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Bacterial proteases are a promising post-translational regulation strategy in
synthetic circuits because they recognize specific amino acid degradation
tags (degrons) that can be fine-tuned to modulate the degradation levels
of tagged proteins. For this reason, recent efforts have been made in the
search for new degrons. Here we review the up-to-date applications of
degradation tags for circuit engineering in bacteria. In particular, we pay
special attention to the effects of degradation bottlenecks in synthetic oscil-
lators and introduce mathematical approaches to study queueing that
enable the quantitative modelling of proteolytic queues.
1. Introduction
The increased ability to engineer genetic networks [1] has enabled the construc-
tion of various synthetic circuits, such as the toggle switch [2], Boolean-like
gates [3,4] and circuits exploiting positive/negative feedback loops [5,6].
These circuit topologies mimic the core behaviour of natural gene networks
and provide organisms with new functionalities [7–10]. Notably, most of
these circuits rely on transcriptional regulation. Taking the cue from natural
systems, which often use transcription, translational and post-translational
regulation to fine-tune outputs (often protein levels), researchers have recently
leveraged all three in new circuits [11–13]. In particular, proteases have been
leveraged to regulate the behaviour of synthetic circuits at the protein level to
increase circuit control and output in bacteria [13,14] and eukaryotes [15–17].
Cellular proteases recognize specific amino acid sequences, known as degra-
dation tags or degrons [14], and are crucial in maintaining the homeostasis of
proteins [18,19]. Degrons can be of various lengths intrinsically present in
the protein’s sequences, result from the ribosomal rescue system tagging the
C-terminus [20,21], or caused by the enzymatic modification of the N-terminus
of a protein [22–25]. Proteins tagged with degrons have faster and tunable
degradation rates compared to untagged proteins due to the degradation
activity of proteases. As far back as the 1960s, seminal theoretical models high-
lighted the importance of controlling the degradation rates to obtain robust
circuit outputs, particularly in synthetic oscillator designs [26,27].

Synthetic circuits often use heterologous (foreign) proteins or highly pro-
duced host proteins. Target proteins are commonly induced by tightly
regulated promoters using high copy number plasmids to have robust control
and maximize output. Metabolically speaking, this can result in cellular
burden [28–31], which is only exacerbated because heterologous proteins
accumulate cellular space (e.g. cells have a finite cytoplasm) and their amino
acids are not recycled (loss of energy). Without the use of degradation tags
protein turnover is dependent on dilution from growth/division. This process
can be slow and, importantly, highly dependent on the strain and environment.
For example, slower-growing cells will have more buildup of heterologous pro-
teins than faster-growing cells. Moreover, the lack of controlled degradation
may lead to coupling effects between the circuit’s output, its regulation and
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the host growth rate [32–35]. Ultimately, these effects limit the
complexity, temporal resolution and scalability of the design
of synthetic circuits.

In this context, bacterial degrons are a key part of the syn-
thetic biology toolbox [36,37]. Degradation tags add an extra
layer of circuit regulation and provide a handy post-
translational method to uncouple the growth rate from a cir-
cuit’s output. In addition, degradation tags decrease cellular
burden because heterologous proteins accumulate less in
the cytoplasm (taking up less cellular space), and their
amino acids can be recycled (less loss of energy). Yet, their
importance and potential are still being unravelled, largely
because the available ‘palette’ of degradation tags and pro-
teases in synthetic biology is still limited. To date, most
bacterial synthetic circuits exploit almost exclusively one
E. coli degron: the SsrA tag (ec-SsrA) and its variants
[37,38]. This tag is primarily recognized by the ClpXP
proteolytic complex [39].

A limitation of using one protease system is that proteases
are naturally maintained at limited numbers to achieve a tight
regulation of the proteome machinery. When high levels of
proteins are produced, degradation bottlenecks can develop
even if proteins are tagged and lead to the formation of proteo-
lytic queues [40,41]. The importance of proteolytic queueing
to the output of many synthetic circuits has often been
disregarded/underappreciated. Proteolytic queueing has
mostly been studied in synthetic oscillators [42], a circuit top-
ology where degradation tags are particularly relevant since
protein expression is regulated by production/degradation
waves. For example, queueing has been leveraged to couple
otherwise unrelated circuits [11,43,44]. Coping with limited
resources also leads to redundancy in degradation pathways.
That is, whenClpXP becomes saturated, a fraction of its targets
can be degraded by other proteolytic complexes [41,43]. On
the other hand, it can also be a nuisance when designing a
robust degradation strategy in synthetic circuits, as it hinders
the ability to precisely control degradation rates. From a theor-
etical perspective, although current models take into account
enzymatic degradation [45,46], they do not typically incorpor-
ate the effects of degradation bottlenecks to understand
circuit’s dynamics except in very few studies [11,41,47].

New circuits with degradation tags targeted to other pro-
teases beyond ClpXP have been developed in the last few
years [43,48–50]. We also now have a better understanding
of how finite processing resources (e.g. proteases) regulate
the behaviour of complex circuits [14,48,51]. In particular,
the connection between processing pathways in a biological
context and theoretical frameworks—classically applied to
computer systems and call centres—has paved the way to
understand how queueing affects the output of synthetic
biological circuits [52].

In this review, we focus on the use of bacterial degra-
dation tags (degrons) in synthetic biology for applications
in prokaryotic systems. First, we discuss currently used
degradation tags and recent advances in the search for
alternative degrons and their potential benefit to construct
new circuits. Specifically circuits with minimal crosstalk
between proteolytic pathways. Second, given that queueing
effects have been more clearly revealed/understood in
oscillatory circuits, we review recent research showing
how proteolytic bottlenecks affects the output of synthetic
oscillators. Finally, we introduce the mathematics of queue-
ing theory and the approaches typically used to model
systems with bottlenecks. Altogether, by emphasizing the
role played by degrons in ‘oscillatory synthetic biology’ and
by introducing the theoretical and modelling frameworks of
queueing, our review supplements recent efforts in the field
[14] that highlight the uses of bacterial degrons in the context
of synthetic applications and as novel antimicrobials.
2. Bacterial degrons: from natural systems
to circuit engineering

2.1. Main degradation pathways in bacteria
In bacteria, three major degradation signalling systems exist:
intrinsically present in a protein’s sequence [25] (figure 1a),
the ribosomal rescue system tagging the C-terminus of a pep-
tide [20,21,23] (figure 1b) and enzymatic modifications of the
N-terminus of a peptide [20,22,53] (figure 1c).

