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Abstract: In this paper, we introduce a novel multi-scale network model of two epidemics: HIV

infection and opioid addiction. The HIV infection dynamics is modeled on a complex network. We

determine the basic reproduction number of HIV infection, Rv, and the basic reproduction number

of opioid addiction, Ru. We show that the model has a unique disease-free equilibrium which is

locally asymptotically stable when both Ru and Rv are less than one. If Ru > 1 or Rv > 1, then the

disease-free equilibrium is unstable and there exists a unique semi-trivial equilibrium corresponding

to each disease. The unique opioid only equilibrium exist when the basic reproduction number of

opioid addiction is greater than one and it is locally asymptotically stable when the invasion number

of HIV infection, R1
vi

is less than one. Similarly, the unique HIV only equilibrium exist when the

basic reproduction number of HIV is greater than one and it is locally asymptotically stable when

the invasion number of opioid addiction, R2
ui

is less than one. Existence and stability of co-existence

equilibria remains an open problem. We performed numerical simulations to better understand the

impact of three epidemiologically important parameters that are at the intersection of two epidemics: qv

the likelihood of an opioid user being infected with HIV, qu the likelihood of an HIV-infected individual

becoming addicted to opioids, and δ recovery from opioid addiction. Simulations suggest that as the

recovery from opioid use increases, the prevalence of co-affected individuals, those who are addicted

to opioids and are infected with HIV, increase significantly. We demonstrate that the dependence of

the co-affected population on qu and qv are not monotone.
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1. Introduction

In the last 15 years, US deaths due to the opioid epidemic have quadrupled from nearly 12,000 in

2002 to more than 47,000 in 2017 [1]. In October 2017, the US Department of Health and Human
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Services declared the opioid crisis a national public health emergency [2]. The increase in injection

drug use and reduction of behavioral inhibition have also contributed to the spread of infectious

diseases, particularly HIV [3]. The two epidemics – opioid and HIV – are intertwined and modeling

them in tandem will lead to understanding their interdependence [4].

The HIV epidemic, which begun in 1981, has been modeled extensively both on immunological

level and on epidemiological level. On within-host level typically models involve healthy and infected

CD4 cells and the virus [5–9]. On the between-host scale, the very basic models include susceptible,

infected and AIDS classes [10, 11]. Multi-scale models of HIV, mostly of the nested type [12], have

also received significant attention in the recent years [13–16].

Modeling of the opioid epidemic is more recent and picked up with the increasing importance of

the substance abuse disorder. Early models [17] assume opioid use can be modeled similarly to

infectious disease spread and that assumption has been used in current models of heroin use [18–21].

The transition to opioid use typically starts from prescription drug misuse and modeling of that has

also been drawing attention lately [22].

Despite the importance of the HIV and the opioid epidemics and the clear interdependence

between the two, relatively little modeling has been done at the interface of the two epidemics. The

within-host modeling of the interplay between opioid and HIV has first drawn attention. Based on

experiments in monkeys, Vaidya et al. [23–26] model the within-host dynamics of HIV and an opioid.

The between host dynamics has been addressed even less. Duan et al. [27] models the two epidemics

on population level and finds that the best control strategy should reduce the probability of opioid

affected individuals getting HIV and should target the drug abuse epidemic. In this paper, we

investigate the interplay of the two epidemics with a multi-scale model that incorporates both a

within-host component and a between host component.

The sexual contacts leading to HIV are not homogeneous across the population. Typically, few

individuals in the population partake in a lot of contacts, while most of the members of the population

partake in few contacts. This type of heterogeneity of contacts in HIV transmission is modeled by

scale-free networks. Modeling infectious disease dynamics on networks has been also drawing

attention in the recent years, resulting in a book devoted to this topic [28]. We use here a network

modeling approach introduced in [29] which gives a closed form model equations [30]. In this

modeling framework of networks, ODE and age structured models have been investigated but the only

multi-scale model on networks in closed form seems to be [16]. Here we expand the modeling

framework developed in [16] to include the opioid epidemic thus considering for the first time a

multi-scale network model of two diseases. This model is in closed form and we are able to perform

analysis on it.

In Section 2 we introduce the multi-scale network model of HIV and opioid which consists of

within-host component, between-host component and linking functions used to connect the two

scales. In Section 3 we discuss the existence and stability of the disease-free equilibrium and compute

an explicit form of the reproduction numbers. In Section 4 we focus on the existence and stability of

the semi-trivial equilibria. In Section 4 we also compute the invasion numbers of the two epidemics.

In Section 5 we perform simulations and consider different scenarios with differing parameter values.

In Section 6 we summarize our results.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040–4068.
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2. The model

2.1. The within-host model

We modify a well-known within-host model of HIV by explicitly including the opioid drug

concentration C(τ) and its impact on the average susceptibility of target cells. The model takes the

following form.
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

dT

dτ
= s − dT T − k(C)ViT,

dTi

dτ
= k(C)ViT − δiTi,

dVi

dτ
= NvδiTi − cVi,

dC

dτ
= Λ − dcC,

(2.1)

Here T are the target cells, Ti are the infected target cells and Vi is the virus (HIV). Target cells are

produced at rate s and cleared at rate dT . Infected cells die at a rate δi, releasing Nv viral particles at

death. The clearance rate of the virus is denoted by c. Opioid is taken at doses Λ is degraded at rate dc.

Infection rate of target cells by HIV in the presence of opioid is given by

k(C) = k0 +
k1C(τ)

C0 +C(τ)
,

where C0 is the half saturation constant, k0 is the transmission coefficient in the absence of opioid and

k1 is a maximal increase in infection rate due to opioids.

Table 1. List of parameters of the within-host model.

Notation Meaning

s Production rate of healthy T-cells

dT Clearance rate of healthy T-cells

T Number of healthy cells

Ti Number of infected cells

Vi Number of virions

δi Death rate of infected cells

c Clearance rate of virions

k0 Transmission coeffiecient in absence of opioid

k1 Maximal increase in infection rate due to opioid

C0 Half saturation constant

dc Rate of degradation of opioid

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040–4068.
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A shortcoming of this model is that it does not consider multiple infection routes and drug resistant

viral strains. This problem could have been remedied if a model such as the one formulated in [31]

was used instead, as the base model. But because of the network structure, the system is already

complicated, and addition of strains and infection route would further complicate it. We believe

addition of strains and infection route would not give any different insights with the network

structures.

2.2. The between-host model

To introduce the model, we define a complex network with size (number of nodes) N where each

node is either occupied by an individual or vacant. The states for the epidemic transmission process

on the network are divided into vacant state E, susceptible state S , opioid state U, infected state V ,

co-affected state i(τ, t) and AIDS state A. Nodes change states at rates to be introduced, and HIV

transmission is governed by the network connections. A vacant state becomes susceptible state at the

recruitment rate. Susceptible, opioid, infected, co-affected and AIDS states can change their state into

a vacant state at natural death rate µ or at disease-induced death rates du, dv, di(τ), da, respectively. A

susceptible state can be infected with HIV and change into an infected state, or can become opioid-

dependent and change into opioid state. HIV and opioid states can get co-affected by adding the

other disease. An opioid state or co-affected state can move to a susceptible or HIV-infected states

respectively due to treatment denoted as δ. HIV-infected or co-affected states can move to the AIDS

state at rates γv and γi(τ).

For an epidemic network, degree of a node is the number of contacts the node has with other nodes.

We assume that the network contacts are HIV type contacts. That is an edge between any two nodes

represents a potential for transmission of HIV, either through sexual contact or intravenous drug usage.

