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Abstract: Microwave imaging is a high-resolution, noninvasive, and noncontact method for detecting
hidden defects, cracks, and objects with applications for testing nonmetallic components such as
printed circuit boards, biomedical diagnosis, aerospace components inspection, etc. In this paper,
an array of microwave sensors designed based on complementary split ring resonators (CSRR) are
used to evaluate the hidden features in dielectric media with applications in nondestructive testing
and biomedical diagnosis. In this array, each element resonates at a different frequency in the range
of 1 GHz to 10 GHz. Even though the operating frequencies are not that high, the acquisition of
evanescent waves in extreme proximity to the imaged object and processing them using near-field
holographic imaging allows for obtaining high-resolution images. The performance of the proposed
method is demonstrated through simulation and experimental results.

Keywords: microwave sensors; microwave imaging; near-field imaging; postprocessing

1. Introduction

Nonmetallic and dielectric components are highly in demand throughout various
industries due to advantages such as low-cost, light weight, resistance to corrosion, dura-
bility, and more. Material technology has produced lighter, stiffer, stronger, and more
durable electrically insulating composites which are replacing metallic components in
various applications [1]. For instance, the use of certain types of composites allows com-
mercial airplanes to operate with higher pressure and humidity [2] while being lightweight.
Furthermore, these components are often assumed to be in perfect condition for printed
circuit board (PCB) testing, aerospace components, and more, though there may be cracks,
defects, or even objects present that are undesirable due to abruptions, unforeseen changes,
delamination, and unpredictable processing of these materials. Therefore, it is critical to
detect these features to prevent unexpected consequences.

To resolve this problem, microwave imaging and sensing for nonmetallic and dielectric
components have been popular among all nondestructive testing (NDT) techniques due to
their promising results [3]. Microwave NDT features advantages such as being noncontact,
low power, compact, robust, and able to obtain images with high resolutions [1]. Therefore,
microwave NDT has been applied to different applications. For example, the electronic
industry is concerned with delamination in composite materials that are used for PCB
substrates. This leads to strength deterioration and results in structural failure. To address
this problem, an electromagnetic band gap (EBG) planar microwave microstrip sensor has
been proposed in [4] to detect delamination in fiber-reinforced epoxy-based PCB laminates.
Similarly, an automatic crack detection technique for the quality check of FR4 has been
proposed in [5] where a microwave planar sensing probe has been designed. Furthermore,
in [1], the capability of near-field microwave NDT methods for detecting and evaluating
corrosion under paint has been shown. Another application of high-resolution imaging of
dielectric media is in estimating the size of tumors in early-stage malignant melanoma skin
cancer [6,7].
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Various configurations of microwave sensors have been utilized depending on the
targeted applications. For example, in [8], a spiral resonator excited by an electrically small
loop is employed for microwave near-field imaging of various defects. Furthermore, a split-
ring resonator sensor has been designed for near-field microwave imaging of composites
through edge coupling [9]. Noninvasive measurements of thickness and permittivity in
multilayered dielectric structures using complementary split ring resonator (CSRR) sensors
have been proposed in [10]. Furthermore, different types of CSRR sensors have also
been designed and used for microwave imaging of subsurface flaws in coated metallic
structures [11] and composite structures [12].

In the previous works, typically, the raw responses obtained from the microwave
sensors are plotted versus spatial parameters to obtain images of the defects. They lack
more advanced postprocessing that could lead to a higher quality assessment of the ma-
terial. High-resolution imaging results have been presented in [13–15] where near-field
holographic imaging has been proposed and applied to the data collected at the near-field
of the antennas. The advantages of near-field holographic imaging are: (1) far-field assump-
tions in conventional holographic imaging are avoided by introducing a new formulation
of the solution for the imaging problem, (2) it is capable of processing the evanescent
waves leading to higher resolutions beyond the diffraction limit, (3) the assumption for
point-wise antennas typically used in conventional holographic imaging is avoided due to
the measurement of the so-called point-spread function (PSF), and (4) unlike conventional
holographic imaging, it is possible to use the measurement for an array of receiver anten-
nas and achieve super-resolution using narrowband data. In [13], wide-band near-field
holographic imaging has been implemented for the inspection of nonmetallic pipes. In [14],
imaging results for nonmetallic concentric pipes based on microwave holographic imaging
and a standardized minimum norm approach have shown improvement compared to the
minimum norm approach. There, narrowband data collected by an array of receiver antennas
have been employed for the inspection of double concentric pipes. A similar setup has been
also used in [15] for thickness profile estimation of a single nonmetallic pipe.

