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ABSTRACT: The extent to which species ranges reflect intrinsic phys-
iological tolerances is a major question in evolutionary ecology. To
date, consensus has been hindered by the limited tractability of exper-
imental approaches across most of the tree of life. Here, we apply a
macrophysiological approach to understand how hematological traits
related to oxygen transport shape elevational ranges in a tropical bio-
diversity hot spot. Along Andean elevational gradients, we measured
traits that affect blood oxygen-carrying capacity—total and cellular
hemoglobin concentration and hematocrit, the volume percentage
of red blood cells—for 2,355 individuals of 136 bird species. We used
these data to evaluate the influence of hematological traits on ele-
vational ranges. First, we asked whether the sensitivity of hematolog-
ical traits to changes in elevation is predictive of elevational range
breadth. Second, we asked whether variance in hematological traits
changed as a function of distance to the nearest elevational range limit.
We found that birds showing greater hematological sensitivity had
broader elevational ranges, consistent with the idea that a greater ac-

* Corresponding authors; email: ethanblinck@gmail.com, cwitt@unm.edu.

ORCIDs: Linck, https://orcid.org/0000-0002-9055-6664; Williamson, https://
orcid.org/0000-0002-0841-7957; Beckman, https://orcid.org/0000-0002-8303
-2475; Benham, https://orcid.org/0000-0003-3276-6177; DuBay, https://orcid
.org/0000-0002-7221-7546; Gadek, https://orcid.org/0000-0002-4954-9956; Jones,
https://orcid.org/0000-0002-4822-157X; Nufiez-Zapata, https://orcid.org/0000
-0001-9679-1617; Quifionez, https://orcid.org/0000-0002-2165-9985; Schmitt,
https://orcid.org/0000-0002-3100-7331; Tiravanti, https://orcid.org/0000-0002
-7088-4361; Wright, https://orcid.org/0000-0002-1792-3974; Valqui, https://
orcid.org/0000-0003-1300-3641; Storz, https://orcid.org/0000-0001-5448-7924;
Witt, https://orcid.org/0000-0003-2781-1543.

climatization capacity facilitates elevational range expansion. We fur-
ther found reduced variation in hematological traits in birds sampled
near their elevational range limits and at high absolute elevations,
patterns consistent with intensified natural selection, reduced effective
population size, or compensatory changes in other cardiorespiratory
traits. Our findings suggest that constraints on hematological sensitiv-
ity and local genetic adaptation to oxygen availability promote the
evolution of the narrow elevational ranges that underpin tropical mon-
tane biodiversity.

Keywords: phenotypic plasticity, hemoglobin, hypoxia, niche breadth,
macrophysiology.

Introduction

When, if ever, are species ranges limited by intrinsic phys-
iological tolerances? Correlative niche models have dem-
onstrated the pervasive influence of climate on plant and
animal distributions (reviewed in Elith and Leathwick 2009),
but inferring the specific effects of abiotic variables on or-
ganismal fitness and population viability requires additional
evidence (Bozinovic et al. 2011; Bozinovic and Naya 2015).
Physiological tests paired with occurrence records have
demonstrated that thermal tolerance is associated with geo-
graphic range size in groups as diverse as aquatic insects
(Polato et al. 2018), Mimulus monkeyflowers (Sheth and
Angert 2014), and dung and carrion beetles (Sheldon and
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Tewksbury 2014). In plants, reciprocal transplants suggest
that geographic range limits frequently align with niche
limits (Hargreaves et al. 2014; Lee-Yaw et al. 2016). Yet
for the majority of species where experimental manipu-
lation is impractical, clear links among physiological trait
values, environmental factors, and distribution limits re-
main elusive. In these cases, macrophysiological data—
measurements of physiological trait variation at large spa-
tial and phylogenetic scales—can provide valuable insights
into the functional underpinnings of biogeographic pat-
terns (Chown et al. 2004; Gaston et al. 2009).

Few biogeographic patterns are as striking as pervasive
elevational specialization in tropical vertebrates. In the
Peruvian Andes, for example, birds have a median eleva-
tional range breadth of approximately 1,100 m, despite
more than 5,000 m of habitable elevation gradient below
the line of permanent snow and ice (Parker et al. 1996).
This specialization contributes to extraordinary beta di-
versity: along a single surveyed transect near Manu, Peru,
66 hummingbird species occur, but no more than 30 at a
single elevation (Walker et al. 2006). Because rapid spe-
cies turnover is correlated with a dramatic environmental
gradient (McNew et al. 2021), biologists have long hy-
pothesized that narrow breadth of tolerance to one or
more abiotic variables contributes to range limits (von
Humboldt 1838; Janzen 1967; Terborgh 1971; Jankowski
etal. 2013). Yet to date, research on the proximate causes
of range limits has largely focused on biotic interactions
(Terborgh and Weske 1975; Freeman et al. 2016), com-
plemented by a handful of comparative studies of meta-
bolic and thermal physiology (Londoiio et al. 2015; Lon-
dofio et al. 2017; Wolf et al. 2020; Gutierrez-Pinto et al.
2021).

