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Abstract—This article describes a method to detect and classify
single-event transients (SET) to determine the originating circuit
node impacted by ionizing radiation. SETs were measured via
two-photon absorption (TPA) laser excitation on a custom CMOS
phase-locked loop (PLL), and Convolutional Neural Networks
(CNN) were used to classify the spatial dependencies of the
transient responses. A clustering technique is described to iden-
tify groups of related circuit nodes and achieves over 90%
identification accuracy.

Index Terms—Supervised machine learning, Convolutional
neural network, Single event transients, Radiation effects, Phase
locked loop

I. INTRODUCTION

MACHINE Learning (ML) has emerged in the field of
radiation effects for its ability to identify anomalous be-

havior during experimentation [1]–[8], for rate prediction [9]–
[13], and for aiding in radiation effects mitigation [1], [14]–
[16]. Radiation effects in ML-enabled hardware are also being
studied [17], [18]. K-Nearest Neighbors (KNN), a clustering
ML algorithm, was one of the first techniques used to detect
the presence of single-event transients (SET) within complex
RF waveforms with a binary classifier (i.e., the models either
detected an SET or did not) [7], [16]. Other work uses a
similar classifier for determining the state of a device having
accumulated total ionizing dose (TID) [1].

This article describes a deep learning method using Convo-
lutional Neural Networks (CNN) to detect SETs and classify
the results based on the originating circuit node. Data obtained
from irradiation of a CMOS phase-locked loop (PLL) with
a two-photon absorption (TPA) laser was used to train and
validate the CNN model. An initial 8-bin classifier was used
to segment observed phenomena. A method of sorting the
resulting confusion matrix is illustrated to reduce the number
of classes by identifying confusion groups. These confusion
groups correlate to specific electrically connected nodes within
the circuit under study. Over 90% accuracy in identifying the
correct circuit node impacted by the radiation is achieved
with the reduced multi-classifier. This work documents the
rapid advancements possible with artificial intelligence (AI)
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Fig. 1: Ten 20 µm by 20 µm spatial maps displaying the sensitivity
of the CP circuit to SETs, measured by the average frequency at the
output of the PLL during laser exposure at each x-y position. Data
were obtained via laser TPA experiments with a spatial resolution of
0.2 µm, producing the 100x100 pixel images [19].

applications in radiation effects. The ability to identify precise
locations within an arbitrarily complex circuit based purely
on observed behavior paves the way for novel advancements
in real-time data analysis, improved error rate analyses, and
dynamic mitigation approaches.

II. BACKGROUND

A common challenge with ML is that a significant, often
unavailable quantity of data is required to train valid models.
These data used in this work have been thoroughly validated
and published in theoretical [19], simulation and modeling
[20], and radiation-hardening-by-design (RHBD) studies [20],
[21]. In addition, in recent years, these data have been used
in benchmark studies for ML-driven radiation effects analyses
due in part to the large number of experimentally measured
samples to aid in model training [4], [7]. Specifically, in
[4], [7], supervised ML using a K-Nearest Neighbors (KNN)
algorithm was used to develop a binary classifier for deter-
mining the presence of a SET within a waveform. However,
KNN requires storing all training data and is difficult to scale.
Consequently, it can be computationally expensive to evaluate
new data with KNN. This effort uses a supervised deep
learning technique that leverages artificial neural networks to
develop a model for analyzing radiation effects data.

A. Device Under Test

A mixed-signal PLL circuit, fabricated in the IBM 130 nm
CMRF8RF CMOS technology [21], was selected as the device
under test (DUT). The device contains a phase-frequency
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Fig. 2: The 20 µm by 20 µm spatial map of the sensitivity of the
CP circuit to SETs, measured as the relative frequency perturbations
at the output of the PLL, with assigned cluster labels. Labels 0-
7 were automatically determined from image segmentation using
thresholding and binary morphology operations.

detector (PFD), a charge pump (CP), a low-pass filter (LPF),
and a voltage-controlled oscillator (VCO), which has a cen-
ter frequency of 200 MHz and a maximum frequency of
530 MHz. The locking range of the PLL is between 40 and
350 MHz, with a gain of 7.75 GHz/V.