Proteases are able to recognize these degradation signals
and bind to the tagged proteins, which leads to their unfold-
ing and degradation [57]. Proteases typically display different
binding affinities for different tagging systems [43], providing
a post-translational regulation mechanism to modulate
protein levels. The degradation signal can be located at any
position along protein sequences, and we call these intrinsic
degrons (figure 1a). A properly folded protein is protected
from proteases since the surrounding amino acids hide the
degrons [25,58–63]. Intrinsic degrons are exposed by external
signals, such as stress, or by the action of chaperones [64],
and can be recognized by a specific protease or by multiple
proteases.

The most extensively studied bacterial degradation tag is
the SsrA-tag, located at the C-terminal of proteins [54]. It
originates from the trans-translational rescue system (riboso-
mal rescue system [21,65]), which processes defective
proteins due to translational errors [66–68] (figure 1b). This
system frees stalled ribosomes to maintain the ribosomal
pool and conserve cell functionality by adding the SsrA
degradation tag to the C-terminal of unfinished polypeptides.
These peptides are then degraded primarily by ClpXP in
most bacteria [21,38,69–77]. While bacterial species can
show variations in their SsrA-tag sequences [78–81], the tag
commonly ends with a C-terminal motif of three amino
acids, LAA. However, Mollicutes have a conserved ending
NYAFA motif on their C-terminal tags mainly recognized
by the protease Lon [82].

The most studied SsrA tag is from E. coli (ec-SsrA), and it
consists of an 11 amino acid sequence (AANDENYALAA)
that includes a binding site for the chaperones ClpX, ClpA
and SspB [39,81] (figure 2a). ClpX and ClpA are unfoldases
and members of the AAA+ family of proteins (ATPases) [85]
that, after unfolding polypeptides in an ATP-dependent
manner, transfer the tagged peptides to the caseinolytic pro-
tease ClpP. ClpP breaks the polypeptide bonds releasing free
amino acid monomers [86,87]. ClpXP is the major proteolytic
complex that recognizes ec-SsrA [39,88,89], and its activity
can be further modulated by the chaperones SspB [55,90,91]
and ClpS [92]. SspB binds to the ec-SsrA tag and then caries
it to ClpX increasing ClpX’s specificity to the tag. By contrast,
ClpS binding to ClpA reduces ClpA interactions with ec-SsrA
tags [92], and enhances its role in the degradation of proteins
with specific N-degrons [93,94] (figure 1c). Although the ec-
SsrA tag is primarily recognized by ClpXP, it has a low affinity
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to other proteases such as ClpAP, Lon, FtsH and Prc (also
named Tsp) [38,39,64,95–98]. When multiple proteases recog-
nize the same tag, it can lead to proteolytic crosstalk. This
crosstalk is particularly important in synthetic circuits using
multiple degradation tags, as it hinders the ability to tightly
control the protein levels and prevents orthogonal (i.e.
uncoupled) circuits from being built [43].

We have already covered the basics of the C-terminal
degradation tag, but the N-terminal residues (N-degrons)
can also affect a protein’s half-life [20,99,100] (figure 1c).
The N-degron pathway is universal, although in bacteria it
is best understood in E. coli [20]. In E. coli, ClpAPS is the
main proteolytic complex recognizing N-terminal residues
for degradation [20,94]. The N-terminal destabilizing amino
acids have been divided into primary degrons (1o-degrons:
Leu, Phe, Tyr and Trp) and secondary degrons (2nd-degrons:
Arg and Lys) [101]. ClpS can directly recognize primary
degrons. By contrast, secondary degrons require the action
of an amino acid transferase that facilitates ClpS binding by
adding a primary degron sequence to the N-terminus
[93,94,102,103]. For example, the L/F-transferase can modify
the N-terminus of proteins by adding a Leu or Phe amino
acid to a secondary degron [104]. N-degrons hold potential
for expanding the synthetic biology toolbox, although their
use is still limited [15,50,56,105].

2.2. Engineering degradation signals
The SsrA-tag was first discovered in E. coli (ec-SsrA) in 1995
[36] and was later used to study protein kinetics (degradation
rates and protein turnover) [37]. The tag and variants (LVA,
AAV and SVA), mutation of the last three critical residues
(LAA), were fused to the C-terminal of fluorescent proteins
[37,38]. Most synthetic circuits to date, especially dynamic cir-
cuits, exploit almost exclusively this tag and variants for
targeted degradation. Apart from E. coli, synthetic circuits
using the tag have been tested in other bacterial species,
including bacillus [106,107], pseudomonas [108], salmonella
[109], mycobacteria [110–112] or cyanobacteria [113]. The
most common design includes fusing the SsrA tag to the
C-terminal of the proteins of interest [37]. However, the
lack of degradation specificity of the tag by ClpXP (i.e. bind-
ing sites that can be recognized by other proteases; figure 2a)
still hinders the ability to control the degradation levels
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tightly in many circuits. New designs are required to make
degradation systems that are more robust in their control
and portable between bacteria.

One approach has been to leverage the specificity of the
chaperone SspB to enhance the degradation by ClpXP
using a modified degron tag known as DAS [83]. The DAS
variant consists of a mutated tag in which the last three con-
served amino acids (LAA) have been changed to DAS to
minimize ClpX binding [83] (figure 2a). DAS has been further
improved by linking four additional amino acids (SENY) to
the rest of the native tag (Dasþ 4 tag: AANDENY-SENY-
ADAS; figure 2a). The degradation of the DAS + 4 variant
by ClpXP in E. coli occurs effectively when SspB is induced
[83] (figure 2b). This strategy has also been successfully
implemented in B. subtilis [106] and mycobacteria [110]. The
DAS + 4 tag-based system was further modified by imple-
menting a split adaptor system [114], where SspB is split
into two domains, SspBCORE and SspBXB. A functional
SspB protein only forms in the presence of the antibiotic rapa-
mycin, thus enabling an additional layer of control for the
DAS + 4 tag degradation [115,116].