For a network with maximal degree n, the average network degree is given by

< k >=

n
∑

k=1

kp(k) ,

where p(k) is the probability that a randomly chosen node has degree k. That is, < k > is a constant,

when n is pre-specified. This is a standard notation for average degree. For further background, [32] is

a good source for network science. Empirical studies suggest that many real-life HIV networks have

scale-free degree distribution p(k) ∼ k−η, where 2 < η < 3 [33, 34]. The conditional probability p( j|k)

that a node with degree k is connected to a node with degree j, is given by

p( j|k) =
jp( j)

< k >
.

Basically, p( j|k) gives probability that an individual with k contacts is connected to an individual

with j contacts. We assume contacts that lead to opioid addiction are homogeneous (transmission of

opioid addiction can be between two nodes with the same probability). With the structure of a complex

network and infection age, let S k(t), Uk(t), Vk(t), Ak(t), be the number of susceptible, opioid-dependent,

HIV infected and AIDS nodes respectively with degree k at time t for k ∈ {1, 2, . . . , n}. Let ik(τ, t) be

the density of co-affected nodes of degree k at time t and with infection age τ. Then we can formulate

the following network multi-scale model of HIV and opioid epidemics.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040–4068.
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dS k(t)

dt
= Λk − λu(t)S k(t) − kλv(t)S k(t) − µS k(t) + δUk(t),

dUk(t)

dt
= λu(t)S k(t) − kqvλv(t)Uk(t) − (µ + du + δ)Uk(t),

dVk(t)

dt
= kλv(t)S k(t) − quλu(t)Vk(t) − (µ + dv + γv)Vk(t) + δ

∫ ∞

0

σ(τ)ik(t, τ)dτ,

∂ik(t, τ)

dt
+
∂ksik(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δσ(τ))ik(t, τ),

ksik(t, 0) = kqvλv(t)Uk(t) + quλu(t)Vk(t)

dAk(t)

dt
= γvVk(t) +

∫ ∞

0

γi(τ)ik(t, τ)dτ − (µ + da)Ak(t).

(2.2)

The total population size of degree k is Nk(t) = S k(t)+Uk(t)+Vk(t)+ Ik(t) where Ik(t) =
∫ ∞

0
ik(t, τ)dτ.

The force of HIV infection, λv(t) takes into account the heterogeneous mixing in the network:

λv(t) =
1

< k >

n
∑

k=1

kp(k)λk
v(t) where λk

v(t) =

βk
v1

Vk(t) +

∫ ∞

0

βk
v2

(τ)ik(t, τ)dτ

Nk(t)
. (2.3)

Thus λk
v(t) denotes the force of infection from a node with degree k, where βk

v1
is the infection

rate from Vk(t) (HIV-infected node with degree k) per effective contact, and similarly, βk
v2

(τ) is the

time-since-infection dependent infection rate from ik(τ, t) (co-affected node with degree k) per effective

contact. Then the force of infection λv(t) for the heterogeneous network model is obtained by summing

over all the degrees of the network λk
v(t) times the probability that the node with degree k is linked to the

node with degree j. This is the average force of infection from each contact, and is therefore multiplied

by k in the equations (2.2) for HIV transmission to nodes of degree k. The force of opioid addiction,

λu(t) is then given by,

λu(t) =

n
∑

k=1

λk
u(t) where λk

u(t) = βu

Uk(t) +

∫ ∞

0

ik(t, τ)dτ

Nk(t)
. (2.4)

Since the opioid contacts are homogeneous within the network, the force of addiction is obtained by

summing over all the force of addictions of degree k, λk
u(t). The within-host model remains the same

as in (2.1) and the linking functions are given below.

2.3. Linking functions

To link the within-host and between host models, we use data [35] to determine the form of the

linking of the transmission coefficient βk
v2

(τ) [36] to the viral load. Fitting to the data [36], we obtain

the following function for βk
v2

(τ):

βk
v2

(τ) =
βk

0
Vr

i (τ)

B + Vr
i
(τ)
,

where r ≈ 1. Further, we use the suggested functions in [37] to link the remaining τ-dependent rates:

di(τ) = d0 (T (0) − T ) + d1, γi(τ) = γ0 (T (0) − T ) , σ(τ) = σ0,

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040–4068.



4045

where βk
0
, B, d0, d1, γ0, σ0, are constants. Disease-induced death rate di and transition to AIDS rate γi

do not depend explicitly on the viral load because the viral load is high during the acute HIV phase but

these rates are low during this same stage.

Table 2. Definitions of parameters and dependent variables of the between-host model.

Parameter/Variable Description

S k(t) Number of susceptible individuals at time t with degree k

Vk(t) Number of HIV infected individuals at time t with degree k

Uk(t) Number of opioid addicted individuals at time t with degree k

ik(t, τ) Density of co-affected individuals with coinfection age τ at time t with degree k

Ak(t) Number of individuals with AIDS at time t with degree k

Λk Constant recruitment rate for nodes with degree k

βu Transmission rate of opioid addiction

βv1
Transmission rate of HIV infection of HIV infected only individuals

βv2
(τ) Transmission rate of HIV infection of coinfected individuals

µ Natural death rate

du Death rate induced by opioid addiction

dv Death rate induced by HIV infection

di(τ) Death rate induced by coaffection at coaffection age τ

da Death rate induced by AIDS

δ Recovery rate from opioid addiction

σ(τ) Recovery rate from coinfection to HIV only

qu Increase coefficient of HIV infection due to opioid usage

qv Increase coefficient of opioid usage due to HIV infection

γv Rate of transition from HIV to AIDS

γi(τ) Rate of transition from coinfection to AIDS

3. Existence and stability of the disease free equilibrium

Equilibria are time-independent solutions of the system and often determine its long-term behavior.

We find the equilibria of this system by setting the derivatives with respect to t equal to zero.
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Λk − λu(t)S k(t) − kλv(t)S k(t) − µS k(t) + δUk(t) = 0,

λu(t)S k(t) − kqvλv(t)Uk(t) − (µ + du + δ)Uk(t) = 0,

kλv(t)S k(t) − quλu(t)Vk(t) − (µ + dv + γv)Vk(t) + δ

∫ ∞

0

σ(τ)ik(t, τ)dτ = 0,

∂ksik(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δσ(τ))ik(t, τ),

ksik(0) = kqvλv(t)Uk(t) + quλu(t)Vk(t).

(3.1)
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At the disease-free equilibrium Uk(t), Vk(t) and ik(t, τ) are zero for all k. So, the disease-free

equilibrium is given by

ε0 =

(

Λ1

µ
, 0, 0, 0, · · · ,

Λn

µ
, 0, 0, 0

)

.

To determine the stability of the disease free equilibrium and to find the basic reproduction numbers

of HIV infection and opioid addiction, denoted by Ru and Rv respectively, we linearize the system

around the disease-free equilibrium. We take S k(t) = S 0
k
+ xk(t), Uk(t) = uk(t), Vk(t) = vk(t), Nk(t) =

N0
k
+ nk(t) and ik(t, τ) = yk(t, τ). Then linearizing the system (2.2) takes the following form































































































dxk(t)

dt
= −λu(t)S 0

k − kλv(t)S
0
k − µxk(t) + δuk(t),

duk(t)

dt
= λu(t)S 0

k − (µ + du + δ)uk(t),

dvk(t)

dt
= kλv(t)S

0
k − (µ + dv + γv)vk(t) + δ

∫ ∞

0

σ(τ)yk(t, τ)dτ,

∂yk(t, τ)

dt
+
∂ksyk(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δσ(τ))yk(t, τ),

ksyk(t, 0) = 0

(3.2)

where,

λu(t) =

n
∑

k=1

βu

uk(t) +

∫ ∞

0

yk(t, τ)dτ

N0
k

,

λv(t) =
1

< k >

n
∑

k=1

kp(k)

βk
v1

vk(t) +

∫ ∞

0

βk
v2

(τ)yk(t, τ)dτ

N0
k

, and N0
k = S 0

k =
Λk

µ
.

