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ABSTRACT

For some learning tasks, generating a large labeled data set is im-

practical. Demographic inference using social media data is one

such task. While different strategies have been proposed to mitigate

this challenge, including transfer learning, data augmentation, and

data combination, they have not been explored for the task of user

level demographic inference using social media data. This paper

explores two of these strategies: data combination and transfer

learning. First, we combine labeled training data from multiple data

sets of similar size to understand when the combination is valuable

and when it is not. Using data set distance, we quantify the rela-

tionship between our data sets to help explain the performance of

the combination strategy. Then, we consider supervised transfer

learning, where we pretrain a model on a larger labeled data set,

fine-tune the model on smaller data sets, and incorporate regu-

larization as part of the transfer learning process. We empirically

show the strengths and limitations of the proposed techniques on

multiple Twitter data sets.
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1 INTRODUCTION

It is well known that many deep learning methods need large

amounts of labeled data to perform well on different text classi-

fication tasks [28]. However, there are many tasks for which the

amount of available training data is limited because of the high
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cost of labeling or the impracticality of finding a large number of

examples. Demographic inference on social media is one such task.

There are many reasons the task of demographic inference is

important. First, when determining the fairness of an algorithm, we

need demographic characteristics of users, even for data sets where

they may only be available for a subset of the users. Also, users

of social media platforms, such as Twitter, share their activities,

interests, and beliefs with others on the platform. These pieces of

information are potentially important insights for social science

and policy researchers studying the evolving public opinion on

issues of the day, particularly as survey response rates continue

to decline. In order for researchers to effectively use public social

media platforms to understand public opinion, they need basic de-

mographic information to identify subgroups within their samples,

and in some cases, to ensure a representative sample of individuals

[4]. However, these demographic attributes are not always explicitly

shared by users on social media through their profiles or metadata,

thereby requiring machine learning to infer these characteristics.

Demographic inference is a user-level task where multiple posts

(tweets) are used to infer the demographic of interest.

For most user demographics, manual labeling is required to

determine the demographic, leading to very small training data sets,

ranging from 100s to 1000s of users [5, 23]. Therefore, in this paper,

we explore different strategies for demographic inference on Twitter

in a constrained environment, i.e., when the amount of labeled

data is limited. Despite the recent attention to the demographic

inference task [5, 14, 16, 24], work remains to address the low

resource constraint [17]. This paper focuses on inferring two well

studied demographic attributes on Twitter: gender and age.

Different strategies have been proposed to tackle the low re-

source constraint for other inference tasks, including transfer learn-

ing, data augmentation, and data combination [3, 18, 32]. We in-

vestigate two of these approaches. First, we consider the scenario

when training data sets are of a similar size. In this case, we explore

data combination ś a strategy that merges labeled data sets of simi-

lar size prior to training. We refer to this strategy as demographic

inference data combination (DIDC), and show that it is reasonable

when data set distributions are similar to each other. To evaluate

such similarity between data sets, we propose using a variant of the

optimal transport computation [2]. Next, we consider the scenario

when the labeled training data sets are of different sizes. In this case,

we implement demographic inference transfer learning (DITL) by

training on a large labeled data set, fine-tuning the model on the

smaller-scale data sets, and incorporating regularization as part of

the transfer learning process. Our experiments demonstrate that

DITL can generally improve the performance, regardless of the

level of similarity between the data sets.
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Finally, most research [13, 14] on age and gender inference fo-

cused on text analysis uses Bidirectional Encoder Representations

from Transformers (BERT) [7] as the auxiliary embedding space to

improve predictive accuracy. In this work, we also explore adopting

an embedding space that combines both visual and text knowledge.

We use Contrastive Language-Image Pre-Training (CLIP) [21], to

learn visual concepts from images and language concepts from

text. By considering both BERT and CLIP, we can also answer the

question - does an embedding space built using just text vs. one

built using both text and images matter for demographic inference?

In summary, this paper makes the following contributions.

(1) We propose DIDC, a method that combines small demographic

inference data sets of similar magnitude, and analyze the combina-

tion using a variant of the optimal transport computation. (2) We

propose DITL to help when data sets vary in size and overfitting be-

comes a larger issue. (3) We explore different auxiliary embedding

spaces when generating our model. (4) We empirically evaluate

DITL and demonstrate its effectiveness across different data sets.

(5) We make our labeled data set and code publicly available.1

2 RELATED LITERATURE

This section begins by discussing the demographic inference lit-

erature. Then, we review the previous literature about classifying

small datasets. Finally, we present research that considers different

ways to compute data set distribution distance.

Demographic Inference Most early research on demographic

inference used classic algorithms such as logistic regression (LR),

support vector machines (SVM), and random forest (RF), usually

with bag of words as features [5, 13, 14, 20, 24, 30]. Some papers

investigated using stylistic features such as punctuation [14]. In

recent years, research has shifted to using deep learning models.

