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Abstract— Window or taper functions are commonly used in
data processing to detect transient events or for time-averaging
of frequency spectra. A generalized window function is demon-
strated using the ionizing radiation effects spectroscopy (IRES)
technique to enhance the measurement of transient anomalies
within arbitrary waveforms. The IRES filter is used to convolve
time data with a sliding window consisting of a moment-
generating function. The resulting time-dependent statistical
moments can be used to eliminate any steady-state signatures,
including noise, and extract transient behaviors. The IRES filter
is used to analyze data from heavy-ion exposures of commercial
off-the-shelf (COTS) operational amplifiers (Op-Amps), laser-
induced transients in CMOS phase-locked loops (PLLs), and sim-
ulated transients in digital and analog circuits. The performance
of the IRES filter in noisy environments shows that transients can
be measured with higher fidelity than standard amplitude thresh-
olding. This statistical window analysis technique may remove the
need for complex triggering mechanisms on instrumentation and
does not require a priori knowledge of transient characteristics.
Potential applications of IRES include real-time measurement,
in situ data analysis, and machine learning (ML).

Index Terms— Analog, digital, ionizing radiation effects spec-
troscopy (IRES), operational amplifier (Op-Amp), radiation
effects, single-event effects, single-event transients (SETs), spec-
troscopy, time–frequency analysis.

I. INTRODUCTION

THE growing commercialization of space has increased
the demand for accelerated ground-based radiation testing

facilities. Furthermore, the use of commercial off-the-shelf
(COTS) components, systems-on-chip (SoC), and heteroge-
neous packaged parts often require additional time, specialized
facilities, or extensive preparation (such as package de-lidding)
before experimentation. Therefore, techniques for improving
the automation of radiation testing and data collection and
analysis are critical for meeting the growing constraints.

Previous works introduced ionizing radiation effects spec-
troscopy (IRES) for in situ analysis of total ionizing dose
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(TID) degradation [1] and single event transients (SETs) in RF
circuits [2], [3]. The IRES leverages time–frequency domain
analysis techniques common in data communications [4], [5]
for identifying anomalous behavior by “imaging” the statistical
features of a waveform. However, all previous studies that
leverage IRES use clock signals from an RF phase-locked-
loop (PLL) circuit [1], [2], [3]. In addition, these studies all
paired IRES with machine learning (ML) for the study and
classification of the results. This article generalizes the IRES
methodology, proposing the IRES window filter that uses a sta-
tistical moment generating function for detecting and charac-
terizing anomalous behavior within arbitrary waveforms, such
as those found in steady-state digital, steady-state dc, steady-
state ac, and RF applications. Specifically, the sensitivities of
some of the primary moments to radiation-induced transients
are illustrated. Possible algorithms, including ML-based solu-
tions, for using one or more of the moment-based features
are discussed and compared with standard instrumentation
thresholding techniques.

Transient data were collected from heavy-ion exposures
at the Lawrence Berkeley National Laboratory (LBNL) 88′′

Cyclotron, Michigan State University’s (MSU) Facility for
Rare Isotope Beams (FRIB) linear accelerator, and from exper-
iments at the Naval Research Laboratory’s (NRL) Two-Photon
Absorption (TPA) laser [6], [7]. Devices under test (DUT)
include COTS LM124 Operational Amplifiers (Op-Amp) and
custom PLL sub-circuits fabricated in a CMOS 130 nm
technology [8]. In addition, fault injection experiments on an
8-bit digital-to-analog converter (DAC) illustrate the ability to
detect single event upsets (SEUs) in a digital sequence.

