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Abstract
Introduction  Interpretation and analysis of NMR-based metabolic profiling studies is limited by substantially incomplete 
commercial and academic databases. Statistical significance tests, including p-values, VIP scores, AUC values and FC values, 
can be largely inconsistent. Data normalization prior to statistical analysis can cause erroneous outcomes.
Objectives  The objectives were (1) to quantitatively assess consistency among p-values, VIP scores, AUC values and FC 
values in representative NMR-based metabolic profiling datasets, (2) to assess how data normalization can impact statistical 
significance outcomes, (3) to determine resonance peak assignment completion potential using commonly used databases 
and (4) to analyze intersection and uniqueness of metabolite space in these databases.
Methods  P-values, VIP scores, AUC values and FC values, and their dependence on data normalization, were determined 
in orthotopic mouse model of pancreatic cancer and two human pancreatic cancer cell lines. Completeness of resonance 
assignments were evaluated using Chenomx, the human metabolite database (HMDB) and the COLMAR database. The 
intersection and uniqueness of the databases was quantified.
Results  P-values and AUC values were strongly correlated compared to VIP or FC values. Distributions of statistically sig-
nificant bins depended strongly on whether or not datasets were normalized. 40–45% of peaks had either no or ambiguous 
database matches. 9–22% of metabolites were unique to each database.
Conclusions  Lack of consistency in statistical analyses of metabolomics data can lead to misleading or inconsistent inter-
pretation. Data normalization can have large effects on statistical analysis and should be justified. About 40% of peak assign-
ments remain ambiguous or impossible with current databases. 1D and 2D databases should be made consistent to maximize 
metabolite assignment confidence and validation.
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1  Introduction

One goal of NMR-based metabolic profiling studies is to 
determine statistically significant differences in the intensi-
ties of NMR resonances in sets of NMR spectra belonging 

to distinct groups, e. g. between a healthy control group 
and a diseased study group (Beckonert et al., 2007; Emwas 
et al., 2019; Markley et al., 2017; Zhang et al., 2012). 
Several measures of statistical significance are commonly 
used in NMR-based metabolic profiling studies (Chihanga 
et al., 2018b, 2018c; Saccenti et al., 2014; Schmahl et al., 
2018), including the Student’s t-test p-value (Goodpaster 
et al., 2010; Worley & Powers, 2013), the variable impor-
tance in projection (VIP) score generated in partial least 
square-discriminant analysis (PLS-DA) (Chihanga et al., 
2018b; Schmahl et al., 2018; Worley & Powers, 2013) 
and the accuracy of a given resonance for determining 
group belonging determined from the area under the curve 
(AUC) calculations from receiver operator characteristic 
(ROC) curves (Goodpaster et al., 2010; Worley & Powers, 
2013). In many studies, only a single metric of statistical 
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significance analysis is used, but in some studies, multiple 
metrics are used in the analysis of a single dataset, and 
in these cases, there can be a lack of consistency in the 
statistical significance of NMR resonance intensity differ-
ences determined by p-values, VIP scores and AUC values 
(Chihanga et al., 2018b, 2018c; Schmahl et al., 2018). One 
goal of this study is to establish a quantitative understand-
ing of the degree of correlation and the corresponding 
lack of consistency in the statistical significance of NMR 
resonance intensity differences as determined by p-values, 
VIP scores and AUC values using an experimental dataset 
collected from an NMR-based metabolic profiling study, 
and to determine the impact that data normalization to 
total intensity had on the correlation of these metrics.

Another significant limitation of NMR-based metabolic 
profiling studies is the inability to make complete assign-
ments of the NMR resonances using the most commonly 
used database tools, specifically the Chenomx software 
package (https://​www.​cheno​mx.​com/), the human metab-
olite data base (HMDB) (Wishart et  al., 2007, 2009, 
2013, 2018), and the Complex Mixture Analysis by NMR 
(COLMAR) software package (Bingol et al., 2016). This 
problem is significant given that it is not uncommon for 
the unassigned fraction of NMR resonances in spectra of 
urine, human cell line extracts and other biological sam-
ples to reach or exceed 40% of detectable resonances. 
This aspect of data analysis, however, is rarely reported 
or addressed in published manuscripts, and the potential 
impact on the interpretation of the data and the limitations 
to a given study are generally not discussed. While the 
number of metabolites identified in NMR-based metabolic 
profiling studies typically falls in the range of 30–70 com-
pounds (Chihanga et al., 2018b, 2018c; Schmahl et al., 
2018; Yang et al., 2008), a “high bar” number, that has 
rarely been achieved, has been reported at 209 compounds 
by Wishart and co-workers (Bouatra et al., 2013). Another 
goal of this manuscript is to provide a quantitative under-
standing of the extent to which NMR spectra of mouse 
urine can be assigned using the combination the Chenomx, 
HMDB and COLMAR databases, and to determine the 
extent of overlap and uniqueness of these three databases.