A different approach to improving the degradation
specificity of the ec-SsrA tag is the use of hybrid tags with
cleavage sites identified by viral proteases [56] (figure 1d ).
While the use of degrons recognized by proteases allow for
the direct regulation of protein degradation levels, viral pro-
teases typically recognize and cleave specific peptides from
a protein sequence [117,118]. Thus, they are not directly
involved in the degradation of proteins; when used in combi-
nation with degrons they can improve protein stability
[15,50,56,119,120]. In bacteria such a strategy has been
implemented in the FENIX system (Functional Engineering
of SsrA/NIa-based fluX control) which uses a hybrid ec-
SsrA/NIa (viral nuclear inclusion protein A) tag [84] isolated
from the turnip mosaic potyvirus [121] (figure 2c). In the
absence of a NIa protease, FENIX allows for active degra-
dation of the ec-SsrA-tagged protein by ClpXP. However,
expression of the NIa protease results in the NIa-tag being
cleaved, causing the removal of the SsrA-tag from the
target protein and stabilizing its levels [84]. FENIX has
been successfully used to uncouple the production of biopo-
lymers to growth rate [84], and decrease leaky gene
expression in P. putida [108].

Another innovative approach is to use the natural vari-
ation of the SsrA tag sequence in different bacteria. The
SsrA tag sequence is conserved in most bacterial species
[81]; however, Mycoplasma species (class Mollicutes) have
evolved a different SsrA amino acid sequence because they
lack an active ClpXP proteolytic complex [82]. The SsrA tag
fromMesoplasma florum (mf-SsrA) is longer than its E. coli ana-
logous, and ends with a NYAFA motif recognized by the M.
florum’s Lon protease (mf-Lon) [48,82]. The Collins’ group has
explored the usage of mf-SsrA variants for synthetic biology
applications by cloning proteins with this tag in E. coli [48].
Two variants have been tested in synthetic circuits. In these
circuits, the degradation of tagged proteins is driven by mf-
Lon co-expression [122,123]. However, some studies showed
that mf-SsrA tagged proteins can escape most, but not all,
endogenous E. coli proteases [82,124]. Some efforts have
been made to improve mf-Lon’s specificity by systematically
deleting particular residues [125] in one of the mf-SsrA var-
iants created in [48]. Another concern is that non-native
proteases may add metabolic burden on the host by targeting
native proteins, thus affecting large protein networks. With
that being said, the approach of using a non-native tag has
significant potential to allowing the design of complex
orthogonal circuits within the same host. The Sauer’s group
explored this and showed that mf-Lon is not able to degrade
RscA, an E. coli Lon substrate [82]. It is still unclear if, and if
so, how much the mf-Lon can degrade ec-SsrA tagged
proteins.

As hinted above, increasing the pool of degron sequences
(especially those recognized by proteases other than ClpXP)
is necessary to provide researchers with a diverse library of
orthogonal degradation tags to mix & match on demand. In
that regard, the set of N-terminal sequences recognized by
ClpAPS in native E. coli proteins holds a clear potential to
develop synthetic circuits that remains largely unexplored
[126,127]. Newly produced tags based on N-degrons have
been used in a few circuits [15,50,56,105]. In these systems,
the degradation strategy consists of fusing the protein
sequence to a N-degron sequence separated by a viral pro-
tease cleavage site. As a result, a stable protein is produced
in the absence of the viral protease because the N-degron is
protected from ClpS recognition. However, if the viral pro-
tease is expressed, it cleaves at the viral tag site. This
exposes the N-degron to ClpAPS, resulting in the protein
being degraded. A repertoire of Boolean-like gates were con-
structed using this strategy with three orthogonal viral
proteases from Potyvirus (TEVp, TVMVp and SuMMVp)
and the Y (YLFVQ) and F (FLFVQ) N-degron sequences [56].

The first intrinsic sequences used in complex synthetic cir-
cuits were MarA, MarAn20 and RepA70 (also called
RepAn70) [43,49]. MarA is a transcription factor that regu-
lates multiple genes involved in antibiotic-resistance
pathways [128], and the N-terminus of MarA is a target of
Lon [129]. The MarAn20 tag is the last 20 amino acid tag
from the N-terminal of MarA. On the other hand, RepA70
is a 70 amino acid sequence from the N-terminal region of
the protein RepA. The tag has a high affinity for ClpAP but
a low affinity for ClpXP [130,131]. Some examples of other
degradation sequences compatible with Lon and/or ClpAP
include UmuD (15–29 amino acids) [132], SulA (150–169
amino acids) [133], HipB [43,134] (20 amino acids), SoxS (1–
21 amino acids) [43,135] and MazE [136,137]. Some of these
sequences were explored as potential alternative degradation
tags for synthetic biology applications by fusing them to flu-
orescent proteins and monitoring protein levels over time as
well as proteolytic crosstalk levels [43]. The results revealed
that MarAn20 and RepA70 show higher degradation rates
than the other tags tested (HipBc20, MazE, SoxSn20,
RepA15 and HipB), and little crosstalk was observed between
Lon and ClpAP. This makes these tags good candidates for
synthetic biology applications. Degradation tags targeted to
ClpXP, ClpAP and Lon are almost exclusively used in syn-
thetic biology, but other proteases exist. We do not cover
them here, but they are well explained in another review
[14]. In addition, new research shows that the charge of the
last amino acid on the C-terminus end of a peptide affects
translation termination and likely protein degradation [138],
although the main players behind are not well understood.

