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Abstract—Gene expression is induced by transcription factors
(TFs) through their activation domains (ADs). However, ADs are
unconserved, intrinsically disordered sequences without a
secondary structure, making it challenging to recognize and
predict these regions and limiting our ability to identify TFs. Here,
we address this challenge by leveraging a neural network
approach to systematically predict ADs. As input for our neural
network, we used computed properties for amino acid (AA) side
chain and secondary structure, rather than relying on the raw
sequence. Moreover, to shed light on the features learned by our
neural network and greatly increase interpretability, we computed
the input properties most important for an accurate prediction.
Our findings further highlight the importance of aromatic and
negatively charged AA and reveal the importance of unknown AA
properties. Taking advantage of these most important features, we
used an unsupervised learning approach to classify the ADs into
10 subclasses, which can further be explored for AA specificity and
AD functionality. Overall, our pipeline, relying on supervised and
unsupervised machine learning, shed light on the non-linear
properties of ADs.
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I. INTRODUCTION

Transcription factors (TFs) can promote gene expression by
binding to the DNA and subsequently recruiting transcriptional
machinery. Generally, TFs bind short DNA sequences called
motifs through conserved DNA-binding domains. In addition,
TFs contain repression or activation domains (ADs) that bind
corepressors or coactivators, respectively. Such interactions
recruit the transcription machinery to initiate transcription
and/or lead to chromatin-modifying activity.
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Repression domains and ADs are less conserved and more
challenging to identify within the TF’s protein sequence. A
major limitation in predicting ADs is that they are intrinsically
disordered regions, which have no specific three-dimensional
(3D) structure and thus conformational heterogeneity.
Currently, due to the lack of conservation, in silico prediction of
ADs is largely missing.

In the last decade, neural networks have been deployed in
biological sciences to address various challenges [1], [2]. A
multitude of prediction methods, including neural networks,
have been developed to predict intrinsically disordered regions
within protein sequences [3]. Such methods indicate which
protein region contains a potential AD. However, since
intrinsically disordered regions are highly abundant in
eukaryotic proteins [4], these methods are not exclusively
predicting ADs leading to ambiguous and inaccurate AD
predictions. Recently, an AD prediction neural network was
designed and trained using a large-scale random peptide dataset
[5]. However, this neural network captures one subclass of
activation domains and, as a consequence, less than 65% of an
independent set of experimental validated ADs were correctly
identified [6]. As such, improved prediction models are needed
to gain a deep molecular understanding of AD activity.

Here, we designed a rigorous neural network to predict ADs
based on amino acid chain properties and intrinsically
disordered descriptors rather than the raw sequence. Leveraging
a random peptide dataset, we obtained 91.95% accuracy on the
test dataset. To further gain a deeper understanding of the
molecular actions of ADs, we used what our neural network
learned to identify the most important features that correlate
with AD predictions. These features include known features
such as charged residues and the fraction of negative residues,
and novel attributes, including the number of valine and glycine
residues. These most important and predictive features were
used to classify ADs into 10 different subtypes using an Al-



based unsupervised approach. Overall, our AD predictions, key
important sequence features, and AD type classification greatly
deepens our understanding of the TF function.

II. METHODS

A. Feature calculations

We used a large-scale balanced dataset containing random
peptides, of which 37923 and 37922 were experimentally
confirmed as ADs and non-ADs, respectively [5]. This
experimental dataset contained amino acid sequences of length
30 and their respective AD score, which represents their ability
to activate transcription.

We calculated a feature matrix for each AA sequence of size
26x41 that captures the amino acid properties, sequence, and
structure of each 30 AA sequence. AD function depends on
sequence properties, such as hydrophobic residues, therefore we
included 11 AA properties. These 11 properties were calculated
by counting the number of amino acids of each side chain class
(Table 1) for a window of size 5 across the entire sequence
length with a stride of 1 resulting in a 26x11 matrix (matrix-1).

TABLE 1. AMINO ACID PROPERTIES THAT ARE USED AS INPUT DATA FOR
OUR NEURAL NETWORK.
Side Chain Amino Acids
Aliphatics LV,L A
Aromatics W,F, Y
Polars R,K,D,E,Q,N,Y
Branching V,ILT
Charged K,R,H,D,E
Negatives D,E
Phosphorylatable S, T,Y
Hydrophobics W,F,L,V,L,C,M
Positives K,R,H
Sulfur containing M, C
Tinys G,A,S, P

A previous study [5] has shown that the sequences having
AD function have no conserved sequence or structure. To
incorporate low dependency of sequence structure on the AD
function, we calculated the number of occurrences of each AA
in a window of size 5 across the entire sequence length with a
stride of 1 resulting in a 26x20 matrix. We concatenated this
matrix horizontally resulting in matrix-1 resulting in 26x31. An
additional 8 properties were calculated using localcider [8]
across the same window size and stride to calculate matrix-1
(Table 2). This matrix was concatenated horizontally with
matrix-1 resulting in a 26x39 matrix. Last, we calculated the
final 2 properties (kappa and omega) associated with
intrinsically disordered proteins for the entire 30 AA sequence
without using a sliding window approach. Since it was not
calculated using a window of size 5, it has a dimension of 1x2.
To merge these 2 properties with matrix-1 of size 26x39, we
duplicated the values of 1x2 values for 26 rows to obtain a 26x2

matrix and horizontally concatenated it with matrix-1, creating
the resultant feature matrix of a sequence of size 26x41.