Other than microwave imaging technology, recent works of imaging using near-field-
scanning optical microscope technology [16,17] have demonstrated high-resolution results
at the nanometer level. However, these imaging techniques can only be applied to surface
imaging while the proposed near-field microwave imaging technique can provide images
at multiple depths (volumetric imaging). This is achieved by using the capabilities of
electromagnetic waves at microwave frequencies to penetrate dielectric media as well as
processing the scattered waves with the proposed near-field holographic imaging technique.

In this paper, we propose the utilization of an array of sensors resonating at multiple
frequencies ranging from 1 GHz to 10 GHz for assessing the shape features in the dielectric
media. For the first time, the responses obtained from a near-field microwave sensor
array (we employ the sensor array in [18]) are postprocessed through a robust near-field
holographic imaging method. This is in contrast to the previous works which normally
plot the raw data measured by the near-field microwave sensors to produce images. We
have used the rectangular CSRR structure due to the simple design process. Please note
that the main idea of this work is that, in contrast to other CSRR sensors mentioned above,
the utilized sensor in this work is multifrequency, whereas other CSRR sensors are single
elements and provide responses at only one frequency. In other words, more information is
provided by using the proposed sensor allowing for volumetric imaging when employing
near-field holographic imaging. Simulation and experimental results demonstrate the
performance of the proposed system in achieving high resolution in imaging dielectric
media with applications in NDT and biomedical diagnosis.

2. Theory

In this section, we present the theory of near-field holographic imaging for a multi-
frequency near-field sensor. The data acquisition and image reconstruction are performed
over flat surfaces (along the x and y axes) at various z. In addition, the scattered field is
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recorded by the same sensor at each position (x, y). Then, the complex-valued scattered
field, ESC(x, y), is measured at each sampling position, at Nω frequencies within the band
of ω1 to ωNω , by the sensor. Each frequency component is measured by a particular element
in the sensor array.

Figure 1 illustrates the proposed microwave holographic imaging setup that consists
of a multifrequency near-field sensor that collects back-scattered data over a rectangular
aperture. Such a scattered response is acquired by subtracting the response without the
presence of the objects from the response with the objects. The image reconstruction process
then provides images over the z = zi planes, where i = 1, . . . , Nz. The distance between
the planes is denoted by ∆z. The imaging system is assumed to be linear (using Born
approximation [19]) and space invariant (LSI).
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Holographic imaging will be implemented as follows. First, the point-spread functions
(PSFs) of the LSI imaging system are obtained. These PSFs are denoted by ESC,PO and
are approximated by measuring small objects called point-wise objects (POs) placed on
each imaged plane (at (x, y, z) = (0, 0, zi)) one at a time. The scattered response recorded
for a PO placed on the i-th depth is denoted by ESC,PO

i (x, y). Then, according to the
convolution theory, the object’s response for each imaged plane, ESC

i (x, y), can be written as
the convolution of the collected PSF for that plane, ESC,PO

i (x, y), with the contrast function
of the object on the corresponding plane fi(x, y). Next, the response due to the objects on
the material under test (MUT), ESC(x, y), can be obtained from the superposition of the
responses of all of the imaged planes, ESC

i (x, y), where i = 1, . . . , Nz, as:

ESC(x, y) =
Nz

∑
i=1

ESC
i (x, y) =

Nz

∑
i=1

ESC,PO
i (x, y) ∗x ∗y fi(x, y) (1)

Here, ∗x and ∗y denote convolution along x and y, respectively. In Equation (1),
PSF functions ESC,PO

i (x, y) can be obtained a priori through simulation or measurement.
In addition, ESC(x, y) is derived by recording the responses for the objects on MUT.
The goal is then to estimate the contrast functions of the objects fi(x, y), where it relates to
the wavenumbers of the object, ks, and background medium, kb, as [20].

fi(x, y) = k2
s (x, y)− k2

b(x, y) (2)