Another clever use of degradation tags is employing them
to create localized protein expression patterns. There is an
increasing interest in developing spatial patterning strategies
in bacteria [139–141], as this could give us a better understand-
ing of fundamental biological processes from developmental
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biology to tissue engineering [142,143]. For example, FtsH
[144] and Prc (Tsp) [145] are proteases responsible for the
degradation of membrane proteins and periplasmic proteins,
respectively, and hold potential for the design of membrane-
localized or periplasmic circuits. Recently, Hong et al. [146]
produced intracellular spatial asymmetries in protein pro-
duction using a hybrid tag in E. coli. The circuit uses a split
TEV protease bound to the membrane by a PopZ-based
polarity system from C. crescentus [147] (figure 3). In the
absence of the protease, the protein is degraded due to a
C-degron sequence. However, in the presence of the protease
located only in the cell’s pole, the C-degron is cleaved. This
results in the protein levels stabilizing close to the cell’s pole
and creating patterns of expression [146].
3. Synthetic oscillators and degradation
bottlenecks

Many natural biological systems oscillate (figure 4a), with
examples of oscillations in all domains of life such as the cya-
nobacterial circadian clock [148], the bacterial cell cycle (Min
oscillations) [149], the response of the tumour suppressor p53
protein in eukaryotes [150], cellular differentiation in biofilms
[151] and many more. Oscillations can occur at the transcrip-
tional and translation level such as a periodic expression of
genes during the cell cycle; at each stage of the cell cycle-
specific genes need to be expressed for proper cell division.
These oscillations are often periodic with a regular cycle.
Some natural oscillation cycles can be controlled by an aper-
iodic signal including non-biological [152] and biological
systems [153–155]. Synthetic bacterial oscillators have been
instrumental in exploring new frontiers of aperiodic
controlled oscillators in biological systems [156].

Natural oscillators display three important characteristics:
robustness, coherence and tunability [42]. A long-term goal
of synthetic biology is to build oscillators that exhibit
these properties for industrial and medical applications
[7,157–165]. However, this endeavour has proven to be chal-
lenging. Bottom-up approaches have identified three key
components in the core design of oscillators: (i) a negative
feedback loop (essential); (ii) a positive feedback loop
(enhancement of the oscillatory behaviour); and (iii) rapid
protein turnover, our main focus in the context of this
review. Protein turnover is not an essential component, but
its incorporation has led to more robust oscillators
[42,166,167] (figure 4b). Thus, the control of the oscillatory
dynamics is often closely linked to understanding protein
degradation. Several theoretical work support the importance
of degradation speed in controlling oscillations [168–170].

The most commonly employed method to achieve rapid
protein turnover is actively degrading transcription factors
(TFs) and/or fluorescent reporters using E. coli SsrA tagged
proteins [5,6,44]. However, the lack of orthogonal degra-
dation mechanisms and the use of strongly induced
promoters cause the formation of degradation bottlenecks
(proteolytic queues) [40,51,171]. This is due to the mismatch
between the cell’s relatively low number of proteases and the
high number of proteins (table 1). Proteolytic queueing has
been observed in wild-type bacteria during stress conditions
and linked to up-regulation of the sigma factors σS and σ32
[24,174–177]. It is also associated with antibiotic survival
strategies [177,178]. In vivo experiments showed that ClpXP
often works near or in a saturated regime, and that queueing
can lead to coupling between unrelated proteins targeted by
the same proteolytic complex [40]. Thus, proteolytic queueing
affects the dynamics and properties of synthetic oscillators.
As a result, oscillators have often been designed specifically
to leverage queueing, as we will discuss in this section.

Proteolytic queues can enhance or suppress oscillations
depending on the queue size [40,171,179]. Understand-
ing this phenomenon requires us to provide details
about the design principles underlying synthetic oscillators
(figure 4b). Generally speaking (see notable exceptions at
the end of this section), bacterial synthetic oscillators share
some structural features; the presence of delayed negative
feedback loops and targeted degradation for rapid protein
turnover [42]. Time delays occur naturally through the tran-
scription, translation and protein maturation processes, but
they can also be enhanced by proteolytic queueing. As
queues build up, the amount and availability of degron-
tagged repressor molecules increase, thus enhancing the
delay effects [40,180,181]. Despite that delayed negative feed-
back loops are mathematically sufficient (and necessary) to
achieve oscillations, as of yet, no robust biological oscillator
has been produced that solely relies on this mechanism
[42]. Most use queueing and/or positive feedback loops.
Positive feedback loops are a key design feature to increase
the robustness of oscillations [6]. Positive feedback loops
also affect the queueing dynamics, as they lead to greater pro-
duction of regulatory elements (repressors and/or activators).
Regulatory elements are typically targeted to the same pro-
teolytic complex (e.g. by the use of the same SsrA tag),
resulting in the degradation queues building up faster and
delays in both positive and negative feedback loops.

Our understanding of the significance of proteolytic
queueing in synthetic oscillators stems from the theoretical
and experimental work done with the dual-feedback (DF)
synthetic oscillator [6,11]. Though the repressilator, the first
experimental oscillator built [5], was produced 8 years prior
to the DF oscillator and also relied on proteolytic queueing
(figure 4c). The repressilator operates on the most basic
design principle, where only negative feedback loops are
involved through three mutually repressing genes (lacI,
tetR, cI) tagged with an ec-SsrA (LAA) tag (figure 4c). A flu-
orescence gene (GFP), placed on a different plasmid, reports
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Figure 4. (a) An oscillatory output can be quantified by its period and amplitude. (b) The design features of a robust oscillator include a delayed negative feedback
loop where a repressor (grey) represses all regulatory elements of the circuit. Mathematically, the delayed negative feedback loop is the only essential element in
obtaining oscillations. It can also include a positive feedback loop where an activator (yellow) activates all regulatory elements of the circuit. It may also contain a
method for rapid protein turnover such as an amino acid degradation tag, which targets proteins to a protease. Proteolytic queues can then form, which can
enhance the robustness of the oscillator because the queue can add a consistent time delay to the system. (c) The basic design of two oscillators. Left: the repres-
silator [5] contains three repressors that repress each other: R1 (LacI), R2 (TetR) and R3 (λCl). Node R1 (LacI) is externally controlled with an IPTG inducer. All
repressor proteins are tagged with a SsrA degradation tag (LAA), while the fluorescence reporter (GFP) is tagged with the SsrA variant (AAV). Both LAA and AAV tags
are used to target proteins to be degraded by the ClpXP protease. Right: the dual-feedback (DF) oscillator [6] contains a repressor (LacI) that represses all regulatory
elements, including itself (negative feedback loop), and an activator (AraC) activates all regulatory elements, including itself ( positive feedback loop). Both nodes are
controlled with the inducers (IPTG and arabinose). All elements are tagged with the same SsrA-tag (LAA) sequence from E. coli, thus the original repressilator and DF
oscillator rely on the formation of proteolytic queues for oscillations.