A 20 µm by 20 µm area of the CP circuit was exposed to
radiation using a two-photon absorption (TPA) laser with a
diameter of 1.1 µm (measured at 1/e of the peak intensity)
at the Naval Research Laboratory. The device was mounted
on a motorized xyz translation platform and moved by 0.2 µm
steps in the x- and y-axes. The z-axis remained fixed during the
entire experiment after determining the worst-case response.
Waveforms were recorded at the PLL circuit’s output at 10,000
unique strike locations for a 100x100 pixel image, as shown in
Fig. 1 where the average frequency at the output of the PLL
during laser exposure is visualized at each x-y position. In
addition, ten unique SETs were recorded at each strike location
resulting in a total of 100,000 transients partitioned into ten
spatial sensitivity maps [19].

The initial spatial sensitivity map shown in Fig. 1, illustrat-
ing the relative frequency perturbations measured at the output
of the PLL, was processed using thresholding and binary mor-
phology operations. Connected component labeling was used
to automatically assign unique cluster labels for each sensitive
region, as shown in Fig. 2. The algorithm identified eight
unique segmented components, including the background (i.e.,
responses indistinguishable from noise), which was initially
assigned to group 5. Each cluster, representing a sensitive
region in the CP, has an average of 180 strike points for
1,800 transient waveforms within the ten spatial sensitivity
maps. Each waveform consists of 500 sample points of the
instantaneous frequency measured every 1.6 ns. Example

waveforms in this data set can be seen in Fig. 3 and are detailed
in [19].

B. Data Preparation

These data were split into a training set and a testing set;
80% of these data (i.e., eight spatial maps) were used to train
the CNN models, and the remaining 20% of these data (i.e.,
two spatial maps) were used to test the accuracy of the models
in evaluating new, unseen data. This partition resulted in up
to 80,000 possible SETs in the training dataset and 20,000
possible SETs for the testing dataset. The split was stratified,
meaning the same proportion of each cluster from the entire
dataset was provided to the training and testing datasets. The
training portion was used to update models’ weights (i.e., filter
coefficients), while the testing portion was reserved to evaluate
the models.

Additionally, the training portion used k-fold cross-
validation to estimate the models’ ability to process new data,
with 5-folds as illustrated in Fig. 4. The entire training dataset
was split into five segments, and five separate but identical
models were trained, each with a single segment used for
validation and the rest for training. The validation segment
determines how fast, measured in the number of epochs or
training cycles, the model learns against data it has not seen
before and can be compared with the training data’s accuracy.
Validating data is essential in tracking the model’s progress
during training and preventing overfitting. After overfitting
occurs, any further optimization is specific to the training data
and not a generalization of new information.

Further, k-fold cross-validation gives insight into any biases
the dataset may contain during training. If, for example, one
model overfits quickly compared to the others, it indicates
that a portion of the dataset is unbalanced and does not reflect
the rest of the dataset. Conversely, if the validation portion
always performs poorly, then that portion is not adequately
represented by the rest of the training data. The five models
have comparable performance in this case.

An additional use case for k-fold cross-validation is model
selection. By comparing each model’s output against the
shared test dataset, the best model can be used to give a slight
advantage. However, since the dataset was very balanced, the
differences in accuracy in the final models were marginal, so
the first model was used.

III. CNN MODEL

A. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are supervised
learning Multi-Layer Perceptron (MLP)-based Neural Net-
works designed to extract and learn features from multi-
dimensional data [22]. CNNs can process one-dimensional
(1D) data such as time-interval vectors and two-dimensional
and three-dimensional grids of values such as image pix-
els [22]. CNNs are trained using a back-propagation algorithm
to estimate parameters that minimize a specific objective
function. The objective function measures the error between
the CNN model’s output (prediction) and the ground truth and
is referred to as a Loss function.
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(a) (b)

(c) (d)
Fig. 3: Example waveforms measured at the PLL output during normal operation and from laser strikes to different areas in the CP sub-circuit
of the PLL. A nominal signal is represented by (a) while (b), (c), and (d) contain varied transient responses.

