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Abstract

Introduction Interpretation and analysis of NMR-based metabolic profiling studies is limited by substantially incomplete
commercial and academic databases. Statistical significance tests, including p-values, VIP scores, AUC values and FC values,
can be largely inconsistent. Data normalization prior to statistical analysis can cause erroneous outcomes.

Objectives The objectives were (1) to quantitatively assess consistency among p-values, VIP scores, AUC values and FC
values in representative NMR-based metabolic profiling datasets, (2) to assess how data normalization can impact statistical
significance outcomes, (3) to determine resonance peak assignment completion potential using commonly used databases
and (4) to analyze intersection and uniqueness of metabolite space in these databases.

Methods P-values, VIP scores, AUC values and FC values, and their dependence on data normalization, were determined
in orthotopic mouse model of pancreatic cancer and two human pancreatic cancer cell lines. Completeness of resonance
assignments were evaluated using Chenomx, the human metabolite database (HMDB) and the COLMAR database. The
intersection and uniqueness of the databases was quantified.

Results P-values and AUC values were strongly correlated compared to VIP or FC values. Distributions of statistically sig-
nificant bins depended strongly on whether or not datasets were normalized. 40-45% of peaks had either no or ambiguous
database matches. 9-22% of metabolites were unique to each database.

Conclusions Lack of consistency in statistical analyses of metabolomics data can lead to misleading or inconsistent inter-
pretation. Data normalization can have large effects on statistical analysis and should be justified. About 40% of peak assign-
ments remain ambiguous or impossible with current databases. 1D and 2D databases should be made consistent to maximize
metabolite assignment confidence and validation.
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1 Introduction to distinct groups, e. g. between a healthy control group

and a diseased study group (Beckonert et al., 2007; Emwas

One goal of NMR-based metabolic profiling studies is to
determine statistically significant differences in the intensi-
ties of NMR resonances in sets of NMR spectra belonging
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et al., 2019; Markley et al., 2017; Zhang et al., 2012).
Several measures of statistical significance are commonly
used in NMR-based metabolic profiling studies (Chihanga
et al., 2018b, 2018c; Saccenti et al., 2014; Schmahl et al.,
2018), including the Student’s t-test p-value (Goodpaster
et al., 2010; Worley & Powers, 2013), the variable impor-
tance in projection (VIP) score generated in partial least
square-discriminant analysis (PLS-DA) (Chihanga et al.,
2018b; Schmahl et al., 2018; Worley & Powers, 2013)
and the accuracy of a given resonance for determining
group belonging determined from the area under the curve
(AUC) calculations from receiver operator characteristic
(ROC) curves (Goodpaster et al., 2010; Worley & Powers,
2013). In many studies, only a single metric of statistical
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significance analysis is used, but in some studies, multiple
metrics are used in the analysis of a single dataset, and
in these cases, there can be a lack of consistency in the
statistical significance of NMR resonance intensity differ-
ences determined by p-values, VIP scores and AUC values
(Chihanga et al., 2018b, 2018c; Schmahl et al., 2018). One
goal of this study is to establish a quantitative understand-
ing of the degree of correlation and the corresponding
lack of consistency in the statistical significance of NMR
resonance intensity differences as determined by p-values,
VIP scores and AUC values using an experimental dataset
collected from an NMR-based metabolic profiling study,
and to determine the impact that data normalization to
total intensity had on the correlation of these metrics.
Another significant limitation of NMR-based metabolic
profiling studies is the inability to make complete assign-
ments of the NMR resonances using the most commonly
used database tools, specifically the Chenomx software
package (https://www.chenomx.com/), the human metab-
olite data base (HMDB) (Wishart et al., 2007, 2009,
2013, 2018), and the Complex Mixture Analysis by NMR
(COLMAR) software package (Bingol et al., 2016). This
problem is significant given that it is not uncommon for
the unassigned fraction of NMR resonances in spectra of
urine, human cell line extracts and other biological sam-
ples to reach or exceed 40% of detectable resonances.
This aspect of data analysis, however, is rarely reported
or addressed in published manuscripts, and the potential
impact on the interpretation of the data and the limitations
to a given study are generally not discussed. While the
number of metabolites identified in NMR-based metabolic
profiling studies typically falls in the range of 30-70 com-
pounds (Chihanga et al., 2018b, 2018c; Schmahl et al.,
2018; Yang et al., 2008), a “high bar” number, that has
rarely been achieved, has been reported at 209 compounds
by Wishart and co-workers (Bouatra et al., 2013). Another
goal of this manuscript is to provide a quantitative under-
standing of the extent to which NMR spectra of mouse
urine can be assigned using the combination the Chenomx,
HMDB and COLMAR databases, and to determine the
extent of overlap and uniqueness of these three databases.
A final issue addressed in this manuscript is a quantita-
tive assessment of the confidence in the assignments that
can be tentatively made using the Chenomx, HMDB and
COLMAR databases. While it is common for investiga-
tors to report tables of metabolites assigned from NMR-
based metabolic profiling data, the uncertainty or confi-
dence in the reported assignments is rarely addressed. We
have recently introduced the RANCM scheme (Joesten &
Kennedy, 2019) that can be used to rank the confidence
in metabolite assignments. This tool can then be used
to assess and quantify the uncertainty of NMR-based
metabolite assignments reported in NMR-based metabolic
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profiling studies, which was another goal of the study
reported in this manuscript.