One environmental variable with well-characterized con-
sequences for organismal physiology is the partial pres-
sure of oxygen (Po,), which systematically declines with in-
creasing elevation. Lowland organisms show a variety of
plastic acclimatization responses to low Po,, including in-
terrelated changes in numerous respiratory, cardiovascu-
lar, and metabolic traits (Storz et al. 2010; Storz and Scott
2019). Among these short-term responses are a suite of gene
expression changes driven by the hypoxia-inducible factor
(HIF) pathway, including upregulation of erythropoietin
and resulting increases in blood oxygen-carrying capacity
(Semenza et al. 1991). As much as 99% of O, in vertebrate
blood is bound to hemoglobin (Hb), a tetrameric, iron-
containing metalloprotein synthesized in red blood cells,
also known as erythrocytes. Under low ambient Po, condi-
tions, animals experience reduced O, saturation of arterial
blood (Sao,). HIF-induced erythropoiesis can compensate
for this shortfall by augmenting total red blood cell mass,
thereby enhancing blood-O, transport capacity. In the ab-
sence of concurrent increases in plasma volume, erythro-

poiesis should lead to increases in both total blood Hb
concentration ([Hb]) and hematocrit (Hct), the volume
percentage of red blood cells. Because each Hb tetramer
binds up to four O, molecules, [Hb] is proportional to
blood oxygen-carrying capacity per unit volume of blood.
Hct is a function of the quantity and size of Hb-containing
erythrocytes. Another trait that is relevant to blood-O,
transport—mean cellular Hb concentration (MCHC)—is
simply the scaled quotient of [Hb] and Hct.

Over longer timescales, evolutionary shifts in elevation
are often associated with predictable changes in Hb-O,
affinity that help optimize pulmonary O, uptake and tissue
O, delivery according to changes in inspired Po, (Projecto-
Garcia et al. 2013; Natarajan et al. 2016; Storz 2016; Storz
2019). The fitness trade-offs associated with physiological
adaptation to a particular Po, regime could promote the
evolution of elevational specialization in vertebrates. If so,
variation in blood phenotypes across the elevational range
of species may bear the signature of this evolutionary
process. For example, individual plasticity in Hb concen-
tration could affect overall acclimatization capacity and,
by extension, the environmental niche breadth of species.
Similarly, the relationship between local (elevation-specific)
variation in Hb concentration and relative position within
a species’ elevational range could indicate stronger trait-
specific selection near range limits (Hoffman and Blows
1994; Pennington et al. 2021). Two recent phylogenetic
comparative analyses of compiled data on Hb concentra-
tion and Hct showed that both parameters tended to in-
crease with elevation, even when data were derived from
a wide variety of bird taxa and collected by various investi-
gators without any specific intent to test elevation effects
(Yap et al. 2019; Minias et al. 2020).

Here, we apply a macrophysiological approach to under-
stand how commonly studied hematological traits associated
with blood-O, transport capacity might shape elevational
distributions in a biodiversity hot spot, using original data.
We measured [Hb] and Hct and calculated MCHC for
2,355 individuals of 136 bird species. Assuming that all three
hematological traits would respond similarly to environ-
mental hypoxia without systematic variation among species,
we addressed two hypotheses related to the relationship be-
tween physiology and elevational range using multivariate
linear models in a Bayesian framework.

First, we asked whether the rate of increase in hematolog-
ical trait values per unit elevation (hereafter, “hematological
sensitivity”) is predictive of elevational range breadth, using
an approach similar to a previous study of leaf trait sensi-
tivity to elevation (Sides et al. 2014). We assumed within-
species genetic homogeneity among the populations we
sampled, a plausible assumption given the high vagility of
birds and short linear distances across elevational gradients.
Hematological sensitivity can be interpreted as a proxy for