Fig. 4: An example of k-fold validation with 5 folds. After the
full dataset is split into training and testing, the training portion is
split 5 times, each with a different portion used for validation and
represented in green. The final CNN model configuration is copied
five times. Each copy is trained and validated on different portions
of the data.

In CNNs, each convolutional layer is comprised of multiple
elements (i.e., neurons) where each element is associated with
the result of element-wise multiplication between the kernel
(i.e., filter) and a portion of the input that matches size as the
filter [23]. In addition, each convolutional layer is associated
with one or more filters where each filter is comprised of
multiple elements (i.e., weights). Filter weights are considered

Fig. 5: 1D CNN architecture. The input is a 1D waveform, and the
output is a vector representing the cluster prediction probabilities.
Each 1D vector in a convolution layer represents the convolved output
of a single filter multiplied by the input. The lines between layers
indicate the filter weights which are the trainable parameters on
the model, as well as the input and output shapes of the operation
performed on the weights.

the main trainable parameters of the CNN models. Results
associated with all neurons within one convolutional layer
are computed by performing the convolution of the filter
and the data (e.g., layer one strides across the raw data and
layer two strides across the output of convolutional layer one)
as shown in Fig. 5, illustrating the 1D CNN architecture.
The input is the 1D time-sequence waveform under study,
and the output is a vector representing the cluster prediction
probabilities. Each 1D vector in a convolution layer represents
the convolved output of a single filter multiplied by the
input. The lines between layers indicate the filter weights, the
trainable parameters on the model, and the input and output
shapes of the operation performed on the weights.
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(a) (b)

(c) (d)
Fig. 6: Example of a transient waveform as it propagates through the convolutional layers. (a) The initial transient waveform at the output
of the PLL where the y-axis contains the voltage and the x-axis represents 500 time samples at 1.6 ns steps. (b) Waveform transformed
and multiplied with a single filter from the first convolutional layer. The y-axis represents the layer output, and the x-axis represents sample
points at which the correlation is performed along the input data. Waveforms transformed from the (c) second and (d) third convolutional
layers are also illustrated.

Fig. 7: Cross entropy loss of model over 75 epochs. As the model
learns, the loss is minimized. Overfitting starts at approximately
20 epochs but does not become significant until approximately 50
epochs.

Chaining multiple convolutional layers together allows for
complex features to be learned. For example, Fig. 6 shows a
waveform and the transformations that occur with a single
filter from each of the three convolution layers. However,
determining the optimal number of filters, kernel size, stride,
and the number of layers is a nontrivial task and is discussed
in Section IV.C.

B. Model Architecture and Training

The architecture of the initial model is comprised of three
1D convolutional layers, each with 16 filters, a kernel size of
3, and a stride of 1, as seen in Fig. 5. Each used the rectified
linear unit (ReLU) activation function to prevent vanishing

Fig. 8: Initial accuracy of the first model over 75 epochs. Like Fig.
7, the accuracy does not improve after approximately 20 epochs and
stalls at approximately 40% accuracy.

gradients [24]. The output of the final convolutional layer
is flattened, allowing each filter to be fully connected to a
dense layer containing 32 fully connected neurons with an-
other dense layer containing 8 neurons, matching the number
of unique sensitive subcomponents. The intermediate, fully
connected layer before the final layer allows the model to take
final position-invariant information from the flattened layer
and correlate them together in a non-linear space. The interme-
diate layer dramatically improved the accuracy compared to a
model directly connecting to the output layer. The softmax
activation function is applied to the final output layer to
calculate the prediction probabilities for each class. The model
was trained using the Cross-Entropy Loss function with the
Adam optimizer. Figs. 7 and 8 show the cross entropy loss and
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accuracy versus the number of epochs, respectively. Overfitting
starts at approximately 20 epochs. Batch normalization, L1
regularization, and Dropout are intermediate layers throughout
the model to reduce overfitting.