A final issue addressed in this manuscript is a quantita-
tive assessment of the confidence in the assignments that 
can be tentatively made using the Chenomx, HMDB and 
COLMAR databases. While it is common for investiga-
tors to report tables of metabolites assigned from NMR-
based metabolic profiling data, the uncertainty or confi-
dence in the reported assignments is rarely addressed. We 
have recently introduced the RANCM scheme (Joesten & 
Kennedy, 2019) that can be used to rank the confidence 
in metabolite assignments. This tool can then be used 
to assess and quantify the uncertainty of NMR-based 
metabolite assignments reported in NMR-based metabolic 

profiling studies, which was another goal of the study 
reported in this manuscript.

2 � Materials and methods

2.1 � Institutional approval of mouse studies

All procedures involving mice were approved by both the 
ethics committee and the Institutional Animal Care and Use 
Committee at Miami University (Animal Welfare Assur-
ance Number: D16-00100). The approved protocols were 
assigned IACUC Project Numbers: 889 and 893. All proce-
dures were conducted in such a way as to minimize any suf-
fering or discomfort experienced by the mice. Daily health 
monitoring of mice was conducted by the Miami Univer-
sity’s Animal Resources and Care Facility. Researchers were 
notified if any immediate action needed to be taken to care 
for the animals. For orthotopic surgeries, mice were anes-
thetized using isoflurane so that the mice were unconscious 
and unable to experience pain during the surgery. To initiate 
anesthesia, the mice were placed in a drop box containing 
3–5% atmospheric isoflurane. Once anesthetized, the mice 
were placed on the surgical table and the surgery conducted 
while a nose cone administered 1–3% isoflurane to maintain 
anesthesia. After surgery, 0.05–0.10 mg/kg buprenorphine 
was injected subcutaneously between the mouse’s shoulder 
blades following suturing of the incision as a pain reliever. 
The mice were then allowed to recover for 15 min after sur-
gery in a cage atop a warming blanket. An additional dose 
of 0.05–0.10 mg/kg buprenorphine was injected subcutane-
ously 12 h post-operation to minimize pain and suffering of 
the mice during the study.

2.2 � Orthotopic xenograft mouse model 
of pancreatic cancer

NOD.CB17-Prkdcscid/J SCID mice were purchased from 
Taconic (Hudson, NY) and maintained in a barrier facil-
ity Miami University according to institutional guidelines. 
MiaPaCa-2 were purchased from the American Type Culture 
Collection (Manassas, VA). MiaPaCa-2 cells were grown 
on the recommended medium, i. e. high glucose Dulbecco’s 
Modified Eagle Medium, (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin–streptomycin 
(ThermoFischer, Pittsburgh PA). MiaPaCa-2 cells were 
scraped from the culture flasks and the suspended cells were 
drawn into insulin needles. Each mouse was administered 
5% isofluorane in a sealed box to induce anesthesia. Once 
the mouse was unconscious, it was placed on the surgical 
table with a nose cone administering isofluorane at a con-
centration of 1–3% to maintain anesthesia during surgery. 
The mouse’s left side from a dorsal view was shaved and 
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the spleen was located and used to find the pancreas. The 
site of the incision was scrubbed with butadiene and then 
rinsed with 70% alcohol three times. A 1 cm incision was 
made through both cutaneous layers and the pancreas was 
exposed. A 10 µl volume of MiaPaCa-2 cells suspended in 
DMEM high glucose media was injected into the pancreas. 
For the control mice, sham surgery was performed and a 
10 µl volume of DMEM high glucose media injected into the 
pancreas. A cotton swab was used to apply pressure in order 
to minimize leakage of cells into abdominal cavity. The 
pancreas was repositioned in the abdominal cavity and the 
incision was sutured closed. A 0.10 mg/kg dose of buprenor-
phine was injected subcutaneously after the incision was 
closed to mitigate pain. Mice were fed ad libitum, and were 
monitored daily for signs of distress. After eight weeks of 
urine collection, as described below, mice were anesthetized 
and euthanized by a terminal blood draw collected by car-
diac puncture according to approved procedures.

2.3 � Sample collection and processing

Following sham surgery or MiaPaCa-2 injection into pan-
creata, mice were places in metabolism cages and urine 
samples collected at 1 week, 3 weeks, 5 weeks and 7 weeks 
after surgery. Urine samples were stored at −80 °C after 
collection. Samples were thawed on ice then prepared for 
NMR analysis as follows. A 1-ml aliquot of each sample was 
pH corrected to 7.4, centrifuged and buffered as previously 
published by Romick-Rosendale et al. (Romick-Rosendale 
et al., 2009, 2014).