the species-wide mean of individual trait plasticity measure-
ments. Because a hypoxia-induced increase in [Hb] can con-
tribute to hypoxia acclimatization by increasing arterial O,
content—augmenting convective O, transport when paired
with other cardiovascular adjustments (Gonzalez et al. 1994;
Tate et al. 2017; Gonzalez and Kuwahira 2018; Stembridge
et al. 2019; Tate et al. 2020; Storz and Bautista 2022)—[HDb]
sensitivity could be positively correlated with elevational
range breadth. However, [Hb] is a highly plastic trait that
reflects overall levels of tissue O, delivery and stimulus-
response characteristics of the erythropoietin system. Un-
der hypoxia, a reduced oxygenation of renal tissue stimu-
lates the synthesis and release of erythropoietin, which in
turn activates red blood cell production. Thus, species that
can maintain adequate tissue O, delivery in spite of envi-
ronmental hypoxia may exhibit little change in [Hb] with
increasing elevation. By contrast, species that suffer greater
impairments of tissue O, delivery at high elevation (and
that therefore experience a stronger hypoxia-induced stim-
ulus of erythropoiesis) will show a higher rate of increase in
[Hb] as a function of elevation. If hypoxia tolerance is an
important determinant of upper elevational range limits,
we might expect a negative correlation between hypoxia-
induced variation in [Hb] and elevational range breadth.

Second, we asked whether variance in hematological traits
changed as a function of distance from the nearest elevational
range limit and as a function of absolute elevation. At least
three non-mutually-exclusive mechanisms could lead to non-
random patterns of variance in trait values across elevation:
changes in effective population size at range limits, a history
of directional selection on the genetic component of trait var-
iance, and/or hypoxia-induced changes in the environmental
component of trait variance (plasticity). Without attempting
to discriminate among these mechanisms, we predicted that
optimal respiratory performance occurred near the midpoint
of a species’ elevational range and that departures from this
optimum would lead to a positive correlation between both
distance from the nearest elevational range limit and absolute
elevation and local variation in hematological phenotypes.
We further tested for the presence of an interaction between
these predictors, expecting that the increasingly severe ambi-
ent hypoxia at higher absolute elevation might diminish the
positive effect of increasing distance from the nearest ele-
vational range limit (i.e., increasing proximity to elevational
range midpoint and optimal respiratory performance) on lo-
cal hematological trait variance.

Methods
Hematological Measurements

From 2006 to 2020, we measured [Hb] and Hct for birds
captured during collaborative fieldwork in Peru by the Mu-
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seum of Southwestern Biology (MSB) in New Mexico and
the Centro de Ornitologia y Biodiversidad (CORBIDI) in
Lima, Peru. We conducted this work with assistance from
numerous researchers associated with these institutions—
whose contributions we gratefully acknowledge here and
describe in detail elsewhere (Witt, Linck, Williamson, et al.,
in prep.)—and under the following permits from Peru’s
management authorities: 004-2007-INRENA-IFFS-DCB, 135-
2009-AG-DGFFS-DGEFFES, 0377-2010-AG-DGFFS-DGEFEFS,
0199-2012-AG-DGFFS-DGEEFES, 006-2013-MINAGRI-DGFFS/
DGEFEFS, 280-2014-MINAGRI-DGFES-DGEFEFS, and 2022-
RDG 405-2017-SERFOR-DGGSPFEFS.

As quickly as possible after capture, we punctured the
brachial vein on the underside of each bird’s wing and col-
lected whole blood using heparinized microcapillary tubes
(for Hct) or spectrophotometer cuvettes (for [Hb]). We cen-
trifuged microcapillary tubes for 5 min at 13,000 rpm to
separate red blood cells from plasma and used digital cal-
ipers to quantify the relative volume of each, averaging
two samples per bird to arrive at our final estimate of
Hct as a percentage. We measured [Hb] (g/dL blood) for
an ~5-pL blood sample with the Hemocue HB201 analyzer
and associated Hb photometer. As this proprietary method
generates values ~1.0 g/dL higher than measures from a
direct cyanomethaemoglobin spectrophotometer (Sim-
mons and Lill 2006), we corrected the resulting estimates
by subtracting this quantity (DuBay and Witt 2014). Speci-
mens and tissues are housed at the MSB and CORBIDI,
and specimen data are detailed in a separate data publica-
tion (Witt et al., in prep.).