We look for solutions of the form xk(t) = xk0eλt, uk(t) = uk0eλt, vk(t) = vk0eλt, yk(t, τ) = yk(τ)e
λt and

obtain the following eigenvalue problem,
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













(λ + µ)xk0 + λu(t)S 0
k + kλv(t)S

0
k − δuk0 = 0,

(λ + µ + du + δ)uk0 − λu(t)S 0
k = 0,

(λ + µ + dv + γv)vk0 − kλv(t)S
0
k − δ

∫ ∞

0

σ(τ)yk(τ)dτ = 0,

∂ksyk(t, τ)

dτ
+ λyk(τ) = −(µ + di(τ) + γi(τ) + δσ(τ))yk(τ),

ksyk(0) = 0

(3.3)

Solving the fourth equation of (3.3) we get

yk(τ) = yk(0)π(τ)e
−λτ
ks = 0 (3.4)
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where

π(τ) = e
−

1

ks

∫ τ

0

µ + di(ξ) + γi(ξ) + δσ(ξ)dξ
.

Substituting (3.4) in the second equation of (3.3) we have,

uk0 =
S 0

k

(λ + µ + du + δ)
βu

n
∑

j=1

u j0

N0
j

. (3.5)

We notice that all uk0 have the same sign. Summing both sides from 1 to n after dividing with N0
k
,

we get
n

∑

k=1

uk0

N0
k

=
βu

(λ + µ + du + δ)

n
∑

k=1

S 0
k

N0
k

n
∑

j=1

u j0

N0
j

(3.6)

If
∑n

k=1
uk0

N0
k

= 0 then uk0 = 0 for all k which is not the case. So cancelling
∑n

k=1
uk0

N0
k

from both sides of

the equation we obtain,

1 =
βu

(λ + µ + du + δ)

n
∑

k=1

S 0
k

N0
k

=
nβu

(λ + µ + du + δ)
(3.7)

since N0
k
= S 0

k
=
Λk

µ
. We define

Ru =
nβu

µ + du + δ
. (3.8)

Substituting (3.4) in the third equation of (3.3) we have,

vk0 =
kS 0

k

(λ + µ + dv + γv)

1

< k >

n
∑

j=1

jp( j)
β

j
v1

v j0

N0
j

. (3.9)

We note that all vk0 have the same sign. Multiplying both sides by 1
<k>

∑n
k=1 kp(k)

βk
v1

N0
k

and summing

from 1 to n we obtain,

1

< k >

n
∑

k=1

kp(k)
βk

v1
vk0

N0
k

=
1

< k >

n
∑

k=1

k2 p(k)
βk

v1
S 0

k

N0
k
(λ + µ + dv + γv)

1

< k >

n
∑

j=1

jp( j)
β

j
v1

v j0

N0
j

. (3.10)

If 1
<k>

∑n
k=1 kp(k)

βk
v1

vk0

N0
k

= 0, then vk0 = 0 for all k which is not the case. So cancelling 1
<k>

∑n
k=1 kp(k)

βk
v1

vk0

N0
k

from both sides we get,

1 =
1

< k >

n
∑

k=1

k2 p(k)
βk

v1
S 0

k

N0
k
(λ + µ + dv + γv)

=
1

< k >

n
∑

k=1

k2 p(k)
βk

v1

(λ + µ + dv + γv)
. (3.11)

So we define

Rv =
1

< k >

n
∑

k=1

k2 p(k)
βk

v1

(µ + dv + γv)
. (3.12)

Now we can prove the following theorem,
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Theorem 1. If max{Ru,Rv} < 1 then the disease free equilibrium is locally asymptotically stable. If

max{Ru,Rv} > 1, then the disease-free equilibrium is unstable.

Proof. Suppose

G1(λ) =
nβu

λ + µ + du + δ
,

G2(λ) =
1

< k >

n
∑

k=1

k2 p(k)
βk

v1

(λ + µ + dv + γv)
.

(3.13)

Then we notice that G1(0) = Ru, G2(0) = Rv, lim
λ→∞
G1(λ) = 0, lim

λ→∞
G2(λ) = 0.

We claim that if max{Ru,Rv} < 1 then the disease free equilibrium is locally asymptotically stable,

that is all the solutions of G1(λ) = 1 and G2(λ) = 1, have negative real parts. To show this, we proceed

by way of contradiction. Suppose one of the equations G1(λ) = 1 and G2(λ) = 1 has a solution λ0 with

<(λ0) ≥ 0. Then,

1 = |G1(λ0)| ≤ |G1(<λ0)| ≤ |G1(0)| = Ru,

or

1 = |G2(λ0)| ≤ |G2(<λ0)| ≤ |G2(0)| = Rv.

This is a contradiction. Hence ε0 is locally asymptotically stable when max{Ru,Rv} < 1. If

max{Ru,Rv} > 1, let us assume, without loss of generality, Ru > 1. Then G1(λ) = 1 has a positive

solution, λ∗. Thus, the disease free equilbrium is unstable.

4. Semi-trivial (Boundary) equilibria

4.1. Existence of semi-trivial equilibria

In this section, we prove the existence and stability of the two boundary equilibria E∗
1

and E∗
2

corresponding to opioid addiction and HIV transmission in a single population respectively. To obtain

E∗
1

we let S k(t) = S ∗
k1

, Uk(t) = U∗
k1

and Vk(t) = 0 and ik(t, τ) = 0 for all k, i.e.,

E∗
1
= (S ∗

11
,U∗

11
, 0, 0, · · · , S ∗

n1
,U∗

n1
, 0, 0). We get the following equations

Λk − µS
∗
k1 − S ∗k1λu(U∗1) + δU∗k1 = 0

S ∗k1λu(U∗1) − (µ + du + δ)U
∗
k1 = 0

λu(U∗1) = βu

n
∑

k=1

U∗
k1

N∗
k1

(4.1)

From the second equation of (4.1) we get,

S ∗k1 =
µ + du + δ

βu

U∗
k1

∑n
j=1

U∗
j1

N∗
j1

.

Summing both sides of the equation from k = 1 to k = n, and dividing by N∗
k1

we get,

n
∑

k=1

S ∗
k1

N∗
k1

=
µ + du + δ

βu

=
n

Ru

(4.2)
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We know
S ∗

k1
+U∗

k1

N∗
k1

= 1, and so
n

∑

k=1

S ∗
k1
+ U∗

k1

N∗
k1

= n (4.3)

i.e.,
n

∑

k=1

U∗
k1

N∗
k1

= n

(

1 −
1

Ru

)

Plugging in the values in the first equation of (4.1) and solving for U∗
k1

we get

U∗k1 =
Λk

µ

Ru−1
+ µ + du

=
Λk

(µ + du)(1 −
µ

(1−Ru)(µ+du)
)

(4.4)

Now when Ru < 1,
∑n

k=1

U∗
k1

N∗
k1

< 0, which implies U∗
k1
< 0 for at least one k. When Ru > 1, U∗

k1
> 0.

Thus, E∗
1

exists if and only if Ru > 1.

To obtain E∗
2

we let S k(t) = S ∗
k2

, Vk(t) = V∗
k2

and Uk(t) = 0 and ik(t, τ) = 0 for all k, i.e., E∗
2
=

(S ∗
12
, 0,V∗

12
, 0, · · · , S ∗

n2
, 0,V∗

n2
, 0). We get the following equations

Λk − µS
∗
k2 − kS ∗k2λv(V

∗
2) = 0,

kS ∗k2λv(V
∗
2) − (µ + dv + γv)V

∗
k2 = 0,

λv(V
∗
2) =

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

N∗
j2

.

(4.5)

From the second equation of (4.5) we get

kS ∗k2 =
µ + dv + γv

λv(V
∗
2
)

V∗k2.