2.4 � NMR data collection

All NMR spectra were recorded on a Bruker Avance TM III 
spectrometer operating at 600 MHz. All experiments were 
conducted at 298 K using 5 mm NMR tubes (Norell, Mor-
ganton, NC). A standard 1H 1D presaturation (zgpr) experi-
ment was collected to assess the sample shimming, which 
was considered acceptable when the TSP peak linewidth 
was < 1 Hz. Once the sample was adequately shimmed, the 
1D first increment of a NOESY (noesypr1D) was collected 
to determine if there were changes in lipid composition and 
the CPMG (cpmgpr1d) experiments were recorded were 
collected to allow quantitation of metabolite changes. All 
spectra were processed as previously reported by Romick-
Rosendale et al. (). 2D 1H-1H TOCSY and 1H-13C HSQC 
spectra were collected as previously described by Chihanga 
et al. (). In brief, 2D 1H-1H TOCSY and 1H-13C HSQC spec-
tra were recorded at a constant temperature of 298 K using 
the HSQC (hsqcetgpsi). The 2D 1H-1H TOCSY was col-
lected using the TOCSY (mlevgpph19) pulse sequence at 
298 K. The data was processed with Topspin 3.2 (Bruker 
BioSpin, Billerica MA).

2.5 � Multivariate statistical analysis and statistical 
significance of individual buckets

The Bruker AMIX software v.3.9 (Analysis of MIXtures 
software, Bruker Biospin) manual bucketing tool was used 
to bucket spectral resonances. Manual bucketing was per-
formed after stacking all of the spectra in both the control 
and study groups to ensure that any shifts of peaks of interest 
in individual spectra due to differences in pH, salt, etc. did 
not cause peaks from individual spectra to fall outside the 
bucketing range for individual buckets. In the normalized 
datasets, bucket areas in each spectrum were normalized 
to total intensity prior to statistical analysis. P-values were 
calculated using a modified Student’s t-test that allows for 
different variances and numbers of samples in each group, 
known as a Welch’s t test (Goodpaster et al., 2010). Per the 
standard application of a t test, the null hypothesis being 
tested was that there was no difference in the bucket spec-
tral areas between the control and study groups. Return of a 
p-value from the t test less than 0.05 was used as a threshold 
to reject the null hypothesis, and therefore consider that the 
difference in the bucket areas were significant by the t test. 
For the purpose of this study, statistical significance of the 
other metrics was defined as follows based on applications 
used in past studies (Chihanga et al., 2018b, 2018c; Schmahl 
et al., 2018), namely a variable importance for predicting in 
partial least square discriminant analysis (PLS-DA) score 
of > 1.0, i.e. VIP > 1.0, an accuracy for predicting group 
belonging of greater of 70% (i.e. AUC > 0.7), and fold 
changes of greater than a factor of 2 (FC > 2.0). While the 
FC is not a statistical test, and no confidence levels can be 
assigned to a particular outcome, the FC is widely used to 
identify qualitative changes large datasets, such as micro-
array datasets, often in the form of volcano plots (Cui & 
Churchill, 2003). PLS-DA was performed using the SIMCA-
P ver. 11.0 software package (Umetrics, Umea, Sweden).

2.6 � Identification and quantification of metabolites

Metabolite identification and quantification were assessed 
as previously described (Chihanga et al., 2018a, 2018b, 
2018c; Petrova et al., 2019; Romick-Rosendale et al., 2009, 
2014; Schmahl et al., 2018; Standage et al., 2021; Wata-
nabe et al., 2012) and the confidence in the metabolite 
assignments was evaluated using RANCM scores (Joesten 
& Kennedy, 2019). Briefly, initial metabolite assignments 
were made manually, and did not rely on a peak assignment 
algorithm, by comparison of the experimental spectra with 
the reference spectra databases included in Chenomx v.8.1 
(Chenomx Inc., Alberta, Canada) augmented by the HMDB 
database (Wishart et al., 2007, 2009, 2013, 2018) and con-
firmed using the Complex Mixture Analysis by NMR (COL-
MAR) software (Bingol et al., 2016) that involved matching 
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experimental spectra to reference databases of metabolites. 
Two-dimensional NMR spectra (1H-1H TOCSY and 1H-13C 
HSQC,) were also used to confirm assignments and to define 
the RANCM scores (Joesten & Kennedy, 2019).

2.7 � Database overlap analyses

For the database analyses, the 600 MHz Chenomx (refer-
ence library 10) and HMDB 4.0 databases and the 800 MHz 
Chenomx (reference library 10) and 850 MHz HMDB 4.0 
databases were considered.

3 � Results

3.1 � Consistency of p‑values, VIP scores, AUC 
values and fold changes across NMR 
spectral bins in a representative normalized 
and un‑normalized dataset

