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Abstract— A methodology for automating the identification of
single-event transients (SETs) through ionizing radiation effects
spectroscopy (IRES) and machine learning (ML) is provided.
IRES enhances the identification of SETs through statistical
analysis of waveform behavior, allowing for the capture of subtle
circuit dynamics changes. Automated identification of SETs is
facilitated by a k-nearest neighbors (KNNs) ML algorithm with
IRES data. One-hundred thousand waveforms were measured
from CMOS phase-locked loop (PLL) circuits irradiated at the
Naval Research Laboratory’s two-photon absorption (TPA) laser
facility. Known SET signatures were used to train various kNN
models based on statistical features derived from several standard
circuit metrics and eight moment-generating functions. Results
show that SETs can be automatically identified by the kNN
models, with several features resulting in greater than 98% cor-
rect identification of SETs. The tradeoffs in ML-based anomaly
detection, based on the size of available training sets, choice in
signal metric, and the number of included statistical moment-
generating functions are discussed, along with opportunities for
the future development of specific event-type classification, in sifu
measurement, and real-time classification of data.

Index Terms— lonizing radiation effects spectroscopy (IRES),
k-nearest neighbors (kNNs), machine learning (ML), phase-
locked loops (PLLs), radiation effects, single-event effects (SEEs),
single-event transients (SETs), spectroscopy, time frequency
analysis, two photon absorption (TPA).

I. INTRODUCTION

HIS article documents the first use of machine learning
(ML) to automatically identify and classify single-event
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effects (SEEs). SEEs are pervasive in modern spacecraft elec-
tronics systems; ionizing radiation is present in the external
environment and emanates from processing and packaging
material integral to a circuit. Aggressive integrated circuit (IC)
density and power scaling have propelled this issue to the
forefront of reliability concerns. SEEs can be further exac-
erbated in analog, mixed-signal, and system-on-chip (SoC)
applications that are often challenging to interrogate [1]-[5].
In analog, mixed-signal, and SoC components, the effect of
a single-event particle strike is the generation of a transient
signal (single-event transient or SET) that interacts with the
legitimate signals propagating through a circuit or perturbs
the functionality of the circuit. Here, a method of detecting
and classifying SETs in arbitrarily complex devices and ICs
using ionizing radiation effects spectroscopy (IRES) [6], [7]
and ML is discussed. SET vulnerable circuit nodes in a CMOS
phase-locked loop (PLL) circuit are identified through time-
frequency analysis of output signatures. One-hundred thousand
waveforms were measured at the Naval Research Laboratory’s
two-photon absorption (TPA) laser facility, and ML via a
k-nearest neighbors (kNNs) algorithm was used to classify
nominal data and transient data based on statistical features.
The statistical features, derived from several standard circuit
metrics and up to eight moment-generating functions, show
that SETs can be automatically identified by the kNN models,
with several features resulting in greater than 98% correct
identification of SETs. The findings presented herein offer the
possibility of on-board and in sifu event detection and diagno-
sis through the embedded computational capabilities offered
through SoCs. Tradeoffs in the signal metrics, dimension, and
the number of required training samples are discussed.

II. BACKGROUND
A. Ionizing Radiation Effects Spectroscopy

Degradation of performance and loss of information are
some of the biggest concerns caused by ionizing radiation.
Mitigation of radiation effects often involves equipping circuits
with larger capacitors, increased form factors, and increased
current drives, all of which may reduce the severity of SETs.
The drawback of these brute-force preventative measures is
that they require adverse tradeoffs in area, power, and band-
width, and diminishing the severity of these effects requires
prior knowledge of where a particular circuit is susceptible.
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Fig. 1.

Example IRES spectrogram (d) showing the skewness (y), kurtosis (x), variance (o2), standard deviation (¢), and mean (u) of the PLL’s output

phase (¢), as well as the u of the PLL's output frequency (f) obtained via time-frequency analysis of the output waveform. The IRES spectrogram was
obtained through a sliding-window analysis as shown in (a)(c); in this case, the frequency spectra were obtained within each window and Gaussian window
filters were employed as in [7]. The sliding windows were sized to contain 20% of the total number of recorded time steps and shifted by a value of 1,
corresponding to a 95% overlap. The relevant statistical measures within each window were recorded and visualized in a time sequence. Each timestamp
corresponds to the starting time of the sliding window. The color bars represent the normalized values of the statistical measures (ranging from O (blue or

light color) to 1 (red or dark color).