Dividing both sides by N∗
k2

and multiplying with 1
<k>

∑n
k=1 kp(k)βk

v1
and adding from 1 to n we get,

1

< k >

n
∑

k=1

k2 p(k)
βk

v1
S ∗

k2

N∗
k2

= (µ + dv + γv). (4.6)

We know
S ∗

k2
+V∗

k2

N∗
k2

= 1, and so

1

< k >

n
∑

k=1

k2 p(k)
βk

v1
(V∗

k2
+ S ∗

k2
)

N∗
k2

= (µ + dv + γv)Rv, (4.7)

which gives us,

1

< k >

n
∑

k=1

k2 p(k)
βk

v1
V∗

k2

N∗
k2

= (µ + dv + γv)(Rv − 1).

So when Rv < 1, E∗
2

does not exist. Now

N∗k2 = V∗k2 + S ∗k2 = V∗k2 + V∗k2(
µ + dv + γv

kλv(V
∗
2
)

),
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and so we obtain,

V∗
k2

N∗
k2

=
1

1 +
µ+dv+γv

kλv(V∗
2
)

, (4.8)

λv(V
∗
2) =

1

< k >

n
∑

k=1

kp(k)βk
v1

1

1 +
µ+dv+γv

kλv(V∗
2
)

=
1

< k >

n
∑

k=1

kp(k)βk
v1

kλv(V
∗
2
)

kλv(V
∗
2
) + (µ + dv + γv)

. (4.9)

λv(V
∗
2
) = 0 is a solution to (4.5) which gives the disease free equilibrium. Then for a boundary

equilibrium, λv(V
∗
2
) > 0 is a root of f (λv), where

f (λv) =
1

< k >

n
∑

k=1

k2 p(k)
βk

v1

kλv(V
∗
2
) + (µ + dv + γv)

− 1.

As λv increases f decreases. lim
λv→∞

f (λv) = −1. But f (0) = Rv − 1 > 0. Then if Rv > 1, f (λv) has a

unique zero, giving us a unique boundary equilibrium for the system.

4.2. Stability of boundary equilibria and invasion numbers

To find the invasion number of HIV and stability of E∗
1

we first linearize the system (2.2) around E∗
1
.

We set S k(t) = xk(t) + S ∗
k1

, Uk(t) = uk(t) + U∗
k1

, Vk(t) = vk(t), ik(t, τ) = yk(t, τ) and Nk(t) = nk(t) + N∗
k1

,

the system for the perturbations becomes,























































































































dxk(t)

dt
= −S ∗k1λu(u, y) − xk(t)βu

n
∑

j=1

U∗
j1

N∗
j1

+ S ∗k1βu

n
∑

j=1

U∗
j1

nk

N∗2
j1

− µxk(t) + δuk(t) − kS ∗k1λv(v, y),

duk(t)

dt
= S ∗k1λu(u, y) + xk(t)βu

n
∑

j=1

U∗
j1

N∗
j1

− S ∗k1βu

n
∑

j=1

U∗
j1

nk

N∗2
j1

− kqvU
∗
k1λv(v, y) − (µ + du + δ)uk(t),

dvk(t)

dt
= kS ∗k1λv(v, y) − quvk(t)βu

n
∑

j=1

U∗
j1

N∗
j1

− (µ + dv + γv)vk(t) + δ

∫ ∞

0

σ(τ)yk(t, τ)dτ,

∂yk(t, τ)

dt
+
∂ksyk(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δσ(τ))yk(t, τ),

ksyk(t, 0) = kqvU
∗
k1
λv(v, y) + quvk(t)βu

∑n
j=1

U∗
j1

N∗
j1

,

(4.10)

where,

λu(u, y) = βu

n
∑

j=1

u j +
∫ ∞

0
y j(t, τ)

N∗
j1

,

λv(v, y) =
1

< k >

n
∑

j=1

jp( j)

β
j
v1

v j(t) +

∫ ∞

0

β j
v2

(τ)y j(t, τ)dτ

N∗
j1

.
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We look for solutions of the form xk(t) = xke
λt, uk(t) = uke

λt, vk(t) = vke
λt, yk(τ, t) = yk(τ)e

λt and

obtain the following eigenvalue problem,



























































































λxk = −S ∗
k1
λu(u, y) − xkβu

∑n
j=1

U∗
j1

N∗
j1

+ S ∗
k1
βu

∑n
j=1

U∗
j1

nk

N∗2
j1

− µxk + δuk − kS ∗
k1
λv(v, y),

λuk = S ∗
k1
λu(u, y) + xkβu

∑n
j=1

U∗
j1

N∗
j1

− S ∗
k1
βu

∑n
j=1

U∗
j1

nk

N∗2
j1

− kqvU
∗
k1
λv(v, y) − (µ + du + δ)uk,

λvk = kS ∗
k1
λv(v, y) − quvkβu

∑n
j=1

U∗
j1

N∗
j1

− (µ + dv + γv)vk + δ
∫ ∞

0
σ(τ)yk(τ)dτ,

∂ksyk(τ)

dτ
+ λyk = −(µ + di(τ) + γi(τ) + δσ(τ))yk(τ),

ksyk(0) = kqvU
∗
k1
λv(v, y) + quvkβu

∑n
k=1

U∗
k1

N∗
k1

,

(4.11)

where,

λu(u, y) = βu

n
∑

j=1

u j +
∫ ∞

0
y j(τ)dτ

N∗
j1

,

and

λv(v, y) =
1

< k >

n
∑

j=1

jp( j)

β
j
v1

v j +

∫ ∞

0

β j
v2

(τ)y j(τ)dτ

N∗
j1

. (4.12)

Now, using the third, fourth and fifth equation of (4.11) we will compute the invasion number of

HIV.



















































(λ + µ + dv + γv)vk = kS ∗
k1
λv(v, y) − quvkβu

∑n
j=1

U∗
j1

N∗
j1

+ δ
∫ ∞

0
σ(τ)yk(τ)dτ,

∂ksyk(τ)

dτ
+ λyk = −(µ + di(τ) + γi(τ) + δσ(τ))yk(τ),

ksyk(0) = kqvU
∗
k1
λv(v, y) + quvkβu

∑n
j=1

U∗
j1

N∗
j1

.

From the second equation of (4.2) we get yk(τ) = yk(0)π(τ)e−
λτ
ks , where π(τ) is as defined before.

Suppose K = βuqu

∑n
k=1

U∗
k1

N∗
k1

and Q(λ) = δ[
∫ ∞

0
σ(τ)π(τ)e−

λτ
ks dτ]. Then from the first and third equations

of (4.2) we get,
{

(λ + µ + dv + γv + K)vk − Q(λ)yk(0) = kS ∗
k1
λv(v, y),

−Kvk + ksyk(0) = kqvU
∗
k1
λv(v, y).

(4.13)

Solving for vk and yk(0) we obtain,

vk =
kskS ∗

k1
+ kqvU

∗
k1

Q(λ)

ks(λ + µ + dv + γv + K) − KQ(λ)
λv(v, y),

yk(0) =
kqv(λ + µ + dv + γv + K)U∗

k1
+ KkS ∗

k1

ks(λ + µ + dv + γv + K) − KQ(λ)
λv(v, y).
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Supplying these values in Eq (4.12), and cancelling λv(v, y) from both sides of the equation, we

obtain,

1 =
1

< k >

n
∑

j=1

j2 p( j)

[

β
j
v1

N∗
j1

ks jS ∗
j1
+ jqvU

∗
j1

Q(λ)

ks(λ + µ + dv + γv + K) − KQ(λ)

+

∫ ∞

0
β

j
v2

(τ)π(τ)dτ

N∗
j1

jqv(λ + µ + dv + γv + K)U∗
j1
+ K jS ∗

j1

ks(λ + µ + dv + γv + K) − KQ(λ)

]

.

