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Summary

We consider the problem of testing for the presence of linear relationships between large sets of
random variables based on a postselection inference approach to canonical correlation analysis.
The challenge is to adjust for the selection of subsets of variables having linear combinations
with maximal sample correlation. To this end, we construct a stabilized one-step estimator of the
Euclidean norm of the canonical correlations maximized over subsets of variables of prespecified
cardinality. This estimator is shown to be consistent for its target parameter and asymptotically
normal, provided the dimensions of the variables do not grow too quickly with sample size.
We also develop a greedy search algorithm to accurately compute the estimator, leading to a
computationally tractable omnibus test for the global null hypothesis that there are no linear
relationships between any subsets of variables having the prespecified cardinality. We further
develop a confidence interval that takes the variable selection into account.

Some key words: Efficient one-step estimator; Greedy search algorithm; Large-scale testing; Postselection inference.

1. Introduction

When exploring the relationships between two sets of variables measured on the same set
of objects, canonical correlation analysis, CCA (Hotelling, 1936), sequentially extracts linear
combinations with maximal correlation. Specifically, with X ∈ R

p and Y ∈ R
q as two random

vectors, the first step of CCA targets the parameter

ρ = max
α∈Rq, β∈Rp

corr(αTY , βTX ) subject to var(αTY ) = 1 = var(βTX ). (1)

Subsequent steps of CCA repeat this process subject to the constraint that the next linear com-
binations of X and of Y are uncorrelated with earlier ones, giving a decreasing sequence of
correlation coefficients. We are interested in testing whether the maximal canonical correlation
coefficient ρ |= 0 versus the null hypothesis ρ = 0 in the high-dimensional setting in which p and
q grow with sample size n. This is equivalent to testing whether all of the canonical correlation
coefficients vanish, or whether their sum of squares τ 2, known as the Pillai (1955) trace, vanishes.
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1068 I. W. McKeague and X. Zhang

Over the last dozen years, numerous sparse CCA methods (e.g., Witten et al., 2009; Hardoon
& Shawe-Taylor, 2011; Gao et al., 2017; Mai & Zhang, 2019; Qadar & Seghouane, 2019; Shu
et al., 2020) have been developed as extensions of classical CCA by adapting regularization
approaches from regression, e.g., lasso (Tibshirani, 1996), elastic net (Zou & Hastie, 2005) and
soft thresholding.

Sparse CCA methods have been widely applied to high-dimensional omics data to detect
associations between gene expression and DNA copy number/polymorphisms/methylation, with
the aim of revealing networks of coexpressed and coregulated genes (Waaijenborg & Zwinderman,
2007; Waaijenborg et al., 2008; Parkhomenko et al., 2009; Naylor et al., 2010; Wang et al., 2015).
A problem with the indiscriminate use of such methods, however, is selection bias, arising when
the effects of variable selection on subsequent statistical analyses are ignored, i.e., failure to take
into account double dipping of the data when assessing evidence of association.

Devising valid tests for associations in high-dimensional sparse CCA, along with confidence
interval estimation for the strength of the association, poses a challenging postselection infer-
ence problem. Nevertheless, some progress on this problem has been made. Yang & Pan (2015)
proposed the sum of sample canonical correlation coefficients as a test statistic, and established
a valid calibration under the sparsity assumption that the number of nonzero canonical cor-
relations is finite and fixed, with the dimensions p and q proportional to sample size. Their
approach comes at the cost of assuming that X and Y are jointly Gaussian, and thus fully
independent under the null; similar results for the maximal sample canonical correlation coeffi-
cient are developed by Bao et al. (2019). Zheng et al. (2019) developed a test for the presence
of correlations among arbitrary components of a given high-dimensional random vector, for
both sparse and dense alternatives, but their approach also requires an independent components
structure. Under the Gaussian assumption, the test of canonical correlation is equivalent to the
test of independence, which is an extensively studied research topic in recent years (e.g., Zhu
et al., 2017; Bodnar et al., 2019; Shi et al., 2021), but having a different goal from the present
article.

In this paper, we provide valid postselection inference for a new version of sparse CCA in high-
dimensional settings. We obtain a computationally tractable and asymptotically valid confidence
interval for τmax, where τ 2

max is the maximum of the Pillai trace over all subvectors of X and
Y having prespecified dimensions sx and sy, respectively. The method is fully nonparametric in
the sense that no distributional assumptions or sparsity assumptions are required. Rather than
adopting a penalization approach or making a sparsity assumption on the number of nonzero
canonical correlations to regularize the problem, we use the sparsity levels sx � p and sy � q for
regularization, and also for controlling the computational cost of searching over large collections
of subvectors. We introduce a test statistic τ̂max constructed as a stabilized and efficient one-
step estimator of τmax. Then, assuming that p and q do not grow too quickly with sample size,
specifically that n−1/2 log(p+q) → 0, we show that a studentized version of τ̂max, after centring
by τmax, converges weakly to the standard normal. This leads to a practical way of calibrating a
formal omnibus test for the global null hypothesis of τmax = 0 that there are no linear relationships
between any subsets of variables having the prespecified cardinality, along with an asymptotically
valid Wald-type confidence interval for τmax.

The proposed approach applies to any choice of prespecified sparsity levels sx and sy, which
do not need to be the same as the true number of active variables in the population CCA, although
they should be sufficiently large to capture the key associations. The test procedure and confidence
interval for the target parameter τmax are asymptotically valid for any prespecified sparsity levels,
and work well provided the sample cross-covariance matrices between subvectors of X and Y
having dimensions sx and sy are sufficiently accurate.
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Significance testing for canonical correlation analysis 1069

Our approach is related to the type of postselection inference procedure for marginal screening
developed by McKeague & Qian (2015), which applies to the one-dimensional response case,
q = 1, and sparsity levels sx = sy = 1. To extend this approach to the sparse CCA setting,
in which both p and q can be large, requires a trade-off between computational tractability
and statistical power. The calibration used by McKeague & Qian (2015) is a double-bootstrap
technique, which is computationally expensive. To obtain a fast calibration method for sparse
CCA, we adapt the sample-splitting stabilization technique of Luedtke & van der Laan (2018)
from univariate screening to the multivariate canonical correlation analysis setting. This provides
calibration using a standard normal limit.