Fig. 9: Initial confusion matrix (true label vs. predicted label) of test
data. The x and y cluster labels correspond to the labels from Fig. 2

Fig. 10: The lowest-scored permutation of the confusion matrix,
highlighting the confusion groups. Sorting occurred by taking the
sum of the absolute difference of every cell to the surrounding cells
in the confusion matrix and scoring/ranking each permutation of label
orders. The lowest-scored permutation represents the most clustered
representation of confusion and uncovers classes the model cannot
discern.

IV. CLASSIFICATION OF SETS BASED ON ORIGIN OF
PERTURBATION

A. Initial Results

The initial model was able to correctly classify 45% of the
test samples. This overall accuracy accounts for all correct
and incorrect predictions by taking the weighted average of

Fig. 11: Re-labeled spatial map of the CP. Each label corresponds
to a group of electrically tied diffusions forming a single node.

the correct and incorrect predictions versus the number of
samples for that class within the entire dataset. However,
overall accuracy cannot provide insight into the specific classes
the model performs well or poorly with. Therefore, a confusion
matrix is used to display the predictive accuracy for each
class, as shown in Fig. 9. The x-axis represents the model’s
predicted cluster label, while the y-axis represents the correct
cluster label for the sample. The leading diagonal represents
the cases when the predicted and correct labels are identical.
The initial model accurately predicts the absence of SETs
from the waveforms from strikes in the non-sensitive area
(i.e., background noise, or label 5 of Fig. 2) on 98% of the
test dataset. However, this initial model cannot determine the
correct classes for SETs with high accuracy for many different
cluster labels.

b =

n∑
x=0

n−1∑
y=0

|Ax, y+1 − Ax,y| +
n∑

y=0

n−1∑
x=0

|Ax+1, y − Ax,y| (1)

Algorithm 1 Scoring Function

Require: A matrix A of size n x n
1: function SCORECONFUSIONMATRIX(A)
2: column sum = sum(abs(diff(A, axis=0)))
3: row sum = sum(abs(diff(A, axis=1)))
4: return column sum + row sum
5: end function

While some patterns within the confusion matrix are seen,
the confusion matrix is sporadic and difficult to interpret.
There are 8!, or 40,320 different ways to order the axes in an
8x8 confusion matrix. The optimal order would group the cells
with similar upset characteristics, illuminating the model’s
inability to differentiate characteristics from the signals. To
find the optimal order, the score (b) is computed for each
permutation of the confusion matrix according to (1). A
permutation’s score is determined as the sum of the difference
between every index position value and each index position’s
value to the right and below. The permutation with the lowest
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score represents the optimally ordered confusion matrix. In (1),
A is an n by n confusion matrix permutation, x is the column
index, and y is the row index. The equation is also modeled
as a high-level algorithm utilizing a matrix library (such as
numpy) in Algorithm 1. The variable column sum is the sum
of the absolute difference between every index value along
each column, whereas row sum is computed along every row.
The return value (b) is the total value for the matrix.

The lowest-scored permutation designates the most clus-
tered representation of the matrix and uncovers groups of
confusion the model cannot discern, as shown in Fig. 10. The
algorithm effectively reveals the permutation with the lowest
scoring difference between all values, which will be the most
clustered. The top percentage of results will produce the same
effect in different variations and positions many permutations.

Fig. 12: Final confusion matrix (true label vs. predicted label) of
test data with labeled groups 0-3, showing prediction accuracies of
over 90% for each.

Fig. 13: Cross entropy loss of the reduced model after 50 epochs.

As seen in Fig. 10, clusters labeled 7 and 1 were approxi-
mately 70% accurate but often misidentified between the two.
A similar pattern was found in clusters 0, 3, and 4, and again
between 6 and 2, with significantly less accuracy. The model’s
inability to distinguish these clusters is due to the groups being
electrically tied subcomponents within the CP.