As discussed above, several metrics are used to determine 
the statistical significance of differences in peak intensities 
in NMR-based metabolic profiling studies, including p-val-
ues, AUC values VIP scores and fold changes (FC). Here, 
we analyzed how consistent these measures were (i.e. the 
extent to which the various metrics indicated the same con-
clusions regarding whether or not the differences in bucket 
areas between groups were significant or not) in an example 
dataset obtained using an orthotopic mouse model of pancre-
atic cancer using both un-normalized and normalized data 
(Fig. 1). In the unnormalized dataset, a total of 184 bins 
were considered. Of these, 157 were significant by p-value, 
14 by VIP 169 by AUC and 57 by FC (Fig. 1A). Four com-
binations of these measures were also considered, which 
yielded 13 bins significant by P + VIP, 157 by P + AUC, 
57 by P + FC, 14 by VIP + AUC, 5 by VIP + FC and 56 by 
AUC + FC. Combinations of three metrics yielded 14 sig-
nificant by P + VIP + AUC, 5 significant by P + VIP + FC 
and 5 significant by VIP + AUC + FC. Only five bins out of 
157 deemed significant by both P and AUC were significant 
by all four metrics. This analysis indicated that the P-values 
(157) and accuracy/AUC values (169) were most consistent 
among the four metrics, in strong contrast to P + VIP, which 
shared only 13 common bins and VIP + AUC, which shared 
only 14 common bins. An intermediate number of bins were 
significant by P + FC. Reexamination of the same dataset 
after normalization to total intensity (Fig. 1B) yielded a 
similar distribution of consistency among the four metrics, 
however, the absolute number of bins significant by each 
metric changed significantly. For example, the number of 
bins significant by P-value dropped to 43 from 157 in the 
unnormalized dataset. Similarly, the number of bins sig-
nificant by AUC dropped to 53 in the normalized dataset 

compared to 169 in the normalized dataset. The number of 
bins significant by P + AUC dropped to 37 in the normalized 
dataset from 157 in the unnormalized dataset. An overview 
of the impact on the absolute number of significant bins 
in each category is represented in Fig. 1C. Overall, this 
analysis highlights the strong influence that normalization 
to total intensity can have on the evaluation and assessment 
of NMR-based metabolic profiling data.

3.2 � Analysis of distributions of statistically 
significant p‑values, VIP scores and AUC values 
in un‑normalized versus normalized datasets

In order to analyze the potential magnitude of the impact of 
normalization to total intensity on the statistical significance 
analysis of NMR-based metabonomics datasets, we evalu-
ated four different weeks of mouse urine NMR data col-
lected from an orthotopic mouse model study of pancreatic 
cancer. Urine samples were collected after 1 week, 3 weeks, 
5 weeks, and 7 weeks after implanting human MiaPaCa2 
cells in the pancreas of immunocompromised mice. Three 
metrics were assessed to determine the statistical signifi-
cance of differences in metabolite NMR peak intensities: 1) 
Welch’s t-test p-values, 2) VIP scores obtained from Par-
tial Least Squares-Discriminant Analysis (PLS-DA) and 3) 
group-belonging prediction accuracy obtained from receiver 
operator characteristic (ROC) area under the curve (AUC) 
values. Thresholds to define statistically significant differ-
ences in peak/feature intensities were p-values < 0.05, VIP 
scores > 1.0 and AUC values are > 0.70. The results are sum-
marized in Fig. 2. The number of statistically significant dif-
ferences in peak intensities in the NMR datasets was strongly 
affected by normalization. It should be noted that all NMR 
samples in this study were prepared from identical amounts 
of urine collected from mice using metabolism cages. In the 
week 1 dataset, only 15 out of 137 peaks/features (~ 11%), 
were significant by p-value in both normalized and un-
normalized datasets, 45 peaks/features (~ 33%) were only 
significant in un-normalized data, six peaks/features (~ 4%) 
were only significant in normalized data and 71 peaks/fea-
tures (~ 52%) were not significant in either normalized or 
un-normalized data (Fig. 2A). Similar trends were observed 
for the p-value distributions in weeks 3, 5 and 7 (Fig. 2A). 
The impact of normalization on VIP scores was similar to 
that observed on p-values (Fig. 2B). For example, in week 
1, only seven peaks/features (~ 5%) were significant with or 
without normalization, 17 peaks/features (~ 12%) were sig-
nificant only in un-normalized data, one peak/feature (< 1%) 
was only significant only in normalized data and 112 peaks/
features (~ 82%) were not significant in either normalized or 
un-normalized data (Fig. 2B). Again, this trend was similar 
in weeks 3, 5, and 7 (Fig. 2B). Finally, the accuracy of the 
peaks/features for distinguishing between control and study 
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groups was similarly impacted by normalization. In week 1, 
20 peaks/features (~ 15%) were significant regardless of nor-
malization, 19 peaks/features (~ 14%) were only significant 
in un-normalized data, 10 peaks/features (~ 7%) were signifi-
cant only in normalized data and 88 peaks/features (~ 64%) 
were not significant in either normalized or un-normalized 
data (Fig. 2C).