Measured data show that the IRES window filter enhances
transient analysis by eliminating all steady-state signatures,
including continuous noise, and extracts transient behaviors
by amplifying shifts in statistical moments. Furthermore,
the performance of the IRES filter in noisy environments
shows that a single IRES filter can reduce the signal-to-noise
ratio (SNR) requirement for detection by over 10 dB, and
sequential IRES filters can improve the response by over
20 dB when compared with traditional threshold triggers.
In addition, while threshold triggers require a positive-valued
SNR, IRES is shown effective even with SNR values as
low as −17 dB, detecting anomalies in high noise envi-
ronments without requiring multi-sampling. Finally, IRES is
highly effective in extracting transients within ac waveforms,
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such as clock signals, without requiring prior signal
transformations.

II. ANALYSIS OF SETS WITH IRES

The SETs result from the interaction of ionizing radiation
with sensitive junctions in integrated circuits (ICs). SETs,
which manifest as temporary, random, and unwanted signal
transitions, can be mitigated through hardware manipulation,
such as filtering or redundancy, at the cost of increased area
and power and decreased bandwidth [9]. However, effec-
tive radiation-hardening-by-design (RHBD) generally requires
detailed knowledge of how the erroneous charge can change
the observable behavior at the output of a device. Typically,
a test engineer will design an experiment to detect such anoma-
lous behavior by determining a threshold error in voltage
or current to trigger measurement hardware. This approach
always presents a risk of missing unexpected erroneous behav-
ior and is always based on the noise constraints imposed by the
measurement system. Unfortunately, heavy ion test facilities
are extremely noisy environments that can inject artificial noise
into the system. Transients will not be detected if they occur
below the noise level set in the triggering hardware. The
IRES detects SET signatures in arbitrary signals, including
digital data buses, analog dc and sinusoidal waveforms, and
RF signals, without defining an arbitrary error threshold. The
statistical windowing technique builds a model of the circuit
behavior. Thus, any erroneous behavior can be identified
in situ, allowing for further analysis by a radiation test engineer
or through ML as published in [3].

A. IRES Window Filter

The IRES is based on radio frequency-distinct native
attributes (RF-DNAs) fingerprinting methodologies and signal
processing techniques [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. RF-DNA is used in wireless commu-
nication applications to augment security protocols by basing
authenticity requirements on statistical features derived from
transmitted waveforms. Features are associated with intrinsic
variability within the system and are often measured via short-
time domain statistical behavior. The IRES extracts stochastic
features of a waveform and uses the resulting profiles for a
statistics-based assessment of transient behavior. The presence
of a transient is determined based on the likelihood that
a sampled behavior is statistically different from expected
steady-state behavior.

A diagram of the general methodology is shown in
Fig. 1, where an arbitrary discrete time-domain waveform or
data sequence is analyzed by viewing smaller “windowed”
segments and sliding the viewing window throughout the
waveform. This work uses a window function for computing
the statistical moments to develop time-dependent statistical
profiles. The window function can include features from any
signal metric in the time or frequency domain. Furthermore,
the window function may be applied concurrently or sequen-
tially with additional windowing functions.

The proposed IRES window filter is used to convolve
measured data with a statistical moment-generating function

Fig. 1. Block diagram of the IRES methodology where an arbitrary
time-domain waveform or data sequence is analyzed by viewing smaller “win-
dowed” segments and sliding the viewing window throughout the waveform.
A statistical profile is developed with respect to time and can include features
from any signal metric in the time or frequency domain.

through a sliding window. As a result, any number of statistical
moments describing nuanced features of data contained within
a given window can be computed. Given time-domain data
within a window, represented as a random variable X , the
kth moment of a random variable X is defined to be the
expectation of X k , or E(X k). Likewise, the kth central moment
of a random variable X is defined to be E((X − E(X))k). For
example, the first moment can be computed by determining
the expectation of X and is defined as the mean (µ), whereas
the second central moment is defined as the variance (σ 2).
Rather than deriving expressions for the individual moments,
a moment-generating function, MX i , can be used to compute
all moments of X . Equation (1) represents the moment gen-
erating function for X i , the data consisting of the N time
samples within the i th window and consisting of real-valued
numbers t . In other words, M is determined as the expectation
of the random variable et X i