2 Materials and methods
2.1 Institutional approval of mouse studies

All procedures involving mice were approved by both the
ethics committee and the Institutional Animal Care and Use
Committee at Miami University (Animal Welfare Assur-
ance Number: D16-00100). The approved protocols were
assigned IACUC Project Numbers: 889 and 893. All proce-
dures were conducted in such a way as to minimize any suf-
fering or discomfort experienced by the mice. Daily health
monitoring of mice was conducted by the Miami Univer-
sity’s Animal Resources and Care Facility. Researchers were
notified if any immediate action needed to be taken to care
for the animals. For orthotopic surgeries, mice were anes-
thetized using isoflurane so that the mice were unconscious
and unable to experience pain during the surgery. To initiate
anesthesia, the mice were placed in a drop box containing
3-5% atmospheric isoflurane. Once anesthetized, the mice
were placed on the surgical table and the surgery conducted
while a nose cone administered 1-3% isoflurane to maintain
anesthesia. After surgery, 0.05-0.10 mg/kg buprenorphine
was injected subcutaneously between the mouse’s shoulder
blades following suturing of the incision as a pain reliever.
The mice were then allowed to recover for 15 min after sur-
gery in a cage atop a warming blanket. An additional dose
of 0.05-0.10 mg/kg buprenorphine was injected subcutane-
ously 12 h post-operation to minimize pain and suffering of
the mice during the study.

2.2 Orthotopic xenograft mouse model
of pancreatic cancer

NOD.CB17-Prkdcscid/J SCID mice were purchased from
Taconic (Hudson, NY) and maintained in a barrier facil-
ity Miami University according to institutional guidelines.
MiaPaCa-2 were purchased from the American Type Culture
Collection (Manassas, VA). MiaPaCa-2 cells were grown
on the recommended medium, i. e. high glucose Dulbecco’s
Modified Eagle Medium, (DMEM) supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin—streptomycin
(ThermoFischer, Pittsburgh PA). MiaPaCa-2 cells were
scraped from the culture flasks and the suspended cells were
drawn into insulin needles. Each mouse was administered
5% isofluorane in a sealed box to induce anesthesia. Once
the mouse was unconscious, it was placed on the surgical
table with a nose cone administering isofluorane at a con-
centration of 1-3% to maintain anesthesia during surgery.
The mouse’s left side from a dorsal view was shaved and
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the spleen was located and used to find the pancreas. The
site of the incision was scrubbed with butadiene and then
rinsed with 70% alcohol three times. A 1 cm incision was
made through both cutaneous layers and the pancreas was
exposed. A 10 pl volume of MiaPaCa-2 cells suspended in
DMEM high glucose media was injected into the pancreas.
For the control mice, sham surgery was performed and a
10 pl volume of DMEM high glucose media injected into the
pancreas. A cotton swab was used to apply pressure in order
to minimize leakage of cells into abdominal cavity. The
pancreas was repositioned in the abdominal cavity and the
incision was sutured closed. A 0.10 mg/kg dose of buprenor-
phine was injected subcutaneously after the incision was
closed to mitigate pain. Mice were fed ad libitum, and were
monitored daily for signs of distress. After eight weeks of
urine collection, as described below, mice were anesthetized
and euthanized by a terminal blood draw collected by car-
diac puncture according to approved procedures.

2.3 Sample collection and processing

Following sham surgery or MiaPaCa-2 injection into pan-
creata, mice were places in metabolism cages and urine
samples collected at 1 week, 3 weeks, 5 weeks and 7 weeks
after surgery. Urine samples were stored at —80 °C after
collection. Samples were thawed on ice then prepared for
NMR analysis as follows. A 1-ml aliquot of each sample was
pH corrected to 7.4, centrifuged and buffered as previously
published by Romick-Rosendale et al. (Romick-Rosendale
et al., 2009, 2014).