Table 1. The average number of known proteolytic units in E. coli during
exponential (left: growth in minimal media with glucose, right: growth in
LB) and stationary phase (left: after one day in stationary phase, right:
after 3 days in stationary phase). All data was obtained from dataset 2 in
[172], except ClpS numbers that are from [98]. Subindexes indicate the
number of units that build a functional enzyme (e.g. ClpX6 indicates that a
functional ClpX enzyme is formed by 6 units). The numbers in the
molecules per cell column reflect the total numbers of functional enzymes
in a cell. Note that in bacteria, highly expressed proteins (e.g. ribosomes)
are in the order of approximately 27 000 molecules=cell [173].

enzyme

molecules per cell

exponential stationary

Lon 1139|3411 741|826

ClpX6 546|916 166|205

SspB2 176|356 87|52

ClpA6 88|246 25|26

ClpP14 630|865 288|312

ClpS 250|300 250|300

FtsH 2236|3956 972|924

Prc 506|621 213|166
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the dynamics of the repressor cI. However, GFP is tagged
with the SsrA variant AAV, which has a slower degradation
rate than the original ec-SsrA tag [37]. It is worth noting
that in the repressilator only a small percentage of cells exhi-
bit oscillations and is not synchronized across the population
[5]. However, more cells exhibit oscillation with the DF oscil-
lator [6] and these cells can be synchronized across the
population. In this manner, the DF oscillator is more robust
than the repressilator.

Notably, the DF oscillator was the first design to
implement a positive-feedback loop along with a negative-
feedback loop (figure 4c). In the DF-design, all genes of the
circuit include the same version of the ec-SsrA tag, and it
uses the hybrid promoter Plac/ara [182]. This promoter is
negatively controlled by LacI and positively controlled by
AraC. The oscillator can be externally regulated using IPTG
and arabinose. IPTG leads to an increase in LacI, the repres-
sor, while arabinose leads to an increase in AraC, the
activator. Hence, the oscillator can be externally regulated
in a dose-dependent manner using IPTG and arabinose.
The DF oscillatory dynamics is preserved at different temp-
eratures, several growth media and usable in multiple
organisms with only minor changes [6,109]. Furthermore, a
modified version of the DF design (the quorum oscillator)
that exploits cellular entrainment (discussed below) via a
quorum sensing mechanism reduces cell-to-cell variability
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in the output [44]. In the DF and quorum oscillator, all genes
of the circuit include the same version of the ec-SsrA tag
(figure 4c); thus, the dynamics of this oscillator is affected
by proteolytic bottlenecks as well.

A particular advantage of using oscillators that use proteo-
lytic queueing is that a population of cells can be entrained (i.e.
synchronized by an external signal) [51,170]. Entrainment
allows coherence, cells follow the frequency (similar ampli-
tude and period) of the external signal synchronizing their
behaviour. The classical example of entrainment is in
humans where the circadian rhythm (the process that regu-
lates the sleep–wake cycle to the planet’s 24 h rotation) is
entrained by the position of the sun in the sky [183]. Proteo-
lytic queueing and the process of entrainment has been
exploited as a design feature in synthetic oscillators. The DF
oscillator was entrained via proteolytic queueing by using a
fluorescent protein-tagged targeted to ClpXP [51]. The fluor-
escent protein (CFP-SsrA) and the DF oscillatory proteins are
all targeted for degradation by ClpXP. The CFP-SsrA was
induced by an external AHL signal, and the DF oscillator
was controlled via IPTG and arabinose (GFP-SsrA as fluor-
escent reporter). The transcription of these two circuits were
independent of each other, but connected through the same
proteolytic pathway (ClpXP). When the level of CFP-SsrA
was modulated in a microfluidic device using AHL, the
GFP-SsrA output followed the CFP-SsrA oscillation periods.
This resulted in the entrainment of the oscillator where thou-
sands of cells followed the external AHL signal (CFP-SsrA).
This study demonstrated the power of coupling unrelated net-
works (only related through a proteolytic queue) to get
controllable single-cell and population dynamic responses
[51]. In another study, entrainment via proteolytic queueing
was exploited to couple the output of two independent oscil-
lators [11]: the DF oscillator [6] and the quorum oscillator
[44]. By modifying the DF oscillator so it lacked the positive
feedback loop (LacI-SsrA and YFP-SsrA), its output was syn-
chronized with the quorum oscillator (AaiA-SsrA, LuxI-
SsrA, CFP-SsrA) [11] (figure 5a). Under these scenario, each
circuit produced independent oscillatory dynamics on their
own. When combined in the same host, a strong coupling
and synchronization of the oscillations occurred orchestrated
through proteolytic queueing [11]. All proteins contained the
SsrA-tag, which targeted the proteins to the same degradation
machinery, ClpXP. As a result, the coupled oscillator displayed
a greater coherence than the individual oscillators [11]. Also, as
proteolytic queues are susceptible to changes in protein levels,
the couple oscillators can detect small changes in the input
signal, showing an increased sensitivity. In a further study, a
method was developed to quantify the level of proteolytic
crosstalk between independent proteins tagged with degrons.
This assay, the Crosstalk Assay [43], is helpful for quantifying
coupling due to proteolytic queues and to identify degra-
dation tags that are not coupled, and show potential for the
construction of orthogonal circuits (figure 5b).