Miura and colleagues propose a gated recurrent unit (GRU) model

[6] for location inference that combines tweet text, biography and

network data using an attentionmechanism [16]. Liu and colleagues

[14] develop a fine-tuned BERT model, pretrained using a Siamese

network for gender and age prediction. A BERT emoji model that

takes advantage of a hierarchical architecture is proposed by Liu

and Singh [13]. Their work uses a GRU with an attention layer

to separately train the emoji component (using word embeddings

and a Convolutional Neural Network - CNN) and the text compo-

nent (using BERT). However, all these neural models require larger

amounts of labeled data (10,000s to 100,000s). Klein and colleagues

[10] propose ReportAGE that extracts the age of Twitter users from

tweets using regular expressions. But their method reflects a se-

lection bias toward younger users who are possibly more willing

to reveal their age information. Their coverage (around 54%) also

suggests that this approach is useful for opportunistic sampling,

but less reliable for broader population sampling.

Some approaches for demographic inference consider using pro-

file images in the training data. Vijayaraghavan and colleagues

[30] use the inception architecture [29] to extract features from

images. Wang and colleagues [31] propose a multi-modal model

using profile image, username and biography. They use DenseNet

to map images into an image embedding space. Different from pre-

vious work, we investigate combining multiple smaller training

1https://github.com/GU-DataLab/Demographic-Inference

data sets or using transfer learning to improve the quality of the

model. Similar to a few of the earlier works, we focus on using only

post content for this inference task because collecting biographies,

user networks and/or images through the Twitter API can be costly.

Finally, this work is the first to compare the use of a text and an

image/text auxiliary embedding spaces within these models. To the

best of our knowledge, in general, there is not a paper that focuses

on demographic inference within a constrained environment.

Algorithms for Small DataModels developed on small data

sets suffer from overfitting and therefore, do not generalize well.

Different methods have been proposed to address this issue. A sim-

ple technique is to add a regularization term on the norm of the

weights for models such as logistic regression [19]. Dropout, which

works by probabilistically removing neurons from designated lay-

ers during training, has also been shown to work well to prevent

overfitting [27]. Some research introduces data augmentation to

boost the performance of small data sets. For example, Wei and

Zou [32] propose Easy Data Augmentation (EDA) and show im-

provement by augmenting data with techniques such as synonym

replacement. However, the main limitation of data augmentation

arises from the data bias, i.e., the distribution of the augmented

data could be very different from the original data [33].

In recent years, transfer learning has become an important ap-

proach for improving deep learning on small data sets. These ap-

proaches often employ supervised pretraining to transfer knowl-

edge between related domains. For example, Mou et al. [18] show

that by training on a large data set using a recurrent neural net-

work (RNN) model, and then fine-tuning the model on a smaller

data set, the performance on a binary sentiment task improved

by approximately 6%. Semwal and colleagues [25] propose using

CNN and show that transfer learning from a supervised model to

another data set can be helpful for many text classification tasks

(not demographic inference). These previous works focus on post-

level classification. Shang et al. propose a transfer learning model

for demographic inference, but their approach is different from

traditional transfer learning via user modeling since their task has

no available demographic information in the target domain. In their

paper, they introduce a model based on matrix factorization and

the only feature used is users’ ratings for a movie or book [26]. To

the best of our knowledge, this work is the first to study supervised

transfer learning for demographic inference on social media.

Data Set Distribution Distance Researchers have introduced

numerous algorithms to compute data set distribution distance

[1, 2, 34]. For example, Achille et al. [1] use the Fisher information

metric to construct vector representations of data sets which they

then use to define the data set similarity. Another approach is op-

timal transport. Its goal is to look for a transport map that can be

used to transform one probability density function into another.

Yurochkin and colleagues use optimal transport distance for docu-

ment similarity, defining an inner-level distance between topics and

an outer-level distance between documents [34]. Alvarez-Melis and

Fusi [2] extend the work and propose Optimal Transport Dataset

Distance (OTDD). They compute data set distance using optimal

transport, where a data set contains many samples, and they con-

sider data set labels and show their relevance within the data set

similarity computation. They also show that data set distance is
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(a) DIDC

(b) DITL

Figure 1: Overview of the proposed approaches

highly correlated with the transferability between data sets. Be-

cause our prediction task is a user level task, we will extend this

previous literature by computing user level data set distance, not

just post level.

3 METHODS

This section describes our proposed approaches for dealing with

the resource constraint. Figure 1 shows the high-level processes.

The process of DIDC (Section 3.1) is illustrated in Figure 1(a) and

Figure 1(b) shows the procedure for DITL (Section 3.2).

3.1 DIDC

3.1.1 Data Construction. It is not unusual for social science re-

searchers to have access to a few small labeled training sets that

are independently collected and labeled. However, because of the

training data size, the predictive power is low for neural models.