2.4 NMR data collection

All NMR spectra were recorded on a Bruker Avance TM 111
spectrometer operating at 600 MHz. All experiments were
conducted at 298 K using 5 mm NMR tubes (Norell, Mor-
ganton, NC). A standard 'H 1D presaturation (zgpr) experi-
ment was collected to assess the sample shimming, which
was considered acceptable when the TSP peak linewidth
was < 1 Hz. Once the sample was adequately shimmed, the
1D first increment of a NOESY (noesypr1D) was collected
to determine if there were changes in lipid composition and
the CPMG (cpmgprld) experiments were recorded were
collected to allow quantitation of metabolite changes. All
spectra were processed as previously reported by Romick-
Rosendale et al. (). 2D 'H-'"H TOCSY and 'H-'*C HSQC
spectra were collected as previously described by Chihanga
et al. (). In brief, 2D 'H-"H TOCSY and 'H-"*C HSQC spec-
tra were recorded at a constant temperature of 298 K using
the HSQC (hsqcetgpsi). The 2D 'H-'H TOCSY was col-
lected using the TOCSY (mlevgpphl9) pulse sequence at
298 K. The data was processed with Topspin 3.2 (Bruker
BioSpin, Billerica MA).

2.5 Multivariate statistical analysis and statistical
significance of individual buckets

The Bruker AMIX software v.3.9 (Analysis of MIXtures
software, Bruker Biospin) manual bucketing tool was used
to bucket spectral resonances. Manual bucketing was per-
formed after stacking all of the spectra in both the control
and study groups to ensure that any shifts of peaks of interest
in individual spectra due to differences in pH, salt, etc. did
not cause peaks from individual spectra to fall outside the
bucketing range for individual buckets. In the normalized
datasets, bucket areas in each spectrum were normalized
to total intensity prior to statistical analysis. P-values were
calculated using a modified Student’s t-test that allows for
different variances and numbers of samples in each group,
known as a Welch’s t test (Goodpaster et al., 2010). Per the
standard application of a t test, the null hypothesis being
tested was that there was no difference in the bucket spec-
tral areas between the control and study groups. Return of a
p-value from the t test less than 0.05 was used as a threshold
to reject the null hypothesis, and therefore consider that the
difference in the bucket areas were significant by the t test.
For the purpose of this study, statistical significance of the
other metrics was defined as follows based on applications
used in past studies (Chihanga et al., 2018b, 2018c; Schmahl
et al., 2018), namely a variable importance for predicting in
partial least square discriminant analysis (PLS-DA) score
of > 1.0, i.e. VIP> 1.0, an accuracy for predicting group
belonging of greater of 70% (i.e. AUC>0.7), and fold
changes of greater than a factor of 2 (FC>2.0). While the
FC is not a statistical test, and no confidence levels can be
assigned to a particular outcome, the FC is widely used to
identify qualitative changes large datasets, such as micro-
array datasets, often in the form of volcano plots (Cui &
Churchill, 2003). PLS-DA was performed using the SIMCA-
P ver. 11.0 software package (Umetrics, Umea, Sweden).

2.6 Identification and quantification of metabolites

Metabolite identification and quantification were assessed
as previously described (Chihanga et al., 2018a, 2018b,
2018c; Petrova et al., 2019; Romick-Rosendale et al., 2009,
2014; Schmahl et al., 2018; Standage et al., 2021; Wata-
nabe et al., 2012) and the confidence in the metabolite
assignments was evaluated using RANCM scores (Joesten
& Kennedy, 2019). Briefly, initial metabolite assignments
were made manually, and did not rely on a peak assignment
algorithm, by comparison of the experimental spectra with
the reference spectra databases included in Chenomx v.8.1
(Chenomx Inc., Alberta, Canada) augmented by the HMDB
database (Wishart et al., 2007, 2009, 2013, 2018) and con-
firmed using the Complex Mixture Analysis by NMR (COL-
MAR) software (Bingol et al., 2016) that involved matching
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experimental spectra to reference databases of metabolites.
Two-dimensional NMR spectra (‘H-'H TOCSY and 'H-!3C
HSQC,) were also used to confirm assignments and to define
the RANCM scores (Joesten & Kennedy, 2019).

2.7 Database overlap analyses

For the database analyses, the 600 MHz Chenomx (refer-
ence library 10) and HMDB 4.0 databases and the 800 MHz
Chenomx (reference library 10) and 850 MHz HMDB 4.0
databases were considered.

3 Results

3.1 Consistency of p-values, VIP scores, AUC
values and fold changes across NMR
spectral bins in a representative normalized
and un-normalized dataset