On the other hand, targeted radiation-hardening-by-design
(RHBD) to improve performance while minimizing tradeoffs
is costly and not feasible for many systems. IRES allows for
a system-level analysis of radiation effects, which may reduce
such brute-force RHBD by improving the understanding of the
device and circuit degradation on the system while maintaining
the ability to identify specific failure points. In this work, IRES
is coupled with ML to identify and classify transient signatures
in situ.

IRES is a technique derived from radio frequency-distinct
native attributes (RF-DNA) fingerprinting, a signal-processing
technique often found in wireless communications applica-
tions that exploits statistical features from waveforms asso-
ciated with circuits or systems [8]-[19]. The detailed process
for obtaining IRES spectrograms from a transient source is
described in [7]. In this work, IRES is used to analyze
a 130-nm CMOS PLL circuit, a core component in SoC
applications. However, IRES can be used to analyze any
arbitrarily complex waveform, as it does not depend on the
thresholding of a performance metric and can be applied
to static and dynamic waveforms alike through the sliding
statistical analysis [7].

Fig. 1 shows an example IRES spectrogram generated
via time-frequency analysis of a PLL’s output waveform.
In this case, the cycle-to-mean phase jitter and instantaneous
frequency in the output waveform is visualized in the IRES

spectrogram and includes the mean (u), standard deviation
(o), variance (¢2), kurtosis (x), and skewness (y) statistical
measures. IRES spectrograms are generally obtained through
a sliding-window analysis. Here, the frequency spectra were
obtained within each window, and Gaussian window filters
were employed as in [7]. The sliding windows were sized
to contain 20% of the total number of recorded time steps
and shifted by a value of 1, corresponding to a 95% overlap.
The relevant statistical measures within each window were
recorded and visualized in a time sequence. Each timestamp
corresponds to the starting time of the sliding window. The
resulting spectrogram clearly shows the signal perturbation;
as discussed in [7], the statistical features serve as various
indicators of the SET behavior. The local maxima of y (or x)
are used to define the total width of the event, whereas the
peak in the u is a direct estimate of the SET magnitude.
Furthermore, the approximate rise time can be determined by
finding the difference in the onset time of the event (the first
peak in y ) and the time at which the peak u occurs. In contrast,
the fall time can be determined as the difference when the peak
u occurs and the second peak in y. The ¢? and o features
further serve as indicators of the transient time constants [7].

It is important to note that IRES spectrograms can be
created from any signal metric (e.g., in Fig. 1, the cycle-
to-mean phase jitter and instantaneous frequency) and any
number of statistical measures. In this work, up to eight
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statistical moment-generating functions are used. Then, the
PLL’s nominal behavior is compared to the behavior associated
with SETs originating within the PLL subcircuits. Finally,
ML is used to characterize events to identify the origin of
the SETs within the device.

B. Device Under Test: A CMOS Phase-Locked Loop

The PLL used in this work has been discussed extensively
in [6], [7], and [20]-[24] and consists of the phase-frequency
detector (PFD), charge pump (CP), low-pass filter (LPF),
voltage-controlled oscillator (VCO), and frequency dividers.
The PLL was fabricated using a 130-nm CMOS technol-
ogy available through the Metal Oxide Silicon Implementa-
tion System (MOSIS) Multi Project Wafer (MPW) service
available through the University of Southern California’s
Information Sciences Institute. The VCO has a center fre-
quency (frequency at which Vipvco = Vyg/2) and a maximum
frequency of approximately 200 and 530 MHz, respectively.
The PLL’s locking range is between approximately 40 and
350 MHz, over which the VCO is approximately linear with
a gain of 7.75 GHz/V. In this article, SET data originating
within the CP subcircuit are analyzed through IRES and the
ML approach described herein.