B. Re-labeled Results

These data were re-labeled with cluster labels 0 through
3, representing the four main confusion groups highlighted

Fig. 14: Accuracy of the reduced model after 50 epochs.

in Fig. 10. In other words, the algorithm identified the four
linearly independent variables (clusters) within the model. This
dimensionality reduction was accomplished purely through the
permutation sorting algorithm previously described, without
consideration of the electrical connectivity. However, further
examination of data illustrates that the three sensitive regions
of interest (labels 1, 2, and 3) correspond to electrically tied
components within the simplified schematic of the CP sub-
circuit, as seen in Fig. 11. Therefore, the CNN model was
retrained with these re-labeled groups of confusion (i.e., lin-
early dependent variables) representing electrically-tied com-
ponents. This re-labeling reduced the total number of clusters
to 4, resulting in prediction accuracies of 90% or greater, as
shown in the final confusion matrix in Fig. 12. Figs. 13 and
14 show the cross entropy loss and accuracy of the reduced
model over 50 epochs.

C. Hyperparameter Tuning

A final step to ensure the highest performing accuracy
on a model is to perform hyperparameter tuning. Parameters
are defined as any component weights and biases that are
learned during training. Hyperparameters, however, are related
to the model’s structure. Hyperparameters include the number
and size of the kernels in each convolution layer, the size
of the stride, and the size of the kernels in the pooling
layer. Hyperparameters play a significant impact on the speed,
ability, and amount that a model can learn.

Some examples of hyperparameters for the model used in
this work are shown in Fig. 15, and include the number of
convolution layers, number of filters, size of each filter, and
number of neurons in the final layer. Many methods exist
for finding the optimal set of hyperparameter configurations
[25]–[27]. In this case, it was sufficient to manually adjust
the hyperparameters to create the initial model composition
described in Section III-B. However, a standard grid search
was used to obtain a final model with the optimal set. Each
hyperparameter was given a range or subset of values to be
permuted. Nine hundred fifty models were trained over 500
epochs, and the state of the models were saved after every 10
epochs. The optimal model was determined by the one with
lowest loss and highest accuracy at the point before overfitting
began to occur. Each model was trained and evaluated on the
same training and testing dataset.
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Fig. 15 shows a simplified correlation matrix of the major
hyperparameters with respect to model loss, accuracy, vali-
dation loss, and validation accuracy as generated with Pear-
sons correlation coefficient [28] using the pandas correlation
function [29]. The p values were also computed to be less
than 1 × 10−5 in each case, indicating a strong statistical
significance for each of the correlations. In Fig. 15, the training
and testing loss and accuracy are compared across the major
hyperparameters. The number of convolution layers varied
from 1 to 4 layers. The number of filters was evaluated
between 3, 6, 9, 16, 32, and 64. The filter size varied between
3, 5, 7, and 9. The number of final neurons varied between 8,
16, 32, 64, and 128. Every change in a single variable resulted
in a separate model and was evaluated with every other change,
resulting in the 950 model variations. The results from Fig.
15 show that the number of convolution layers has weak to
moderate positive correlation, but the most significant impact
on increasing accuracy and validation accuracy as well as the
largest impact on decreasing loss and validation loss with weak
to moderate negative correlation. Filter size has no correlation
with validation loss, accuracy, and validation accuracy with
negligible correlation. On the other hand, the filter and the final
number of neurons are almost equal in correlation but only
in loss and accuracy. This result indicates that models with
more numbers of filters or final layer neurons are more prone
to overfitting, as they are not as correlated to the validation
accuracy.

Fig. 15: Correlation matrix displaying positive and negative correla-
tions between hyperparameters. Correlations were calculated using
Pearsons correlation coefficient. A value of -1 and 1 represent a
perfect negative and positive correlation, respectively.

V. CONCLUSION

This work documents the first use of CNN for determining
features within SET waveforms that allow the identification
of ion strike locations within a circuit. The model was over
90% accurate at classifying SETs based on the circuit node
of origin. Not only is the ML model able to achieve a
high degree of accuracy in locating an SETs origin, but a
process of sorting the resulting confusion matrices is provided

that uncovers information about the DUT configuration. This
approach could lead to the possibility of detecting, mitigating,
and reacting to single-event effects in real-time. It also allows
for more robust measurement equipment for real-time data
analysis during experimentation. Future research could involve
the extraction of the physical characteristics of the circuit
or the uncovering of more information about the model’s
decision-making process.
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