As discussed above, several metrics are used to determine
the statistical significance of differences in peak intensities
in NMR-based metabolic profiling studies, including p-val-
ues, AUC values VIP scores and fold changes (FC). Here,
we analyzed how consistent these measures were (i.e. the
extent to which the various metrics indicated the same con-
clusions regarding whether or not the differences in bucket
areas between groups were significant or not) in an example
dataset obtained using an orthotopic mouse model of pancre-
atic cancer using both un-normalized and normalized data
(Fig. 1). In the unnormalized dataset, a total of 184 bins
were considered. Of these, 157 were significant by p-value,
14 by VIP 169 by AUC and 57 by FC (Fig. 1A). Four com-
binations of these measures were also considered, which
yielded 13 bins significant by P+ VIP, 157 by P+ AUC,
57 by P+FC, 14 by VIP+ AUC, 5 by VIP+FC and 56 by
AUC+FC. Combinations of three metrics yielded 14 sig-
nificant by P+ VIP + AUC, 5 significant by P+ VIP + FC
and 5 significant by VIP+ AUC +FC. Only five bins out of
157 deemed significant by both P and AUC were significant
by all four metrics. This analysis indicated that the P-values
(157) and accuracy/AUC values (169) were most consistent
among the four metrics, in strong contrast to P+ VIP, which
shared only 13 common bins and VIP + AUC, which shared
only 14 common bins. An intermediate number of bins were
significant by P+ FC. Reexamination of the same dataset
after normalization to total intensity (Fig. 1B) yielded a
similar distribution of consistency among the four metrics,
however, the absolute number of bins significant by each
metric changed significantly. For example, the number of
bins significant by P-value dropped to 43 from 157 in the
unnormalized dataset. Similarly, the number of bins sig-
nificant by AUC dropped to 53 in the normalized dataset
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compared to 169 in the normalized dataset. The number of
bins significant by P+ AUC dropped to 37 in the normalized
dataset from 157 in the unnormalized dataset. An overview
of the impact on the absolute number of significant bins
in each category is represented in Fig. 1C. Overall, this
analysis highlights the strong influence that normalization
to total intensity can have on the evaluation and assessment
of NMR-based metabolic profiling data.

3.2 Analysis of distributions of statistically
significant p-values, VIP scores and AUC values
in un-normalized versus normalized datasets

In order to analyze the potential magnitude of the impact of
normalization to total intensity on the statistical significance
analysis of NMR-based metabonomics datasets, we evalu-
ated four different weeks of mouse urine NMR data col-
lected from an orthotopic mouse model study of pancreatic
cancer. Urine samples were collected after 1 week, 3 weeks,
5 weeks, and 7 weeks after implanting human MiaPaCa2
cells in the pancreas of immunocompromised mice. Three
metrics were assessed to determine the statistical signifi-
cance of differences in metabolite NMR peak intensities: 1)
Welch’s t-test p-values, 2) VIP scores obtained from Par-
tial Least Squares-Discriminant Analysis (PLS-DA) and 3)
group-belonging prediction accuracy obtained from receiver
operator characteristic (ROC) area under the curve (AUC)
values. Thresholds to define statistically significant differ-
ences in peak/feature intensities were p-values <0.05, VIP
scores > 1.0 and AUC values are > 0.70. The results are sum-
marized in Fig. 2. The number of statistically significant dif-
ferences in peak intensities in the NMR datasets was strongly
affected by normalization. It should be noted that all NMR
samples in this study were prepared from identical amounts
of urine collected from mice using metabolism cages. In the
week 1 dataset, only 15 out of 137 peaks/features (~11%),
were significant by p-value in both normalized and un-
normalized datasets, 45 peaks/features (~33%) were only
significant in un-normalized data, six peaks/features (~4%)
were only significant in normalized data and 71 peaks/fea-
tures (~52%) were not significant in either normalized or
un-normalized data (Fig. 2A). Similar trends were observed
for the p-value distributions in weeks 3, 5 and 7 (Fig. 2A).
The impact of normalization on VIP scores was similar to
that observed on p-values (Fig. 2B). For example, in week
1, only seven peaks/features (~5%) were significant with or
without normalization, 17 peaks/features (~ 12%) were sig-
nificant only in un-normalized data, one peak/feature (< 1%)
was only significant only in normalized data and 112 peaks/
features (~ 82%) were not significant in either normalized or
un-normalized data (Fig. 2B). Again, this trend was similar
in weeks 3, 5, and 7 (Fig. 2B). Finally, the accuracy of the
peaks/features for distinguishing between control and study
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Fig.1 Analysis of Consistency of Statistical Significance Metrics
in Un-Normalized and Normalized NMR-Based Metabolic Profil-
ing Data. Pie chart analysis of comparison of A un-normalized and
B normalized week-three NMR spectra obtained from an orthotopic
mouse model of pancreatic cancer. The pie graph shows the num-

groups was similarly impacted by normalization. In week 1,
20 peaks/features (~ 15%) were significant regardless of nor-
malization, 19 peaks/features (~ 14%) were only significant
in un-normalized data, 10 peaks/features (~7%) were signifi-
cant only in normalized data and 88 peaks/features (~64%)
were not significant in either normalized or un-normalized
data (Fig. 2C).

ber of spectral bins that are significant by p-value, VIP, AUC or FC
alone, and for all permutation of combinations. C Bar graph plot of
the number of statistically significant bins in each category for the un-
normalized dataset (blue) and the normalized dataset (orange)