Furthermore, measurements can be implemented at multiple frequencies, ωn,
n = 1, . . . , Nω, to provide more data for image reconstruction. Thus, Equation (1) can
be written at all frequencies and after applying discrete-time Fourier transform (DTFT)
along the x and y directions, we obtain the following system of equations at each spatial
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frequency pair κ =
(
kx, ky

)
(kx and ky are the Fourier variables corresponding to x and

y variables): 

˜̃ESC
(κ, ω1) =

Nz
∑

i=1

˜̃ESC,PO
i (κ, ω1)

˜̃fi(κ)

...˜̃ESC
(κ, ωNω ) =

Nz
∑

i=1

˜̃ESC,PO
i (κ, ωNω )

˜̃fi(κ)

(3)

where, ˜̃ESC
, ˜̃ESC,PO

i , and ˜̃fi are DTFTs of ESC, ESC,PO
i , and fi, respectively. Then, Equation (3)

can be written as: ˜̃ESC
= ˜̃D ˜̃F (4)

where

˜̃ESC
=


˜̃ESC

(κ, ω1)
...˜̃ESC

(κ, ωNω )

, (5)

˜̃D =


˜̃ESC,PO

1 (κ, ω1) · · · ˜̃ESC,PO
Nz (κ, ω1)

...
. . .

...˜̃ESC,PO
1 (κ, ωNω ) · · ·

˜̃ESC,PO
Nz (κ, ωNω )

, (6)

˜̃F =


˜̃f1(κ)

...˜̃fNz(κ)

 (7)

After solving these systems of equations at each κ =
(
kx, ky

)
, we obtain ˜̃fi(κ),

i = 1, . . . , Nz. In [14], it has been shown that using a standardized minimum norm al-
leviates the depth biasing problem, i.e., the underestimation of deep features in favor of
more superficial ones. Thus, here, we also employ this approach to solve the system of
equations in Equation (4). The solution can be obtained as:

ˆ̃̃
F =

√(
Diag(S ˆ̃̃

F

)
)−1P˜̃ESC

(8)

where

S ˆ̃̃
F
= P

(˜̃D ˜̃DH
+ αL

)
PH = ˜̃DH

(˜̃D ˜̃DH
+ αL

)+ ˜̃D, (9)

P = ˜̃DH
L
[

L ˜̃D ˜̃DH
L + αL

]+
, (10)

LNω NA×Nω NA = I− 11T

1T1
, (11)

Here, INω NA×Nω NA is the identity matrix, 1Nω NA×1 is a vector of ones, [·]H is Hermitian
transpose operation, [·]+ denotes Moore–Penrose pseudoinverse, and Diag(S ˆ̃̃

F
) is the

diagonal matrix formed by the diagonal elements of S ˆ̃̃
F
.

After obtaining ˜̃fi(κ) values, inverse DTFT along x and y directions are applied to
reconstruct images, fi, at z = zi, i = 1, . . . , Nz. At last, the normalized images, | fi|/M,
where M is the maximum of | fi| for all zi, are plotted.

Noted, diffraction-limited resolution can be overcome here due to the measurement
of parts of the evanescent waves spectrum in the near-field systems. This is because in
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far-field diffraction-limited systems, the wavenumber kx is within the range of [−2kb, 2kb]
while in our near-field measurement system kx values beyond this range can be measured
and processed leading to higher resolutions.

Moreover, in cases we are interested in evaluating the overall thickness of a long object
along the z axis, the normalized images can be combined to obtain the total thickness of the
object. This is implemented as:

T = ∆z

(
Nz

∑
i=1

| fi|
M

)
(12)

As discussed later, this has applications in defect depth assessment or tumor size estimation.

3. Simulation Results

In this section, the simulation studies for the proposed imaging technique are per-
formed and demonstrated using FEKO software [21]. We utilize a multifrequency near-field
sensor, first introduced in [18]. Shown in Figure 2, it is composed of five nonuniform CSRRs
with the elements resonating at five frequencies at 1.234 GHz, 3.074 GHz, 4.949 GHz,
6.699 GHz, and 8.3768 GHz. As noted, these resonating frequencies are defined with the
presence of an object. The substrate for the sensor is Rogers RO4350 and it has a width
Ws of 20 mm, length of Ls of 56 mm, and microstrip line width Wm of 1.68 mm. For other
dimensions, please refer to [18]. The sensor has been fabricated by a commercial com-
pany using standard PCB fabrication technology. In the following, the simulation study is
divided into two applications: defect size estimation in dielectric media and skin tumor
size estimation.
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Figure 2. Microwave sensor array with (a) front surface and (b) back surface.