MX i (t) = E
(

et X i
)

. (1)

For a discrete and windowed data set, M can be reduced
to (2), where Pi (x) is the probability mass function (PMF) of
X i

MX i (t) =
∑
X i

et x Pi (x). (2)

It follows that M can then be used to derive up to k
moments of X i using (3), where the kth derivative of M
with respect to t is computed and evaluated at t = 0. Thus,
any number of moments E(X k) can be computed within each
discrete window and appended to form an IRES spectrogram
as described in [2]

E
(

X k
)
=

dk

dtk MX i (t)
∣∣∣∣
t=0

. (3)

The first four moments (i.e., mean µ, variance σ 2, skewness
γ , and kurtosis κ) are described in [2]. µ is useful for
identifying the worst case deviation of the signal, whereas
σ 2 or σ measures emphasize the sharpness of a transition
within the signal. γ and κ are measures indicating an abrupt
transition from steady-state (i.e., the start, recovery, or ending
of a transient anomaly). Here, the sixth and seventh moments
are also used, representing smoothed versions of γ and κ ,
respectively. The sixth and seventh moments may be used in
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Fig. 2. Example IRES spectrogram (d) for visualizing various statistical moments of a signal’s behavior (a) pre-, (b) during, and (c) post-strike. Probability
density functions are estimated within the sliding windows, and several statistical moments are calculated. Here, the time evolution of the mean of the signal’s
frequency [µ( f )], the mean of the signal’s phase [µ(φ)], the variance (σ 2), standard deviation (σ ), kurtosis (κ) and skewness (γ ) of the phase are illustrated
(after [3]).

identifying the presence of an anomaly through more discrete
indicators of a disruption.

An advantage of the IRES moment-generating filter is the
ability to process arbitrary (i.e., the signal type is irrelevant)
discrete waveforms. The resulting statistical moments can aid
in detecting abnormalities caused by SETs, improving mea-
surement fidelity, especially in noisy environments. An exam-
ple is shown in Fig. 2, where time-sequenced moments of
a clock signal’s frequency and phase are used to develop
and visualize the shifting statistical profiles before, during,
and after the presence of an SET. In Fig. 2, a clock signal’s
behavior [Fig. 2(a)] pre-, [Fig. 2(b)] during, and [Fig. 2(c)]
post-strike are visualized after applying IRES window filters
and normalizing each moment to the maximum value in
each field. PMFs are estimated within the sliding windows,
and several statistical moments are calculated. Here, the time
evolution of the mean of the signal’s frequency [µ( f )], the
mean of the signal’s phase [µ(φ)], and σ 2, σ , κ , and γ of the
phase are illustrated following a perturbation by an ion [3].

B. Devices Under Test

IRES was applied to various analog, digital, and RF DUTs.
First, the LM124 Op-Amp was chosen to represent a ubiq-
uitous and well-characterized analog component [21], [22].
In addition, a custom synthesized 8-bit DAC, realized using
the Python programming language, is used to demonstrate
IRES for extracting SEUs within a digital signal. Finally,
a custom PLL fabricated in a CMOS 130 nm technology
node is used to illustrate the use of IRES in RF and clock
waveforms [8]. Results obtained from a standard amplitude
thresholding methodology are compared with results obtained

Fig. 3. LM124 SET cross section (cm2/dev) versus LET (MeV × cm2/mg)
for data obtained at LBNL and MSU and compared with the reference data
“H” represented by green stars obtained at NSRL [23]. Table I details the test
configurations.

by thresholding the individual IRES-generated moments to
quantify the effectiveness of the statistical moments for SET
detection.