(4.14)

We define

R1
vi
=

1

< k >

n
∑

j=1

j2 p( j)

[

β
j
v1

N∗
j1

ks jS ∗
j1
+ jqvU

∗
j1
δ[

∫ ∞

0
σ(τ)π(τ)dτ]

ks(µ + dv + γv + K) − Kδ[
∫ ∞

0
σ(τ)π(τ)dτ]

+

∫ ∞

0
β

j
v2

(τ)π(τ)dτ

N∗
j1

jqv(µ + dv + γv + K)U∗
j1
+ K jS ∗

j1

ks(µ + dv + γv + K) − Kδ[
∫ ∞

0
σ(τ)π(τ)dτ]

]

.

(4.15)

We call R1
vi

the invasion reproduction number of HIV infection. Now suppose,

Gvi(λ) =
1

< k >

n
∑

j=1

j2 p( j)

[

β
j
v1

N∗
j1

ksS
∗
j1
+ qvU

∗
j1

Q(λ)

ks(λ + µ + dv + γv + K) − KQ(λ)

+

∫ ∞

0
β

j
v2

(τ)e−λτπ(τ)dτ

N∗
j1

qv(λ + µ + dv + γv + K)U∗
j1
+ KS ∗

j1

ks(λ + µ + dv + γv + K) − KQ(λ)

]

∫ ∞

0
β

j
v2

(τ)e−λτπ(τ)dτ = β j(λ). β j(λ) is bounded above by β j(0) and Q(λ) is bounded above by Q(0).

Then Gvi(0) = R1
vi

and limλ→∞Gvi(λ) = 0. Suppose (4.14) has a solution λ = x + iy with<(λ) = x ≥ 0

and R1
vi < 1. First we prove the following result.

∣

∣

∣

∣

∣

qv(λ + µ + dv + γv + K)
U∗

j1

N∗
j1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
S ∗

j1

N∗
j1

∣

∣

∣

∣

∣

|ks(λ + µ + dv + γv + K)| − |KQ(0)|
≤

∣

∣

∣

∣

∣

qv(µ + dv + γv + K)
U∗

j1

N∗
j1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
S ∗

j1

N∗
j1

∣

∣

∣

∣

∣

|ks(µ + dv + γv + K)| − |KQ(0)|
(4.16)

Proof. To prove (4.16) we write down the left hand side of the inequality,

∣

∣

∣

∣

∣

qv(λ + µ + dv + γv + K)
U∗

j1

N∗
j1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
S ∗

j1

N∗
j1

∣

∣

∣

∣

∣

|ks(λ + µ + dv + γv + K)| − |KQ(0)|
=

qvC1z + KC2

ksz − KQ(0)
= f (z),

where, C1 =
U∗

j1

N∗
j1

, C2 =
S ∗

j1

N∗
j1

and z =
√

(x + µ + dv + γv + K)2 + y2. Since f ′(z) < 0, f (z) is a decreasing

function. That is when z(0, 0) ≤ z(x, y), f (z(0, 0)) ≥ f (z(x, y)). But f (z(0, 0)) is just the right hand side

of (4.16).
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Using (4.16) we can now state the following,

1 = |Gvi(λ)| =

∣

∣

∣

∣

∣

∣

∣

1

< k >

n
∑

j=1

j2 p( j)

[

β
j
v1

N∗
j1

ksS
∗
j1
+ qvU

∗
j1

Q(λ)

ks(λ + µ + dv + γv + K) − KQ(λ)

+
β j(λ)

N∗
j1

qv(λ + µ + dv + γv + K)U∗
j1
+ KS ∗

j1

ks(λ + µ + dv + γv + K) − KQ(λ)

]

∣

∣

∣

∣

∣

∣

∣

≤
1

< k >

n
∑

j=1

j2 p( j)















∣

∣

∣

∣

∣

∣

∣

β
j
v1

N∗
j1

ksS
∗
j1
+ qvU

∗
j1

Q(0)

ks(µ + dv + γv + K) − KQ(0)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

β j(0)

qv(λ + µ + dv + γv + K)
U∗

j1

N∗
j1

+ K
S ∗

j1

N∗
j1

ks(λ + µ + dv + γv + K) − KQ(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

























≤
1

< k >

n
∑

j=1

j2 p( j)















∣

∣

∣

∣

∣

∣

∣

β
j
v1

N∗
j1

ksS
∗
j1
+ qvU

∗
j1

Q(0)

ks(µ + dv + γv + K) − KQ(0)

∣

∣

∣

∣

∣

∣

∣

+ β j(0)

∣

∣

∣

∣

∣

qv(λ + µ + dv + γv + K)
U∗

j1

N∗
j1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
S ∗

j1

N∗
j1

∣

∣

∣

∣

∣

|ks(λ + µ + dv + γv + K)| − |KQ(0)|





























≤
1

< k >

n
∑

j=1

j2 p( j)















∣

∣

∣

∣

∣

∣

∣

β
j
v1

N∗
j1

ksS
∗
j1
+ qvU

∗
j1

Q(0)

ks(µ + dv + γv + K) − KQ(0)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

qv(µ + dv + γv + K)
U∗

j1

N∗
j1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
S ∗

j1

N∗
j1

∣

∣

∣

∣

∣

|ks(µ + dv + γv + K)| − |KQ(0)|





























= |Gvi(0)| = R1
vi < 1.

(4.17)

This is a contradiction. So (4.14) only has solutions with non-negative real parts when R1
vi < 1.

Now let us suppose, R1
vi > 1. It can be shown that Gvi(λ) is decreasing. Then since Gvi(0) = R1

vi
> 1

and limλ→∞Gvi(λ) = 0 for real and positive λ, (4.14) must have at least one positive root when Rvi > 1.

Now, from (4.1)–(4.3) we get,

S ∗k1 =
n

Ru

U∗
k1

n
(

1 − 1
Ru

) =
U∗

k1

Ru − 1
,

i.e.,
U∗

k1

Ru−1
+ U∗

k1

N∗
k1

=
U∗

k1

N∗
k1

(

1

Ru − 1
+ 1

)

= 1.

Solving the equation we get,

U∗
k1

N∗
k1

= 1 −
1

Ru

,

S ∗
k1

N∗
k1

=
1

Ru

.

(4.18)
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To find the remaining eigenvalues, satisfying the third, fourth and fifth equation of (4.11), y j(τ) = 0

and v j = 0 for all j = 1, 2, · · · , n. The first two equations then just reduce to

λxk = −S ∗k1βu

n
∑

j=1

u j

N∗
j

− xkβu

n
∑

j=1

U∗
j1

N∗
j1

+ S ∗k1βu

n
∑

j=1

U∗
j1

nk

N∗2
j1

− µxk + δuk,

λuk = S ∗k1βu

n
∑

j=1

u j

N∗
j

+ xkβu

n
∑

j=1

U∗
j1

N∗
j1

− S ∗k1βu

n
∑

j=1

U∗
j1

nk

N∗2
j1

− (µ + du + δ)uk,

(4.19)

Adding the two equations and solving for nk we get

nk = −
duuk

(λ + µ),

i.e.,

xk = −
λ + µ + du

λ + µ
uk.

Replacing xk and nk in the second equation of (4.19) we get,

(λ + µ + du + δ)uk = S ∗k1βu

n
∑

j=1

u j

N∗
j1

−
λ + µ + du

λ + µ
ukβu

n
∑

j=1

U∗
j1

N∗
j1

+ S ∗k1βu

n
∑

j=1

U∗
j1

N∗2
j1

duu j

(λ + µ)

=⇒

(

λ + µ + du + δ + βun

(

1 −
1

Ru

)

λ + µ + du

λ + µ

)

uk = S ∗k1βu

n
∑

j=1

u j

N∗
j1

























1 +

du

U∗
j1

N∗
j1

λ + µ

























.