Data Filtering and Preparation

To ensure only high-quality measurements were included in
our analyses, we applied a series of filters to the full data set of
hematological traits. We first removed all records that lacked
a measurement for either [Hb] or Hct and then used these
values to calculate MCHC ([Hb]/Hct(%) x 100; Campbell
and Ellis 2007). We then removed outliers using a set of
thresholds for the minimum and maximum allowable value
of each hematological trait, which were derived by visualizing
distributions and quantile-quantile (Q-Q) plots and assum-
ing significant deviations from normality represented mea-
surement error, unhealthy individuals, or otherwise unusable
data. These thresholds were [Hb] values <11 or >24, Hct
values <0.3 or >0.8, and MCHC values <22 or >42. After ap-
plying outlier filters, we dropped any species with less than
five remaining records and merged the resulting data set with
estimates of elevational range breadth compiled from the lit-
erature and verified by expert opinion (Parker et al. 1996;
Schulenberg et al. 2010), expanding these estimates as neces-
sary to encompass our own observations when they fell out-
side the bounds of previously published data sets.
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Because our metric of hematological sensitivity to eleva-
tion was calculated as the rate of change in each hematolog-
ical trait per unit elevation and we wished to avoid biasing
estimates through the influence of a single erroneous mea-
surement, we next ran simple linear regressions of [Hb],
Hct, and MCHC against the elevation they were recorded
at and removed all points with a Cook’s distance of 4/n
(where n is sample size; Cook’s distance is an estimate of
the influence of a data point on least squares regression
results). We applied a more conservative Cook’s distance
cutoff of 3.5/n for juveniles, as they may exhibit anomalous
hematological trait variation (Fair et al. 2007). (Juveniles
were identified by the presence of bursa of Fabricius during
specimen preparation, an organ necessary for B cell devel-
opment.) We then regressed [Hb], Hct, and MCHC against
elevation a second time and generated a new data set where
each row referenced a single species, with estimates of the
slope of each hematological trait and its associated standard
error. After dropping species lacking data from at least two
elevations >200 m apart—a span chosen to reflect evidence
of fine-scale physiological sensitivity to Po, in vertebrates
(Gassmann et al. 2019)—we combined this data set of he-
matological plasticity and elevational range breadth values
with estimates of the median elevation of each species’
range (calculated as Elev,,;, + EleVy,an/2) and its average
mass (calculated as the arithmetic mean of the recorded
mass of all individual birds in our final filtered data set).
Last, we calculated the proportion of each species’ total ele-
vational range represented by individuals in our data set, a
metric we included to evaluate the possible effects of sam-
pling bias on our data.

To understand variation in hematological traits within
species at a given approximate elevation, we generated a
second data set using the above outlier filters and minimum
per-species sample size. We then divided the sampled ele-
vational range of each species into 100-m bins, discarding
the remainder in the event of a noninteger quotient. In
each bin with a minimum of six records we calculated
the coefficient of variation (CoV) as ¢, = s/x, where s is
the standard deviation of the sample and X is the arithme-
tic mean. This resulted in a data set where each row refer-
enced a bin-specific CoV value, which we associated with
the mean elevation of all individuals sampled within that
100-m bin, their species, and the relative distance of the
mean elevation of each bin from the nearest elevational
range limit. As only 23 of the 73 species in this data set
were sampled at two or more elevational bins, our model
heavily depends on interspecies variation. However, we
found no evidence of systematic or substantial interspecies
variation (phylogenetic or otherwise) in CoV for hemato-
logical traits, all of which are constrained similarly by
functional considerations and vary over modest ranges
in all birds.

Bayesian Models

To evaluate the hypothesis that hematological sensitivity
was predictably related to elevational range characteristics,
we built a set of generalized multivariate linear models in
the R package brms (ver. 2.13.5; Biirkner 2017), which is
a wrapper for the statistical programing language Stan.
For each hematological trait ([Hb], Hct, and MCHC), we
modeled sensitivity (S) using a Student’s ¢ distribution for
outcome variables and regularizing priors:

Sest; ~ Student(v, w;, @),
Wi = a+aj+BRRi+i8EEi+i8PPi
+ BMMI + 6R><ERiEi$
Pogs; ~ Student(v, Prgr, Psi)s
a ~ Normal(0, 0.5),
a; ~ Normal(e, 0,),
Br ~ Normal(0, 0.5),
Br ~ Normal(0, 0.5),
By ~ Normal(0, 0.5),
Bpr ~ Normal(0, 0.5),
Brxz ~ Normal(0, 0.5),
o ~ Cauchy(0,0.5).

Here, the predictor R is elevational range breadth, E is me-
dian range elevation, P is proportion of elevational range
sampled, M is mass, and A is a covariance matrix of phylo-
genetic distance among taxa. We generated this matrix by
applying the function maxCladeCred() from the R package
phangorn (ver. 2.5.5) to 10,000 trees from the Hackett
“backbone” phylogeny downloaded from https://birdtree
.org/ and pruned it to the subset of species present in our
data set using the keep.tip() function in the R package ape
(ver. 5.3; Paradis et al. 2004; Schliep 2011; Jetz et al. 2012).
Because our metric of hematological sensitivity is associated
with substantial uncertainty stemming from sample size and
data collection methods, we model measurement error by
treating the outcome variable as a vector of parameters with
the likelihood Pggr; ~ Student(v, w;, ), which is given a
prior that treats our observed data as drawn from a Stu-
dent’s t distribution with unknown mean Pgg; and the cal-
culated standard error of the regression (Ps;). In this way,
uncertainty in the outcome variables is incorporated into
regression parameters but is itself influenced by the linear
model (McElreath 2020).