III. EXPERIMENTAL SETUP

A. LM124

The LM124 Op-Amps were irradiated at the LBNL 88′′

Cyclotron and the MSU’s FRIB linear accelerator. At LBNL,
Xe and Kr ions in the 16 MeV/amu cocktail were uti-
lized in air (with the approximate LET values of 49 and
25 MeV × cm2/mg, respectively) with fluxes ranging from
4.5 × 103 to 2.0 × 107 ions/cm2/s. At the MSU’s FRIB,
20 MeV/amu Ar and 30.5 MeV/amu O ions were utilized (with
the approximate LET values of 7.9 MeV × −cm2/mg and
1.0 MeV × cm2/mg, respectively) with fluxes ranging from
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TABLE I
TESTING CONDITIONS

Fig. 4. Analog SETs in the LM124 following exposure to Xe ions (16 MeV/amu) at LBNL. The incident LET was 49.3 MeV × cm2/mg. The LM124 was
configured in unity gain with a dc input of Vin = 1 V in (a) and (c), and with a sinusoidal input with a dc offset of 1 V and a 8 V amplitude in (e). (b), (d),
and (f) Corresponding IRES spectrograms, including the mean, variance, standard deviation, skewness, kurtosis, and the sixth and seventh moments.

4.5 × 103 to 1 × 104 ions/cm2/s. SRIM [24] was used in all
cases to determine the LET at the surface of the de-lidded die.

The LM124 DUTs were tested in inverting and non-
inverting configurations having different gains, varying input
voltages, and with VDD = 15 V and VSS = −15 V. Table I

details the configurations of each DUT. The angle of incidence
was set to either 0◦ or 45◦. Each ion exposure was conducted
until 100 SETs were acquired, except for the O ion at the
FRIB that was run to a total fluence of 5.16 × 107 ions/cm2.
In this case, the incident LET (of ≈1 MeV × cm2/mg) was
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near the LET threshold of the LM124, and the fluence was
chosen to establish a limiting cross section; three SETs were
recorded.

The LM124 DUTs were connected to a Tektronix DPO7104
Oscilloscope (Oscope) through coaxial cables and BNC con-
nectors. A window trigger was set to be ±0.5 V above
the nominal output voltage, and pre-irradiation measurements
were obtained to ensure that no false-positive, noise-induced
events were captured. SETs were saved locally to a solid-state
drive. A programmable dc power supply was connected by a
coaxial cable and a BNC connector to the differential input
of the DUT. A second power unit supplied a biasing voltage
of ±15 V. The programmable dc power supply and Oscope
were connected to a computer through an Ethernet switch.
Python script commands were sent from the computer to the
testing equipment. After testing, the SET data were evaluated
with the IRES analysis software. Fig. 3 shows the SET cross
section (cm2/dev) versus LET (MeV × cm2/mg) results for the
LM124 DUTs irradiated at LBNL and MSU. Data obtained at
NSRL from [23], marked by the green stars in Fig. 3, are also
included for reference and to show consistent results with the
prior literature.

B. CMOS PLL

A custom PLL fabricated in a 130 nm CMOS technology
was used to obtain transient data at NRL’s TPA facility using
a high peak power femtosecond laser at sub-bandgap optical
wavelengths [6], [7], [25], [26], [27]. The DUT was mounted
on a motorized xyz translation platform with 0.1 µm resolu-
tion, and the TPA laser was focused on the PLL’s subcircuits.
Waveforms were collected at the PLL circuit’s output at the
resulting ten thousand (10 000) strike locations, allowing for
visualization of the 2-D spatial sensitivity. Ten independent
measurements were taken at each strike location, amounting
to 1 00 000 individual waveforms. Additional details on this
dataset can be found in [3] and [8]. This work leverages these
data to analyze the effectiveness of the IRES window filter on
sinusoidal data in the presence of noise.