Therefore, we explore combining training data sets of similar size. In

cases where the sizes are not similar, we combine samples of similar

size to avoid biasing the combined training data. Formally, suppose

we have access to 𝑛 data sets, ranging in size |𝑑1 |, |𝑑2 |, ..., |𝑑𝑛 |. Let’s

also suppose that we have labeled training data for each of these 𝑛

data sets. We take a sample 𝑠1, 𝑠2, ..., 𝑠𝑛 from the 𝑛 training sets, re-

spectively, where |𝑠1 | ≈ |𝑠2 | ≈ ... ≈ |𝑠𝑛 | and construct a new labeled

training set (𝑇 ) that contains these samples ś𝑇 = ∪𝑛
𝑖=1
𝑠𝑖 . Although

the merged training set 𝑇 may still be small, it is approximately 𝑛

times as big as each individual sample training set, when 𝑠𝑖 is of

similar size to 𝑑𝑖 .

3.1.2 Data Set Distribution Similarity. To better understand when

and how multiple data sets should be combined, researchers have

proposed using data set similarity [35]. Here we propose using

user-level OTDD to compute the data set distribution similarity

and then quantify the performance of the combination.

OTDD Using optimal transport to compare two probability dis-

tributions requires defining a distance between points sampled from

those distributions. For OTDD, when comparing two data sets, each

point is a pair consisting of the feature representation and the label.

The feature representation can be generated by mapping a post to

an embedding space using a pretrained model, such as BERT. La-

bels are represented as conditional probabilities: 𝑃𝑦 = 𝑃 (𝑋 |𝑌 = 𝑦),

where 𝑋 is the feature set and 𝑦 is the label of a data point. Thus,

the distance of two users (data points) is as follows:

𝑑 (𝑧1, 𝑧2) = (𝑑 (𝑥1, 𝑥2)
2 +𝑊 (𝑃𝑦1, 𝑃𝑦2)

2)

where 𝑧 represents a user, whose feature is expressed as a single

post,𝑊 is theWasserstein distance and 𝑃 is the label representation.

Oncewe have the distance between users, we can use it to determine

the distance between distributions over feature-label pairs (training

set), which is the OTDD:

𝑂𝑇𝐷𝐷 (𝐷1, 𝐷2) =𝑚𝑖𝑛𝜋 ∈
∏

(𝑃1,𝑃2)

∫
𝑧×𝑧

𝑑 (𝑧1, 𝑧2)𝑑𝜋 (𝑧1, 𝑧2)

where 𝐷 represents a training set, 𝜋 is a joint distribution (for-

mally, a coupling) with marginals 𝑃1 and 𝑃2. Although OTDD has

shown strong performance in measuring the distance between post-

level data sets, our task contains user level training data. Therefore,

we introduce the user-level OTDD to compute the data set distri-

bution distance for demographic inference using multiple posts.

Specifically, we represent a user by the mean value of all of her/his

embeddings, and then use the same process as post-level OTDD to

get the data set distribution distance. As our empirical evaluation

will show, though simple, this metric is very effective in measuring

the distance between user-level data sets.

3.2 DITL

We focus on the simplest approach for transfer learning in this

paper (see Figure 1(b)) and leave techniques like layer freezing for

future work. We train the model and fine-tune it directly for a new

data set. We then apply regularization to further avoid overfitting.

As pointed out by Zhou et al. [36], one weakness of only per-

forming the source task and then the target task directly is that the

text encoder learned in the original task may be overridden after

being fine-tuned in the target task. If the target training set is too

small, the fine-tuned encoder has a high risk of overfitting the tar-

get data. This is the main motivation for introducing an additional

component to regularize the model. Specifically, as shown in Figure

1(b), we first select the largest data set represented as 𝐿, and then

take out a sample data set𝑀 that has a similar size as the target data

set 𝑇 , i.e., |𝑇 | ≈ |𝑀 | (This is always doable as |𝐿 | > |𝑇 |). Next, we

pretrain our model using the remaining data 𝑃 (pretraining data),

where |𝑃 | + |𝑀 | = |𝐿 |. We then fine-tune the pretrained model using

the target data set𝑇 and the sample data set𝑀 simultaneously. This

additional component, using𝑀 as input, serves as a regularizer. The

basic idea is as follows: by making the model train on the similar

type of data as in pretraining (as they are from the same data set),

there will be less influence of the smaller data set on the final model.

Finally, we minimize the sum of two losses from the regularizer
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Figure 2: Overview of the proposed learning model

Figure 3: Contrastive Pretraining

and the target task: 𝑙𝑜𝑠𝑠 = −(𝛼𝒀𝑠 · 𝑙𝑜𝑔𝒑𝑠 + 𝒀𝑡 · 𝑙𝑜𝑔𝒑𝑡 ) where 𝒀𝑠 and

𝒀𝑡 are one-hot encodings of the source and target data set labels,

𝒑𝑠 and 𝒑𝑡 are the prediction values, and 𝛼 is a weight to control

the importance of regularization.