Figure 3A shows how peak intensity distributions were 
affected by normalization for the three most significant 
peaks/features in the un-normalized dataset that changed 
to not significant after normalization. In the unnormalized 
data set, the peak at 8.12 ppm had very high accuracy for 
distinguishing between the control and cancer group based 
on an AUC = 0.893 supported by a p-value = 1.19 × 10–5 

Fig. 1   Analysis of Consistency of Statistical Significance Metrics 
in Un-Normalized and Normalized NMR-Based Metabolic Profil-
ing Data. Pie chart analysis of comparison of A un-normalized and 
B normalized week-three NMR spectra obtained from an orthotopic 
mouse model of pancreatic cancer. The pie graph shows the num-

ber of spectral bins that are significant by p-value, VIP, AUC or FC 
alone, and for all permutation of combinations. C Bar graph plot of 
the number of statistically significant bins in each category for the un-
normalized dataset (blue) and the normalized dataset (orange)
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(Fig. 3A, Top, Left) that dropped to low accuracy, near 
that of a random prediction, with an AUC = 0.546 with a 
p-value = 0.976 ppm after normalization (Fig. 3A, Bottom, 
Left). Similarly, the peak at 6.21 ppm had an AUC = 0.918 
with a p-value = 3.61 × 10–5 prior to normalization (Fig. 3A, 
Top, Middle) that dropped to an AUC = 0.515 with a 
p-value = 0.787 after normalization (Fig. 3A, Bottom, Mid-
dle). Finally, the peak at 3.046 ppm had an AUC = 0.918 
with a p-value = 3.30 × 10–5 in the un-normalized data 
(Fig. 3A, Top, Right) that dropped to an AUC = 0.531 with 
a p-value = 0.870 (Fig. 3A, Bottom, Right). The associated 
boxplots for each comparison showed that prior to nor-
malization the peak intensity distributions were completely 
separated whereas after normalization the peak distribu-
tions were completely overlapped. These three examples are 

representative of the 118 peaks/features that were significant 
based on their p-values and the 122 peaks/features that were 
significant based on their AUC prior to normalization that 
were no longer significant by either measure after normaliza-
tion to total intensity.

Peaks/features that were not significant in the un-
normalized dataset that changed to significant follow-
ing normalization are shown in Fig.  3B. The peak at 
7.88 ppm had an AUC = 0.500 and a p-value = 0.530 prior 
to normalization (Fig. 3B, Top, Left) that changed to an 
AUC = 0.776 and a p-value = 0.019 after normalization 
(Fig.  3B, Bottom, Left). The peak at 2.88  ppm had an 
AUC = 0.679 and a p-value = 0.130 in the un-normalized 
data (Fig. 3B, Top, Middle) that changed to an AUC = 0.74 
and a p-value = 0.032 after normalization (Fig.  3B, 

Fig. 2   Impact of normalization on significance analysis of p-values, 
VIP scores and AUC values. A Venn diagram analysis is shown for 
four weeks of data collection of mice urine in an orthotopic mouse 
model of pancreatic cancer. The impact of data normalized is shown 
for A p-values, B VIP scores and C AUC values. The number of 
peaks that are significant in both normalized and un-normalized data 

are shown in the intersection of each diagram (colored orange), those 
significant in un-normalized data shown in the left-hand circle (pink) 
and those significant in normalized data only shown in the right-hand 
circle (yellow). The number of peaks not significant in either normal-
ized or un-normalized data are indicated by the number in the box 
outside the circles
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Bottom, Middle). Finally, a peak at 1.92 ppm that had an 
AUC = 0.566 and a p-value = 0.975 prior to normalization 
(Fig. 3B, Top, Right) that changed to an AUC = 0.842 and 
a p-value = 6.83 × 10–3 after normalization (Fig. 3B, Bot-
tom, Right). In these cases, the associated boxplots for each 
comparison showed increased separation of peak intensity 
distributions after normalization. These three examples 
were representative of just four peaks that were not signifi-
cant in un-normalized data that were significant following 
normalization based on p-values (Fig. 2A) and four peaks 

that switched to significant following normalization to total 
intensity based on AUC values (Fig. 2C).

3.3 � Impact of normalization of statistical 
significance analysis in a simple test sample 
case

In order to illustrate the potential impact of normalization to 
total intensity in a simple test case, two sets of well-defined 
samples were analyzed. One set contained five compounds 

Fig. 3   Illustration of how normalization impacts peak intensity dis-
tributions and corresponding p-values, VIP scores and AUC values 
change for NMR resonances with the most statistically significant 
differences in normalized and unnormalized mouse urine datasets. A 
The top row shows ROC plots for the three NMR resonances with the 
most statistically significant differences in the unnormalized dataset 
(8.12  ppm (left), 6.21  ppm (middle) and 3.046  ppm (right)) shown 
at top with the ROC curves, AUC values, VIP scores and p-values 
indicated at left and the histogram of the peak intensities shown at 