This “full” model (1) reflects the more specific hypothesis
that all predictors and phylogeny influence S. To evaluate
whether predictive power was improved by simplifying
the model structure, we built reduced models that (2) in-
cluded the interaction term between R and E but did not
include phylogenetically correlated intercepts, (3) did not
include either the interaction term between R and E or phy-
logenetically correlated intercepts, and (4) included phylo-
genetically correlated intercepts but did not include the
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interaction term between R and E. We then created a null
model (5) where outcome variables were solely influenced
by phylogenetically correlated intercepts. As these five model
backbones were repeated for each of the three outcome
variables, we fitted a total of 15 sensitivity models.

We built similar models to evaluate whether variance
in hematological traits changed as a function of distance
from the midpoint of the elevational range. We modeled
the CoV (V) in [Hb], Hct, and MCHC within a given
elevational band using a logarithmic distribution and
without modeling measurement error:

V., ~ Lognormal(p;, &),
wi = o+ (&%} + BE; + BpD; + BexpEiD;,
o ~ Normal(0,0.5),
a; ~ Normal(e, 0,),
Br ~ Normal(0, 0.5),
Bp ~ Normal(0, 0.5),
Bexp ~ Normal(0, 0.5),
g ~ Cauchy(0,0.5).

In the full model (1) above, predictor E is the mean ele-
vation of samples in a given bin, and D is the mean dis-
tance of samples from the nearest elevational range limit,
scaled from 0 (samples located at the elevational range
midpoint) to a maximum of 0.5 (samples located at either
the upper or lower range limit). Intercept terms are defined
as previously described. We created three reduced models
by (2) excluding phylogenetically correlated intercepts,
(3) excluding the interaction term between E and D, and
(4) excluding both phylogenetically correlated intercepts
and the interaction term between E and D. We compared
all four models with predictors to a null model (5) that in-
cluded a phylogenetically correlated intercept alone. As with
sensitivity models, this created a total of 15 additional mod-
els, with five models each for the outcome variables [Hb],
Hct, and MCHC.

Prior to fitting brms models, we standardized each pre-
dictor and scaled sensitivity estimates to the same order of
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magnitude. We fitted all models using two Markov chain
Monte Carlo (MCMC) runs with 5,000 generations of
warm-up and 5,000 generations of sampling each. We eval-
uated convergence and stationarity by examining trace
plots, ensuring effective sample sizes were sufficiently high
(>1,000), and verifying for each model that the Gelman-
Rubin diagnostic R was less than or equal to 1. We further
evaluated model fit by performing a posterior predictive
check of the distribution of each outcome variable and
screened for sampling issues by creating scatterplots of the
relationships among variables from MCMC draws.

To compare the predictive ability of alternate sensitiv-
ity and CoV models for the same outcome variables, we
applied leave-one-out cross-validation information cri-
teria (LOOIC) and assessed differences in the expected
log pointwise predictive density (ELPD) using the func-
tion loo() in brms. For the full model for each outcome
variable and summary statistic, we used the function
median_hdi() in the R package tidybayes (ver. 2.1.1) to
calculate the 95%, 80%, and 50% credible intervals of the
posterior probability distribution of each predictor and in-
teraction. We visualized these distributions using tidybayes
and ggplot (ver. 3.3.2).

For each model with a predictor whose 80% credible
interval did not overlap zero, we used the predict()
and fitted() functions in brms to generate fitted curves
with probability distributions, with and without incor-
porating residuals, respectively. To do so, we used pa-
rameter estimates from the best-fit model (table 1) to pre-
dict new observations of a given outcome variable across
3 standard deviations of the credible predictor while hold-
ing all other predictors constant at their mean value. For
interaction terms that were credible at the 80% threshold,
we repeated this approach three times for a single pre-
dictor in the interaction, holding the remaining predictor
at —2 standard deviations, its mean value, and +2 stan-
dard deviations. In this way, we were able to visualize the
effect of one predictor on the change in the slope of the

Table 1: Relative performance of models for (1) hematological trait sensitivity to elevation (indicated by A) and (2) local
variation in hematological traits at a given elevation (indicated by CoV)

Model Description Response
No. Predictors Interaction Phylogeny A[Hb] AHct AMCHC CoV [Hb] CoV Hct  CoV MCHC
1 X X X ~18(1.0) —15(8 —29(1.9) —.5(8) —12(1.0) —16(6)
2 X X ~11(4) —11(21) —22(19) 0 -2 (9 —7 (.6)
3 X 0 —8(21) —18(1.6) —.6(13) 0 0
4 X X —1.0 (.8) —1.1(.8) —2.6 (1.7) —1.0 (1.5) —.1(.6) -9 (4)
5 X —1.7 (3.0) 0 0 —33(3.0) —64(3.3) —3.8 (3.2)

Note: Values represent the change in expected log pointwise predicted density (ELPD) from leave-one-out cross validation of Bayesian models, with asso-
ciated standard errors reported in parentheses. Variable-specific predictors and interaction terms are described in “Methods.” ELPD values reflect the differ-

ence between each model for a given response variable and the best-fit model among all comparisons (highlighted here in boldface type). CoV = coefficient of

variation; [Hb] = total blood hemoglobin concentration; Hct = hematocrit; MCHC = mean cellular hemoglobin concentration.
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relationship between a second predictor and its outcome
variable.