3.3 Learning Model

The learning model we use is similar to prior work (see Figure 2).

Specifically, tweet text is first input into the pretrained model (BERT

or CLIP) to compute embeddings. Then the vectors are input into

an RNN with attention. We now present the details of our model.

BERT BERT is a deep neural model that processes text bidirec-

tionally (from left to right and right to left). BERT uses an encoder

stack transformer architecture. This architecture is an encoder-

decoder network using self-attention. Using a large amount of text

data, it is pre-trained on two tasks: Masked Language Modeling

and Next Sentence Prediction.

CLIP CLIP is a deep neural model that is constructed using

both text and image data. As shown in Figure 3, the model tries to

learn the relationship between an entire sentence and the image it

describes with the goal of maximizing the similarity of the diagonal

(the green area - (𝐼1𝑇1, 𝐼2𝑇2, ..., 𝐼𝑁𝑇𝑁 )) andminimizing the remaining

area. Prior research has shown that CLIP is capable of predicting the

most relevant text snippet given an image, and conducting image

classification in computer vision with zero-shot capabilities [21].

Learning Model Structure For the text representation, we use

the pretrained model directly to generate the embeddings, having

tweet text as input. We use a GRU structure to encode all the tweet

text for each user. Next, we adopt an attention mechanism so that

the model is able to selectively focus on valuable parts of the input

text for our task and learn the association between them. Finally,

we send this output into a Softmax layer for the final prediction.

4 EMPIRICAL EVALUATION

In this section, we begin by introducing the data sets we use (Section

4.1) and the experimental setup (Section 4.2). We then present an

Demographics Category
Count

Wiki IMDB Survey Merged Data

Gender
- Female 3335 1454 289 720

- Male 7891 1911 383 788

Age

Bin2
<45 7538 1898 324 787

>=45 3731 1467 348 721

Bin3

<35 5206 807 178 465

35-54 3907 2013 296 592

>=55 2156 545 198 451

Bin4

<30 4038 388 - -

30-40 4254 962 - -

40-50 2340 1096 - -

>=50 3683 919 - -

Table 1: Ground truth data distribution

empirical evaluation of the effectiveness of our two approaches

(DIDC and DITL) in a low resource setting (Sections 4.3 and 4.4). We

also explore different pretrained models for demographic inference,

and provide some intuition on the impact of different embedding

spaces for modeling Twitter language (Section 4.5). Finally, we

compare user-level and post-level inference (Section 4.6).

4.1 Data Sets

Wiki We use the Wikidata benchmark data set from Liu et al. [14].

It contains a mapping between user demographics (gender and age)

and Twitter handles. We use the Twitter API to retrieve users’ most

recent posts. The average number of tweets per user is 160.

IMDB Beginning with a public data set containing the demo-

graphic information of actors and actresses in IMDB, we use dif-

ferent celebrity lists to identify the Twitter handles of different

celebrities. Following that, we collect the tweets of each celebrity

using the Twitter API.2 The average number of tweets per user is

187. There are no overlapping handles between the Wiki data and

the IMDB data.

Survey Data Our research team conducted a nationally repre-

sentative survey related to Covid-19. Those respondents who used

Twitter were also asked if they would consent to allow our research

team to download their tweets for both computer science and social

science research. This data set contains those who consented.3 The

average number of tweets per user is 149.

Merged The merged data set is a combination of data from

different sources. We use the entire Survey data set, and randomly

sample similar numbers of users from the Wiki and the IMDB data

sets.

For all the data sets, we follow the same pre-processing pro-

cedure: (1) remove users that have less than 20 English tweets,

(2) lowercase all the words, and remove stopwords, handles and

mentions for the classic machine learning models.

Table 1 shows the number of users in each data set for gender

and age category. Because of training data limitations, we consider

a binary version for gender. For age, we consider a binary task with

2 age bins and a multi-class version with 3 and 4 bins for the Wiki

and the IMDB data set, and 3-bins only for other smaller data sets.

Forty-five is viewed as a new era of adulthood according to the

2The data can be found at https://github.com/GU-DataLab/Demographic-Inference/
tree/main/dataset.
3This research was approved by Georgetown University’s Institutional Review Board
(number: STUDY00002133).
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Levinson adult development model [12]. Thus, we choose 45 as the

2-bin dividing line. The 3-bin and 4-bin boundaries were identified

by social science researchers on our team.

Baseline Models: The classic models we compare to are LR

proposed by Nguyen et al. [20], SVM by Chen et al. [5], and RF [30].

The neural models we compare to are Vanilla BERT [14], Siamese

BERT [14], and BERT emoji [13].4

4.2 Experimental Settings

We use two NVIDIA Tesla P4 GPUs, each having 16 GBs of memory.