Figure 3A shows how peak intensity distributions were
affected by normalization for the three most significant
peaks/features in the un-normalized dataset that changed
to not significant after normalization. In the unnormalized
data set, the peak at 8.12 ppm had very high accuracy for
distinguishing between the control and cancer group based
on an AUC =0.893 supported by a p-value=1.19x 107
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Fig.2 Impact of normalization on significance analysis of p-values,
VIP scores and AUC values. A Venn diagram analysis is shown for
four weeks of data collection of mice urine in an orthotopic mouse
model of pancreatic cancer. The impact of data normalized is shown
for A p-values, B VIP scores and C AUC values. The number of
peaks that are significant in both normalized and un-normalized data

(Fig. 3A, Top, Left) that dropped to low accuracy, near
that of a random prediction, with an AUC =0.546 with a
p-value =0.976 ppm after normalization (Fig. 3A, Bottom,
Left). Similarly, the peak at 6.21 ppm had an AUC=0.918
with a p-value=3.61 x 10~ prior to normalization (Fig. 3A,
Top, Middle) that dropped to an AUC=0.515 with a
p-value =0.787 after normalization (Fig. 3A, Bottom, Mid-
dle). Finally, the peak at 3.046 ppm had an AUC=0.918
with a p-value=3.30x 107 in the un-normalized data
(Fig. 3A, Top, Right) that dropped to an AUC=0.531 with
a p-value=0.870 (Fig. 3A, Bottom, Right). The associated
boxplots for each comparison showed that prior to nor-
malization the peak intensity distributions were completely
separated whereas after normalization the peak distribu-
tions were completely overlapped. These three examples are
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are shown in the intersection of each diagram (colored orange), those
significant in un-normalized data shown in the left-hand circle (pink)
and those significant in normalized data only shown in the right-hand
circle (yellow). The number of peaks not significant in either normal-
ized or un-normalized data are indicated by the number in the box
outside the circles

representative of the 118 peaks/features that were significant
based on their p-values and the 122 peaks/features that were
significant based on their AUC prior to normalization that
were no longer significant by either measure after normaliza-
tion to total intensity.

Peaks/features that were not significant in the un-
normalized dataset that changed to significant follow-
ing normalization are shown in Fig. 3B. The peak at
7.88 ppm had an AUC=0.500 and a p-value =0.530 prior
to normalization (Fig. 3B, Top, Left) that changed to an
AUC=0.776 and a p-value=0.019 after normalization
(Fig. 3B, Bottom, Left). The peak at 2.88 ppm had an
AUC=0.679 and a p-value=0.130 in the un-normalized
data (Fig. 3B, Top, Middle) that changed to an AUC=0.74
and a p-value =0.032 after normalization (Fig. 3B,
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Fig. 3 Illustration of how normalization impacts peak intensity dis-
tributions and corresponding p-values, VIP scores and AUC values
change for NMR resonances with the most statistically significant
differences in normalized and unnormalized mouse urine datasets. A
The top row shows ROC plots for the three NMR resonances with the
most statistically significant differences in the unnormalized dataset
(8.12 ppm (left), 6.21 ppm (middle) and 3.046 ppm (right)) shown
at top with the ROC curves, AUC values, VIP scores and p-values
indicated at left and the histogram of the peak intensities shown at

Bottom, Middle). Finally, a peak at 1.92 ppm that had an
AUC=0.566 and a p-value =0.975 prior to normalization
(Fig. 3B, Top, Right) that changed to an AUC =0.842 and
a p-value = 6.83 x 107> after normalization (Fig. 3B, Bot-
tom, Right). In these cases, the associated boxplots for each
comparison showed increased separation of peak intensity
distributions after normalization. These three examples
were representative of just four peaks that were not signifi-
cant in un-normalized data that were significant following
normalization based on p-values (Fig. 2A) and four peaks

False positive rate

False positive rate

right. The bottom row shows how the plots, values and peak intensity
distributions change upon normalization. B The bottom row shows
ROC plots for the three NMR resonances with the most statistically
significant differences in the normalized dataset (7.88 ppm (left),
2.88 ppm (middle) and 1.92 ppm (right)) shown at top with the ROC
curves, AUC values, VIP scores and p-values indicated at left and the
histogram of the peak intensities shown at right. The top row shows
how the plots, values and peak intensity distributions change without
normalization

that switched to significant following normalization to total
intensity based on AUC values (Fig. 2C).