Adapting the approach of Luedtke & van der Laan (2018) to the present setting is challenging.
New concentration results for the canonical gradient of the root-Pillai trace and its second-
order remainder terms are needed. Also, nonidentifiable local parameters appear in the canonical
gradient at the null hypothesis of interest, and standard calibration methods such as bootstrap for
the sample version of the target parameter fail due to nonregularity. The stabilization approach
controls the nonregularity at the null and furnishes the standard normal limit. Furthermore, to
control the computational complexity of searching through large collections of subvectors of X
and Y when computing τ̂max, we develop a greedy search algorithm that is more accurate and
computationally more efficient than that of Wiesel et al. (2008). This is mainly because we are
able to maximize and update exact increments in the Pillai trace, whereas in Wiesel et al. (2008)
the maximization is carried out on lower bounds of the increments.

2. Inference for the maximal Pillai trace

2.1. Preliminaries

Let �X > 0 and �Y > 0 denote the covariance matrices of X and Y , with cross-covariance
matrix �XY and standardized cross-covariance matrix �XY ≡ �

−1/2
X �XY �

−1/2
Y ∈ R

p×q, also
known as the coherence matrix. The sample counterparts are denoted by SX , SY , SXY and CXY ,
respectively. The coherence matrix �XY has min(p, q) singular values; when listed in decreasing
order, they coincide with the canonical correlation coefficients, and ρ defined in (1) is the largest.
A closely related parameter in multivariate analysis of variance is the Pillai trace τ 2 (Pillai, 1955),
defined as the sum of squares of the canonical correlation coefficients, or, equivalently,

τ 2 = ‖�XY ‖2
F = tr(�XY �T

XY ) = tr{H (H + E)−1},
where ‖ · ‖F is the Frobenius norm, and H = �YX �−1

X �XY and E = �Y − H are population
versions of covariance matrices in a linear model for predicting Y from X . Specifically, H is the
covariance matrix of the least-squares-predicted outcome in the linear model Y = A + BX + ε,
where cov(ε) = E and ε is uncorrelated with X .

Clearly, the null hypotheses ρ = 0 and τ = 0 are equivalent, but the root-Pillai trace τ , the
positive square root of τ 2, which contains information of all nonzero canonical correlations, is
a more informative target parameter than the leading canonical correlation ρ, although the two
would coincide if there is only a single nonzero canonical correlation coefficient. Moreover,
because estimating the maximal values of τ or ρ, subject to sparsity constraints, needs repeated
evaluation and updating of the estimates, the choice of τ provides considerable computational
savings over ρ, as the latter would require updating the entire eigendecomposition at each step.

Our approach is to develop asymptotic distribution results for a regularized empirical version
of this target parameter when the dimensions p and q grow with sample size n. Specifically,
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1070 I. W. McKeague and X. Zhang

given sparsity levels sx and sy for X and Y , respectively, we are interested in selecting index sets
K ⊂ {1, . . . , p} and J ⊂ {1, . . . , q} with cardinality |K| � sx and |J | � sy that maximize the
Pillai trace, or, equivalently, the root-Pillai trace, of their corresponding subvectors YJ and XK.
The sparsity levels sx and sy are prespecified and fixed, e.g., (sx, sy) = (1, 2).

More specifically, given independent observations Oi = (X T
i , Y T

i )T (i = 1, . . . , n), drawn from
a distribution P on R

p+q, we target the parameter

τmax ≡ max
d∈Dn

	d(P), (2)

where

Dn = {(J , K) | |K| = sx � p, |J | = sy � q, K ⊆ {1, . . . , p}, J ⊆ {1, . . . , q}}

and 	d(P) = ‖�XKYJ ‖F . There may be no unique maximizer d ∈ Dn, and τmax � τ , with
equality when sx = p, sy = q. The subscript n in Dn indicates that the dimensions p = pn and
q = qn are allowed to increase with n. Although our focus is on τmax, the estimation and inference
procedures, as well as the theoretical results, can be extended straightforwardly to the maximal
Pillai trace τ 2

max. See § 4.3 for further discussion and analysis.
The numbers of active variables (s


x, s

y) are the smallest values of the sparsity levels (sx, sy) for

which τmax = τ . Note that s

x and s


y can be as large as p and q, respectively, and as small as the
number of nonzero canonical correlation coefficients for X and Y . The rank of �XY is denoted
by K in the sequel. The nonregularity arises for various reasons, including the fact that multiple
elements of Dn may achieve the same maximum in (2), e.g., when τmax = 0. This may occur,
for example, if the prespecified sparsity levels are larger than the true sparsity levels (s


x, s

y), but

as we see later in this section, the sample root-Pillai trace is nonregular at τmax = 0 even when
d is fixed. Moreover, though the numbers of active variables (s


x, s

y) are unique by definition,

nonregularity still occurs because the sets of active variables may not be unique.

2.2. Stabilized one-step estimator

In this section we develop the stabilized one-step estimator for the target parameter τmax in
terms of the canonical gradient Dd(P) of the functional 	d(P) for a fixed d ∈ Dn. The canonical
gradient is derived later in § 3.2, and will be estimated by plugging-in empirical distributions Pj of
the first j observations in place of P. We consider subsamples consisting of the first j observations
for j = �n, . . . , n − 1, where {�n} is some positive integer sequence such that both �n and n − �n
tend to infinity. The following procedure is a version of the construction of the stabilized one-step
estimator in Luedtke & van der Laan (2018).

For each j = �n, . . . , n − 1, compute the following quantities.