We adopt the CLIP base model. Its text encoder is a Transformer

with a modified architecture [22], and the image encoder is the

Vision Transformer (ViT-B/32) [8].5 We use the Adam update rule

[9] to optimize our model. Weight, bias, and context vector are

randomly initialized for the attention layers and then normalized

with a mean value of 0 and a standard deviation of 0.05. They are

jointly learned during training. Gradients are clipped between -1

and 1. Batch size is set to 32. The initial value of 𝛼 is set to 1 and

the learning rate is set to 0.0001. The maximum number of tweets

per user is 200 and those having fewer are padded. We randomly

sample from the group using the Python library imblearn [11] in

order to create more balanced data sets. We run each experiment

ten times. Each time we divide the data into training, validation

and test set with a random seed. We report the average F1 scores, as

well as 0.95 confidence interval. For DITL, we first use 32 samples

per class from the target set for fine-tuning and then all the target

set data.6

4.3 Results Using DIDC

Our results for the proposed model and DIDC are presented in

Table 2. Values shown in dark red are the highest scores. Values

shown in red are the highest scores that are statically significant

using a p-value of 0.05.

Wiki Analysis: Beginning with gender, the best classic model

has an F1 score of 0.839 and the best neural model achieves an

F1 score of 0.882. Our model using CLIP performs better than the

state-of-the-art classic model and neural model by 5.9% and 1.6%,

respectively. For age classification with 2-bin, we observe that the

best classic model is RF, and it has an F1 score of 0.816. The best

neural model achieves an F1 score of 0.824, which is only a marginal

difference from the classic model. The proposed model using CLIP is

again the best one and performs 3.3% better than the best previous

model. The proposed model using BERT is generally not as strong.

For age with multiple-bins, RF has the highest results among

classic models, but it is approximately 4% lower and 5% lower than

the best neural model for age with 3-bin and 4-bin, respectively. For

3-bin, our model using CLIP achieves an F1 score of 0.72, which is

3.4% higher than the state-of-the-art model. For 4-bin, the proposed

model using CLIP is 5.9% higher than the best neural model.

IMDBAnalysis: For IMDB, the classic models perform similarly.

The neural models are generally not as good as the classic models

for both gender and age. The one exception is the proposed model

4We explored using a transformer architecture, and also tried RoBERTa, but the differ-
ence is marginal.
5OpenAI has not released the data set yet.
6We have tried both 32 and 64 samples and while 64 gives higher F1 scores, we present
the results using 32 samples since our environment is resource constrained.

using CLIP. We see that for gender, it has an F1 score that is 3.6%

higher than the best state-of-the-art model. For binary age, this

model achieves the highest F1 score, which is 3.2% higher than the

best previous model. CLIP for age with 3 bins is 3% higher than the

state-of-the-art and 5.8% higher for 4-bin. We again see that the

proposed BERT model does not perform as well as the CLIP model.

Survey Analysis: Similar to theWiki and IMDB data, our model

using CLIP generally performs better than the state-of-the-art. How-

ever, there are a few things to note. First, we can see that for gender,

the proposed model using CLIP has only a marginal difference

when compared to the best previous model. For 2-bin age, it is also

only 1.2% higher. We hypothesize that this is caused by the small

size of the Survey data set and likely overfitting that is occurring,

highlighting the challenges associated with small data sets.

Merged Data Analysis: Similar to our previous findings, the

proposed model using CLIP performs better than the state of the

art for both age and gender, ranging from 2.5% to 7.5%. The results

across all these data sets suggest that our proposed model performs

better than the state-of-the-art and that using text-image embed-

dings (CLIP) for pre-training is more robust for noisy tweets than

using text embeddings (BERT) alone.

However, our main interest is in understanding whether a com-

bined training data set leads to stronger results than using a smaller

training data set on its own. Table 4 shows this comparison for

our model using CLIP across the data sets.7 It shows the F1 scores

when the three sampled training sets are trained independently (TI)

and when they are merged (TM). We see that the difference in F1

score using the Wiki data is marginal for gender and 3-bin age. For

2-bin age, the result is approximately 4% lower. The performance

of both IMDB and Survey data sets improves significantly across

almost all demographics. Although intuitivelyWiki and IMDB seem

more similar since both of them include famous individuals, the

performance suggests that the two training sets do not supplement

each other well.

To better understand this finding, in Table 3, we present the

distribution distance between different data sets using user-level

OTDD. We can see that the distance between the IMDB and Survey

data sets is smaller than IMDB and Wiki or Survey and Wiki. This

may also explain why the performance of TM for IMDB and Survey

improves (compared to TI), while it decreases for the Wiki data set.