3.3 Impact of normalization of statistical
significance analysis in a simple test sample
case

In order to illustrate the potential impact of normalization to

total intensity in a simple test case, two sets of well-defined
samples were analyzed. One set contained five compounds
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(L-alanine, L-cysteine, L-leucine, taurine, and L-threonine)
and a second set contained six compounds (The same five
compounds just listed plus p-cresol). All compounds com-
mon to both sample sets were prepared at the same concen-
tration in both sets of samples. Six experimental replicates
were prepared for both the five-compound and the six-com-
pound sets. Representative spectra from the five-compound
and six-compound samples are shown in Fig. 4A and B
respectively, illustrating the absence of resonance peaks for
compound p-cresol. Naturally, the total intensity of the six-
compound spectra, which is the sum of all peak areas, will
be greater than that of the five-compound spectra. Conse-
quently, matched peak intensities should be about the same
in the five-compound and six-compound spectra when com-
paring un-normalized data sets, as is observed in Fig. 4C.
In contrast, after normalization, matched peaks would no
longer be expected to have the same intensities, since the
total intensity of the six-compound spectra will be greater
than that of the five-compound spectra, as discussed above,
despite that fact that the compound concentrations were pre-
pared to be the same in the two sets of samples. The effect
that normalization to total intensity can have on individual
peak intensities is illustrated in Fig. 4D, where the matched
peak at 1.32 ppm in the normalized six-compound spectrum
is noticeably smaller than that observed in the five-com-
pound spectrum. As expected, there is no significant differ-
ence in the peak intensities of the five-compound spectra and
six-compound spectra as indicated by their boxplot distribu-
tions and supported by an AUC value of 0.69 (Fig. 4E), in
contrast to the clear difference in peak intensity distributions
indicated by the boxplot analysis and associated AUC value
of 1.0 (Fig. 4F). This simple example illustrates the risk of
unjustified normalization to total intensity that is routinely
and widely applied in NMR-based metabolic profiling stud-
ies. Clearly, normalization to total intensity has the potential
of altering peak intensity distributions for peaks that are not
actually different between comparison groups. For example,
in the case where new compounds show up or disappear in
a disease group in comparison to a healthy control group,
thus altering the total intensity of the disease group spectra,
normalization to total intensity has the possibility of gener-
ating statistically significant differences in the intensities of
resonances metabolites that have no actual difference in the
biological samples.

3.4 Quantification of resonance peaks
with no matches in the Chenomx, HMDB
and COLMAR databases and assessment
of uncertainty in metabolite assignments using
RANCM

An attempt was made to quantify the typical number of
peaks that had relatively confident metabolite assignments
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(i.e. those with significant diagnostic matching features with
metabolites in the existing databases), those that had ambig-
uous assignments (i. e. those peaks that could be explained
by more than one metabolite in the databases, and those
that had no possible matching peaks in the databases. The
analysis was performed on urine from a mouse containing
an orthotopic, xenograft tumor established with human Mia-
PaCa-2 pancreatic cancer cells and the soluble cell extracts
from two different human pancreatic cancer cell lines: Mia-
PaCa-2 and Panc-1, and the results are shown in Fig. 5. It
was observed that 52.8% of the peaks in the urine from the
orthotopic, xenograft mouse model of pancreatic cancer had
at least a putative assignment while 25% of the peaks had
an ambiguous assignment and 22.2% of the peaks had no
matching peaks in the database (Fig. SA). Quite similar pat-
terns were observed for the two human pancreatic cancer
cell lines with 63.5% of peaks having a putative assignment,
25.2% having ambiguous peak assignments and 11.3% of
peaks having no matching peak assignments in the Mia-
PaCa-2 cell line extracts (Fig. 5B) and 53.3% of peaks hav-
ing a putative assignment, 31.1% having ambiguous peak
assignments and 15.6% of peaks having no matching peak
assignments in the Panc-1 cell line extracts (Fig. 5C).

3.5 Evaluation of the overlap of metabolite space
between the Chenomx, HMDB and COLMAR
databases

Several large public databases are commonly used to aid
in the assignment of metabolites in NMR-based metabolic
profiling studies. One of the most widely used commercially
available databases is available from the Chenomx company
(https://www.chenomx.com/) which can be supplemented
with the human metabolite database (HMDB) (https://
hmdb.ca/). Another very useful resource for assigning two-
dimensional homonuclear 'H-'H TOCSY spectra and 'H-!C
heteronuclear HSQC spectra is the COLMAR software and
database (http://spin.ccic.ohio-state.edu/index.php/colmar).
We have developed the RANCM strategy to assign confi-
dence levels to NMR-based metabolite assignments (Joesten
& Kennedy, 2019) that uses all three software packages. A
limitation of this approach is that all three databases are
significantly incomplete with 40-50% of observed NMR
peaks in human and mouse urine samples and human can-
cer cell extracts have no matching peaks in the ChenomX,
HMDB or COLMAR databases. Here we provide a quanti-
tative analysis of the overlap between the three databases.
The ChenomX database included 339 compounds, 323 of
which were unique (16 were found to be redundant, i. e.
the same compounds listed with different synonyms). The
HMDB database included 657 compounds, 614 of which
were unique (43 were the same compounds listed with dif-
ferent synonyms). The COLMAR database included 701
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Fig.4 Illustration of how normalization can impact peak intensities,
p-values, VIP scores and AUC values in a simple well-defined set of
NMR samples. A Representative spectrum of the 5-compound sam-
ple set. B Representative spectrum of the six-compound sample set.
C L-threonine methyl peak intensity (1.32 ppm, boxed in red) in a
representative spectrum of the five-compound set without normaliza-
tion. D L-threonine methyl peak intensity (1.32 ppm, boxed in red) in
a representative spectrum of the six-compound set without normali-
zation. C-Inset) A boxplot showing the comparison of the peak inten-
sity distributions between the 5-compound and 6-compound data sets
without normalization. D-Inset) A ROC plot showing the accuracy
of the L-threonine methyl peak intensity (1.32 ppm) for distinguish-