right. The bottom row shows how the plots, values and peak intensity 
distributions change upon normalization. B The bottom row shows 
ROC plots for the three NMR resonances with the most statistically 
significant differences in the normalized dataset (7.88  ppm (left), 
2.88 ppm (middle) and 1.92 ppm (right)) shown at top with the ROC 
curves, AUC values, VIP scores and p-values indicated at left and the 
histogram of the peak intensities shown at right. The top row shows 
how the plots, values and peak intensity distributions change without 
normalization
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(L-alanine, L-cysteine, L-leucine, taurine, and L-threonine) 
and a second set contained six compounds (The same five 
compounds just listed plus p-cresol). All compounds com-
mon to both sample sets were prepared at the same concen-
tration in both sets of samples. Six experimental replicates 
were prepared for both the five-compound and the six-com-
pound sets. Representative spectra from the five-compound 
and six-compound samples are shown in Fig. 4A and B 
respectively, illustrating the absence of resonance peaks for 
compound p-cresol. Naturally, the total intensity of the six-
compound spectra, which is the sum of all peak areas, will 
be greater than that of the five-compound spectra. Conse-
quently, matched peak intensities should be about the same 
in the five-compound and six-compound spectra when com-
paring un-normalized data sets, as is observed in Fig. 4C. 
In contrast, after normalization, matched peaks would no 
longer be expected to have the same intensities, since the 
total intensity of the six-compound spectra will be greater 
than that of the five-compound spectra, as discussed above, 
despite that fact that the compound concentrations were pre-
pared to be the same in the two sets of samples. The effect 
that normalization to total intensity can have on individual 
peak intensities is illustrated in Fig. 4D, where the matched 
peak at 1.32 ppm in the normalized six-compound spectrum 
is noticeably smaller than that observed in the five-com-
pound spectrum. As expected, there is no significant differ-
ence in the peak intensities of the five-compound spectra and 
six-compound spectra as indicated by their boxplot distribu-
tions and supported by an AUC value of 0.69 (Fig. 4E), in 
contrast to the clear difference in peak intensity distributions 
indicated by the boxplot analysis and associated AUC value 
of 1.0 (Fig. 4F). This simple example illustrates the risk of 
unjustified normalization to total intensity that is routinely 
and widely applied in NMR-based metabolic profiling stud-
ies. Clearly, normalization to total intensity has the potential 
of altering peak intensity distributions for peaks that are not 
actually different between comparison groups. For example, 
in the case where new compounds show up or disappear in 
a disease group in comparison to a healthy control group, 
thus altering the total intensity of the disease group spectra, 
normalization to total intensity has the possibility of gener-
ating statistically significant differences in the intensities of 
resonances metabolites that have no actual difference in the 
biological samples.

3.4 � Quantification of resonance peaks 
with no matches in the Chenomx, HMDB 
and COLMAR databases and assessment 
of uncertainty in metabolite assignments using 
RANCM

An attempt was made to quantify the typical number of 
peaks that had relatively confident metabolite assignments 

(i.e. those with significant diagnostic matching features with 
metabolites in the existing databases), those that had ambig-
uous assignments (i. e. those peaks that could be explained 
by more than one metabolite in the databases, and those 
that had no possible matching peaks in the databases. The 
analysis was performed on urine from a mouse containing 
an orthotopic, xenograft tumor established with human Mia-
PaCa-2 pancreatic cancer cells and the soluble cell extracts 
from two different human pancreatic cancer cell lines: Mia-
PaCa-2 and Panc-1, and the results are shown in Fig. 5. It 
was observed that 52.8% of the peaks in the urine from the 
orthotopic, xenograft mouse model of pancreatic cancer had 
at least a putative assignment while 25% of the peaks had 
an ambiguous assignment and 22.2% of the peaks had no 
matching peaks in the database (Fig. 5A). Quite similar pat-
terns were observed for the two human pancreatic cancer 
cell lines with 63.5% of peaks having a putative assignment, 
25.2% having ambiguous peak assignments and 11.3% of 
peaks having no matching peak assignments in the Mia-
PaCa-2 cell line extracts (Fig. 5B) and 53.3% of peaks hav-
ing a putative assignment, 31.1% having ambiguous peak 
assignments and 15.6% of peaks having no matching peak 
assignments in the Panc-1 cell line extracts (Fig. 5C).

3.5 � Evaluation of the overlap of metabolite space 
between the Chenomx, HMDB and COLMAR 
databases

Several large public databases are commonly used to aid 
in the assignment of metabolites in NMR-based metabolic 
profiling studies. One of the most widely used commercially 
available databases is available from the Chenomx company 
(https://​www.​cheno​mx.​com/) which can be supplemented 
with the human metabolite database (HMDB) (https://​
hmdb.​ca/). Another very useful resource for assigning two-
dimensional homonuclear 1H-1H TOCSY spectra and 1H-13C 
heteronuclear HSQC spectra is the COLMAR software and 
database (http://​spin.​ccic.​ohio-​state.​edu/​index.​php/​colmar). 
We have developed the RANCM strategy to assign confi-
dence levels to NMR-based metabolite assignments (Joesten 
& Kennedy, 2019) that uses all three software packages. A 
limitation of this approach is that all three databases are 
significantly incomplete with 40–50% of observed NMR 
peaks in human and mouse urine samples and human can-
cer cell extracts have no matching peaks in the ChenomX, 
HMDB or COLMAR databases. Here we provide a quanti-
tative analysis of the overlap between the three databases. 
The ChenomX database included 339 compounds, 323 of 
which were unique (16 were found to be redundant, i. e. 
the same compounds listed with different synonyms). The 
HMDB database included 657 compounds, 614 of which 
were unique (43 were the same compounds listed with dif-
ferent synonyms). The COLMAR database included 701 

https://www.chenomx.com/
https://hmdb.ca/
https://hmdb.ca/
http://spin.ccic.ohio-state.edu/index.php/colmar
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compounds, 673 of which were unique (28 were the same 
compounds listed with different synonyms). There were 254 
compounds common to all three databases, 16 compounds 

shared between the Chenomx and the HMDB databases but 
absent in COLMAR, 25 compounds common between the 
Chenomx and COLMAR databases that were absent in the 