(4.20)

Multiplying both sides of the equation 1
N∗

k1

and summing over 1 to n,

(

λ + µ + du + δ + βun

(

1 −
1

Ru

)

λ + µ + du

λ + µ

) n
∑

k=1

uk

N∗
k1

=

n
∑

k=1

S ∗
k1

N∗
k1

βu

n
∑

j=1

u j

N∗
j1

























1 +

du

U∗
j1

N∗
j1

λ + µ

























. (4.21)

∑n
j=1

u j

N∗
j1

= 0 implies from (4.20) all uk would be zero, which would not be of interest.
∑n

j=1

u j

N∗
j1

, 0 for

non-equilibrium points, and cancelling the expression on both sides, then the characteristic equation

becomes,

(λ + µ + du + δ) (λ + µ) + βu (λ + µ + du) n

(

1 −
1

Ru

)

= βu

(

λ + µ + du

(

1 −
1

Ru

))

n

Ru

. (4.22)

Rewriting this equation as a quadratic equation, we get

λ2 + (2µ+ du + δ+ βun− βu

n

Ru

)λ+ (µ + du + δ) µ+ βun

(

1 −
1

Ru

)

(µ+ du)− βun
1

Ru

(

µ + du

(

1 −
1

Ru

))

= 0

(4.23)
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Simplifying the equation, we have λ2 + bλ + c = 0 where b = µ + βun > 0 and

c =
(

1 − 1
Ru

)

(βun(µ + du) − (µ + du + δ)du) > 0 since, βun > (µ + du + δ) when Ru > 1. Hence this

quadratic equation has only roots with negative real parts. Combining the work above we can

conclude,

Theorem 2. The unique boundary equilibrium E∗
1

is locally asymptotically stable if R1
vi
< 1, and it is

unstable if R1
vi
> 1.

To find the invasion number of opioid addiction and stability of E∗
2

we first linearize the system

(2.2) around E∗
2
. We set S k(t) = xk(t) + S ∗

k2
, Uk(t) = uk(t), Vk(t) = vk(t) + V∗

k2
, ik(t, τ) = yk(t, τ) and

Nk(t) = nk(t) + N∗
k2

. The system for the perturbations becomes,



























































































































dxk(t)

dt
= −S ∗k2λ

2
u(u, y) − µxk(t) + δuk(t) − kS ∗k2λ

2
v(v, y) −C1kxk + kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

n j

N∗2
j2

,

duk(t)

dt
= S ∗k2λ

2
u(u, y) − kqvukC1 − (µ + du + δ)uk(t),

dvk(t)

dt
= kxkC1 + kS ∗k2λ

2
v(v, y) − kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

n j

N∗2
j2

− quV∗k2λ
2
u(u, y)

−(µ + dv + γv)vk(t) + δ
∫ ∞

0
σ(τ)yk(t, τ)dτ,

∂yk(t, τ)

dt
+
∂ksyk(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δσ(τ))yk(t, τ),

ksyk(t, 0) = kqvC1uk + quV∗
k2
λ2

u(u, y),

(4.24)

where,

λ2
u(u, y) = βu

n
∑

j=1

u j +
∫ ∞

0
y j(t, τ)

N∗
j2

λ2
v(v, y) =

1

< k >

n
∑

j=1

jp( j)

β
j
v1

v j(t) +

∫ ∞

0

β j
v2

(τ)y j(t, τ)dτ

N∗
j2

and

C1 =
1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

N∗
j2

.

We look for solutions of the form xk(t) = xke
λt, uk(t) = uke

λt, vk(t) = vke
λt, yk(t, τ) = yk(τ)e

λt and

obtain the following eigenvalue problem,
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





























































































λxk = −S ∗
k2
λ2

u(u, y) − µxk + δuk − kS ∗
k2
λ2

v(v, y) −C1kxk + kS ∗
k2

1
<k>

∑n
j=1 jp( j)

βk
v1

V∗
j2

n j

N∗2
j2

,

λuk = S ∗
k2
λ2

u(u, y) − kqvukC1 − (µ + du + δ)uk,

λvk = kxkC1 + kS ∗
k2
λ2

v(v, y) − kS ∗
k2

1
<k>

∑n
j=1 jp( j)

βk
v1

V∗
j2

n j

N∗2
j2

− quV∗
k2
λ2

u(u, y)

−(µ + dv + γv)vk + δ
∫ ∞

0
σ(τ)yk(τ)dτ,

∂ksyk(τ)

dτ
+ λyk = −(µ + di(τ) + γi(τ) + δσ(τ))yk(τ),

ksyk(0) = kqvC1uk + quV∗
k2
λ2

u(u, y).

(4.25)

From the fourth equation of (4.25) we get

yk(τ) = yk(0)π(τ)e
−λ
ks
τ. (4.26)

Let Q(λ) =
∫ ∞

0
π(τ)e

−λ
ks
τdτ. From the second equation of (4.25) we get

uk =
S ∗

k2

λ + µ + du + δ + kqvC1

βu

n
∑

j=1

u j + y j(0)Q(λ)

N∗
j2

.

Multiplying both sides of this equation with 1
N∗

k2

we get,

uk

N∗
k2

=
βuS ∗

k2

(λ + µ + du + δ + kqvC1)N∗
k2

n
∑

j=1

u j + y j(0)Q(λ)

N∗
j2

. (4.27)

From the fifth equation of (4.25) we get,

ksyk(0) = kqvC1uk + quV∗k2βu

n
∑

j=1

u j + y j(0)Q(λ)

N∗
j2

.

Multiplying both sides of this equation with
Q(λ)

N∗
k2

we get,

yk(0)Q(λ)

N∗
k2

=
kqvC1Q(λ)βuS ∗

k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

n
∑

j=1

u j + y j(0)Q(λ)

N∗
j2

+ Q(λ)qu

V∗
k2
βu

N∗
k2

ks

n
∑

j=1

u j + y j(0)Q(λ)

N∗
j2

.

(4.28)

Summing both side of (4.27) and (4.28) from 1 to n and adding together we get,

S (λ) = S (λ)















n
∑

k=1

(1 + kqvC1Q(λ))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

+ Q(λ)
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2















(4.29)

where, S (λ) =
∑n

j=1

u j+y j(0)Q(λ)

N∗
j2

. Since S (λ) = 0 implies from (4.27) uk = 0 for all k, S (λ) , 0. We

cancel S (λ) from both sides and get,

1 =

n
∑

k=1

(1 + kqvC1Q(λ))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

+ Q(λ)
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

. (4.30)
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Let Π =
∫ ∞

0
π(τ)dτ. We define

R2
ui
=

n
∑

k=1

(1 + kqvC1Π)βuS ∗
k2

ks(µ + du + δ + kqvC1)N∗
k2

+ Π
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

. (4.31)

We call R2
ui

the invasion reproduction number of opioid addiction. We claim that when R2
ui
< 1 the

boundary equilibrium E∗
2

is locally asymptotically stable, that is all the roots of (4.30) have negative

real parts. Suppose

Gui(λ) =

n
∑

k=1

(1 + kqvC1Q(λ))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

+ Q(λ)
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

.