The last couple of examples leveraged coupling through
queues to synchronize oscillators; however, coupling can be
a major limitation when designing other circuits. Proteolytic
bottlenecks are a major impediment to modulate indepen-
dently the amplitude and period of the oscillations [179].
This can be a substantial shortcoming since building tunable
oscillators is a sought-after property in synthetic designs
[184]. To modulate amplitude and period independently,
Tomazou et al. [179] have proposed alternative designs that
reduce queueing (by tweaking the expression levels of pro-
teases or by using orthogonal degradation tags). While most
oscillators build to date exploit degradation tags (and hence,
are prone to proteolytic queueing), it is important to highlight
some recent circuit design solutions that minimize or avoid
degradation tags and proteolytic queues. A variation of the
repressilator without SsrA tagging [185] used ‘sponge
elements’ (additional TF binding sites) [186] to reduce the
availability of free transcription factors. The sponge elements
represent an alternative way of increasing the turnover rates
of regulatory elements. They can be used to decouple the oscil-
latory output from cell division in the absence of degradation
tags. This modified repressilator [185] showed oscillations
both in the absence and presence of sponge elements but
with an increased period compared to the original repressila-
tor. The disadvantage of using sponge elements over
degradation tags is that shorter periods has not been achieved
(more practical oscillation periods are required for appli-
cations such as biosensors). Escherichia coli can double every
20min, and feedback can be quick with oscillators that use
degradation tags such as the DF oscillator (which can oscillate
in less than 20 minutes). However, the modified repressilator
takes several generations to give an oscillatory output; 10
and 14 generations to oscillate with and without sponge
elements, respectively. The use of degradation tags allows
the DF oscillator to function independently from the cells dou-
bling time; however, the modified repressilator is still
dependent on the cells doubling time for removal of proteins.

A new family of synthetic circuits based on CRISPR inter-
ference has emerged that are notably relatively independent
of proteases to modulate the turnover rates of the regulatory
elements [49,187–189]. These circuits rely on CRISPR
nucleases variants (mainly dCas9) that bind to the DNA
without cleaving it (nuclease-null). dCas9 binding is guided
by an associated RNA molecule (gRNA). These effector mol-
ecules replace the role of natural TFs in synthetic circuits
[188]. A modified repressilator was designed that uses the
dCas9 protein to replace the role of LacI in the original
design [187]. A single-guide RNA (sgRNA) binds to the Plac

promoter and imitates the repressive function of LacI (nega-
tive feedback loop). In the dCas9-repressilator design, the
turnover of TetR and λCI are still dependent on the ClpXP
proteolytic complex as they harbour a SsrA-tag. However,
dCas9 is untagged and the sgRNA turnover rate depends
on RNAses instead of proteases (as well as on dilution due
to cell growth) [187]. Oscillations in the dCas9-repressilator
have a longer period (avg. period 11.7 ± 0.4 h) [187] than
the original repressilator (avg. period 2.7 ± 0.7 h) [5].
Adding sponge elements provided extra binding sites for
sgRNA and dCas9 to reduce the period; however, the
period was still much greater than the doubling time of
E. coli [187]. This highlights the importance of tightly
controlling the number of regulatory elements in the cell.

The CRISPRlator is another new design that follows the
original repressilator framework but is entirely based on the
CRISPRi system [49]. The CRISPRlator uses three sgRNAs
(with different binding affinities) to control their expression
and three fluorescent reporters: mCherry, mCitrine and Ceru-
lean. They are tagged with MarA, MarAn20 and RepA70
degradation tags, respectively [43]. This circuit is the only
current synthetic oscillator that does not rely on the SsrA
tag, combines different degradation tags, and thus does not
rely on crosstalk via proteases between each tagged element.
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No crosstalk should occur between tagged proteins because
different proteolytic pathways process them. As a result, in
the CRISPRlator, the cell growth and the turnover rates
of sgRNAs are the time scales that drive the period of the
oscillations. As for the robustness of these designs, the
CRISPRlator, to cite an example, shows long-term and syn-
chronous oscillations, which the authors hypothesize stems
from the robust inheritance of the oscillatory state across
cell divisions [49].
4. Modelling frameworks to understand the
degradation dynamics

4.1. A brief introduction to the mathematics of
queueing theory

Synthetic biology does not just rely on hands-on engineering
to implement cell functionalities. Providing a mathematical/
modelling framework is equally important to, for example,
check if the design expectations are fulfilled. Queueing
theory (or the theory of waiting lines) was developed to
study, probabilistically, the problem of customers (in a gen-
eral sense) waiting in line to be served. Hence, it is a
framework particularly fit to understand/model pro-
teolytic queueing. Queueing theory was introduced by
A. K. Erlang in 1909 to address waiting time problems in
telephone networks due to a limited number of servers
[190]. Its development has been progressive since then
motivated, in part, by the need for solving practical
problems across different disciplines (traffic, business, manu-
facturing and computer systems) [191–194]. Surprisingly,
with very few exceptions [41,52,195], the usage of queueing
theory to study degradation bottlenecks is anecdotal despite
its potential.

The basic elements of a system affected by queueing
consist of a ‘customer’ and a ‘server’. In the context of a
degradation process, the customers are the proteins waiting
for degradation and the servers are the proteases [40].
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In general, a queueing process is characterized by the follow-
ing steps/features [196]. (i) Customers’ arrival, which
describes how customers are added to the queue. Customers
that arrive randomly can be described by the characteristic
random time interval between two consecutive arrivals (con-
ventionally, λ is used to represent the arrival rate). (ii) Serving
process, which represents how the customer that waits in the
queue will be served. In queueing modelling, the actual phys-
ical process happening at the server is usually ignored, as the
key information is the amount of time that a server needs to
serve the customer. Typically, μ is used to describe the ser-
ving rate (number of customers that are served during a
time interval). (iii) The capacity of a system that indicates
the maximum number of customers that a system can hold.
Note that the system capacity includes not only the number
of customers waiting in the queue but also the customers
being served. (iv) The queue discipline, which accounts for
the specific rules of a server to accept customers. Queueing
disciplines include scenarios such as first-come-first-serve
(FCFS), last-come-first-serve (LCFS), random selection for
service (RSS), etc. [197–199].