3.1. Assessment of Defects in Dielectric Materials

Figure 3 illustrates the reference setup in which there is a dielectric slab with a thickness
of 1 mm above the sensor with a length of L = 200 mm, a width of W = 20 mm, and a height
of H = 6 mm. The slab has a relative permittivity of εr = 4 and a tangent loss of 0.0001.
Please note that, here, as a proof of concept, we present the results for one-dimensional
(1D) imaging. We scan the sensor over the x axis (z = 0). We aim at evaluating the thickness
variation of the slab with a 2 mm resolution while it has hidden defects (on the other side of
the slab compared to the sensor position). For this purpose, the thickness of the 6 mm-thick
slab can be estimated at three levels: z1 = 2 mm, z2 = 4 mm, and z3 = 6 mm.
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The 1D scanning of the sensor array is performed along the x direction from−40 mm to
40 mm with 81 steps. Furthermore, for a realistic study, additive white Gaussian noise with
a signal-to-noise ratio (SNR) of 20 dB was added to the simulated responses in MATLAB.
To determine the thickness and location of the defects, first, small defects representing POs
with an opening width (along x axis) and depth (along z axis) of 2 mm extending over the
whole width (along y axis) of the slab are placed at z1, z2, and z3, one at a time to collect the
PSF responses.

With reference to Figure 3, three defects with an opening width of WD = 2 mm
and depth of HD = 2 mm, 4 mm, and 6 mm, are placed at positions of (x = ±7 mm).
As observed in the figure, the defects are on the opposite side of the slab compared to the
sensor, representing hidden flaws.

Figure 4 shows the reconstructed 1D images of the defects at the three imaged lines
corresponding to the depth positions of the collected PSF responses. It is observed that as
the depth of the defect (HD) increases, at some imaged depths the normalized value of the
image deviates from 1. This can be explained according to the further violation of the Born
approximation for larger defects.
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Figure 4. Reconstructed 1D images for defects with WD = 2 mm, HD = 2 mm, HD= 4 mm, and HD = 6 mm.

Furthermore, to obtain the estimation of defect thicknesses, the normalized images
can be combined as per Equation (12). Figure 5 shows the estimation of the defects’
thicknesses with various WD. Figure 5a shows the estimation of the defects’ thicknesses
with WD = 2 mm. The best estimation is for the defect with HD = 2 mm, while the other two
larger defects are underestimated compared to their actual depth of 4 mm and 6 mm. In
addition, we study the effect of varying the defect opening WD by decreasing that to 1 mm
and increasing that to 3 mm, while the other parameters remain the same as in Figure 5a.
Here, Figure 5b,c shows the estimation of defects with HD = 2 mm, 4 mm, and 6 mm
with WD = 1 mm and 3 mm, respectively. From the two additional studies, it is observed
that while for HD = 2 mm and 4 mm, results are comparable in quality to Figure 5a, for
HD = 6 mm, the depth of defects is significantly underestimated and the capability to resolve
the defects is degraded. Overall, the accuracy of the defect depth estimation degrades for
larger defects due to the violation of the Born approximation used to derive the proposed
estimation technique. To improve the results for larger defects, other microwave techniques
based on optimization algorithms have to be employed which are demanding in terms of
time and memory compared to the technique proposed here.
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Figure 5. Thickness estimation of defects with HD of 2 mm, 4 mm, and 6 mm with (a) WD = 2 mm,
(b) WD = 1 mm, and (c) WD = 3 mm.