Step 1. The selected subsets of variables dnj = (K̂, Ĵ ), given by

dnj ≡ arg max
d∈Dn

	d(Pj) = arg max
|K|=sx , |J |=sy

‖CXKYJ (Pj)‖F . (3)

Step 2. The corresponding maximum 	dnj (Pj) = ‖CXK̂YĴ (Pj)‖F and D̂j(Oj+1) ≡ Ddnj (Pj)

(Oj + 1) using the canonical gradient given later by (5) and (6) with P = Pj.
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Significance testing for canonical correlation analysis 1071

Step 3. An estimate of the variance of D̂j(Oj+1):

σ̂ 2
j = 1

j

j∑
i=1

{
D̂j(Oi) − 1

j

j∑
m=1

D̂j(Om)

}2

.

Step 4. Weights wj = σ n/σ̂j, where

σ n =
(

1

n − �n

n−1∑
j=�n

σ̂−1
j

)−1

is the harmonic mean.

The stabilized one-step estimator for the target parameter τmax is then given by

τ̂max = 1

n − �n

n−1∑
j=�n

wj{	dnj (Pj) + D̂j(Oj+1)},

and an asymptotic 100(1 − α)% Wald-type confidence interval for τmax is

[lbn, ubn] =
[
τ̂max − zα/2

σ n

(n − �n)1/2 , τ̂max + zα/2
σ n

(n − �n)1/2

]
,

where zα/2 is the upper α/2 quantile of the standard normal. For an α-level test, we reject the
null hypothesis τmax = 0 if the lower bound of the 100(1 − 2α)% confidence interval exceeds 0.

The estimator τ̂max is a weighted version of the online one-step estimator in van der Laan &
Lendle (2014), where in our case 	dnj (Pj) is improved using its estimated canonical gradient
evaluated at a new observation Oj+1. The updates for a sample stream j = �n, . . . , n − 1 take
advantage of the recursive properties of the algorithm, which are partly due to the choice of
harmonic mean σ n and allow considerable speed-up in the computation, see the Supplementary
Material. When the sample size n is large, we follow the suggestion of Luedtke & van der Laan
(2018) to speed up the (n−�n) updates by restricting the sample stream over j = �n, . . . , n−1 to
only involve increments in j of size C � 2. The asymptotic properties of the stabilized one-step
estimator are not affected by C. In our experience, the results are insensitive to the choice of C,
provided n is sufficiently large relative to C. We fixed C = 20 and �n = 	n/2
 in our numerical
studies. While in simulations, the data can be treated as a sample stream in any order, in real
datasets the ordering in the samples may not be arbitrary. In that case, we recommend randomly
ordering the data 10 times and then combining the proposed confidence intervals by averaging;
see § 5.

2.3. Greedy search for the maximal Pillai trace

When computing the stabilized one-step estimator, the computationally costly part is the opti-
mization in (3). To obtain dnj, we need to search over subsets K of size sx and, similarly, over
subsets J of size sy. This means a search over

( p
sx

)( q
sy

)
possible combinations, which is too

expensive to compute when p and q are large. In some applications, there may be a neighbour-
hood structure that can be exploited to reduce computational expense. For example, restricting to
neighbourhoods of the form K = {1, . . . , sx}, {2, . . . , sx +1}, . . . gives p−sx +1 possible subsets
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1072 I. W. McKeague and X. Zhang

in total. Nevertheless, in general, there is a need to speed up the first step of the computation of the
stabilized one-step estimator. To that end, we introduce the scalable greedy search in Algorithm 1
to approximately maximize the Pillai trace ‖CXKYJ ‖2

F over K and J .

Algorithm 1. Greedy search.

1. Initialize J = {j} and K = {k}, where (j, k) maximizes ‖CYjXk ‖2
F = ˆcorr2

(Yj, Xk).
2. Select over j �∈ J and k �∈ K.

a. If |J | < sy and |K| < sx, find j �∈ J and k �∈ K that maximizes δ
J ,K
j ≡ ‖CEj|J XK‖2

F

and γ
J ,K
k ≡ ‖CYJ Rk|K‖2

F , respectively. Then update J → J ∪ j if maxj �∈J δ
J ,K
j >

maxk �∈K γ
J ,K
k ; otherwise, update K → K ∪ k .

b. If |J | < sy and |K| = sx, update J → J ∪ j, where j �∈ J maximizes δ
J ,K
j .

c. If |J | = sy and |K| < sx, update K → K ∪ k , where k �∈ K maximizes γ
J ,K
k .

3. Update the Pillai trace based on the increment given in Lemma 1 below.
4. Repeat steps 2 and 3 until |J | = sy and |K| = sx.
5. Output: Ĵ , K̂ and ‖CYĴ XK̂‖2

F or ‖CYĴ XK̂‖F .

This algorithm is much more efficient than a full combinatorial search. For all j �∈ J and
k �∈ K, we consider the increments in the Pillai trace ‖CYJ XK‖2

F by replacing J with J ∪ {j}
and replacing K with K ∪ {k}. Let Ej|J = Yj − E(Yj)−�YjYJ �−1

YJ {YJ − E(YJ )} be the residual
of Yj regressed on YJ , and, similarly, let Rk|K be the residual of Xk regressed on XK. The sample
versions of Ej|J and Rk|K are obtained using ordinary least squares, and then substituted into the
calculations of CEj|J XK and CRk|KYJ .

This relies on the following result, which gives the increment in the Pillai trace when including
an additional variable in either X or Y , or both, and allows us to implement the greedy search via
forward stepwise selection.

Lemma 1. Assume that SYJ > 0, SXK > 0 and n > max(sx, sy) + 1. Then

‖CYJ ∪{j}XK‖2
F = ‖CYJ XK‖2

F + ‖CEj|J XK‖2
F ,

‖CYJ XK∪{k}‖2
F = ‖CYJ XK‖2

F + ‖CYJ Rk|K‖2
F , (4)

‖CYJ ∪{j}XK∪{k}‖2
F = ‖CYJ XK‖2

F + ‖CEj|J XK‖2
F + ‖CYJ Rk|K‖2

F + ‖CEj|J Rk|K‖2
F .