Fig. 4   Illustration of how normalization can impact peak intensities, 
p-values, VIP scores and AUC values in a simple well-defined set of 
NMR samples. A Representative spectrum of the 5-compound sam-
ple set. B Representative spectrum of the six-compound sample set. 
C L-threonine methyl peak intensity (1.32  ppm, boxed in red) in a 
representative spectrum of the five-compound set without normaliza-
tion. D L-threonine methyl peak intensity (1.32 ppm, boxed in red) in 
a representative spectrum of the six-compound set without normali-
zation. C-Inset) A boxplot showing the comparison of the peak inten-
sity distributions between the 5-compound and 6-compound data sets 
without normalization. D-Inset) A ROC plot showing the accuracy 
of the L-threonine methyl peak intensity (1.32 ppm) for distinguish-

ing between the 5-compound and 6-compound sets of spectra with-
out normalization. E L-threonine methyl peak intensity (1.32  ppm, 
boxed in blue) in a representative spectrum of the five-compound set 
after normalization. F L-threonine methyl peak intensity (1.32 ppm, 
boxed in red) in a representative spectrum of the five-compound set 
after normalization. E-Inset) A boxplot showing the comparison of 
the peak intensity distributions between the 5-compound and 6-com-
pound data sets after normalization. F-Inset) A ROC plot showing the 
accuracy of the L-threonine methyl peak intensity (1.32 ppm) for dis-
tinguishing between the 5-compound and 6-compound sets of spectra 
after normalization
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HMDB and 246 compounds common to the HMDB and 
COLMAR that were absent from the Chenomx database. 
Finally, there were 28 compounds unique to the Chenomx 

database, 98 compounds unique to the HMDB database and 
148 compounds unique to the COLMAR database. The over-
lap among these databases is summarized in a Venn diagram 

Fig. 5   Analysis of distribution 
of putative, ambiguous and no 
assignment of peaks in mouse 
urine and two different pancre-
atic cancer cell lines. Putative 
(green), ambiguous (yellow) 
and no assignments (red) in 
A mouse urine from a mouse 
with a pancreatic tumor, B the 
soluble fraction from the human 
MiaPaCa-2 pancreatic cancer 
cell line, and C the soluble 
fraction from the human Panc-1 
pancreatic cancer cell line
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shown in Fig. 6. The conversion of all metabolites listed in 
all three databases to a common naming convention and the 
detailed analysis of the specific compounds that belong to 
each overlap category are included in Excel sheets avail-
able in the supplementary material and stored in a public 
database repository.

4 � Conclusions

Here, we have addressed three important issues that continue 
to impact and limit NMR-based metabolic profiling studies. 
First, we addressed the inconsistency in various measures 
commonly used to assess statistically significant differences 
in NMR peak intensities when comparing sets of NMR spec-
tra belonging to distinct groups, e. g. a healthy control group 
and a disease group. Our analysis indicated that p-values and 
AUC values appear strongly correlated whereas fold changes 
and VIP scores appear weakly or non-correlated with the 
p-values and AUC values, and appear to be less useful as a 
consequence.

Next, we quantitatively addressed the impact of data nor-
malization to total intensity had prior to statistical analysis 
using urine samples obtained from an orthotopic, xenograft 
mouse model study of pancreatic cancer. The analysis indi-
cated that the normalization had a large impact on the num-
ber and distribution of statistically significant resonances, 
and consequently, differences in metabolite concentrations. 
This practice has widespread potential significance in the 
field since investigators often routinely normalize NMR data 
prior to statistical analysis and reviewers often require some 

form of data normalization prior to statistical analysis when 
reviewing manuscripts. While experimental factors some-
times justify data normalization, automatic normalization 
of samples containing identical amounts of sample is not 
necessarily justified and may introduce increased variation 
into the dataset. Unjustified data normalization can also lead 
to false conclusions regarding the statistical significance of 
apparent differences in metabolite concentrations. An exam-
ple where data normalization would be justified would be in 
a case where nine urine samples from a study group were 
used to prepare NMR samples using 540 µL of urine plus 
60 µL of D2O, however, only 100 µL of urine was available 
to make up one sample, which could be prepared using 440 
µL of buffer and 60 µL of D2O. In order to include the dilute 
sample prepared from 100 µL of urine in the analysis along 
with the other nine samples prepared from 540 µl of urine, 
data normalization would be justified and required. Another 
example where data normalization would be justified and 
required might occur when performing NMR analysis of 
human cell culture extracts. For example, if five control 
NMR samples were prepared from a single Petri dish and 
five additional NMR control samples were prepared from 
two Petri dishes. Then, in order to combine the ten samples 
into a single control group, data normalization would be 
required and justified. Given that the decision of whether or 
not to normalize spectra collected from samples prepared 
from identical quantities can introduce a confounding vari-
able, it should be justified with a solid rationale. For exam-
ple, if the metabolite concentrations vary naturally in some 
range, as would be expected, normalization could poten-
tially introduce variance into the data that did not exist prior 
to data normalization. When comparing control and study 
groups, there is a potential risk that normalization of the 
data, in the case where normalization cannot be justified, 
could cause differences in apparent concentrations of some 
metabolites that appear to be statistically different when they 
actually are not, as was observed in our synthetic sample 
test case. It is also possible that normalization of the data 
may mask real statistical differences in peak intensities that 
become statistically insignificant after normalization.