Moreover, we also studied how the coupling effect between the resonators can affect
the results by decreasing the edge-to-edge distance between the sensors by one hal which
caused the overall length of the sensor array to be smaller. With a shorter array, the 1D
scanning is performed along the x direction from −30 to 30 mm with 61 steps. For the
dielectric slab, all parameters except the length are kept the same compared to the first
example. Figure 6 shows the thickness estimation of defects with HD of 2 mm, 4 mm, and
6 mm with WD = 2 mm while utilizing the shorter array. Compared to Figure 5a, it is
observed that in Figure 6, there are larger errors in the nondefected regions for HD of 2 mm,
4 mm, and 6 mm. Furthermore, for HD of 6 mm, the cross-range resolution is significantly
degraded compared to Figure 5a. In other words, coupling between sensors increases
which, in turn, leads to larger errors when the resonators get closer. On the other hand,
increasing the distance between the resonators increases the length of the sensor array.
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a smaller sensor.

3.2. Skin Tumor Size Estimation

Here, we conduct a simulation study for sizing skin tumors. The human tissue is
modeled with human skin and human fat. We use the corresponding dispersive (frequency-
dependent) tissue models from the FEKO media library. Furthermore, the relative permit-
tivity and conductivity of the tumor are assumed to be εr = 50 and 3 S/m, respectively.
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The relative permittivity of the skin tumor has been reported to be between 35 to 50 in
the frequency range of 1 GHz to 10 GHz [22,23]. Here, it is assumed that the sensor scans
the tissue in close proximity. The gap between the sensor and skin layer is considered to
be 0.1 mm, representing the existence of a thin protective cover. Figure 7 illustrates the
simulation setup for skin tumor evaluation when the tumor is on the surface of the skin.
Here, the length and width of the skin layer are L = 100 mm and W = 10 mm, respectively.
The human fat layer has a thickness of 3 mm and the human skin layer has a thickness of
2 mm. Like the dielectric material simulation setup, 1D scanning of the array of the sensor
is implemented along the x direction from −40 to 40 with 81 steps to obtain the responses.
In addition, similar to the previous example, noise with an SNR of 20 dB is added to the
simulated responses in MATLAB for a practical study. In this example, we consider imaged
lines at depths (layers) of 1.5 mm, 3 mm, and 4.5 mm, and PSF data is obtained a priori as
in the previous example. We also perform a simulation of the tissues without any tumor to
obtain the background responses. These background responses are then subtracted from
the responses simulated with the presence of the tumors to obtain the scattered responses.
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Figure 7. Illustration of the simulation setup for skin tumor evaluation in FEKO.

Figure 8 illustrates the simulation setup for skin tumor evaluation with three tumor
sizes when the tumor has ingrown deeper. Figure 8a illustrates a smaller tumor with
dimensions of HT1 and WT1 on the surface of the skin. Figure 8b illustrates a larger tumor
compared to the one in Figure 8a which has ingrown larger to the middle layer with the
dimensions of that on the middle layer as HT2 − HT1 and WT2. Figure 8c illustrates the
biggest considered tumor which has ingrown to the farthest layer with the dimensions
on the third layer denoted by HT3 − HT2 and WT3. The proposed method is applied to
the scattered responses. The estimations of the tumors with depths of 1.5 mm, 3 mm, and
4.5 mm are presented in Figure 9. It is observed that the estimated thicknesses of 1.5 mm
and 3 mm are overestimated while for 4.5 mm, it is underestimated by nearly 0.5 mm.
The error for estimation of 1.5 mm tumor can be due to the weak signal for such small
tumor size while the error for the 4.5 mm tumor is due to the further violation of the Born
approximation for larger objects.
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Figure 8. Illustration of the simulation setup for skin tumor evaluation in FEKO with: (a) WT1 = 15 mm
and HT1 = 1.5 mm, (b) WT1 = 15 mm, HT1 = 1.5 mm, WT2 = 10 mm, and HT2 = 3 mm, and
(c) WT1 = 15 mm, HT1 = 1.5 mm, WT2 = 10 mm, HT2 = 3 mm, WT3 = 5 mm, and HT3 = 4.5 mm.
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4. Experimental Results