An alternative version of Algorithm 1 involves maximizing over increments of the root-Pillai
trace, which by (4) can be expressed in terms of increments of the Pillai trace as

‖CYJ ∪{j}XK‖F − ‖CYJ XK‖F

= ‖CEj|J XK‖2
F

/{(‖CYJ XK‖2
F + ‖CEj|J XK‖2

F)1/2 + ‖CYJ XK‖F}.

The above expression is an increasing function of ‖CEj|J XK‖2
F , so the same index j must maximize

both of these increments and the alternative version of Algorithm 1 is therefore equivalent.
This greedy search algorithm is related to that proposed by Wiesel et al. (2008), which was

designed for sparse maximization of the sample version of the leading canonical correlation
coefficient ρ. However, we have two important advantages. First, due to Lemma 1, we are able to
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Fig. 1. Results based on single samples generated under Model A1 with n = 500, s

x = s


y = 3, τmax = 0.8. Values of
τ̂samp from a full search (dotted line) and a greedy search (solid line) as the sparsity level s = sx = sy varies from 1–10

for p = q = 10.

maximize and update exact increments in the Pillai trace, namely ‖CEj|J XK‖2
F and ‖CYJ Rk|K‖2

F ,
whereas in Wiesel et al. (2008) the exact increments in ρ are not available and the maximization
is carried out on lower bounds of the increments. Second, to obtain the maximal canonical
correlation, the CCA directions α and β also need to be updated at each step of including an
additional variable, while the update for the Pillai trace is automatically obtained by the equations
in Lemma 1 using linear regression residuals. Therefore, our approach is both more accurate and
computationally more efficient than the greedy search algorithm of Wiesel et al. (2008).

Figure 1 gives the results from a toy example showing that the proposedAlgorithm 1 for finding
the maximal sample root-Pillai trace under varying sparsity constraints provides almost perfect
agreement with the full search. The data were generated from Model A1 used in the simulation
study, in § 4, with p = q = 10, the true numbers of active variables s


x = s

y = 3, τmax = 0.8,

the true number of nonzero canonical correlations K = 1, and n = 500. The result of the greedy
search agrees with the full search at all sparsity levels except at s = sx = sy = 2.

Algorithm 1 can naturally be modified so as not to require prespecified sparsity levels. In step
2, either j or k is added, whichever gives the larger increment in the Pillai trace. The algorithm
can then be terminated in step 4 when the increment is smaller than some given tolerance, say
0.05 or 0.01. In the Supplementary Material we propose a graphical tool that is analogous to
the scree plot used in principal component analysis and factor analysis, providing intuition and
graphical diagnostics for how sparse the true model might be; to gain some further insight into
the performance of the proposed greedy search algorithm, we also show that the root-Pillai
trace comes close to satisfying the submodular property (Nemhauser & Wolsey, 1978; Krause
& Golovin, 2014; Khim et al., 2016). Methods for estimating the number of nonzero canonical
correlation coefficients K have been extensively studied in the signal processing literature (e.g.,
Song et al., 2016; Seghouane & Shokouhi, 2019), and these can be used to provide a lower bound
on the choice of sx and sy.

3. Theoretical results

3.1. Basic definitions

We need some general concepts from semiparametric efficiency theory. Suppose that we
observe a general random vector O ∼ P. Let L2

0(P) denote the Hilbert space of P-square integrable
functions with mean zero. Consider a smooth one-dimensional family of probability measures
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{Pt , t ∈ [0, 1]} with P0 = P and having score function k ∈ L2
0(P) at t = 0. The tangent space

T (P) is the L2
0(P) closure of the linear span of all such score functions k . For example, if nothing

is known about P then Pt(do) = {1 + tk(o)}P(do) is such a submodel for any bounded function
k with mean zero, provided t is sufficiently small, so T (P) is seen to be the whole of L2

0(P) in this
case. Let ψ(P) be a real parameter that is pathwise differentiable at P: there exists g ∈ L2

0(P)

such that limt→0{ψ(Pt)−ψ(P)}/t = 〈g, k〉 for any smooth submodel {Pt} with score function k ,
where 〈·, ·〉 is the inner product in L2

0(P). The function g is called a gradient, or influence function,
for ψ ; the projection ifψ of any gradient into the tangent space T (P) is unique and is known as the
canonical gradient, or efficient influence function. The supremum of the Cramér–Rao bounds for
all submodels is given by the second moment of ifψ(O). Furthermore, the influence function as
derived using von Mises calculus (van der Vaart, 2000, Ch. 20) of any regular and asymptotically
linear estimator must be a gradient (Pfanzagl, 1990, Proposition 2.3).

A one-step estimator is an empirical bias correction of a naïve plug-in estimator in the direction
of a gradient of the parameter of interest (Pfanzagl, 1982); when this gradient is the canonical
gradient, then this results in an efficient estimator under some regularity conditions. Given an
initial estimator P̂ of P and any gradient D(P̂) of the parameter ψ evaluated at P̂, we have
ψ(P̂) − ψ(P) = −PD(P̂) + Remψ(P̂, P), where Remψ(P̂, P) is negligible if P̂ is close to P in
an appropriate sense. Here Pf denotes the expectation under P of a random real-valued function
f , ignoring the randomness in f . As D(P) has mean zero under P, we expect that PD(P̂) is close
to zero if D is continuous in its argument and P̂ is close to P. However, the rate of convergence of
PD(P̂) to zero as the sample size grows may be slower than n−1/2. The one-step estimator aims
to improve ψ(P̂), and achieve n1/2 consistency and asymptotic normality by adding an empirical
mean PnD(P̂) of its deviation from ψ(P). The one-step estimator ψ̂ ≡ ψ(P̂) + PnD(P̂) then
satisfies the expansion ψ̂ − ψ(P) = (Pn − P)D(P̂) + Remψ(P̂, P). Under an empirical process
and the L2(P)-consistency condition on D(P̂), the leading term on the right is asymptotically
equivalent to (Pn − P)D(P), which converges in distribution to a mean-zero Gaussian limit with
consistently estimable covariance. To minimize the variance of the Gaussian limit, D(P̂) can be
taken as the canonical gradient of ψ at P̂.