Results
Data Filtering

Our initial data set included hematological trait measure-
ments from 5,927 individual birds representing 656 unique
species, with sampling from 107 unique localities ranging
from 39 to 4,578 masl. After filtering, the reduced data set
used to model hematological sensitivity to elevation in-
cluded 2,355 hematological trait values from 136 species
(fig. 1), collected from 39 to 4,578 masl, with a minimum
sample size of # = 4 and a maximum sample size of n =
115. Our reduced variance data set included 118 CoV esti-
mates for each hematological trait from 73 species, of which
23 included measurements for two or more elevational
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bins. The minimum median elevation of the bins used to
calculate CoV values was 250 m, and the maximum median
elevation was 4,350 m.

Sensitivity and Variance of Hematological Traits

In general, all three hematological traits were positively cor-
related with elevation within species following data filtering
(figs. 1-3). The median value of the slope of [Hb] regressed
against elevation (m) was 0.7 g/dL/1,000 m, with a 50% in-
terquartile range (IQR) of —0.4 to 1.7; for Hct, the median
slope was 2% per 1,000 m, with a 50% IQR of 1% to 5%.
MCHC was less sensitive to elevation, with a mean slope
of 0.07 g/dL/1,000 m and a 50% IQR of —0.00123 to
0.00121. The CoVs of [Hb] and Hct were comparable, with
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was relatively reduced (median: 0.0497; 0.0387 to 0.0665).
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Bayesian Models

A model of [Hb] sensitivity that included fixed effects for
elevational range breadth, median range elevation, mass,
and proportion of elevational range sampled—but not a term
for the interaction between elevational range breadth and
median range elevation or phylogenetically correlated inter-
cepts—had the highest ELPD, albeit with substantial stan-
dard error associated its improved performance over a null
model (AELPD < 2 x SE; table 1). Elevational range breadth
had a positive effect, credible at the 80% level. No predictors
had a credible influence on Hct sensitivity, which was best
predicted by phylogenetically correlated intercepts alone, al-
though again uncertainly (AELPD < 2 x SE; table 1). While
a null model of MCHC sensitivity also outperformed all
others, elevational range breadth had a positive effect on
MCHC sensitivity with predictors, credible at the 80% level
(fig. 3). As estimated in models that included all predictors
and interaction terms, phylogenetic signal (A) was 0.03
(95% credible interval: 0.00-0.01) for [Hb], 0.19 for Hct
(95% credible interval: 0.02-0.43) for Hct, and 0.04 for
MCHC (95% credible interval: 0.00-0.12).

Models of the CoV of hematological traits that included
fixed effects were universally better fits for our data than a
phylogeny-only null model, although standard errors for dif-
ferences in ELPD among models were large (all AELPD <
2 x SE). The CoV of [Hb] within a given elevational band
was best predicted by a model with fixed effects for elevation,
distance from the nearest elevational range limit, and their in-
teraction (table 1). The mean elevation of samples had a neg-
ative influence on the CoV of a given 100-m bin, with a 95%
credible interval that did not overlap with zero. Distance
from the nearest elevational range limit had a positive influ-
ence on CoV, credible at the 95% level (fig. 3). The interaction
of elevation and distance from elevational range limit had a

negative effect, with an interval that was credible at the
80% level, but not at the 95% level (fig. 4).

The sign of the effect of these predictors was identical for
the full model of CoV of Hct at a given elevation (fig. 3), al-
though the model with the highest ELPD did not include an
interaction term (table 1). In the full model, elevation had a
negative effect on the CoV of Hct, credible at the 95% level.
Distance from the nearest elevational range limit was pos-
itively associated with CoV and was also credible at the
95% level; the effect of the interaction of elevation and dis-
tance from nearest elevational range limit was negative,
with a 95% credible interval that did not overlap zero.
Last, the best model for the CoV of MCHC included fixed
effects (but not an interaction term or phylogenetically cor-
related intercepts; table 1); distance from nearest elevational
range limit had a positive effect, credible at the 80% level
(fig. 3). The phylogenetic signal in models of the local CoV
of hematological traits with all predictors and an interaction
term was 0.01 (95% credible interval: 0.00-0.03) for [Hb],
0.01 for Hct (95% credible interval: 0.00-0.03) for Hct, and
0.01 for MCHC (95% credible interval: 0.00-0.04).