In this section, we present the proof-of-concept experimental results to detect defects
and objects using the proposed technique. Figure 10a,b show the microwave imaging
system that consists of a scanning system, one Arduino Uno, NEMA 17 stepper motors,
MUT, and the sensor. The two types of MUTs used are wood and a pile of paper with
2 mm copper strips hidden inside. For both scenarios, there is an approximate gap of 2 mm
between the MUT surface and the sensor. Furthermore, the MUTs are stationary while the
sensor is scanning along the x-axis. Then, to reduce the interference, the sensor is backed by
a box covered by a microwave-absorbing sheet. Then Figure 10c,d show the front and back
of the multifrequency near-field sensor. As noted, an Anritsu MS46122B vector network
analyzer (VNA) and a PC are used for data acquisition.
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Figure 10. Main components of the microwave imaging system with: (a) wood with defects as MUT,
(b) a pile of paper with copper strips as MUT, (c) front view of the multifrequency near-field sensor,
and (d) back view of the multifrequency near-field sensor.
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Figure 11 shows the comparison between the simulated and measured |S21| for the
sensor array when the object is not present. As noted, for experiments, responses of
resonating frequencies with the presence of the object are utilized. However, there are
six resonant frequencies instead of five within the band of 1 GHz to 10 GHz, due to the
coupling of the resonators which are in close proximity. They are at 1.216 GHz, 2.855 GHz,
4.549 GHz, 6.036 GHz, 7.783 GHz, and 9.054 GHz. The slightly different resonant behavior
compared to the simulated response of the sensor is due to the use of the shielding box for
the sensor array. With that being said, the following results are presented by using five
and six resonant frequencies for comparison (when using five frequencies, we discard the
data obtained at 7.783 GHz). In addition, similar to the simulation results, for faster data
acquisition, we are scanning along one axis only.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 16 
 

 

resonant frequencies instead of five within the band of 1 GHz to 10 GHz, due to the cou-

pling of the resonators which are in close proximity. They are at 1.216 GHz, 2.855 GHz, 

4.549 GHz, 6.036 GHz, 7.783 GHz, and 9.054 GHz. The slightly different resonant behavior 

compared to the simulated response of the sensor is due to the use of the shielding box 

for the sensor array. With that being said, the following results are presented by using five 

and six resonant frequencies for comparison (when using five frequencies, we discard the 

data obtained at 7.783 GHz). In addition, similar to the simulation results, for faster data 

acquisition, we are scanning along one axis only. 

 

Figure 11. Simulated and measured |S21| data without the presence of object. 

4.1. Sizing of Defects in Wood 

Here, as proof-of-concept, we conduct experiments to detect defects in a piece of 

wood. The wood is placed under the sensor and the sensor scans the wood piece from −6 

cm to 6 cm with 100 steps along the scanning axis. We aim at estimating defects with a 

depth resolution of 2 mm and with a maximum depth of 6 mm away from the surface of 

the MUT. Thus, we consider three imaged lines corresponding to depths of 2 mm, 4 mm, 

and 6 mm. For this purpose, three defects are measured with depths of 2 mm, 4 mm, and 

6 mm. Each defect has a width of approximately 1 mm along the scanning axis. To obtain 

the PSF data corresponding to the depth of 4 mm, the responses obtained for the defect 

with a depth of 2 mm are subtracted from the responses measured for the defect with a 

depth of 4 mm. Similarly, to obtain the PSF data corresponding to the depth of 6 mm, the 

responses obtained for the defect with the depth of 4 mm are subtracted from the re-

sponses measured for the defect with a depth of 6 mm. 

Then for the imaged scenario, two defects with depths of 4 mm are at x = ±10 mm. 

From the collected responses and applying the proposed method, the reconstructed im-

ages are as follows. Figure 12 shows the reconstructed images with five frequencies (dis-

carding the data at 7.783 GHz) and six frequencies. Overall, the defect is distinguishable 

at z = 2 mm and 4 mm. Moreover, it can be observed that there are no major changes or 

improvements when using six frequencies. 
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4.1. Sizing of Defects in Wood

Here, as proof-of-concept, we conduct experiments to detect defects in a piece of wood.
The wood is placed under the sensor and the sensor scans the wood piece from −6 cm to
6 cm with 100 steps along the scanning axis. We aim at estimating defects with a depth
resolution of 2 mm and with a maximum depth of 6 mm away from the surface of the
MUT. Thus, we consider three imaged lines corresponding to depths of 2 mm, 4 mm, and
6 mm. For this purpose, three defects are measured with depths of 2 mm, 4 mm, and 6 mm.
Each defect has a width of approximately 1 mm along the scanning axis. To obtain the
PSF data corresponding to the depth of 4 mm, the responses obtained for the defect with a
depth of 2 mm are subtracted from the responses measured for the defect with a depth of
4 mm. Similarly, to obtain the PSF data corresponding to the depth of 6 mm, the responses
obtained for the defect with the depth of 4 mm are subtracted from the responses measured
for the defect with a depth of 6 mm.