TABLE II. INTRINSICALLY DISORDERED PROPERTIES THAT ARE USED AS
INPUT FOR THE NEURAL NETWORK.
Properties Meaning
Positive Fraction of residues that are positively charged
Hydropathy Mean hydropathy
Hydropathy ww Wimley and White hydropathy
NCPR Net charge per residue
FCR Fraction of charged residues
Charge The absolute mean net charge
Negative Fraction of residues that are negatively charged
. Fraction of residues predicted to be ‘disorder
Promoting oo
promoting
Patterning between charged/proline and all other
Omega .
residues
Kappa Distribution of oppositely charged residues

Using the window size 5 and stride 1, we also included a
predicted secondary structure from AlphaFold [7] as one of the
features to create a second matrix of size 26x42 (matrix-2).
AlphaFold provides residue-by-residue confidence scores of
the predicted secondary structure of a protein sequence. A very
low confidence score is generally associated with a lack of
secondary structure. We approximated the confidence score in
each window by calculating the mean confidence score in that
window. We concatenated this feature in matrix-1 horizontally
resulting in a 26x42 size for matrix-2. This feature matrix was
used for further analysis.

We scaled each property (z-score standardization) in 26
windows over the entire dataset to make the mean of features
equal to 0 and unit standard deviation. The standardization was
followed by min-max normalization so that the values of
properties lie between 0 and 1. The scaled input was used for
training, validation, and testing of the neural network. We used
a training-validation-test split ratio of 70:20:10.

B. Neural network architecture

To classify protein sequence as an AD, we used a neural
network architecture that contains: (i) two convolutional neural
network layers to extract and compress sequence information
from the input, (ii) an attention layer to selectively focus on the
features that are more important for the prediction, (iii), two
bidirectional long short-term memory (biLSTM) layers to
capture the interdependence of the sub-sequences in a
sequence, and (iv) a dense layer to connect to the output layer

(Fig. 1).
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Fig. 1. Neural network architecture.
To evaluate the performance of the neural network, the

accuracy, precision, recall, and F1 score of each class
individually were calculated as follows:

True Positives + True Negatives

(1)

Accuracy =
y Total predictions

. . True Positives
Precision = — — (2)
True Positives + False Positives

Recall = True Positives (3)

True Positives + False Negatives

2 x Precision x Recall
F1score=——————— (4)

Precision+Recall

To identify the optimal architecture with the highest F1
score, the neural network’s performance on the test dataset was
evaluated for different activation functions of the convolutional
layer, the inclusion of an attention layer at different positions,
and the inclusion of AlphaFold prediction probabilities in the
input feature matrix. The neural networks were consistently
trained for 20 epochs upon comparison of the best F1 score
(Table 3). The neural network with the highest F1 score on the
test dataset was chosen for further analyses, including
benchmarking. The test dataset was not used during training or
validation making it unbiased for benchmarking.

TABLE III. THE NEURAL NETWORK’S PERFORMANCE WITH DIFFERENT
ARCHITECTURES, PARAMETERS, AND INPUTS USING TEST DATASET.
Activation function F1-score
Sigmoid 0.9115
TanH 0.9127
Relu 0.9149
Gelu 0.9195
Feature Matrix F1-score
26 x 41 0.9161
26 x 42 (including AlphaFold) 0.9195
NN Architecture F1-score
Conv1D-Dropout-Conv1D-Dropout-BiLSTM- 0.9112
BiLSTM-Dense )
ConviD-Attention-Dropout-Conv1D-Dropout- 0.9159
BiLSTM-BiLSTM-Dense )

Activation function F1-score
Conv1D-Dropout-Attention-Conv1D-Dropout- 0.9118
BiLSTM-BiLSTM-Dense )
Conv1D-Dropout-Conv1D-Attention-Dropout- 0.9170
BiLSTM-BiLSTM-Dense )
Conv1D-Dropout-Conv1D-Dropout-Attention- 0.9179
BiLSTM-BiLSTM-Dense )
Conv1D-Dropout-Conv1D-Dropout-BiLSTM- 09172
Attention-BiLSTM-Dense )