Discussion

The role of physiological tolerances in shaping species
ranges remains poorly known for the vast majority of taxa,
making it difficult to discern whether there are functional
underpinnings for prominent biogeographic patterns. In
a large data set of intraspecific physiological measurements
in Andean birds, we found that hematological sensitivity
and local variation in hematological trait phenotypes were
predictably associated with elevational range characteristics
(figs. 3,4). Our study suggests that plasticity and genetic ad-
aptation of hematological traits play a role in determining
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range that was represented by our data. In B, “Elev.” is the mean elevation of samples in a given bin and “Dist. Edge” is the distance from the
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matocrit; MCHC = mean cellular hemoglobin concentration.

species elevational niches, linking Po, with realized geo-
graphic ranges.

Across 136 species, sensitivity of both [Hb] and MCHC
were positively correlated with elevational range breadth.
Because our sensitivity metric is calculated per unit eleva-
tion and vertebrate species may be sensitive to Po, differ-
ences at elevations as little as 300 m apart (Gassmann et al.
2019), increased hematological sensitivity in elevational

generalists appears to reflect higher plasticity in the mea-
sured traits rather than increased opportunity for ac-
climatization alone. This pattern supports the hypothesis
that enhanced acclimatization capacity through population-
level plasticity may facilitate range expansion into novel
Po, regimes (fig. 3a). An important caveat here is that local
adaptation to elevation may influence apparent hemato-
logical sensitivity, and such local adaptation could be more
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likely in elevational generalists than specialists. However,
Williamson et al. (2022) reported no effect of species adap-
tation to elevation on elevational trait variation for [Hb],
Hct, or MCHC.

We consider the correlation between [Hb] and MCHC
sensitivity and elevational range breadth an intuitive, if ten-
tative, result, as niche breadth is often correlated with the
degree of plasticity in other contexts (Williamson and Witt
2021). For example, an influential article by Van Valen
(1965) compared populations of six species of passerine
birds codistributed in island-mainland pairs, finding broad
support for the hypothesis that functional morphological
variation (as measured by the intraspecific coefficient of

variation for a given trait) was “controlled to a significant
extent by the adaptive diversity of the niche” (p. 378). While
Van Valen assumed genetic control of the bill traits in his
study, he acknowledged that under certain circumstances
nonheritable plasticity might produce a similar pattern.
In stickleback fishes, common garden experiments suggest
that phenotypic plasticity has evolved repeatedly in gener-
alist populations (Svanbick and Schluter 2012), a finding
consistent with both theory (Tienderen 1997) and other em-
pirical work (Bradshaw 1965; Balaguer et al. 2001). In par-
ticular, plasticity appears to aid range expansion in many
invasive species (Richards et al. 2006; Davidson et al. 2011;
Knop and Reusser 2012).
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Alternatively, if the broad ranges of elevational general-
ists are ephemeral products of recent population expan-
sions and do not reflect a species’ “equilibrium” niche
breadth (Gadek et al. 2018), the positive correlation be-
tween elevational range breadth and hematological sensi-
tivity might be a consequence of recent ephemeral range
expansions. In other words, species with narrower, more
stable ranges will have had greater time to evolve plasticity-
suppressing adaptations in response to trade-offs (ie.,
through genetic compensation; Storz and Scott 2021; for
evidence of a negative correlation between plasticity and
thermal tolerance, see Barley et al. 2021). Recently expanded
“generalists” would be expected to retain this plasticity and
continue to show correspondingly high values of hemato-
logical sensitivity. We think this scenario is unlikely: in spe-
cies or lineages with long-term high-elevation ancestry, re-
duced hematological sensitivity with increasing elevation
likely reflects adaptive changes in other convective and dif-
fusive steps in the O, transport pathway that help sustain ad-
equate levels of tissue oxygenation in spite of environmental
hypoxia, dampening the hypoxic stimulus to increase [Hb]
(via increased erythropoiesis, reduced plasma volume, or
both; Stembridge et al. 2019; Storz and Bautista 2022). Fur-
thermore, we would expect species with high median range
elevations to show reduced hematological sensitivity if ge-
netic compensation were an important predictor of trait
values, but this was not the case (fig. 3a).