Finally, we have drawn attention to a serious limitation 
of most NMR-based metabolic profiling studies, i.e. the 
observation that most NMR resonances detected in NMR-
based metabolic profiling studies cannot be assigned from 
the most widely used metabolite databases. In fact, it is not 
uncommon for > 40% of the resonances to go unassigned. 
This problem not only occurs when evaluating human 
urine samples, but is significantly exacerbated when bio-
fluids from other organisms are examined, for example 
mouse and rat urine, or when other biological fluids are 
examined, e. g. human cancer cell line extracts. A major 
cause of this problem is that many of the NMR peaks 
observed in these samples are simply not represented in 

Fig. 6   Analysis of the overlap in the composition of commonly used 
metabolite databases. The Venn diagram shows the number of metab-
olites that are shared between all three databases (254), those shared 
between any two of the databases, and the number of compounds 
unique to each database



	 I. L. Ross et al.

1 3

   64   Page 12 of 13

the ChenomX and HMDB databases. A further problem is 
that often when a metabolite is putatively assigned in the 
one-dimensional NMR spectrum, the peaks cannot be con-
firmed in the multidimensional NMR COLMAR database, 
which is used to increase the confidence in the metabo-
lite assignments in the one-dimensional NMR spectra 
from which the statistical significance test conclusions 
are drawn, because the compounds in the ChenomX and 
HMDB databases are not always present in the COLMAR 
database. To gain a better understanding of the overlap and 
intersection of the metabolite spaces of each database, we 
quantified the overlap and intersections of the ChenomX, 
HMDB and COLMAR databases, the results of which 
revealed substantial overlap among the three databases, but 
also significant unique metabolite spaces in each database 
as well. This analysis indicates that an effort should be not 
only to significantly expand the metabolite coverage of the 
ChenomX and HMDB databases, so that the completion 
of putative assignments of NMR resonances from the one-
dimensional NMR spectra can be significantly increased, 
made to ensure that the COLMAR metabolite list covers 
the entire metabolite space present in the ChenomX and 
HMDB databases used to assign one-dimensional NMR 
spectra, so that assignment confidence can be routinely 
maximized in NMR-based metabolic profiling studies.

Our study does include a number of caveats. One caveat, 
for example, is that the choice of cutoffs for the metrics 
considered can also impact the analysis presented here, but 
the cutoffs used in this study were chosen based on val-
ues commonly found to be used in the literature. Conse-
quently, while the analyses may change depending on the 
choice of cutoffs used for the various metrics, the analysis 
presented here should be representative and informative for 
many investigators who choose the same or similar cutoffs 
in their own studies. Another caveat is that we have only 
considered a single type of normalization scheme, namely 
normalization to total intensity. This raises the interesting 
question as to how other normalization schemes may or may 
not impact the resulting distributions of statistically signifi-
cant changes in NMR-based metabolic profiling datasets, 
however, normalization to total intensity is a widely used 
normalization technique and comparison with other normali-
zation schemes was beyond the scope of the current study. 
And yet another caveat of this analysis is the fact that the 
t tests and other tests have been applied to the “processed” 
data and not directly to the observed raw data, which is the 
free induction decays themselves. A consequence of this fact 
is that the processing step have the potential to impact the 
statistical analyses, including the analyses performed and 
described in this manuscript. The possibility exists that the 
conclusions drawn from this analysis could change if the raw 
data were processed in a different manner, and the reader 
should be aware of this possibility.

As a final note, it should be pointed out that the observa-
tions and conclusions drawn from this study reflected a lim-
ited space of the potential types of biological matrix samples 
that can be studied in NMR-based metabolic profiling stud-
ies. While the observations reported here were drawn from 
urine samples collected from an orthotopic, xenograft mouse 
model study of pancreatic cancer, and soluble cell extracts 
collected from two human pancreatic cancer cell lines, it is 
possible that the conclusions drawn from these studies may 
not be universally true when applied to other samples sets, 
for example human urine samples, tissue extracts, or other 
biological matrices. In order to answer these questions, fur-
ther studies would need to be conducted to address these 
possibilities. However, the results presented here highlight 
some important limitations and caveats that persist in the 
analyses of NMR-based metabolic profiling data that should 
be considered when designing NMR-based metabolic profil-
ing studies and when analyzing and interpreting NMR-based 
metabolic profiling datasets.
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