3.2. Canonical gradient

We now use von Mises calculus to derive the canonical gradient Dd(P)(o) of the functional
	d(P) for a fixed d ∈ Dn. This canonical gradient can be found in terms of the influence function
of its square �d(P) = {	d(P)}2, and using the fact that the tangent space is the whole of L2

0(P)

in this nonparametric setting. Let Pε = (1 − ε)P + εδo, where ε ∈ [0, 1] and δo is the Dirac
measure at the point o = (xT, yT)T.

Theorem 1 (Canonical gradient). When 	d(P) > 0, we have

Dd(P)(o) = d	d(Pε)

dε

∣∣∣∣
ε=0

= 1

2	d(P)

d�d(Pε)

dε

∣∣∣∣
ε=0

, (5)

where

d�d(Pε)

dε

∣∣∣∣
ε=0

= −{xK − EP(XK)}T�−1
XK�XKYJ �−1

YJ �YJ XK�−1
XK{xK − EP(XK)}

− {yJ − EP(YJ )}T�−1
YJ �YJ XK�−1

XK�XKYJ �−1
YJ {yJ − EP(YJ )}

+ 2{yJ − EP(YJ )}T�−1
YJ �YJ XK�−1

XK{xK − EP(XK)}. (6)
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Moreover, EP{Dd(P)(O)} = 0, so the influence function belongs to the tangent space L2
0(P) and

is thus efficient.

A continuous extension of Dd(P)(o) to the case 	d(P) = 0 is obtained as follows. The matrix-
valued parameter ψ(P) = � ≡ �YJ XK is pathwise differentiable, so when ψ(P) = 0, there
exists a matrix G, which we can take as the efficient influence function, of the same dimensions
as � and having entries in L2

0(P) such that ψ(Pt)/t → 〈G, k〉 as t → 0 for any smooth one-
dimensional parametric submodel {Pt , t ∈ [0, 1]} with score function k ∈ L2

0(P) at t = 0. Here
the inner product notation in 〈G, k〉 is understood to be applied entrywise to G.

Corollary 1. When 	d(P) = 0, the canonical gradient is given by

Dd(P)(o) ≡ lim
t→0

Dd(Pt)(o) = {yJ − EP(YJ )}T�
−1/2
YJ L�

−1/2
XK {xK − EP(XK)}, (7)

where �t ≡ ψ(Pt) is arranged so that it does not vanish at any t apart from t = 0, and
�t/‖�t‖F → 〈G, k〉/‖〈G, k〉‖F ≡ L in the Frobenius norm as t → 0.

For univariate X and Y , the functional P �→ corrP(X , Y ) has canonical gradient

{x − EP(X )}{y − EP(Y )}
{var(X )var(Y )}1/2 − corr(X , Y )

2var(X )
{x − EP(X )}2 − corr(X , Y )

2var(Y )
{y − EP(Y )}2,

a result due to Colin Mallows (Devlin et al., 1975). When corr(X , Y ) = 0, the last two terms
above drop out, and the expression agrees with the canonical gradient of 	d(P) in (7), since
L = 1 in this case. In the multivariate case, the entries of the matrix L are nuisance parameters
that are absent in the univariate case.

The nuisance parameters in L vary with d and the score function k , indicating the pres-
ence of nonregularity in the root-Pillai trace at zero, as the underlying k is not identifiable
and plays the role of a local parameter. When target parameters take values on the bound-
ary of their parameter space, zero is on the boundary in our case, nonregularity is known to
cause unstable asymptotics, such as inconsistency of the bootstrap, even in the simple example
of a population mean restricted to be nonnegative (Andrews, 2000). That is, dependence of a
canonical gradient or efficient influence function on an arbitrary score function implies unstable
behaviour of the estimator, especially in small samples. This form of nonregularity is present in
dimensions p � 2 and q � 2, even without selection of d ∈ Dn, but not in the case of univari-
ate X and Y since the parameter space for the correlation coefficient is (−1, 1), which has no
boundary.

This boundary type of nonregularity is distinct from the postselection type of nonregularity
noted by McKeague & Qian (2015, § 2) in the case p � 2 and q = 1, in which the asymptotic
distribution of the maximal absolute sample correlation is discontinuous at τmax = 0. This type
of nonregularity occurs in the present setting with the sample estimator of τmax, given by

τ̂samp = max|K|�sx , |J |�sy
‖CYJ XK‖F = max|K|=sx , |J |=sy

‖CYJ XK‖F ,

where the second equality is a direct consequence of Lemma 1. It is challenging to use the estimator
τ̂samp as a test statistic for the global null hypothesis that τmax = 0 because of the discontinuity
in its asymptotic distribution at the null, but the estimator τ̂max avoids this difficulty.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/4/1067/6430972 by Florida State U
niversity user on 27 April 2023



1076 I. W. McKeague and X. Zhang

Curiously, the boundary type of nonregularity does not arise with the Pillai trace itself, since
its canonical gradient (6) does not depend on any score function k; an intuitive explanation is
that, by squaring the root-Pillai trace, the nonregularity is smoothed out at zero. However, this
squaring has the effect of causing severe bias in the sampling distribution of the stabilized one-
step estimator of τ 2

max, especially when τmax is small and in small samples; see Figs. 2 and 3 in
§ 4.3. This problem does not arise with τ̂max; hence, we focus on the root-Pillai trace.

Many authors have studied hypothesis testing problems in which a nuisance parameter is
only identifiable under the alternative (e.g., Davies, 1977, 1987, 2002; Hansen, 1996). Here we
encounter the situation where nuisance parameters appear only in the null, so calibration of the
test statistic may potentially depend on L. Leeb & Pötscher (2017) have studied a postselection
calibration method that uses estimates of such nuisance parameters, but, as we will see, our
approach leads to an asymptotically pivotal estimator of τmax without the need to estimate L.