IV. RESULTS

A. IRES for Analog Signals

The SETs observed during accelerator testing were the
result of excess mobile charge converted from the interaction
of ionized particles with the semiconductor material. These
anomalies may manifest as spurious voltages that can compete
with the nominal signals or become latched as incorrect data
in memory. Fig. 4(a) and (c) illustrates the examples of analog
SETs captured from an LM124 during a heavy ion radiation
test at LBNL. In both cases, the LM124 was configured in a
non-inverting, unity-gain configuration (i.e., voltage follower)
with a dc input of 1 V. The Xe ion (16 MeV/amu) was utilized
with an incident LET of 49.3 MeV × cm2/mg. Fig. 4(e)
illustrates a similar transient with a sinusoidal input where
the dc offset was 1 V, and the sinusoidal amplitude was ≈4 V.

Testing is usually conducted under dc conditions, because
the transients [as in Fig. 4(a) and (c)] are detectable above
a static threshold above the noise level. As seen in Fig. 4(e),

Fig. 5. (a) SEUs in the software DAC with an applied ramp function and
(b) associated IRES spectrogram. Two periods of an 8-bit ramp function are
visualized with three SEUs injected in random bit locations. Two SEUs are
visible in (a) samples 100 and 325. However, small changes in the skewness
and kurtosis indicate the presence of an, otherwise, undetectable SEU in
sample 150. The changing colors represent the normalized values ranging
from 0 (purple) to 1 (red).

ac transients require more complicated instrumentation thresh-
olding techniques. However, IRES can extract the SET signal
even when the error response competes with excessive noise
or ac signals. IRES allows for the analysis of short-duration
transient behavior via time–frequency analysis [2] and filters
out the nominal circuit behavior, thus extracting the error
signal. Fig. 4(b), (d), and (f) illustrates the IRES spectrograms
for the three transients and are constructed using µ, σ , σ 2, κ ,
γ , and the sixth and seventh moments. The spectrograms are
unique to the underlying transient characteristics, as seen by
comparing Fig. 4(b) and (d), and are readily obtained from dc
or sinusoidal signals as seen by comparing Fig. 4(b) and (f).
µ represents an ac-filtered version of the original signal. σ

and σ 2 are the measures of the transient time constants, and
κ and γ are signal event transitions. As seen in Fig. 4(f), the
steady-state ac sinusoidal waveform has a secondary effect on
the calculated moments.

The window size for the IRES spectrograms displayed
in Fig. 4 was chosen to be 50% of the total number of
recorded time steps, and a stride of 800-time steps was
used. Here, a window size of 50% corresponds to ≈25 µs.
While not necessarily the optimal window size nor stride,
the large window size guaranteed that the sliding window
would encompass the transients (note that the transient widths
in the LM124 are well understood and documented) while
also filtering out the steady-state noise. Additional work is
required to determine the optimal sliding window parameters
to automate SET detection.

B. IRES for Digital Signals

1) Deterministic Digital Signals: An 8-bit software DAC
and a fault injection tool were developed using Python to
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accept a discrete-time sequence of 8-bit digital data and
convert it to an analog signal for analysis with the IRES
module. Fig. 5(a) illustrates the 8-bit decimal code with an
applied ramp function (counting from 0x00 to 0xFF). Faults
(SEUs) were injected by randomly selecting one of eight bits
during a random sample out of signal. The SEUs can be seen
as positive or negative spikes in the digital ramp signal, having
different amplitudes based on which bit was flipped: two are
distinct, because the SEUs occurred in the most significant
bits, whereas one SEU is not visible at scale, because it
occurred in the least significant bit (LSB). However, when
IRES is applied to the digital waveform, shown in Fig. 5(b),
small changes in κ and γ appear at ≈150 cycles (sample
number), indicating the, otherwise, undetectable presence of
the SEU. The two most significant features for the digital
data appear to be κ and γ , as they represent coarse data
transitions. The window size for the IRES spectrogram was
set to five time steps with a stride of one step. The changing
colors represent the normalized values ranging from 0 (purple)
to 1 (red). Note that the IRES algorithm does not require
a golden sample of the unperturbed data sequence, as it
establishes probabilities of upset based on prior functionality.
Although a DAC with an applied ramp function was used to
illustrate the implementation of IRES with binary (base-2)
signals, the technique can be applied to any digital code as
long as the window is larger than the number of bits required
to represent the base-2 numbers.