To further show the correctness of user-level OTDD, we adopt a

similar approach as Alvarez and Fusi [2] to demonstrate the rela-

tionship between distance and learning performance. We simulate

an adaptation setting. For every pair of labeled sets,8 we first train

the model using the entirety of the source domain data, after which

we fine-tune and evaluate it on the target domain. For example, to

test the transferability for gender inference from IMDB to Wiki, we

will train the model using all the data from IMDB and then fine-tune

it with limited samples from the Wiki data set.9 Figure 4 shows

that the data set distribution distance computed using user-level

OTDD is highly correlated with transferability. Specifically, as the

7Due to space limitation, we focus on analyzing the distances based on CLIP as it
performs better, but note that this can also be applied to BERT.
8We ensure that labeled sets are of a similar size by sampling Wiki and IMDB.
9We have done a sensitivity analysis by using both 32 and 64 users for fine-tuning and
found that the curve is similar for both cases. We choose 64 for demonstration as it
has a more balanced positive and negative increase in F1 score.
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Model
Wiki IMDB Survey Merged Data

Gender Bin2 Bin3 Bin4 Gender Bin2 Bin3 Bin4 Gender Bin2 Bin3 Gender Bin2 Bin3

Unigram-RF 0.812 0.816 0.649 0.518 0.835 0.717 0.583 0.445 0.68 0.663 0.509 0.751 0.741 0.559

Nguyen et al. 0.839 0.782 0.63 0.513 0.821 0.701 0.556 0.451 0.698 0.672 0.518 0.738 0.716 0.512

Chen et al. 0.816 0.797 0.635 0.509 0.831 0.722 0.587 0.454 0.656 0.663 0.504 0.738 0.74 0.543

Vanilla BERT 0.867 0.785 0.611 0.436 0.812 0.689 0.576 0.435 0.706 0.691 0.517 0.775 0.722 0.503

Siamese BERT 0.87 0.783 0.614 0.455 0.827 0.665 0.519 0.43 0.704 0.629 0.495 0.753 0.699 0.516

Liu et al. 0.882 0.824 0.686 0.569 0.828 0.697 0.561 0.452 0.679 0.721 0.555 0.775 0.757 0.558

Proposed BERT 0.868 0.817 0.679 0.55 0.813 0.688 0.558 0.456 0.678 0.708 0.563 0.762 0.745 0.572

Proposed CLIP 0.898 0.857 0.72 0.628 0.871 0.754 0.617 0.512 0.712 0.739 0.629 0.811 0.782 0.634

Table 2: F1 score for age and gender on different data sets. Bin# refers to the number of bins for age.

data sets Gender Bin2 Bin3

𝐼𝑀𝐷𝐵 ⇔ 𝑆𝑢𝑟𝑣𝑒𝑦 5.84 5.86 5.9

𝑊𝐼𝐾𝐼 ⇔ 𝑆𝑢𝑟𝑣𝑒𝑦 8.67 8.74 8.78

𝑊𝐼𝐾𝐼 ⇔ 𝐼𝑀𝐷𝐵 8.39 8.46 8.5

Table 3: Distance between two data sets

Figure 4: Distance vs. adaptation (S: Survey,W:Wiki, I: IMDB;

G: gender inference, A2: 2-bin age inference, A3: 3-bin age

inference. Colors represent DITL between data sets. )

data set
Gender Bin2 Bin3

TI TM TI TM TI TM

Wiki 0.817±0.026 0.816±0.02 0.829±0.014 0.79±0.033 0.628±0.027 0.633±0.04

IMDB 0.833±0.021 0.856±0.035 0.771±0.008 0.786±0.034 0.59±0.024 0.605±0.04

Survey 0.712 ±0.022 0.751±0.025 0.739±0.024 0.76±0.033 0.629±0.031 0.64±0.036

Table 4: F1 score for the sample data sets. Results are in m±c

format, where m=mean and c= 95% confidence interval

distance between two data sets increases, the F1 score improvement

brought by transfer learning from one data set to the other becomes

smaller. We observe that when the distribution distance between

data sets is less than 6, there is usually a gain in F1 score; when

the distance is greater than 8.5, in most of the cases, there is a loss;

when the distance is in between, we note that there are both gains

and losses. The performance shows the correctness of user-level

OTDD and also suggests that a model trained on a small data set

can still add knowledge to the training of another data set if the

two data sets are similar enough and the distribution distance is

small. In these cases, combining two small training data sets is a

reasonable strategy.