3.3. Asymptotic properties of the stabilized one-step estimator

We first lay out some technical assumptions similar to Luedtke & van der Laan (2018). For
convenience, each component of X and Y is assumed to take values in [−1, 1]. We also assume
that the canonical gradient of 	d(P) satisfies

inf
n�2

min
d∈Dn

varP{Dd(P)(O)} � γ (8)

for some constant γ > 0. This moment condition requires that the quadratic forms in (5) and (7)
have bounded variances, and is imposed to ensure a nondegenerate asymptotic distribution for
the one-step estimator, as needed to form nontrivial confidence intervals for τmax. To ensure that
the canonical gradient is uniformly bounded for all d, we also assume that, for some δ > 0,

sup
d∈Dn

max{‖�−1
XK‖, ‖�−1

YJ ‖} < δ−1, (9)

where ‖M‖ denotes the operator norm, or largest singular value, of a matrix M . This condition
does not require the full invertibility of �X and �Y , and only means that the smallest eigenvalue
of any �XK or �YJ considered by our procedure is bounded away from zero. We treat δ, γ and
s = sx = sy as fixed, and thus omit the dependence on δ, γ and s in the asymptotic statements.
On the other hand, we allow both dimensions p and q to grow with the sample size n. When
p = pn → ∞ and q = qn → ∞, it suffices to assume that n−1/2 log(p + q) → 0. More
generally, define β2

n = n−1/2 log max{n, p, q}, and let, for some ε ∈ (0, 2),

�n = max[{log max(n, p, q)}1+ε , n exp(−β−2+ε
n )].

In particular, the above choice of �n satisfies

log max(n, p, q)

�n
→ 0, β2

n log
n

�n
→ 0, lim sup

n→∞
�n

n
< 1. (10)

For the estimation procedure described in § 2.2, we then have the following result on the lower
bound of the confidence interval.

Theorem 2 (Tightness of the lower bound). Under conditions (8), (9) and (10), for any
sequence tn → ∞, 	n(P) < lbn + tnn−1/4βn with probability approaching 1.
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Theorem 2 establishes the validity and tightness of the lower bound of the confidence interval
for τmax. This result immediately implies the asymptotic validity of our testing procedure for
H0 : τmax = 0 versus Ha : τmax > 0. To establish the upper bound, we further assume the
following margin condition: for some sequence tn → ∞, there exists a sequence of nonempty
subsets D


n ⊆ Dn such that, for all n,

sup
d1,d2∈D


n

{	d1(P) − 	d2(P)} = o(n−1/2),

inf
d∈D


n

	d(P) − sup
d∈Dn\D


n

	d(P) � tnn−1/2βn.
(11)

Theorem 3 (Validity of the upper bound). Under the same conditions as in Theorem 2, if
we further assume (11) or 	n(P) = 0 for all n, then lbn � 	n(P) � ubn with probability
approaching 1 − α.

These theorems, as well as their technical assumptions, are generalizations of Theorems 2 and 3
of Luedtke & van der Laan (2018), and specialize to their results when sx = 1 and q = sy = 1
in connection with the univariate maximal correlation setting of McKeague & Qian (2015). The
extension to the general multivariate analysis of variance setting, such as the maximal Pillai trace,
is highly nontrivial because of extra challenges that arise when analysing the canonical gradient,
given by (5) and (6), and specifically in bounding its second-order remainder term, given in
the Supplementary Material. Intuitively, the margin condition (11) allows the nonuniqueness
of approximate maximizers of the root-Pillai trace, provided they are well separated from the
root-Pillai trace of any other combination of variables.

4. Simulation study

4.1. Simulation set-up

The sample size is fixed at n = 500, while we vary the dimensions of X and Y from p = q = 30
to p = q = 5000. We generated independent and identically distributed samples (X T

i , Y T
i )T ∈

R
p+q (i = 1, . . . , n), from a joint normal distribution with mean zero and covariance specified

by

(�X )jl = (�Y )jl =
{

0.5|j−l|, j, l � 100,

I (j = l), otherwise,
�XY = �X

( K∑
k=1

ρkβkα
T
k

)
�Y . (12)

The above structured �XY is commonly used in the sparse CCA literature (e.g., Mai & Zhang,
2019), where K is the number of nonzero CCA coefficients, ρk > 0 is the kth canonical
correlation, and αk and βk are the corresponding sparse CCA directions that satisfy all the
length, orthogonality and sparsity constraints. Also, the maximal canonical correlation coeffi-
cient ρ = ρ1. The number K is irrelevant in our estimation as we did not use that information.
Under this simulation setting, the covariance matrices �X , �Y and �XY are not sparse, while the
sparsity is imposed directly on each αk and βk . The nonzero elements in α and β correspond to
the active variables in X and Y , respectively. In our simulations, we have the symmetry in X and
Y , and thereby set αk = βk , which implies that s


x = s

y.

We consider three scenarios of the form (12). The first scenario is a model satisfying the null
hypothesis (Model N), where �XY = 0, K = 0, s


x = s

y = 0. The next two scenarios are
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1078 I. W. McKeague and X. Zhang

alternative hypothesis models (Models A1 and A2), with the true numbers of active variables
s


x = s

y = 3. For methods that require prescribed sparsity levels, we set sx = sy = s ∈ {1, 2, 3, 4}

under Model N, and sx = sy = 3 under Models A1 and A2. Without loss of generality, the active
variables are taken as the first three components of X and Y . Model A1 is the single pair CCA
model with K = 1, so τ = ρ. The sparse CCA direction α1 = β1 is set as v1/

√
vT

1�X v1 to satisfy
the length constraint, where v1 = (1, 1, 1, 0, . . . , 0)T. For Model A2, a general sparse CCA model,
we take the number of components K = 3 and set (ρ1, ρ2, ρ3) = (τ , 2τ , 3τ)/

√
14. The sparse

CCA directions αk = βk , k = 1, 2, 3, are set to have 1 in the kth component and 0s elsewhere.
Under Models A1 and A2, we vary τ ∈ {0.1, 0.2, 0.3, 0.4} to study the effect of changes in the
strength of the correlation.