Both L1 and L2 regularization were included into the first
convolutional layer of the model, controlling the model
complexity. The following hyperparameters were used for upon
testing the different neural network architectures, parameters,
and inputs, as well as for the final network (Table 4):

TABLE IV. HYPERPARAMETERS USED FOR THE FINAL NEURAL NETWORK.
Hyperparameters Values
Optimizer Adam
Learning rate le-3
Dropout probabilities 0.3
Kernel rate 2
Filters 100
Batch size 64

C. Feature importance

To find the importance of each 42 calculated properties in
the feature matrix for model prediction, we used SHapley
Additive exPlanations (SHAP) [9]. We used GradientExplainer
to obtain the SHAP value associated with each feature. SHAP
values indicate the impact of features on the model output. We
performed this analysis on both classes separately using the
feature matrix of sequences that were classified with the highest
2% probability score.

D. Unsupervised clustering

To find the correspondence between the classes and potential
subclusters, we performed a Principal Component Analysis
(PCA) with 10 components and plotted it using T-distributed
Stochastic Neighborhood Embedding (t-SNE) for both classes.
To identify clusters within the sequences classified to have AD
function, we used unsupervised clustering. Specifically, we first
selected the most important features identified by SHAP as those
that scored above 50% of the top scoring feature, which led to
12 features. These 12 features were calculated for the entire 30
AA sequence without using a sliding window approach. Next,
we performed a PCA with 3 components, which equals 70.216%
of the variance in the dataset, on these most important features.
K-means clustering was performed on the three components of
PCA to obtain 10 clusters and plotted it using t-SNE with a
perplexity of 250 and early exaggeration of 4 for class 1
(sequence classified as AD). We used a higher value of
perplexity as it defines a clearer shape and distance between the
cluster.



III. RESULTS

A. Designing a neural network for predicting activation
domains

To predict AD activity, the amino acid properties, such as
side chain properties, and disordered sequences properties, such
as charge and hydrophobicity patterning, are required. Thus, to
accurately predict ADs, we opted to calculate a feature matrix,
which consists of a total of 42 calculated properties (see
Methods). To explore hidden patterns and the structure of our
feature matrix prior to training, we performed a PCA followed
by t-SNE plotting (Fig. 2A-C). The two classes were not linearly
separable in the t-SNE plot, which substantiates the motivation
to implement a neural network to learn complex features to
predict AD function (Fig. 2A-C). To this end, we used the
calculated feature matrix as the input dataset (see Methods).
Since amino acid sequences are sequential data where the
function depends on the properties but also the position of the
amino acids, we employed convolutional and Bi-LSTM layers
in our neural network architecture (see Methods).
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Fig. 2. Features as input for a sequential multi-layer neural network. (A-C)
The 42 quantified properties were clustered using principal component analysis
(PCA) and t-SNE for class 1 (A), class 0 (B), and both (C). (D) Neural network
performance F1 score.

We trained neural networks with two different sets of feature
matrices, where one set contains an additional feature that
represents the secondary structure of the sequence, an indicator
of the presence of an intrinsically disordered region [7], [10]. In
addition, we tested different positions of the activation layer in
our neural network architecture and different activation
functions used during training (see Methods). We compared
performance and selected the neural network architecture and
hyperparameters with the highest F1 score. We found that the
neural network with 2 convolutional layers followed by an
attention layer and 2 Bi-LSTM layers performed the best with
an F1 score of 91.95% on the test dataset (Fig. 2D).

B. Benchmarking

To assess the computational performance of our model, we
compared our neural network to ADpred, a recently published
AD prediction neural network [5]. In addition to a different
architecture, a key difference between the two models is the
preprocessing of the input data. While ADpred performs one-
hot-encoding of the sequence and includes one secondary
structure feature, our approach computes several side chain
properties and properties associated with intrinsically disordered
proteins. To show that using a feature matrix as input can
alleviate the challenges associated with predicting ADs (i.e. the
lack of a conserved sequence), we used our test dataset and
compared the predictions from our neural network with
ADpred’s predictions (Fig. 3). We used ADpred’s trained
model, which was trained on the same dataset. ADpred
computes a prediction score for each AA and recommends
classifying an AD when the prediction scores are abovc e > 0.8
over at least 10 continuous AA. Using these criteria, as well as
considering a less stringent classifiation relying on only 1 AA
above the recommended prediction threshold of 0.8, our neural
network outperformed ADpred for accuracy, recall, and F1
score. While, our neural network did not have a higher precision
than the benchmark. Taken together, we showed that computing
sequence descriptors and properties advance the model’s ability
to predict ADs.
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Fig. 3. The neural network’s performance. Comparison of the performance of
our neural network (Current NN) and ADpred using the test dataset. ADpred’s
performance was evaluated using a 0.8 prediction threshold for at least 1 AA
(ADPred_1AA) and 10 consecutive AAs (ADPred_10AA).