Model
IMDB Survey

Gender Bin2 Bin3 Bin4 Gender Bin2 Bin3

RF 0.835 0.717 0.583 0.445 0.68 0.663 0.509

RF_32 0.714 0.582 0.539 0.358 0.574 0.447 0.376

RF_ALL 0.834 0.715 0.565 0.445 0.683 0.671 0.518

BERT 0.812 0.689 0.576 0.435 0.704 0.691 0.517

BERT_32 0.725 0.604 0.315 0.2 0.651 0.577 0.291

BERT_ALL 0.83 0.674 0.555 0.441 0.694 0.661 0.507

Emoji 0.828 0.697 0.561 0.452 0.679 0.721 0.555

Emoji_32 0.853 0.689 0.563 0.461 0.73 0.721 0.552

Emoji_ALL 0.868 0.718 0.602 0.49 0.742 0.734 0.573

Proposed BERT 0.813 0.688 0.558 0.456 0.678 0.708 0.563

Proposed BERT_32 0.845 0.688 0.553 0.465 0.696 0.722 0.555

Proposed BERT_ALL 0.868 0.714 0.582 0.485 0.714 0.731 0.579

Proposed CLIP 0.871 0.754 0.617 0.512 0.712 0.739 0.629

Proposed CLIP_32 0.873 0.733 0.649 0.541 0.745 0.731 0.634

Proposed CLIP_All 0.883 0.761 0.673 0.58 0.756 0.764 0.65

Table 5: Comparison of F1 score for training from scratch

without using transfer learning, DITL using 32 samples and

then all the data.

4.4 Results Using DITL

To better understand the impact of different components of our

transfer learning approach, we begin by showing results for our

approach without regularization. We then present results that incor-

porate the regularization component. For the results in this section,

we apply DITL from the larger data set (Wiki) to one of the smaller

data sets (IMDB or Survey).

4.4.1 DITL without Regularization. For unregularized DITL, a com-

parison of F1 scores for different data sets is presented in Table

5. The first row for each model is the original model trained from

scratch without transfer learning. The next row shows the results

using 32 samples per class from the target training set. The final

row shows the results using all the data.10

IMDB Analysis: From Table 5, we see that DITL from classic

models or simple neural network models does not make enough of a

difference when using all the data to fine-tune, and the performance

is downgraded by a large percentage when using limited samples.

This indicates that a simple model is not able to effectively store

and transfer the knowledge needed for the demographic inference

task. For the BERT emoji model, we can see that when only using 32

samples, the performance is improved by more than 2% over the one

trained from scratch for gender. For age classification, DITL fine-

tuned on 32 users achieves comparable results to the original model

without transfer learning. While using all the data, we observe that

10Due to space limitations, we only show the best performing models.
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Model Pearson Spearman

Vanilla BERT 0.61 0.587

CLIP 0.686 0.679

Table 6: Pearson and Spearman correlation for BERT and

CLIP

Model Wiki IMDB Survey

Latest Post 0.665 0.608 0.551

Random Post 0.663 0.604 0.554

All posts 0.898 0.871 0.712

Table 7: Performance of proposed model using CLIP for gen-

der using the latest post, a random post and all posts

it is better than the original BERT emoji model by 4%, 2.1%, 4.1%,

3.8% for gender, 2-bin, 3-bin and 4-bin, respectively.

For the proposed models, we find that the proposed BERT model

has a similar performance as BERT emoji. For the CLIP model, ex-

cept for the 2-bin case for age, DITL with 32 user samples performs

similar to or better than the original model for all the other predic-

tion tasks, with a marginal difference for gender, and an improve-

ment of approximately 3% for multi-bin age classification. When

using all the training data, DITL achieves better results than the

model without using transfer learning, improvements range from

0.7% to 6.8%. These results indicate that although the magnitude

of improvement differs for BERT and CLIP, with a more complex

model, using DITL can improve the F1 scores in general. Further-

more, even with a reduced training data set, the performance is still

competitive to having the complete training data set.

Survey Data Analysis: For the Survey data set, we observe

similar results as the IMDB data set. Both RF and vanilla BERT

fail to transfer the knowledge. For BERT emoji, when using 32

samples, the results are comparable to the original model for age,

and there is an improvement of approximately 5% for gender. When

using all the target training set, we note that both age and gender

increase in F1 score over the model trained from scratch, by 6.3%,

1.3%, and 1.8% for gender, age with 2 bins and 3 bins, respectively.

For the proposed models, we see a similar performance. Overall,

DITL using CLIP achieves a higher result than the original model,

by 2.1% to 4.4%. Finally, similar to DIDC, using our proposed model

with CLIP performs better than with BERT.

4.4.2 The Impact of Regularization. We now consider the impact

of regularization within our proposed model. Following the work of

Zhou et al. [36], we use the train-validation difference and train-test

difference to show the stability of a model. A larger difference in

F1 score implies more overfitting: performing well on the training

set and not as well on the test/validation set.11 From Figure 5, we

compare the training dynamics of unregularized and regularized

transfer learning with 𝛼 = 0.1 and 𝛼 = 1.12 As can be seen, under a

large regularization parameter 𝛼 = 1, our method achieves smaller

differences between the training data F1 and the validation data

11We only show the results for the proposed model using CLIP as it has the best F1
scores, but the regularized DITL can also be applied to models that use BERT.
12We use 10 epochs for these comparison results.