compounds, 673 of which were unique (28 were the same
compounds listed with different synonyms). There were 254
compounds common to all three databases, 16 compounds

ing between the 5-compound and 6-compound sets of spectra with-
out normalization. E L-threonine methyl peak intensity (1.32 ppm,
boxed in blue) in a representative spectrum of the five-compound set
after normalization. F L-threonine methyl peak intensity (1.32 ppm,
boxed in red) in a representative spectrum of the five-compound set
after normalization. E-Inset) A boxplot showing the comparison of
the peak intensity distributions between the 5-compound and 6-com-
pound data sets after normalization. F-Inset) A ROC plot showing the
accuracy of the L-threonine methyl peak intensity (1.32 ppm) for dis-
tinguishing between the 5-compound and 6-compound sets of spectra
after normalization

shared between the Chenomx and the HMDB databases but
absent in COLMAR, 25 compounds common between the
Chenomx and COLMAR databases that were absent in the
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Fig.5 Analysis of distribution
of putative, ambiguous and no
assignment of peaks in mouse
urine and two different pancre-
atic cancer cell lines. Putative
(green), ambiguous (yellow)
and no assignments (red) in

A mouse urine from a mouse
with a pancreatic tumor, B the
soluble fraction from the human
MiaPaCa-2 pancreatic cancer
cell line, and C the soluble
fraction from the human Panc-1
pancreatic cancer cell line

No Assignments
222%
Putative Assignments
52.8%
Ambiguious Assignments
25.0%
No Assignments
11.3%
Ambiguious Assignments
25.2%
Putative Assignments
63.5%
No Assignments ( C)
15.6%
Putative Assignments
53.3%
Ambiguious Assignments
31.1%

HMDB and 246 compounds common to the HMDB and  database, 98 compounds unique to the HMDB database and
COLMAR that were absent from the Chenomx database. 148 compounds unique to the COLMAR database. The over-
Finally, there were 28 compounds unique to the Chenomx  lap among these databases is summarized in a Venn diagram
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COLMAR HMDB

246

148 98

254
25 16

28

Chenomx

Fig.6 Analysis of the overlap in the composition of commonly used
metabolite databases. The Venn diagram shows the number of metab-
olites that are shared between all three databases (254), those shared
between any two of the databases, and the number of compounds
unique to each database

shown in Fig. 6. The conversion of all metabolites listed in
all three databases to a common naming convention and the
detailed analysis of the specific compounds that belong to
each overlap category are included in Excel sheets avail-
able in the supplementary material and stored in a public
database repository.

4 Conclusions

Here, we have addressed three important issues that continue
to impact and limit NMR-based metabolic profiling studies.
First, we addressed the inconsistency in various measures
commonly used to assess statistically significant differences
in NMR peak intensities when comparing sets of NMR spec-
tra belonging to distinct groups, e. g. a healthy control group
and a disease group. Our analysis indicated that p-values and
AUC values appear strongly correlated whereas fold changes
and VIP scores appear weakly or non-correlated with the
p-values and AUC values, and appear to be less useful as a
consequence.

Next, we quantitatively addressed the impact of data nor-
malization to total intensity had prior to statistical analysis
using urine samples obtained from an orthotopic, xenograft
mouse model study of pancreatic cancer. The analysis indi-
cated that the normalization had a large impact on the num-
ber and distribution of statistically significant resonances,
and consequently, differences in metabolite concentrations.
This practice has widespread potential significance in the
field since investigators often routinely normalize NMR data
prior to statistical analysis and reviewers often require some