C. Identifying sequence properties key for activation domain
predictions

Because the primary sequence is not critical for AD
functionality and ADs are generally intrinsically disordered, it is
challenging to find rules that define ADs. Such a set of rules
would greatly benefit the identification and classification of
ADs across species. Moreover, this set of rules will aid in the
understanding of the mode of action of ADs, how they bind to
interaction partners, and how they allow for context-specific
interactions. The idea here is that our neural network can capture
complex linear and non-linear correlations between the input
features and the predictions that are generally missed by other
computational models. To find the input features that impact our
model’s prediction the most, we used an approach that quantifies
the importance of input features. Specifically, we computed a
SHAP (SHapley Additive exPlanations) value for each feature
of the sequences with the highest 2% prediction probability
score for both classes (i.e. ADs and non-ADs). For each



prediction, SHAP assigned an importance value to each input
feature. As expected, we found properties known to be important
for AD activity, including hydrophobics, charged residues,
aromatics, and the fraction of negative residues (Fig. 4).
Consistently, the counts of tryptophan (W), an aromatic residue,
and Aspartic Acid (D), an acidic residue, were also found to be
key for proper AD prediction. Surprisingly, valine (V) and
glycine (G) residues, two aliphatic residues, appeared to be
important indicators for AD prediction (Fig. 4). Overall, by
using this approach, we were able to identify the properties most
important for AD prediction, and, importantly, we greatly
improved the interpretability of our neural network.
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Fig. 4. Importance of input features. (A) The SHAP values averaged across
the 26 subsequences for each input feature. The SHAP values were calculated
for the test dataset classified as AD. (B) Normalized SHAP values ranked from
most important to least important for both classes (AD and non-AD sequences).
The SHAP values were averaged across the 26 subsequences and the test
dataset sequences.

D. Classifying activation domains using unsupervised
learning

In literature ADs have been classified arbitrarily depending
on their enrichment in acidic residues, glutamine, or proline.
These three different subclasses of ADs have been shown to
differ in functionality and transcriptional activation strength.
The acidic ADs are the most prominent class. However, even
among the acidic ADs, it has been shown that leucine, aromatic,
and negative amino acids play an important role. Thus,
classifying ADs based on the enrichment of solely acidic

residues, glutamines, or prolines is ambiguous. A less biased
generalizable classification approach is needed. To overcome
this challenge, we used our findings and interpretation of our
neural network to perform unsupervised classification of ADs.
The idea here is that each AD class will cluster spatially
separately upon unsupervised clustering. To find the clusters
among the sequences that have AD function, we opted to use the
12 most important features identified using our neural network
while the weakly predictive features would be disregarded. We
reasoned that the latter features would interfere, while the most
important features contained the strongest signal for clustering.
The unsupervised clustering was then projected onto a t-SNE
analysis (see Methods). The t-SNE plot revealed that the ADs
can indeed be further divided into subclasses (Fig. 5). Using this
unsupervised classification approach, we visually imposed 10
clusters and thus 10 subclasses of ADs (Fig. 5). These AD
subclasses have sufficient divergent features to form distinct
clusters and may have their own functionality.
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Fig. 5. AD classification. The ADs were divided into 10 subclasses based on
k-means clustering of the 2D t-SNE output. T-SNE was performed on a 3-
component PCA of the 12 most important features. The colors in the t-SNE plot
correspond to k-means cluster memberships.

IV. CONCLUSIONS AND PERSPECTIVES

The identification of effector domains, including
transcriptional ADs, would greatly improve our understanding
of the transcriptional activity, reconstructing gene regulatory
networks, and identifying novel transcription factors. However,
predicting ADs is currently challenging as a result of the lack of
sequence conservation across ADs and the lack of available
predictive tools. In this study, we developed a multilayer neural
network containing convolutional, activation, and recurrent
layers to learn sequence motifs, location, and order. To increase
the interpretability of our neural network and evaluate the
learned features, we computed the importance of each input
feature during prediction. We found the importance of known,
but also novel sequence properties. Taken together, features that
correlate with AD function included the presence of aromatic,
hydrophobic, positive, and negative residues, the fraction of
residues predicted to be ‘disorder promoting’, and the number



of valine, tryptophan, glycine, leucine, and glutamine residues.
This set of important features or rules was further used to
classify the ADs in an unsupervised manner. For the ADs in our
random peptide dataset, we imposed 10 subclasses. These
subclasses could be correlated with or even functionally driving
cell-type specificity, plant development, or plant response
specificity. Whether or not members of the different subclasses
are coregulated with specific cell types, throughout
development, or upon a plant response remains to be explored
potentially through single cell sequencing. We envision that a
sequential pipeline of training a neural network, capturing its
learned features, and unsupervised classification could be
applied to ADs from specific species. As such, a species-specific
and highly specialized network and set of rules for AD
identification could be generated.
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