Then for the imaged scenario, two defects with depths of 4 mm are at x = ±10 mm.
From the collected responses and applying the proposed method, the reconstructed images
are as follows. Figure 12 shows the reconstructed images with five frequencies (discarding
the data at 7.783 GHz) and six frequencies. Overall, the defect is distinguishable at z = 2 mm
and 4 mm. Moreover, it can be observed that there are no major changes or improvements
when using six frequencies.
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Figure 12. Reconstructed 1D images of defect with a depth of 4 mm when using 5 and 6 frequencies.

Then, in Figure 13, the estimated thicknesses of the defects are presented for both five
and six frequencies when using (12) to combine the 1D images in Figure 12., It is observed
that the estimated thicknesses do not differ significantly. Although the estimated depth of
the defect value is satisfactorily close to the true value of 4 mm.
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4.2. Imaging of Hidden Copper Strips

Here, we conduct experiments to image copper strips hidden inside a stack of papers.
Similar to the setup for the detection of defects in the wood, the sensor scans the scattered
responses above the MUT along the x-axis from −6 cm to 6 cm with 100 steps. Here, the
Pos, which are single strips of copper with a width of 2 mm, are measured when they are
placed at depths of 1 mm, 5 mm, and 13 mm. This indicates that imaging will be performed
at these depths. Then, the test scenarios are created with two copper strips with a width of
2 mm at x = ±10 mm.

Figures 14–16 show the reconstructed 1D images for copper strips placed at depths of
1 mm, 5 mm, and 13 mm and when using data at five and six frequencies. From Figure 14,
it can be observed that the reconstructed image shows a clear peak at a depth of 1 mm
for both five and six frequencies and there is no significant difference between the results
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utilizing data at five and six frequencies. Then, for Figure 15, the peaks are clear at a depth
of 5 mm. Lastly, for Figure 16, one peak is more obvious compared to the other at a depth of
13 mm. In general, the results for objects at depths of 1 mm and 5 mm are better compared
to those at depth of 13 mm. In addition, using six frequencies shows some improvement in
the reconstructed image for the objects at depth of 13 mm. To improve this study, a better
mechanical system can be built and implemented for imaging to reduce the undesired
ripples in the stand-off distance of the sensor. In addition, changing the VNA settings such
as increasing the averaging and narrowing the intermediate frequency (IF) bandwidth can
improve the results at a cost of increasing the measurement time.
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5 and 6 frequencies.

5. Discussion and Conclusions

In this paper, the use of a multifrequency near-field microwave sensor array was
extended for imaging dielectric materials with applications in defect size estimation, skin
tumor size evaluation, and object imaging. For the first time, postprocessing based on
the concept of near-field holographic imaging was applied to the data collected by the
near-field microwave sensors to produce high-resolution quantitative images of defects
(NDT application) or tumors (biomedical imaging application). This is in contrast to the
previous works which normally plot the raw data measured by the near-field microwave
sensors to produce images. The comparison of the proposed imaging system with those
already described in Section 1 is presented in Table 1. The proposed work here is the only
one that achieves depth sizing together with providing high-resolution cross-range images
by applying an advanced postprocessing technique. Although without such postprocessing,
achieving high accuracy depth estimation is possible (as reported by the previous works),
the resolution in the cross-range directions (x- and y-axis) would be degraded.

Table 1. Comparison of the proposed imaging system with those in the literature.