4.2. Simulation results for hypothesis testing

We compared various methods, whenever they are applicable, for the 5%-level test of τmax = 0
versus τmax > 0: the proposed testing procedure using the stabilized one-step estimator; the
classical F-test for the Pillai trace without variable selection, as implemented in the manova
R package (R Development Core Team, 2022); the F-test on selected variables with Bonferroni
correction; and the higher criticism method (Donoho & Jin, 2004, 2015) based on p-values
computed from the F-test for all

( p
sx

)( q
sy

)
combinations of variables. The higher criticism statistic

was calculated following the procedure described in Donoho & Jin (2015, § 1.1 and § 2.1) with
the critical value calculated using the Gumbel distribution. For methods that require variable
selection, the Bonferroni corrected F-test and the stabilized one-step estimator, the variables
were selected using Algorithm 1. All of the F-tests considered, as well as the higher criticism
procedure, are based on p-values for the multivariate analysis-of-variance F-test that targets the
Pillai trace, whereas our approach targets the root-Pillai trace. For the Bonferroni corrected F-test,
although we only used the F-statistic based on the sx + sy variables selected from Algorithm 1,
the Bonferroni correction covers all

( p
sx

)( q
sy

)
combinations of variables potentially involved in the

F-test.
We also considered the naive application of the F-test on selected variables, which comes

without any adjustment for variable selection. When p � 30, this approach always rejected the
null in our simulations even under the null hypothesis. This is not surprising, as such an F-test
fails to adjust for spurious correlations. Another simple approach is to use multiple testing of
corr(Xk , Yj) = 0 for all pq pairs of variables, in conjunction with the normal approximation test
described by DiCiccio & Romano (2017). Rejection of one or more of these pq null hypotheses
gives a rejection of τmax = 0. We implemented this test by controlling the false discovery
rate at the 5% level using the Benjamini & Hochberg (1995) procedure, as well as controlling
the Type-I error at the 5% level using a Bonferroni correction. Either correction gives similar
results to our proposed method for moderate p and q, but for large p or q, we find that the
Benjamini–Hochberg-adjusted normal approximation test is computationally intractable. See the
Supplementary Material for computation time comparisons. Both these methods are expected to
have much less power than our method, as they can only detect correlations between pairs of
variables, i.e., only examine sx = sy = 1.

In Table 1, we report the proportion of rejections under each simulation setting, based on 500
simulation replications for each case. For the higher criticism procedure, the total number of test
statistics in one replication is

( p
sx

)( q
sy

)
. Therefore, it was only included for p = 30, s < 3 scenarios,

and was shown to have unsatisfactory Type-I error control. The multivariate analysis-of-variance
F-test worked adequately for p = 30, but is not applicable for large p. The feasible methods
for high-dimensional settings are seen to be the proposed test based on the stabilized one-step
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Table 1. Simulation under the null Model N and the two alternative Models A1 and A2. The
reported numbers are the rejected proportion based on 500 replicated datasets for each of the

simulation settings. A dash indicates that the test is computationally intractable.
Model N Model A1 Model A2

p s = 1 2 3 4 τ = 0.1 0.2 0.3 0.4 τ = 0.1 0.2 0.3 0.4

30

OS 0.058 0.054 0.074 0.056 0.068 0.312 0.830 0.996 0.064 0.234 0.720 0.980
HC 0.134 0.628 – – – – – – – – – –
MF 0.034 0.034 0.034 0.034 0.040 0.072 0.216 0.470 0.042 0.074 0.216 0.496
BF 0.048 0.008 0.002 0 0.002 0.074 0.662 0.996 0.004 0.062 0.530 0.966
BH-DR 0.038 0.038 0.038 0.038 0.070 0.424 0.950 1 0.048 0.282 0.872 0.998

100
OS 0.054 0.072 0.070 0.080 0.074 0.190 0.660 0.982 0.058 0.136 0.588 0.946
BF 0.046 0.010 0.002 0 0.002 0.018 0.366 0.962 0 0.024 0.304 0.906
BH-DR 0.040 0.040 0.040 0.040 0.040 0.192 0.782 0.998 0.040 0.144 0.67 0.980

1000
OS 0.066 0.056 0.050 0.064 0.066 0.076 0.274 0.866 0.072 0.074 0.334 0.838
BF 0.046 0.010 0.002 0 0.002 0.002 0.072 0.664 0.002 0.002 0.068 0.646
B-DR 0.030 0.030 0.030 0.030 0.030 0.048 0.224 0.932 0.030 0.040 0.234 0.78

5000
OS 0.082 0.068 0.072 0.066 0.072 0.076 0.154 0.670 0.066 0.072 0.174 0.732
BF 0.052 0.002 0 0 0 0 0.016 0.330 0 0 0.016 0.428
B-DR 0.030 0.030 0.030 0.030 0.003 0.030 0.102 0.408 0.030 0.032 0.096 0.498

OS, our proposed testing procedure using the stabilized one-step estimator; HC, the higher criticism method; MF,
the classical F-test for the Pillai trace without variable selection; BF, the F-test on selected variables with Bonferroni
correction; BH-DR, multiple testing of corr(Xk , Yj) = 0 for all pq pairs of variables, in conjunction with the normal
approximation test described in DiCiccio & Romano (2017) controlling the false discovery rate at the 5% level.

estimator, the Bonferroni corrected F-test and the Bonferroni corrected normal approximation
test. Clearly, for large p, the proposed method has much better Type-I error control, under Model
N, than the F-test with Bonferroni correction, and much larger power, under Models A1 and A2,
than Bonferroni corrected tests when p = 5000. Overall, the proposed stabilized one-step testing
procedure adequately controlled the Type-I error around the nominal level α = 0.05. Specifically,
the Type-I error is always between 0.05 and 0.1 for all different p ∈ {30, 100, 1000, 5000} and
s ∈ {1, 2, 3, 4} combinations. Although our test procedure is asymptotically valid, its slight anti-
conservative behaviour appears to be caused by the stabilized one-step estimator using subsamples
of size as small as 250 in this case. In contrast, higher criticism fails to control the Type-I error;
the normal approximation test, either using Bonferroni correction or the Benjamini–Hochberg
procedure, is conservative, and the Bonferroni corrected F-test is extremely conservative if we
use s > 1. The proposed test is more powerful than the multivariate analysis-of-variance F-
test, even in low dimensions (p = 30), and is able to detect weak signals, when the canonical
correlations are no larger than 0.4 in all models, in very high dimensions (p = 5000).