F1 than the unregularized DITL. Our method also achieves smaller

differences between the training F1 and the test F1. Under a smaller

regularization parameter 𝛼 = 0.1, differences are lower in some

cases compared to unregularized DITL.

Table 8 shows the comparison of relative increase in F1 score

for gender and age for unregularized DITL and the regularized

DITL as we increase the regularization parameter 𝛼 from 0.1 to

1. As we increase 𝛼 , the F1 score generally increases, although

the scores are within the same range. This is because 𝛼 imposes a

regularization effect which helps reduce overfitting. We see that

in most cases, the regularized model has a marginal improvement

over the unregulated model. However, if 𝛼 becomes too large, the

F1 score drops because the regularization effect is too strong.

4.5 Discussion of CLIP vs BERT

Our intuition is that CLIP is able to recognize more similarities

and dissimilarities for a post than BERT. To demonstrate this, we

compare the performance of BERT and CLIP in terms of their se-

mantic textual similarity. Specifically, we use the public data set,

SICK-Relatedness [15] and show the Pearson correlation and Spear-

man correlation of the two models. The SICK data set consists of

10,000 English sentence pairs with the sentence relatedness score

(on a 5-point rating scale). Table 6 presents the Pearson correla-

tion score and Spearman correlation score. We can see that CLIP is

higher on both metrics than BERT, suggesting that CLIP’s ability

to distinguish features of users’ posts might be one of the reasons

why it performs better.

4.6 Comparison of User-level and Post-level
Inference

To further show the difference between post-level and user-level

inference, we compare the performance when using the latest tweet,

a random tweet and all tweets. Specifically, for the post-level infer-

ence, we map the tweet into the embedding space using CLIP. Then,

we use the same multilayer perceptron (MLP) model presented in

Liu et. al [14]. Table 7 shows the F1 scores. We see that user-level

inference works much better than post-level inference for our task.

The results suggest that post-level inference is insufficient for this

task and that user-level inference is necessary.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose two approaches for dealing with the

overfitting problem caused by small data sets when training deep

learning models for gender and age. We show that data combination

(DIDC) is a good option when we have data sets that are similar in

both size and distribution. Using user-level OTDD, we are able to

quantify the performance of the combination. We also empirically

demonstrate that supervised transfer learning works particularly

well on user-level demographic inference, in spite of low or high

similarity. We also show that having an advanced neural model

with regularization is better for user-level transfer learning in this

constrained environment. Finally, using a combined text and image

embedding space works well for this task. CLIP has superior perfor-

mance compared with classic models and BERT, indicating that for

Twitter where images are popular, it is beneficial to integrate visual
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Figure 5: Training dynamics of DITL. The red line denotes unregularized DITL, blue is DITL with 𝛼 = 0.1 and black is DITL with

𝛼 = 1. The left 2 columns are for the Survey data and the right 2 are for IMDB. From the top to bottom, each row corresponds to

gender, 2-bin age and 3-bin age. For each subfigure, the X axis is the number of epochs and the Y axis is the difference in F1

score.

𝛼
IMDB Survey

Gender Bin2 Bin3 Bin4 Gender Bin2 Bin3

N/A 0.884 ± 0.009 0.762 ± 0.01 0.662 ± 0.021 0.546 ± 0.013 0.756 ± 0.045 0.764 ± 0.017 0.65 ± 0.035

0.1 0.885 ± 0.007 0.769 ± 0.013 0.652 ± 0.016 0.568 ± 0.028 0.765 ± 0.019 0.756 ± 0.036 0.664 ± 0.035

0.2 0.888 ± 0.01 0.771 ± 0.009 0.663 ± 0.018 0.561 ± 0.021 0.724 ± 0.023 0.764 ± 0.015 0.637 ± 0.029

0.5 0.892 ± 0.009 0.763 ± 0.012 0.659 ± 0.012 0.554 ± 0.009 0.754 ± 0.03 0.766 ± 0.028 0.644 ± 0.014

1 0.892 ± 0.01 0.766 ± 0.01 0.652 ± 0.014 0.555 ± 0.034 0.756 ± 0.03 0.743 ± 0.025 0.655 ± 0.025

Table 8: F1 score with 0.95 confidence interval for unregularized DITL (𝛼 is N/A) and regularized DITL with different 𝛼 values

information. Future work includes considering other demographics

with a similar resource constraint.

6 ETHICAL CONSIDERATIONS

We acknowledge that demographic prediction has ethical implica-

tions. While automated models could provide valuable information

on understanding people’s opinions, errors occur that may lead to

possible equity and justice related consequences. We also believe

that privacy expectations should not be compromised. For this rea-

son we use data sets that either have an expectation of being public

(Wiki and IMDB) or ones we obtain consent to use for research

purposes (Survey). We also choose to run all of our experiments

on Twitter, where users do not typically have an expectation of

privacy and where they readily share information that would let

other users infer their gender and age, e.g. photos.
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