Reduced local variation in hematological traits near ele-
vational range limits and at high absolute elevation (fig. 3b)
is similarly intuitive but has more than one possible mecha-
nistic interpretation. As hematological traits are highly labile
and responsive to changes in tissue O, delivery, decreasing
variance with increasing proximity to elevational range limits
might primarily reflect an increased role for compensatory
changes in other cardiorespiratory traits (such as ventilation
and pulmonary O, diffusion) that affect the hypoxic stimulus
for activating erythropoiesis or modulating plasma volume.
Assuming that trait values at least partly reflect additive ge-
netic variation, lower CoV values might also result from
neutral demographic processes that lead to genome-wide
reductions in effective population size (N.). Low N, is ex-
pected near range limits under the central-marginal hypoth-
esis and its variants (Hengeveld and Haeck 1982; Brown
1984; Hoffman and Blows 1994; Gaston 2003; Vucetich
and Waite 2003) because of declining habitat suitability
and its effects on census population size. While this pattern
appears far from universal (Eckert et al. 2008), especially
across elevational gradients (Freeman and Beehler 2018), it
remains a plausible alternative explanation for our findings.

Acknowledging these possibilities, the scenario we con-
sider most intriguing is that lower CoV values at range limits
reflect an increased intensity of directional selection on the
traits in question, implicating hematological traits in the

maintenance of elevational distributions in Andean birds
(figs. 3b, 4a). Specifically, reduced variation in [Hb] and
Hct near elevational range limits might suggest an increas-
ing fitness cost for phenotype-environment mismatches.
By extension, this would suggest that species’ distributions
may be partially limited by a failure to adapt or acclimatize
to Po, conditions beyond their current elevational niche.
Likewise, reduced variation in [Hb] and Hct at high abso-
lute elevation (fig. 4b) would be expected if the nonlinear
decline in arterial O, saturation with increasing elevation
leads to stronger selection on oxygen transport functions
regardless of relative range position. One way this might
occur is if elevational variation in hematological trait phe-
notypes is influenced by locally adaptive genetic variation
along the elevational gradient (Schweizer et al. 2019; Lim
et al. 2021). Higher CoV values at the elevational range
center in our models could therefore reflect increased het-
erozygosity of causal loci that are subject to variable selec-
tion across elevation or a mosaic of alleles that are favored
at upper and lower elevations, respectively.

We assumed that patterns among [Hb], Hct, and MCHC
would be comparable across taxa and elevation at the spatial
and taxonomic scales of our study. However, their inconsis-
tency across models suggests that their varied roles in oxy-
gen transport may influence correlations with elevational
range characteristics. Recent work on ecophysiological rules
in blood oxygen-carrying capacity supports this hypothesis.
For example, while most hummingbird species respond to
changes in Po, by adjusting cell number and cell size simi-
larly, adjustments to cell volume are proportionally more
important for those at high or low—but not moderate—
elevations (Williamson et al. 2022).

The spatial pattern of variation in ecologically meaning-
ful traits is a potentially rich source of information on
range-limiting mechanisms. Although studies of range-
limiting mechanisms remain rare outside a handful of
well-studied taxa, a recent meta-analysis by Pennington
et al. (2021) found that quantitative genetic variation de-
clined from the geographic range center to range margins
but increased toward niche limits. This finding is not con-
sistent with our results if we assume that elevational ranges
approximate species’ realized niches. Teasing apart spuri-
ous patterns from causal mechanisms remains a formida-
ble challenge as long as autocorrelation among geography,
climate, and morphology run rampant. In systems that are
unsuitable for experimental manipulation, careful scrutiny
of patterns of trait variation can nonetheless be a powerful
approach, particularly when those traits are closely linked
with fitness and environmental variables.

Macrophysiology is inherently a Faustian bargain of
accepting noisy, imperfect data in exchange for the abil-
ity to reveal general phenomena that might otherwise
remain hidden. This study is no exception, and we wish



to highlight several factors that complicate any interpre-
tation of our results. First, we would be remiss to conclude
an article on range limits without again emphasizing that
they are multicausal phenomena: even if selection on he-
matological traits plays a major role in limiting elevational
distributions, they are merely a handful of stars in the larger
constellation of interrelated physiological and anatomical
traits that contribute to organismal performance, a con-
stellation itself positioned within the galaxy of other biotic
and abiotic variables jointly constraining niche breadth.
Second, variation in hematological trait values is itself in-
fluenced by numerous factors beyond elevation (Fair et al.
2007; Williamson and Witt 2021). These factors, as well as
unavoidable measurement error, are likely responsible for
low effect sizes for predictors in our models and corre-
spondingly weak predictive power (table 1). Disentangling
the genetic and environmental components of trait vari-
ance should be a research priority in future studies of niche
breadth. Nonetheless, we find the presence of correlations
between physiology and biogeography at relatively fine
scales a heartening step in answering one of biology’s most
fundamental but challenging questions: why organisms live
where they do.
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