2) Stochastic Digital Signals: Signals with low entropy
(such as a ramp function or other deterministic digital data) are
straightforward to analyze; however, stochastic data with high
entropy present a challenge for the technique. When a signal is
stochastic, such as in digital communication signals, and has a
high entropy factor, the IRES methodology loses its effective-
ness. One way of detecting SEUs in digital stochastic signals
could be through double transmission. IRES can compare the
two signal PMFs and find the accrued error using temporally
or spatially redundant information, but further work is needed
for validation.

C. IRES Noise Sensitivity

The IRES window filter is naturally robust to noisy signals,
as the method extracts transient phenomena based on probabil-
ities. Therefore, a comparison between a typical thresholding
technique (a priori determination of signal boundaries, typi-
cally based on maximum and minimum levels of acceptable
voltage/current) and the IRES method was conducted. First,
the PLL dataset, including 1 00 000 transient measurements
induced by the TPA laser at NRL, was used to evaluate the
sensitivity of IRES with varying window settings and under
varying noise constraints. These measured data include ten
samples for each location where an SET was injected. These
data were augmented by adding artificial random white Gaus-
sian noise (WGN) to the original waveform data, resulting
in SNR values ranging from 0 to 13.01 dB. The SNR was
calculated by (4), where µ is the mean of the expected signal
power of the raw data, and σ is the standard deviation of the
WGN. To convert SNR to decibels, (5) is used. The ten unique
signals (corresponding to identical locations in the PLL) were

Fig. 6. Comparison of error thresholding a raw waveform against
IRES-generated moments with different window filter sizes. The Y axis
represents the SNR, and the bottom X axis portion represents the window size
of the IRES filter (in units % of time steps). The top X axis portion indicates
the waveform or time-sequenced moment that was evaluated, separated by the
vertical lines.

each evaluated with a different WGN profile at the same SNR
value

SNR =
µ

σ
(4)

SNRdB = 10 log10(SNR). (5)

Each augmented, noisy waveform consists of 500 time steps.
First, a baseline threshold method was defined; in this case, µ

and σ of 100 random waveforms were measured. Next, SETs
were defined if any point within a sample fell outside of three
standard deviations from the mean. This process was repeated
for all SNR values.

In addition, each waveform was transformed using window
IRES filters with varying window sizes (ranging from 10%
of the time steps to 90% of the time steps) and a fixed
stride of 10%. Similar to the baseline amplitude thresholding
method, the sensitivity of the individual moments to WGN was
evaluated by defining an SET when any point within a sample
fell outside of three standard deviations from the mean of the
moment under study. This process was repeated for all SNR
values. The percentage error was used to compare the results
and is determined by (6). True positive (TP) represents the
number of times a waveform was correctly identified as con-
taining an SET; true negative (TN) represents the number of
correctly identified waveforms without an SET; false positive
(FP) represents the number of incorrectly identified transients;
false negative (FN) represents the number of waveforms incor-
rectly identified as unperturbed. Note that this process was
conducted to examine the sensitivity of each IRES-generated
moment to the transient signal and is not intended to suggest
an SET detection process. An IRES-inspired SET detection
process will likely involve a combination of moments and
ML-based classification

Error =
FN + FP

TN + TP + FN + FP
. (6)
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Fig. 7. Analog SETs in the LM124 following exposure to Xe ions (16 MeV/amu) at LBNL. The incident LET was 49.3 MeV × cm2/mg. (a) LM124 was
configured in unity gain with a dc input of Vin = 5 V. (b) LM124 was configured in unity gain with a dc input of Vin = 5 V with random WGN added to
the transient for an SNR of −17 dB. (c) and (d) Corresponding spectrograms following one application of the IRES filter (IRES1). (e) and (f) Corresponding
spectrograms following two sequential applications of the IRES filter (IRES2). Both IRES1 and IRES2 spectrograms include the mean, variance, standard
deviation, skewness, kurtosis, and the sixth and seventh moments.