Then Gui(0) = R2
ui

and limλ→∞Gui(λ) = 0. Assume the Eq (4.30) has roots with non-negative real

part<(λ) > 0. The Eq (4.30) satisfies,

1 =

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

(1 + kqvC1Q(λ))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

+ Q(λ)
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

(1 + kqvC1Q(λ))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

Q(λ)
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

(1 + kqvC1Q(<(λ)))βuS ∗
k2

ks(λ + µ + du + δ + kqvC1)N∗
k2

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

Q(<(λ))
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

(1 + kqvC1Π)βuS ∗
k2

ks(µ + du + δ + kqvC1)N∗
k2

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

Π
quβu

ks

n
∑

k=1

V∗
k2

N∗
k2

∣

∣

∣

∣

∣

∣

∣

≤ R2
ui
< 1

(4.32)

This is a contradiction. Hence all roots of (4.30) have negative real parts when R2
ui
< 1. Now let us

suppose, R2
ui
> 1. Then since G′ui(λ) < 0 when λ > 0, Gui(λ) is decreasing when λ > 0. But we have,

Gui(0) = R2
ui
> 1 and limλ→∞Gui(λ) = 0. Then (4.30) has at least one positive root when R2

ui
> 1. If λ is

not a solution of characteristic equation (4.30),we have u j = 0, y j(0) = 0, the remaining two equations

of (4.25) then just reduce to

λxk = −µxk − kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

v j

N∗
j2

−C1kxk + kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

n j

N∗2
j2

,

λvk = kxkC1 + kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

v j

N∗
j2

− kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

n j

N∗2
j2

− (µ + dv + γv)vk.

(4.33)

Adding the two equations and solving for nk we get

nk = −
(dv + γv)vk

(λ + µ)
,

i.e.,

xk = −
λ + µ + dv + γv

λ + µ
vk.
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Using these values for nk and xk in the second equation of (4.33) we get

(

λ + µ + dv + γv +
kC1(λ + µ + dv + γv)

λ + µ

)

vk = kS ∗k2

1

< k >

n
∑

j=1

jp( j)
β

j
v1

V∗
j2

N∗
j2

























λ + µ + (dv + γv)
V∗

j2

N∗
j2

λ + µ

























.

(4.34)

Dividing both sides by N∗
k2

and readjusting we obtain,

vk

N∗
k2

=
kS ∗

k2

N∗
k2

1

(λ + µ + dv + γv)(λ + µ + kC1)

1

< k >

n
∑

j=1

jp( j)
β

j
v1

v j

N∗
j2













λ + µ + (dv + γv)
V∗

j2

N∗
j2













. (4.35)

Multiplying both sides of this equation with 1
<k>

∑n
k=1 kp(k)βk

v1
(λ + µ + (dv + γv)

V∗
k2

N∗
k2

), we get,

T (λ) =
1

< k >

n
∑

k=1

k2 p(k)βk
v1

S ∗
k2

N∗
k2

(λ + µ + (dv + γv)
V∗

k2

N∗
k2

)

(λ + µ + dv + γv)(λ + µ + kC1)
T (λ), (4.36)

where T (λ) = 1
<k>

∑n
j=1 jp( j)

β
j
v1

v j

N∗
j2

(

λ + µ + (dv + γv)
V∗

j2

N∗
j2

)

. Since T (λ) = 0 implies from (4.35), vk = 0 for

all k, T (λ) , 0 and we get the following characteristic equation,

1 =
1

< k >

n
∑

k=1

k2 p(k)βk
v1

S ∗
k2

N∗
k2

(λ + µ + (dv + γv)
V∗

k2

N∗
k2

)

(λ + µ + dv + γv)(λ + µ + kC1)
. (4.37)

From (4.8) we obtain,

V∗
k2

N∗
k2

=
kC1

kC1 + µ + dv + γv

,

S ∗
k2

N∗
k2

=
µ + dv + γv

kC1 + µ + dv + γv

.

Assume the Eq (4.37) has roots with non-negative real part. Using (4.9), <λ ≥ 0 the Eq (4.37)

satisfies,

1 =

∣

∣

∣

∣

∣

∣

∣

∣

1

< k >

n
∑

k=1

k2 p(k)βk
v1

S ∗
k2

N∗
k2

(λ + µ + (dv + γv)
V∗

k2

N∗
k2

)

(λ + µ + dv + γv)(λ + µ + kC1)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1

< k >

n
∑

k=1

k2 p(k)βk
v1

µ + dv + γv

kC1 + µ + dv + γv

(λ + µ + (dv + γv)
kC1

kC1+µ+dv+γv
)

(λ + µ + dv + γv)(λ + µ + kC1)

∣

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

∣

1

< k >

n
∑

k=1

k2 p(k)βk
v1

µ + dv + γv

kC1 + µ + dv + γv

1

(λ + µ + dv + γv)

∣

∣

∣

∣

∣

∣

∣

≤
1

< k >

n
∑

k=1

k2 p(k)βk
v1

µ + dv + γv

kC1 + µ + dv + γv

1

(µ + dv + γv)
= 1

(4.38)
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This is a contradiction. So we can state the following theorem,

Theorem 3. The unique boundary equilibrium E∗
2

is locally asymptotically stable if R2
ui
< 1, and is

unstable if R2
ui
> 1.

5. Numerical simulations

5.1. Numerical scheme and simulation

We present a numerical scheme for the immuno-epidemiological models (2.1) and (2.2). The

within-host model, consisting of ordinary differential equations can be solved by a stiff ODE solver in

MATLAB.

For the between-host model we introduce a finite-difference method. We discretize the domain

D = {(t, τ) : 0 ≤ t ≤ T, 0 ≤ τ ≤ A}

where A is a maximal infection age and time T < ∞, a maximal time. We take ∆t = ∆τ, with ks = 1,

and so the points in age and line direction can be computed as,

τm = m∆t t j = j∆t.

Setting M =
[

A
∆t

]

and N =
[

T
∆t

]

, we obtain A = M∆t, T = N∆t. The numerical method computes

approximations to the solution at the mesh points. We assume S k(t j) = S
j

k
, Uk(t j) = U

j

k
, Vk(t j) = V

j

k

and ik(t j, τm) = i
j

m,k
. We summarize the numerical method below,
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(5.1)
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To study the coexistence equilibrium analytically is not feasible for this model. So we take the

help of simulations to predict the existence of coexistence equilibrium in a scale free network

scenario. We consider specific parameter values for which R2
ui

and R1
vi

are greater than 1. The

simulations suggest that the coexistence equilibrium exists and is stable. Given parameter values are

constant, the invasion number of HIV, R1
vi

, seem to show dependence on the size of the network used.

With the same parameter values given in Table 3, when the network contains 200 nodes, R1
vi

is close to

1.4, while with 300 nodes, R1
vi

increases to 2.9. The invasion number of opioid addiction R1
vi

remains

stable near the same value 1.2 when size of the network is increased from 200 nodes to 300 nodes.

This is to be expected since the spread of opioid has been considered homogeneous over the network.

Simulations suggesting a coexistence equilibrium are shown in Figure 1.

Table 3. Parameter estimation results from [38].

Parameter Estimated Value Units

βu 0.385676 1/time

βv1
0.0551 1/time

k0 0.00011046 1/time

B 15318.9 vRNA/ml

δ 0.118227 1/time

qu 0.867138 Unitless

qv 30.6189 Unitless

du 0.00817752 1/time

dv 0.0144092 1/time

da 1.2766e+11 1/time

d0 2.72895e-07 ml/(time × cells)

d1 3.4671e-06 1/time

γv 0.0223488 1/time

γ0 1.63927e-12 1/time

σ 0.000270006 Unitless

s 22843.6 CD4 count/(time ×ml)

d 0.0766824 1/time

k1 2.02785e-05 vRNA/(CD4 count × time)

δi 0.725266 1/time

Nvδi 8465.63 vRNA/(CD4 count × time)
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Figure 1. Simulations with the network model. In this simulation the average degree is 7.63

and R1
vi = 1.2173, R2

ui = 1.1607. The number of nodes is 100. The maximal degree is 28 but

there are no occupied nodes with degree 1, 2, 3.