4.3. Simulation results for parameter estimation

Although our theory and implementation are equally applicable to stabilized one-step estima-
tors of τmax and τ 2

max, the empirical results for τmax are generally better than those of τ 2
max. The

stabilized one-step estimator of τ 2
max is not simply τ̂ 2

max.
Histograms of the estimated τmax and τ 2

max from 500 independent samples, of size n = 500,
under the null Model N are presented in Fig. 2, where we vary sx = sy = s ∈ {1, 2, 3, 4}. The
stabilized one-step estimates for τmax and τ 2

max are both seen to be approximately normal. For τmax,
the estimates are all centred around the truth, τmax = 0, regardless of the choice of s. However,
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Fig. 2. Histograms of τ̂max (black) under the null Model N based on 500 independent simulated datasets. The plots
from left to right correspond to the sparsity levels sx = sy = s = 1, 2 and 4, respectively. The stabilized one-step

estimator of τ 2
max (white) shows a negative bias that becomes increasingly pronounced as s increases.

for τ 2
max, there is a severe underestimation phenomenon, which becomes more pronounced as s

increases. This is because the number of parameters in CYJ XK is s2, and requires a larger sample
size n for the asymptotic properties to come into effect as s increases.

Under the alternative model (Model A1) with correlation strength τmax varying from 0.2 to 0.8,
the histograms of τ̂max, again based on 500 independent samples of size n = 500, are given in
the top panel of Fig. 3. Recall that the true sparsity levels are s


x = s

y = 3 in this model. We also

set sx = sy = s = 3. Although there is an issue of underestimation for both τmax and τ 2
max when

the signal is weak (τmax = 0.2 and 0.4), there is a substantial improvement when the correlation
is strong enough. The improvement is more pronounced in the histogram of τ̂max compared with
that of the stabilized one-step estimator of τ 2

max (bottom panel). It is worth noting that τmax = 0.8
is still a relatively weak correlation, the estimated τmax exceeds 1.5 in the real data example
of § 5, but both estimators worked well at τmax = 0.8. An explanation for the underestimation
is that the stabilizing procedure tends to attenuate the estimates to some extent, at least in the
neighbourhood of τmax = 0. However, as seen in Fig. 2, the behaviour of τ̂max under the null
model is unaffected by such attenuation, being approximately zero-mean normal.

5. Analysis of glioblastoma multiforme data

Glioblastoma, also called glioblastoma multiforme, is a type of fast-growing brain tumour and
the most common primary form of brain tumour in adults. Data were collected by The Cancer
Genome Atlas project (Weinstein et al., 2013) on 490 patients with glioblastoma, including data
on q = 534 microRNA expression and 17 472 gene expression measurements for each patient.
It is of interest to find associations between microRNA and gene expression. Following previous
studies (Wang, 2015; Molstad, 2021), we analyse the p = 1000 genes with the largest median
absolute deviations in gene expression, and pre-process the data by removing 93 subjects whose
gene expression is substantially different from the majority. The resulting sample size in our data
analysis is then n = 397.

We applied our Algorithm 1 to this dataset and obtained estimates of the maximal root-Pillai
trace τmax over a range of values of s = sx = sy. The results are displayed in Fig. 4. Without
adjusting for the postselection, the sample estimate τ̂samp of τmax increases almost linearly due to
spurious correlations. On the other hand, the stabilized one-step estimator τ̂max gives reasonable
estimates that settle down beyond s = 15. The confidence intervals suggest that there is a
highly significant association between microRNA and gene expression, with p-value less than
10−10, which is consistent with previous studies. The results for the stabilized one-step estimator
are based on 10 random reorderings of the data, because we do not know if the samples are
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Fig. 3. Histograms of the stabilized one-step estimators for τmax (top panel) and τ 2
max (bottom panel) under Model A1.

In each plot, the four coloured histograms from left to right correspond to τmax = 0.2, 0.4, 0.6 and 0.8, respectively.
The vertical dashed lines are the true values of the targeted parameters τmax (top) and τ 2

max (bottom).

0

1

2

3

0 10 20 30

Number of Selected Variables s=sx=sy

τ m
ax

Fig. 4. Glioblastoma data analysis. Estimates of the maximal root-Pillai trace τmax are plotted against s = sx = sy
varying from 1–30, with the selected variables at each step found using Algorithm 1. The filled circles are τ̂samp,
without adjustment for postselection, giving inflated estimates of τmax. The open circles and associated 95% confidence
intervals are based on the stabilized one-step estimator τ̂max, with 10 random reorderings and averaged point estimates

and averaged lower/upper confidence interval endpoints over these reorderings.

independent and identically distributed. The results without random reordering are very similar.
The random ordering of the samples has little affect on the results; see further figures in the
Supplementary Material for more details.
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Under sparsity level s = 3, Table S.1 in the Supplementary Material lists the most correlated
variables and their marginal correlations, while the stabilized one-step estimator τ̂max = 0.931
with standard error 0.085. Interestingly, the first two microRNA measurements, hsa.miR.219 and
hsa.miR.222, also appear in a reported dependency network of important microRNAs obtained
by precision matrix estimation (Wang, 2015, Fig. 1). The top 25 microRNA and top 25 gene
expressions in our analysis are provided in the Supplementary Material.
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