Reference Sensor Type Frequency Depth/Thickness
Evaluation Postprocessing

[8] Spiral Resonator 426 MHz No No
[9] Split-Ring Resonator 6–12 GHz Yes No
[10] CSRR 2–4 GHz Yes No
[11] CSRR 2–4 GHz No No

[12] Rectangular CSRR/
circular CSRR 5.94 GHz/7.34 GHz No No

This work Array of CSRRs 1–10 GHz Yes Yes

Regarding the resolution, since the proposed method can process parts of the evanes-
cent wave spectrum, we believe that the resolution is better than the diffraction limit. This
can be verified using the simulation study of the defects in the dielectric material. Using
Figure 5a, the cross-range resolution for HD = 2 mm was computed from the 3-dB level of
the reconstructed defect plot, leading to a value of around 5 mm while the diffraction limit
for the resolution is 13.6 mm and 6.1 mm for the air and dielectric materials, respectively
(diffraction limit in the resolution is λ/4, where λ is the wavelength at the center frequency
of the band, i.e., 5.5 GHz). In addition, the depth resolution in that simulation study was
2 mm, which is much smaller than the diffraction-limited range resolution of 16.7 mm and
7.5 mm in air and dielectric materials, respectively (diffraction limit in the resolution along
the range is c/2B, where c is the speed of light in the medium and B is the bandwidth of
the system which is 9 GHz here). However, the detection resolution degrades as the depth
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increases and this is due to the near-field sensor utilized in this work (evanescent waves
decay fast as the distance to the sensor increases). Furthermore, as a near-field imaging
probes, the imaging depth is limited due to the capability to measure the evanescent waves
up to a short range.

Here, we present the Q factor computed from the simulated |S21| data. As noted, to get
better accuracy of the Q factor, we simulated the structure around each of the five resonating
frequencies individually with fine frequency sampling. For the five resonant frequencies
at 1.343 GHz, 3.116 GHz, 5.035 GHz, 6.815 GHz, and 8.875 GHz, the Q factors using the
3-dB bandwidth were 149.22, 173.11, 419.583, 141.979, and 59.167, respectively. The Q factor
influences the sensor resolution as a higher Q factor leads to a sharper resonance and higher
sensitivity for detecting smaller objects and defects.

As mentioned, resolution and Q factor can both be improved through different meth-
ods and implementations. Better resolution can be obtained by reducing the standoff
distance between the sensor and imaged medium. This allows for measuring a larger
portion of the evanescent wave spectrum, which alternatively leads to better cross-range
resolutions as is well-known in microwave microscopy [24]. Another method to improve
the resolution is through sensor design. In [25], four hexagonal-shaped CSRR components
arranged in a honey-cell configuration have been employed to achieve impressive detec-
tion capability which is due to the highly concentrated electromagnetic fields around the
sensed region. A similar focusing method can be utilized to improve the imaging results in
the proposed technique. Other than reducing standoff distance or using another sensor
design for better resolution, one can also apply superoscillartory filters to the reconstructed
images [26] to improve the resolution. For the improvement of the Q factor, a circular
CSRR design can be implemented for imaging purposes. In [27], the comparison between a
circular and rectangular CSRR has been made and it has been shown that a circular CSRR
has a higher Q factor compared to a rectangular CSRR. Along with implementing a circular
CSRR, the implementation of substrate integrated waveguide (SIW) can also achieve higher
Q factors [28].

For fast proof-of-concept demonstrations, 1D scanning and imaging were presented
here, although the theory was presented for two-dimensional (2D) scenarios. Thus, extend-
ing the results for 2D imaging is straightforward, though time consuming.

The simulation study was split into two parts, the assessment of defects in dielectric
materials and the evaluation of skin tumor size. For the first study, it was observed that
the accuracy of depth estimation degrades as the depth of defects increases. This is due
to the use of Born approximation in deriving the imaging algorithm. Furthermore, from
the simulation study for skin tumor size estimation, it can be concluded that the tumor
depth can be estimated satisfactorily. The results show that smaller tumors closer to the
skin surface can be sized more precisely compared to the cases of evolving tumors.

Next, we conducted two experimental studies. For proof of concept, wood was used
in the first study. We were able to detect and estimate the depth of the defects in the wood
with a high precision. Furthermore, there were no significant changes when using the data
at five or six resonating frequencies. In addition, we also included a study of hidden object
detection using copper strips. It was observed that hidden copper strips at 1 mm and 5 mm
were more detectable compared to the farthest one at 13 mm.

In general, we can conclude that the proposed NDT technique can be employed for
both defect depth estimation and object imaging with applications in NDT, biomedical
imaging, and multilayered PCB evaluation.
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