form of data normalization prior to statistical analysis when
reviewing manuscripts. While experimental factors some-
times justify data normalization, automatic normalization
of samples containing identical amounts of sample is not
necessarily justified and may introduce increased variation
into the dataset. Unjustified data normalization can also lead
to false conclusions regarding the statistical significance of
apparent differences in metabolite concentrations. An exam-
ple where data normalization would be justified would be in
a case where nine urine samples from a study group were
used to prepare NMR samples using 540 pL of urine plus
60 uL of D,0, however, only 100 uL of urine was available
to make up one sample, which could be prepared using 440
uL of buffer and 60 pL of D,O. In order to include the dilute
sample prepared from 100 pL of urine in the analysis along
with the other nine samples prepared from 540 pl of urine,
data normalization would be justified and required. Another
example where data normalization would be justified and
required might occur when performing NMR analysis of
human cell culture extracts. For example, if five control
NMR samples were prepared from a single Petri dish and
five additional NMR control samples were prepared from
two Petri dishes. Then, in order to combine the ten samples
into a single control group, data normalization would be
required and justified. Given that the decision of whether or
not to normalize spectra collected from samples prepared
from identical quantities can introduce a confounding vari-
able, it should be justified with a solid rationale. For exam-
ple, if the metabolite concentrations vary naturally in some
range, as would be expected, normalization could poten-
tially introduce variance into the data that did not exist prior
to data normalization. When comparing control and study
groups, there is a potential risk that normalization of the
data, in the case where normalization cannot be justified,
could cause differences in apparent concentrations of some
metabolites that appear to be statistically different when they
actually are not, as was observed in our synthetic sample
test case. It is also possible that normalization of the data
may mask real statistical differences in peak intensities that
become statistically insignificant after normalization.
Finally, we have drawn attention to a serious limitation
of most NMR-based metabolic profiling studies, i.e. the
observation that most NMR resonances detected in NMR-
based metabolic profiling studies cannot be assigned from
the most widely used metabolite databases. In fact, it is not
uncommon for > 40% of the resonances to go unassigned.
This problem not only occurs when evaluating human
urine samples, but is significantly exacerbated when bio-
fluids from other organisms are examined, for example
mouse and rat urine, or when other biological fluids are
examined, e. g. human cancer cell line extracts. A major
cause of this problem is that many of the NMR peaks
observed in these samples are simply not represented in

@ Springer



64 Page 12 of 13

I.L.Ross et al.

the ChenomX and HMDB databases. A further problem is
that often when a metabolite is putatively assigned in the
one-dimensional NMR spectrum, the peaks cannot be con-
firmed in the multidimensional NMR COLMAR database,
which is used to increase the confidence in the metabo-
lite assignments in the one-dimensional NMR spectra
from which the statistical significance test conclusions
are drawn, because the compounds in the ChenomX and
HMDB databases are not always present in the COLMAR
database. To gain a better understanding of the overlap and
intersection of the metabolite spaces of each database, we
quantified the overlap and intersections of the ChenomX,
HMDB and COLMAR databases, the results of which
revealed substantial overlap among the three databases, but
also significant unique metabolite spaces in each database
as well. This analysis indicates that an effort should be not
only to significantly expand the metabolite coverage of the
ChenomX and HMDB databases, so that the completion
of putative assignments of NMR resonances from the one-
dimensional NMR spectra can be significantly increased,
made to ensure that the COLMAR metabolite list covers
the entire metabolite space present in the ChenomX and
HMDB databases used to assign one-dimensional NMR
spectra, so that assignment confidence can be routinely
maximized in NMR-based metabolic profiling studies.

Our study does include a number of caveats. One caveat,
for example, is that the choice of cutoffs for the metrics
considered can also impact the analysis presented here, but
the cutoffs used in this study were chosen based on val-
ues commonly found to be used in the literature. Conse-
quently, while the analyses may change depending on the
choice of cutoffs used for the various metrics, the analysis
presented here should be representative and informative for
many investigators who choose the same or similar cutoffs
in their own studies. Another caveat is that we have only
considered a single type of normalization scheme, namely
normalization to total intensity. This raises the interesting
question as to how other normalization schemes may or may
not impact the resulting distributions of statistically signifi-
cant changes in NMR-based metabolic profiling datasets,
however, normalization to total intensity is a widely used
normalization technique and comparison with other normali-
zation schemes was beyond the scope of the current study.
And yet another caveat of this analysis is the fact that the
t tests and other tests have been applied to the “processed”
data and not directly to the observed raw data, which is the
free induction decays themselves. A consequence of this fact
is that the processing step have the potential to impact the
statistical analyses, including the analyses performed and
described in this manuscript. The possibility exists that the
conclusions drawn from this analysis could change if the raw
data were processed in a different manner, and the reader
should be aware of this possibility.

@ Springer

As a final note, it should be pointed out that the observa-
tions and conclusions drawn from this study reflected a lim-
ited space of the potential types of biological matrix samples
that can be studied in NMR-based metabolic profiling stud-
ies. While the observations reported here were drawn from
urine samples collected from an orthotopic, xenograft mouse
model study of pancreatic cancer, and soluble cell extracts
collected from two human pancreatic cancer cell lines, it is
possible that the conclusions drawn from these studies may
not be universally true when applied to other samples sets,
for example human urine samples, tissue extracts, or other
biological matrices. In order to answer these questions, fur-
ther studies would need to be conducted to address these
possibilities. However, the results presented here highlight
some important limitations and caveats that persist in the
analyses of NMR-based metabolic profiling data that should
be considered when designing NMR-based metabolic profil-
ing studies and when analyzing and interpreting NMR-based
metabolic profiling datasets.
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