In order to describe the queueing features, Kendall [200]
introduced in 1953 a notation that still applies: A/S/c.
Where A and S represent the inter arrival and service time
distributions, respectively, and c stands for the number of ser-
vers. Eventually, Kendall’s notation was further extended to
include additional information: A/S/c/D/K/N, in which
D, K, N represent the queueing discipline, the system capacity
and the arriving population size, respectively (figure 6). For
example, using the basic Kendall’s notation a simple queue-
ing model would read M/M/1. Where M (Markovian)
indicates that the arrival and service time distributions of a
single (1) server follow a memory-less random process.
Such a system is in fact equivalent to a regular birth–death
process [201].
The ratio between the customer arrival rate and the server
process rate is typically denoted by ρ = λ/μ, which indicates
the fraction of time the server is being used by the arriving
customer. If the system has an infinite queue and ρ < 1, it
can be shown that the steady-state probability of having n
customers in the queue reads [202]

Pn ¼ ð1� rÞrn ¼ P0r
n, ð4:1Þ

where P0 = 1− ρ represents the probability of having no
queueing customers. Consequently, the average number of
customers in the system is

Ls ¼
X1

i¼0

iPi ¼ r

1� r
: ð4:2Þ

Little’s equation, Ls = λWs, is particularly a handy formula
since it relates the average number of customers, Ls, with the
average time spent per customer in a (stable) queueing
system, Ws [203]; where the average time per customer
spent reads,

Ws ¼ 1
m� l

: ð4:3Þ

When there is more than one type of server, customers
leaving one server may join the queue of another server.
In the context of proteolytic bottlenecks, this is a situation
that is difficult to imagine (since once a protein is ‘handled’
by a protease it will not be further processed). Still,
depending on the cellular resources, queues can also
develop in the course of transcription, translation and
during post-/trans-translation modification (see next section).
Consequently, it is worth to revisit some useful concepts of
multi-server queueing. In this case, queueing networks are
formed with topologies that can differ depending on the
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systems that is being studied. Owing to their increasing com-
plexity, analytical results of queueing networks are difficult to
obtain. A exception to this rule is the so-called Jackson’s net-
work [52]. Jackson’s network consists of N single-class FCFS
queueing systems where the distributions of the inter-arrival
and service times are assumed to be exponential with con-
stant average rates (figure 7).

If γi denotes the (external) arrival rate to the server i and
κim is the transition probability for a customer finishing the
service at i and joining the queue to the server m, the total
arrival rate to the server i is,

li ¼ gi þ
XN

m=i

lmkmi: ð4:4Þ

Also, the probability to leave the system through the
server i is di ¼ 1�PN

m=i kim. Further, the stationary prob-
ability of each server to have n1, n2,…, nN customers is,

Pðn1, n2, . . . , nNÞ ¼
YN

i¼1

ð1� riÞrnii ¼
YN

i¼1

Pni , ð4:5Þ

where ρi = λi/μi and Pni stands for the stationary probability
of the server i to have a queue of ni customers.

Depending on the number of ‘customer’ types, queueing
models are categorized into single- or multi-class. In the
former, there is only one type of ‘customer’, whereas in
the latter different types of ‘customers’ are present in the
queues. The aforementioned M/M/1 queueing model and
Jackson’s network are single-class. Single-class models have
been used to describe the lac operon and metabolic pathways
[52,204]. However, in the context of proteolytic bottlenecks,
most models are considered multi-class as shown below
[41,52,205].
4.2. Theoretical models of proteolytic queueing
As mentioned above, many cellular processes, including
transcription, translation and degradation, involve a compe-
tition for limited resources. For instance, DNA binding
sites compete for a limited number of transcription factors
(TFs); RNAs queue up for a limited pool of ribosomes or
miRNAs; and proteins compete for proteases (e.g. SsrA
tagged proteins competing for ClpXP) [11,47,206]. All these
processes can be analysed and modelled from the
viewpoint of queueing theory. Obviously, modelling the
degradation dynamics differs significantly from other
cellular processes but, in general, queueing models can be
adapted to account for any process where ‘customers’ wait
for ‘services’ provided by a limited amount of ‘servers’.
And yet, the question of how ‘customers’ interfere/interact
with each other, and how cells exploit queueing to
achieve either efficiency or specific cellular functions, remains
largely unexplored.

Within the specific context of enzymatic degradation,
Mather et al. proposed a seminal study that addressed compe-
tition of different proteins for a common protease (E. coli’s
ClpXP) by using a multi-class queueing model [181].

Thus, this study considered the scenario of cells with m
protein species, X1,…, Xm, produced at rates λ1,…, λm,
from their corresponding mRNA templates, D1,…, Dm, and
that are enzymatically degraded by a common pool of a
protease species, E, that is limited in terms of its numbers,
L. In terms of biochemical reactions such a process reads

Di �!li Xi þDi

Xi þ E�!h XiE

XiE�!m E:

In the model, the binding rate of the proteins to the
enzyme, η, is assumed to be constant—as well as the protein
degradation rate, μ, that is supposed to be protein indepen-
dent—and the chemical reactions follow a Poisson process.
Further, dilution effects due to cell growth and division are
also considered (at a rate γ),

XiE�!g E

and

Xi �!g O=:

That is, proteins are removed from the system either by
the enzymatic degradation machinery or by the growth-
division dilution process. By considering two protein species
(figure 8), the study found that at the steady-state, and
assuming a small dilution rate (γ≪ μ), the correlation
between the number (or the concentration) of the two protein
species peaks around a balanced point, in which the total
production rate is balanced with the enzymatic degradation
rate: λ1 + λ2 = Lμ. When the enzyme works either in an under-
loaded regime, i.e. λ1 + λ2 < Lμ (such that protein production
is slower than the degradation: no queue), or when the
enzyme is overloaded (faster production than degradation:
queue formation), the correlation between the number of
two protein species in the queue decreases with respect to
that at the balanced point.