Fig. 6 shows the percentage error of a chosen threshold
metric (i.e., the original, raw waveform versus various IRES-
generated moments) with respect to window size and SNR.
The color corresponds to the error value of each cell. First,
the baseline thresholding technique resulted in a minimum
error of 31% for an SNR of 13 dB. The method cannot
tolerate high levels of noise without defining new metrics.
Moreover, transients that exist within the noise boundaries are
not detectable. The first and second moments outperform the
baseline technique, with µ as perhaps the most reliable single
metric for identifying the presence of a transient. The lowest
error rate is observed at a window size of 26%; however,
larger window sizes appear to improve the performance for
critically low SNR values. In other words, while small window
sizes can be useful for detecting fast transients, calculations
will be more sensitive to noise when compared with large
window sizes. The third moments and higher are susceptible
to noise and cannot be used for transient thresholding except in
cases with large SNR values. The percentage error generally
increases with decreasing SNR for all moments, though the
SNR value at which the percentage error saturates increases

with increasing moment. There are trade-offs in accuracy and
precision when implementing the IRES window filter. For
example, large window sizes improve tolerance to noise at the
sacrifice of precision, whereas smaller window sizes improve
accuracy while less effective in filtering noise.

While Fig. 6 is intended to show the sensitivity of a
single IRES-generated moment to noise and various filter set-
tings, IRES is most beneficial, because several time-sequenced
moments are generated simultaneously. In this case, an algo-
rithm is required to leverage more than one moment for
thresholding an event detector. Nevertheless, the transient
nature of the moments can help develop a more complete
understanding of the transient phenomena, be used to build
a new definition of a transient threshold, or be used in ML
applications and classification models, such as [3].

In addition, IRES window filters may be applied in
sequence. Fig. 7(a) shows an example analog SET mea-
sured at the output of the LM124 following exposure to
Xe ions (16 MeV/amu) at LBNL. The incident LET was
49.3 MeV × cm2/mg. The LM124 was configured in unity
gain with a dc input of Vin = 5 V. Fig. 7(b) shows the
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identical transient with added WGN to reduce the SNR to
−17 dB. Two passes of the IRES window filter were applied to
these data. IRES1 corresponds to the output of the first IRES
window filter, and IRES2 corresponds to the output of the
second IRES window filter in sequence. Since µ of IRES1 was
identified as the most informative according to Fig. 6, µ from
IRES1 was fed back into the IRES algorithm to produce the
spectrograms shown in Fig. 7(e) and (f). A similar process
could be conducted using the other moments. The identical
spectrograms in Fig. 7(e) and (f) show that the IRES is highly
effective in removing high levels of noise, allowing for the
extraction of the true transient error signals with high accuracy.

V. CONCLUSION

This article describes a generalized methodology for using
IRES window filters to detect SET signatures in arbitrary
dc, periodic, digital, and RF signals. The statistical window
analysis technique generates time-sequenced moments of a
waveform. These time-dependent moments can be used to
describe the transient characteristics beyond the typical ampli-
tude and time-width parameters and may be used to replace
or augment typical amplitude based triggering mechanisms.
Data collected from heavy-ion exposure of the LM124 at the
LBNL 88′′ Cyclotron and MSU’s FRIB demonstrate the IRES
methodology for analog dc, sinusoidal signatures, and noise
sensitivity. Fault injection simulations of an 8-bit software
DAC are used to illustrate the use of IRES for digital SEU
detection. Finally, data from laser TPA experiments on a
custom CMOS PLL circuit are used to examine the sensitivity
of the IRES-generated moments to noise. IRES outperformed
the standard thresholding method by effectively identifying
SETs in excessive SNRs. IRES has applications in real-time
measurement, in situ data analysis, and ML.
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