5.2. Effects of the parametric values of qu, qv and δ

We define U(t)=
∑n

k=1 Uk(t) as the total opioid addicted population. Similarly we define V(t), I(t)

and S (t) as the total HIV infected, total co-infected and total susceptible population respectively. The

network utilized had 200 nodes. The parameters βu and βk
v1

are estimated by the following formulas,

βu = Ru(µ+ du + δ); and βk
v1
= Rv(µ+ dv + γv). Since the model we consider does not include treatment

for HIV, we consider Rv = 5.5. This estimate is an average value collected from [39], which gives an

estimation of basic reproduction number of HIV in Rural South West Uganda. Estimated value of Ru

according to [27] would be close to 1.1. Given the fact that a high percentage of US citizens mentioned

it would be easy for someone to access opioids for illicit purposes, according to a poll conducted in

2018 (46 percent) and people who misuse opioids often get them from a family member or friend who

has a prescription [40], we considered the Ru to be higher in range, around 3.25. The maximal degree

n for the following simulations (except Figure 1) is 43, with number of nodes being 200.

The two parameters in (2.2) that are of particular interest are qu and qv, which determine how much

one epidemics impacts the other. That is qv determines how likely opioid users are to get infected by

HIV compared to non-users, and qu determines how likely HIV infected people are to become opioid

addicted compared to non-infected people. In [27] the estimated value of the qv term equivalent was
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94.5, and in [38], the estimated value of qv was 30.62. Both estimates suggest a high dependence

effect of opioid usage on HIV infection. In our simulations we take the lesser estimate of qv = 30.62.

The total co-affected population due to varying values of qv is simulated, such as

0.5qv, qv, 1.5qv, 2qv, 2.5qv, 3qv. The estimated value for qu in [38] was below 1, but HIV-infected

persons are more likely to have chronic pain, receive opioid analgesic treatment, receive higher doses

of opioids, and to have substance use disorders and mental illness compared with the general

population, putting them at increased risk for opioid use disorder [41]. So the simulations were done

with the fitted value for qu along with double, five times and ten times the fitted value. While the total

number of co-affected varies according to the network, the trend seems to be similar, with qv

increasing, the total number of co-affected increases (Figure 2). A definite situation of interest is

when qu = 4.3, the maximum value seems to be achieved when qv is close to 60, not at the highest

value of approximately 90. The simulation was repeated with these values for different network sizes

and provided the same result.

Figure 2. Figure shows total co-affected individuals for six different values of qv. Top Left:

qu = 0.86, Top Right: qu = 1.72, Bottom Left: qu = 4.3, Bottom Right: qu = 8.6. The other

parameters used are given in Table 3.

A second set of simulations were performed, taking the base value of qu = 1.72. The four individual

cases have all other parameters and network values same, only qv is varied, from 15, 31, 62 and 93

respectively. While some of the cases do have permutations, over all the trend is similar, and opposite

to the simulations in Figure 2. That is qu increasing causes the total number of co-affected to decrease
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(Figure 3). Again we notice a situation of interest, when qv = 60, the maximum value seems to be

achieved when qu is close to 1.72, not at the lowest value of approximately 0.86. Repeated simulation

with differing sized networks did not show changes in the results.

Figure 3. Figure shows total co-affected individuals for six different values of qu, Top Left:

qv = 15, Top Right: qv = 30, Bottom Left: qv = 60, Bottom Right: qv = 90. The other

parameters used are given in Table 3.

Another parameter of interest is δ, which denotes the rate of recovery from addiction in the

epidemiological model. The estimate for that in [27] is close to 0.033, while in [38] the estimate is

approximately 0.11. If successful treatment is considered without subtracting the relapses, the rate

would probably be close to 0.05 [42]. To simulate for differing values of δ, we consider βu and βk
v1

as

constants, directly taking the values from Table 3. All the other parameter values are as mentioned in

Table 3. We consider four differing situations for δ, with the value being 0.02, the fitted value 0.11,

and target high values of 0.5 and δ = 1. We also investigated different scenarios with differing

network sizes, with number of nodes being 100, 300 and 500 respectively. Interestingly, irrespective

of network size, the total number of co-affected people appeared to be higher with the value of δ

increasing (Figure 4). One quite plausible explanation would be the higher recovery would decrease

the number of opioid overdose deaths significantly, thereby increasing the co-affected prevalence.
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Figure 4. Figure shows total co-affected individuals for four different values of δ, Top Left:

Network Size 100, Top Right: Network Size 300, Bottom: Network size 500. The other

parameters used are given in Table 3.

6. Discussion

We formulate a within-host model linked with a dynamic network HIV/opioid coinfection

epidemiological model with demography, through epidemiological parameters. The system is

described by ordinary differential equations coupled with partial differential equations in a nested

fashion. The network multi-scale model here is an extension of the multi-scale model considered

in [38]. The disease free equilibrium of the system always exists and is locally asymptotically stable

when both the basic reproduction numbers of opioid and HIV, Ru and Rv are less than 1.

The boundary equilibrium E∗
1

exists when Ru is more than 1 and E∗
2

exist when Rv is more than 1.

We define the invasion reproduction numbers R1
vi

and R2
ui

. The invasion reproduction number R2
ui

gives

the reproduction of the opioid users when the population is at the equilibrium E∗
2
, that is, when HIV

infection alone is at equilibrium in the single population. The invasion reproduction number R1
vi

gives

the reproduction of the HIV infection at the equilibrium E∗
1
, that is when the opioid transmission

alone is at equilibrium in the single population. When R1
vi
< 1, E∗

1
is locally stable and when R1

vi
> 1,

E∗
1

is unstable. When R2
ui
< 1, E∗

2
is locally stable and when R2

ui
> 1, E∗

2
is unstable. The model is too

complicated to compute or consider the stability of an endemic equilibrium, analytically, but

simulations suggest that there is an interior equilibrium potentially under the condition that both

invasion numbers are larger than one.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4040–4068.



4065

We use fitted parameters from [38], to perform simulations, to explore the effect of the change of

the parameters qu, qv and δ. The parameters qu and qv represent the effect of one epidemic on the other,

and we simulated for plausible values of qu and qv, to get estimates of co-affected prevalence. The

estimate of qv, the likelihood of a heroin user to be infected with HIV, in [27] was approximately 94,

and since a large number of opioid users progress to becoming heroin users, (Data from 2011 showed

that an estimated 4 to 6 percent who misuse prescription opioids switch to heroin and about 80 percent

of people who used heroin first misused prescription opioids) [43], chances of the qv estimate for all

illicit opioid usage being close to the “heroin only” estimate is high. We notice that increase in qv

causes the co-affected population to rise significantly, which indicates that control strategies focusing

on reducing HIV infection among the opioid addicted population would be effective in decoupling the

epidemics, corroborating with the conclusions in [27].

To the best of our knowledge, there have not been previous models with a parameter similar to qu,

that provides an estimate for the effect of HIV infection on opioid use. The simulations from our model

show that increase of qu in general causes the number of co-affected to decline. That is the prevalence

of co-affected people declines sharply with the increase to more HIV infected people being addicted

to opioids. This does corroborate real life data, since deaths due to overdose in the US per year were

aproximately 120,000 in the year 2020, and the number increased 15 percent by 2021 [44], compared to

the number of deaths due to HIV being around 18,500 in 2020 [45]. We noticed significant increase in

the prevalence of co-affected individuals, when the parameter δ, representing the recovery from opioid

usage was increased significantly. The sharp increase points to the idea that control measures should

focus more on treatment of opioid use disorder, and that uncoupling the two epidemics is a priority to

prevent loss of human lives. Counseling about the dangers of opioid addiction for HIV infected people

must be provided, and similarly counseling about the dangers of getting infected with HIV should be

provided to reported opioid addicts.

In summary, we have developed a novel multi-scale network model of HIV and opioid epidemics.

We have analized the model and obtained conditions for HIV-only to persist or opioid-only to persist.

Simulations suggest that the two epidemics can co-exist for some parameter values. Simulations

further suggest that decreasing qv decreases the number of co-affected and may lead to decopuling the

epidemics. Thus control measures targeted at reducing qv should be coupled with treatment of opioid

affected individuals which is consistent with our previois findings.
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