While this study introduced first the competition of differ-
ent proteins for a common protease, it did not consider how
the presence of multi-proteases (i.e. multi-servers) affects the
dynamics. To address this point, a multi-protease queueing
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Figure 8. A schematic representation of a multi-class proteolytic queueing model, adapted from [181]. Proteins X1 (yellow) and X2 (grey) are produced from two
independent transcriptional processes, but are being degraded by a common enzyme type ( pink). When the enzymes (servers) are fully occupied, a queue with
multiple classes of proteins (customers) is formed. Note that proteins join the queue randomly. The queue length depends on the interplay between the enzymatic
processing rate and the protein arrival rate to the queue.
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model was later proposed [41]. This model follows the same
scheme but, in this case, the degradation by different classes
of enzymes was introduced:

Xj þ Ei �!
mij

Ei,

where μij represents the degradation rate of substrate j being
processed by the enzyme class i. This theoretical study
was also one of the first that coupled the multi-proteases
degradation queueing system with a protein production oscil-
latory network. The study suggests that the bottleneck on
multi-protease networks still allows a substantial coupling
in the dynamics of proteins even between substrates with
considerable differences in their binding affinities to the pro-
teases. Therefore, queueing models support the experimental
observations showing that the proteolytic bottlenecks lead to
upstream coupling of independent pathways [51].

Finally, on the modelling side, it is worth mentioning
recent efforts to consider the effect of the competition for
degradation by different proteins by using a phenomenologi-
cal approach [207]. In that study, following [11], the authors
modelled the concentration (ρ) dynamics of a pair of proteins,
X1 and X2, that are degraded by the same protease by means
of a system of ordinary differential equations:

drX1

dt
¼ F1(rX1

, rX2
)þ rX1

G(rX1
, rX2

)

and

drX2

dt
¼ F2(rX1

, rX2
)þ rX2

G(rX1
, rX2

),

where Fi are the functions that account for the production
and regulatory interactions of protein i, and GðrX1

, rX2
Þ ¼

a=ðbþ rX1
þ rX2

Þ describes effectively the degradation and
includes competition effects. Thus, if the concentration of pro-
teins is ‘low’ with respect to the processing capacity of the
protease (i.e. rX1

, rX2
� b) the degradation terms tends to

the regular exponential decay. However, if the protease is
saturated (i.e. b � rX1

, rX2
) the degradation leads to coupling

effects. The study showed that such a coupling between pro-
teins can be leveraged to engineer self-organized criticality
in cells.
5. Conclusion
Even though advances have been made in the discovery of
new degradation tags for bacterial synthetic circuits, there is
still a considerably lack of available tags. Leveraging a library
of novel protein degradation tags is necessary to be able to
build complex and orthogonal synthetic gene networks. Just
as native systems exploit orthogonal degradation pathways
to avoid coupling between genetic networks, synthetic
biology should aim to exploit a similar strategy when build-
ing multiple circuits to be used together. To date, most
synthetic circuits use almost exclusively E. coli’s SsrA tag
[54] for targeted degradation, but alternative degrons are
starting to be explored. In particular, N-degrons [20], or
intrinsic degrons [25,43] are providing excellent pools of
sequences with great potential to be used in synthetic biology
[43,49,50]. The use of viral proteases along with native
bacterial proteases [56] or degrons/proteases from evolution-
ary distant bacterial species [48] are other promising
alternatives for tightly controlling protein levels. Coupling
is not only a consequence of the redundancy in degradation
pathways, but also due to bottlenecks in degradation pro-
cesses (proteolytic queues) that result from the low
numbers of proteases available in the cell [40]. Queueing
has been successfully exploited to intentionally couple the
output of synthetic oscillators, but also to entrain (i.e. syn-
chronize by an external signal) the oscillatory output of
thousands of single cells [41,51]. This has potential, for
example, in the development of robust biosensors with appli-
cations in industry and medicine [208–210]. Proteolytic
queueing is also known to enhance time delays of transcrip-
tion factors which is a key feature for synthetic oscillators to
display robustness (a sought after property in these types of
circuit topologies) [170]. However, queues can also suppose a
nuisance in terms of reliability and independent control of
amplitude and period in oscillators [179]. As a result, there
has been an increasing trend in the field where researchers
have started to engineer away degradation tags [185,187].
This approach comes with a price, as the circuits built are
slower and less tunable compared to those that rely on pro-
teases. They do also depend on the host’s growth rate for
protein removal via dilution, thus inhibiting oscillating
periods less than the doubling time of the cells.
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There is a need in the field to better characterize the exact
molecular players (proteases and chaperones) involved in the
recognition of degrons. One way to do so could be to decon-
struct degradation tags by mutating specific residues and use
experimental (e.g. the crosstalk assay [43]) and theoretical
approximations to understand degradation and queueing
dynamics in the different mutants. Such approaches could
have the potential to provide the synthetic biology commu-
nity with new libraries of degradation tags with different
degradation rates and sensitivities to queue formation to
mix & match on demand.

On the theoretical side, developing better quantitative
models that take into account proteolytic queue effects to under-
stand circuit dynamics is also important. Here we have
introducednotions of formal theory traditionallyapplied to com-
puter networks or call centres that we hopewill help researchers
introduce these concepts. Some theoretical work based on
queueing theory has already shown how crosstalk can couple
free-running independent oscillators [41], but there are still
other aspects such as stochastic effects in queue formation or
entrainment that could be implemented in the theoretical frame-
works. Combining queueing theory and experimental work in
the study of degradation pathways will accelerate our under-
standing of the effects of degradation dynamics in synthetic
circuits and guide the design of new experiments.

Herein we have covered the use of degrons for program-
mable protein degradation in bacteria. We would like to
highlight that the use of eukaryotic degrons and viral pro-
teases have also been implemented to design synthetic
circuits in eukaryotic systems [15,17,211–213]. Moreover, in
mammalian cells targeted degradation makes possible to
eliminate specific proteins at will, thus opening extensive
therapeutic opportunities. For example, some drugs (cur-
rently in clinical trials) use this technology to treat cancer
patients [214].

All in all, over recent years, it has become evident that
degradation control is a fundamental aspect in the design
of synthetic circuits that opens new possibilities for program-
mable control of circuits at the protein level and is also
paving the way to develop new biomedical therapies.
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