III. EXPERIMENTAL SETUP

SET data were obtained through TPA wusing high
peak power femtosecond pulses at subbandgap optical
wavelengths [25]-[29]. The TPA laser spot size had a diameter
(full-length at half-maximum) of approximately 1.1 gm [28].
While various energies were used during irradiation, this
work reports data at single energy to illustrate the technique’s
ability to discern spatial dependencies under constant charge
deposition. It is important to note, however, that it is possible
to use IRES to analyze transient variations due to differences
in charge deposition and collection dynamics [7]. However,
additional work is required to determine the feasibility of ML
to discriminate such differences.

The device under test was mounted on a motorized xyz
translation platform with 0.1 zm resolution, and the TPA laser
was focused on the PLL’s CP subcircuit, following an initial
identification of the most vulnerable regions. The z-axis was
fixed, and the xy position was manipulated to rasterize the
laser across a 10 yum x 10 um area of the CP subcircuit
at a resolution of 0.2 ym. Waveforms were collected at the
PLL circuit’s output at the resulting ten thousand (10000)
strike locations, allowing for visualization of the 2-D spatial
sensitivity. Ten independent measurements were taken at each
strike location, amounting to 100000 individual waveforms.
Fig. 2 illustrates an example 2-D spatial map of the CP
subcircuit regions sensitive to SETs [23]. The map was created
by measuring the average of the maximum output phase dis-
placements (i.e., the instantaneous cycle-to-cycle phase jitter)
recorded from the ten measurements at each strike location.

Frequency and phase information contained in the PLL’s
output signal, as seen in Fig. 1, was used to create IRES
spectrograms by discretely sampling the PLL output voltage
and determining its instantaneous frequency at each clock
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Fig. 2. Two-dimensional spatial map of the regions in the CP subcircuit sen-
sitive to SETs. The experiment was performed using laser TPA at a step size
of 0.2 ym. Each pixel represents the average maximum phase displacement
(instantaneous cycle-to-cycle phase error) for ten SETs generated at each xy
location. The image shows that the output of the CP circuit, in particular, the
nMOS switches and current sources, contain the most sensitive junctions due
to their ability to deplete the charge stored in the loop filter (after [23]).

edge. The instantaneous phase displacement of the signal
was determined using cycle-to-mean (c2m) and cycle-to-cycle
(c2c) phase jitter computations [23]. The root-mean-square
(rms) of the phase jitter is often reported to quantify the spread
in the phase spectrum and can be determined by finding the
standard deviation of the c2c phase jitter. One common method
for determining an SET’s presence within the PLL’s output is
to threshold the instantaneous phase displacement at the rms
phase jitter or some other arbitrary noise level. Furthermore,
the maximum deviation and recovery times are generally the
only metrics used for quantifying SETs. IRES retains all
spectral content before, during, and after the transient.

Then, the frequency (f) and phase signals of interest
are passed through a windowing function that calculates the
waveform’s statistical measures, such as y, x, 62, ¢, and M.
Other moments may also be included. Here, we derive features
using up to the eighth moment. The associated statistical
values are vectorized and concatenated into a single IRES
image. Note that this time-frequency analysis is analogous
to the RF-DNA fingerprint generation process. An example
output of this function is shown in Fig. 1, where y, x, ¢, o,
and p of a sample transients cycle-to-mean (c2m) phase jitter
are illustrated along with the g of the instantaneous frequency.

