of co-affected to decline. That is the prevalence
of co-affected people declines sharply with the increase to more HIV infected people being addicted
to opioids. This does corroborate real life data, since deaths due to overdose in the US per year were
aproximately 120,000 in the year 2020, and the number increased 15 percent by 2021 [44], compared to
the number of deaths due to HIV being around 18,500 in 2020 [45]. We noticed significant increase in
the prevalence of co-affected individuals, when the parameter ¢, representing the recovery from opioid
usage was increased significantly. The sharp increase points to the idea that control measures should
focus more on treatment of opioid use disorder, and that uncoupling the two epidemics is a priority to
prevent loss of human lives. Counseling about the dangers of opioid addiction for HIV infected people
must be provided, and similarly counseling about the dangers of getting infected with HIV should be
provided to reported opioid addicts.

In summary, we have developed a novel multi-scale network model of HIV and opioid epidemics.
We have analized the model and obtained conditions for HIV-only to persist or opioid-only to persist.
Simulations suggest that the two epidemics can co-exist for some parameter values. Simulations
further suggest that decreasing g, decreases the number of co-affected and may lead to decopuling the
epidemics. Thus control measures targeted at reducing ¢, should be coupled with treatment of opioid
affected individuals which is consistent with our previois findings.
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