IV. kNNs MACHINE LEARNING

For this problem space, kNN [30] was chosen as the ML
classifier for several reasons. First, kNN is computationally
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Definition of the sample patches within the SET spatial maps. Also shown are aggregate IRES spectrograms from three patches. The spectrograms

were generated by analyzing the PLL’s output frequency, where the change in frequency correlates to the distinct aberration in the IRES image and includes

eight statistical moments.

simple compared to complex algorithms like support vector
machines (SVMs) [19] and has been successfully applied to
the classification of handwritten digits, satellite images, and
electrocardiogram (EKG) patterns [31]. Unlike SVM, which
leverages kernel functions to map data points to higher dimen-
sional feature spaces to achieve maximum class separation,
kNN uses straightforward feature similarity measurements
(e.g., Euclidian, Mahalanobis, Minkowski) to determine class
assignment. Second, kNN eliminates the need for model fitting
through a labeled training set of fingerprints to represent each
of the known classes [31]. kNN, as a consensus-based classi-
fier, assigns a to-be-classified IRES spectrogram as belonging
to the class whose training data comprise the majority of the
nearest neighbors [32]. Third, kNN may be readily deployed
in SoC applications. There are on-chip architectures proposed
for kNN [33] to allow for the IRES generation and kNN
classification process to be performed locally. Finally, when
kNN is updated with new data, it is done so in real-time
without affecting accuracy, which implies that it could be
leveraged to classify SETs of any origin, not just SETs within
a PLL.

Fig. 3 illustrates an example of the spatial sensitivity of the
CP subcircuit to SETs. The spatial map quantifies the average
of the peak frequency deviation (femor) Obtained for the ten
measurements. While the spatial map shows the average of the
maximum [fero, from the ten transient waveforms per pixel,
the measurements were highly repeatable, with a maximum
standard deviation of approximately 15%. The raw data are
grouped in 3 um x 3 um patches as a known SET or as
nominal behavior (noise). There are 16 patches total, eight
patches for both groups, and 3200 waveforms within the

patches. The event patches consist of two nMOS output switch
patches, three pMOS output switch patches, and three nMOS
current source patches. The kNN ML models were trained
with independent measurements (from between one spatial
map up to ten spatial maps) from the nominal patches and
event patches. Individual models were created for c2m, c2c,
and f signal metrics based on statistical data from up to eight
moment-generating functions applied during the IRES sliding
window analyses. The models were tested with samples from
all patches. The highest priority goal was to accurately classify
an event (identification/acceptance as an SET) versus nominal
(rejection as an SET) and classify each event patch, thereby
revealing the PLL’s specific region that the event originated.

V. STATISTICAL FEATURE ANALYSIS

Classification results are presented in the form of error
(confusion) matrices, as shown in Fig. 4. The error matrices
show the number of measurements correctly predicted by
the kNN models as either an SET (true positive or TP) or
as a nominal/noise event (true negative or TN), as well as
those incorrectly predicted by the kNN models as either an
SET (false-positive or FP) or as a nominal/noise event (false-
negative or FN). The positive predictive value (PPV) and
negative predictive value (NPV), given by (1) and (2), are
also displayed to indicate the overall ability of the model to
predict the events as either SET events or noise (other)

TP
PPV —_ (1)
TP + FP
TN
NPV =_ )
TN + FN
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Fig. 4. Legend for the error (confusion) matrix to describe the classification of
measurements as an SET or noise (non-SET) events. The number of samples
reporting TP, FP, TN, and FN results from the kNN model are reported. The
PPV and NPV are displayed to indicate the model’s overall ability to predict
the events as either SET events or noise.

Actual Class
c2c
SET Noise
Predicted Class|—o" 1504 9% 94.0%
Noise 78 1522 95,1%
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SET Noise
Predicted Class [— o1 1571 29 98.2%
Noise 36 1564 97.8%
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SET Noise
Predicted Class 5'?" 1592 8 99,5%
Noise 6 1594 99.6%

Fig. 5. Example classification results from the kNN model trained with
data from nine out of ten spatial maps. A total of 3200 random samples
from the tenth spatial map were selected and compared to known results.
Results are provided for the kNN model trained with c2c, c2m, and f signal
transformations and included features from eight statistical moment-generating
functions.

A. Classification Accuracy Versus Signal Metric

Fig. 5 shows example classification results from the mod-
els trained with data from nine out of ten spatial maps.
The 3200 samples from the patches within the tenth spatial
map were selected and compared to the predicted results.
Results are provided for the KNN models trained with either
the c2c, c2m, or f signal transformation and features from
eight statistical moment-generating functions. Greater than
949% classification (in terms of the PPV and NPV) is achiev-
able when eight statistical moments and nine of ten sample sets
are used to train the kNN model. When using the ¢2m and
f signal metrics, the PPV and NPV exceeded approximately
98% with very few incorrectly classified results.

B. Classification Accuracy Versus Statistical Feature

Fig. 6 shows classification results in terms of the PPV and
NPV based on the c2c, ¢2m, and f signal metrics. The various
kNN models were trained from nine out of ten spatial maps,
similar to the results shown in Fig. 5. In Fig. 6, results are
provided from six models trained from either the first (mean or
1), second (standard deviation or ¢ and variance or o?), third
(skewness or y ), fourth (kurtosis or x), or all eight statistical
moments obtained from the IRES analysis. Results indicate
that the second moment appears to be the most informative
statistical feature, resulting in PPV and NPV of over 95.4%.
This result is consistent across all signal metrics evaluated,
indicating that the rapid state transition at the SET onset is
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Fig. 6. PPV and NPV based on (a) c2c, (b) c2m, and (c) f signal metrics.
The various kNN models were trained from nine out of ten spatial maps. The
results of six models are presented. The models were trained from the first
(mean or u), second (standard deviation or ¢ and variance or a?2), third
(skewness or y), fourth (kurtosis or x), or first eight statistical moments
obtained from the IRES analysis.

the most important defining feature (as captured by the IRES
spectrograms). The inclusion of all eight statistical moments
further improves the ability to detect the events, except the
frequency signal metric, where a minor decrease was observed.
In this case, the PPV and NPV are nearly 100% when using
variance alone, and other low-performing moments tend to
confuse the classifier.

C. Classification Accuracy Versus Number of Training Sets

The classification accuracy was evaluated as a function of
the number of initial training sets. Fig. 7 shows the TP and
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Fig. 7. SET classification accuracy showing the TP and TN values. Data are
quantified as the percent correctly identified versus the number of sample sets
used to train the kNN models for the c2c, ¢2m, and f signal transformations.

TN percentages (%) with respect to the number of training
sets used to develop the kNN models. TP and TN percentages
are shown in closed and open symbols, respectively, for
each signal metric used to generate IRES spectrograms. Each
model was trained with all eight statistical moments. The
[ signal transformation requires the least input data (two
of ten sample sets) to achieve a greater than 98% for both
correct acceptance and rejection. The ¢2m and c2c metrics
require a significant increase in the training sets to achieve
similar classification levels, requiring six and ten training sets,
respectively, to achieve greater than 95% correct acceptance
and rejection. It is also important to note that the deviation
(displacement) in rms phase jitter (i.e., the second moment
of the c2c phase jitter) and maximum frequency perturbation
(i.e., the first moment of the instantaneous output frequency)
are generally reported in the literature to describe the severity
of SET in PLLs [6], [7], [20]-[24]. Results indicate that aside
from the f signal metric, the c2m phase jitter is perhaps more
informative for identifying SET phenomena compared to the
c2c metric.

VI. CoNCLUSION

This work employs IRES for the characterization of SETs
in circuits and introduces the use of ML for the identifica-
tion and analysis of SET phenomena. One-hundred thousand
waveforms from a 130-nm CMOS phase-locked loop (PLL)
were measured at the Naval Research Laboratory’s TPA laser
facility, and ML via a kNN algorithm was used to classify
nominal data and SET data based on statistical features.
The statistical features, derived from several standard circuit
metrics and up to eight moment-generating functions, show
that SETs can be automatically identified by the ANN models,
with several features resulting in greater than 98% correct
identification of SETs. The ability to design ML models to
accurately classify the presence of radiation-induced transients
through multiple signal metrics and statistical features suggests
that it is possible to employ ML to aid in the automatic
identification and discrimination of transient phenomena in
multiple circuit families, including those in analog, digital,
mixed-signal, and SoC applications. Furthermore, once an
ML model is designed and trained with prior data, it may
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be possible for near real-time analysis of observed data,
including in sifu event detection and real-time classification of
data.
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