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Abstract—Gene expression is induced by transcription factors 
(TFs) through their activation domains (ADs). However, ADs are 
unconserved, intrinsically disordered sequences without a 
secondary structure, making it challenging to recognize and 
predict these regions and limiting our ability to identify TFs. Here, 
we address this challenge by leveraging a neural network 
approach to systematically predict ADs. As input for our neural 
network, we used computed properties for amino acid (AA) side 
chain and secondary structure, rather than relying on the raw 
sequence. Moreover, to shed light on the features learned by our 
neural network and greatly increase interpretability, we computed 
the input properties most important for an accurate prediction. 
Our findings further highlight the importance of aromatic and 
negatively charged AA and reveal the importance of unknown AA 
properties. Taking advantage of these most important features, we 
used an unsupervised learning approach to classify the ADs into 
10 subclasses, which can further be explored for AA specificity and 
AD functionality. Overall, our pipeline, relying on supervised and 
unsupervised machine learning, shed light on the non-linear 
properties of ADs.  

Keywords—Multilayer neural network, transcriptional 
activation domains, feature importance, unsupervised clustering 

I. INTRODUCTION 
Transcription factors (TFs) can promote gene expression by 

binding to the DNA and subsequently recruiting transcriptional 
machinery. Generally, TFs bind short DNA sequences called 
motifs through conserved DNA-binding domains. In addition, 
TFs contain repression or activation domains (ADs) that bind 
corepressors or coactivators, respectively. Such interactions 
recruit the transcription machinery to initiate transcription 
and/or lead to chromatin-modifying activity.  

Repression domains and ADs are less conserved and more 
challenging to identify within the TF’s protein sequence. A 
major limitation in predicting ADs is that they are intrinsically 
disordered regions, which have no specific three-dimensional 
(3D) structure and thus conformational heterogeneity. 
Currently, due to the lack of conservation, in silico prediction of 
ADs is largely missing. 

In the last decade, neural networks have been deployed in 
biological sciences to address various challenges [1], [2]. A 
multitude of prediction methods, including neural networks, 
have been developed to predict intrinsically disordered regions 
within protein sequences [3]. Such methods indicate which 
protein region contains a potential AD. However, since 
intrinsically disordered regions are highly abundant in 
eukaryotic proteins [4], these methods are not exclusively 
predicting ADs leading to ambiguous and inaccurate AD 
predictions. Recently, an AD prediction neural network was 
designed and trained using a large-scale random peptide dataset 
[5]. However, this neural network captures one subclass of 
activation domains and, as a consequence, less than 65% of an 
independent set of experimental validated ADs were correctly 
identified [6]. As such, improved prediction models are needed 
to gain a deep molecular understanding of AD activity. 

Here, we designed a rigorous neural network to predict ADs 
based on amino acid chain properties and intrinsically 
disordered descriptors rather than the raw sequence. Leveraging 
a random peptide dataset, we obtained 91.95% accuracy on the 
test dataset. To further gain a deeper understanding of the 
molecular actions of ADs, we used what our neural network 
learned to identify the most important features that correlate 
with AD predictions. These features include known features 
such as charged residues and the fraction of negative residues, 
and novel attributes, including the number of valine and glycine 
residues. These most important and predictive features were 
used to classify ADs into 10 different subtypes using an AI-*Denotes equal contribution. This work was supported by the National 
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based unsupervised approach. Overall, our AD predictions, key 
important sequence features, and AD type classification greatly 
deepens our understanding of the TF function. 

II. METHODS 

A. Feature calculations 
We used a large-scale balanced dataset containing random 

peptides, of which 37923 and 37922 were experimentally 
confirmed as ADs and non-ADs, respectively [5]. This 
experimental dataset contained amino acid sequences of length 
30 and their respective AD score, which represents their ability 
to activate transcription. 

We calculated a feature matrix for each AA sequence of size 
26x41 that captures the amino acid properties, sequence, and 
structure of each 30 AA sequence. AD function depends on 
sequence properties, such as hydrophobic residues, therefore we 
included 11 AA properties. These 11 properties were calculated 
by counting the number of amino acids of each side chain class 
(Table 1) for a window of size 5 across the entire sequence 
length with a stride of 1 resulting in a  26x11 matrix (matrix-1). 

TABLE I.  AMINO ACID PROPERTIES THAT ARE USED AS INPUT DATA FOR 
OUR NEURAL NETWORK. 

Side Chain Amino Acids 

Aliphatics I, V, L, A 

Aromatics W, F, Y 

Polars R, K, D, E, Q, N, Y 

Branching V, I, T 

Charged K, R, H, D, E 

Negatives D, E 

Phosphorylatable S, T, Y 

Hydrophobics W, F, L, V, I, C, M 

Positives K, R, H 

Sulfur containing M, C 

Tinys G, A, S, P 

 

A previous study [5] has shown that the sequences having 
AD function have no conserved sequence or structure. To 
incorporate low dependency of sequence structure on the AD 
function, we calculated the number of occurrences of each AA 
in a window of size 5 across the entire sequence length with a 
stride of 1 resulting in a  26x20 matrix. We concatenated this 
matrix horizontally resulting in matrix-1 resulting in 26x31. An 
additional 8 properties were calculated using localcider [8] 
across the same window size and stride to calculate matrix-1 
(Table 2). This matrix was concatenated horizontally with 
matrix-1 resulting in a 26x39 matrix. Last, we calculated the 
final 2 properties (kappa and omega) associated with 
intrinsically disordered proteins for the entire 30 AA sequence 
without using a sliding window approach. Since it was not 
calculated using a window of size 5, it has a dimension of 1x2. 
To merge these 2 properties with matrix-1 of size 26x39, we 
duplicated the values of 1x2 values for 26 rows to obtain a 26x2 

matrix and horizontally concatenated it with matrix-1, creating 
the resultant feature matrix of a sequence of size 26x41. 

TABLE II.  INTRINSICALLY DISORDERED PROPERTIES THAT ARE USED AS 
INPUT FOR THE NEURAL NETWORK. 

Properties Meaning 

Positive Fraction of residues that are positively charged 

Hydropathy Mean hydropathy 

Hydropathy ww Wimley and White hydropathy 

NCPR Net charge per residue 

FCR Fraction of charged residues 

Charge The absolute mean net charge 

Negative Fraction of residues that are negatively charged 

Promoting Fraction of residues predicted to be ‘disorder 
promoting’ 

Omega Patterning between charged/proline and all other 
residues 

Kappa Distribution of oppositely charged residues 

 

Using the window size 5 and stride 1, we also included a 
predicted secondary structure from AlphaFold [7] as one of the 
features to create a second matrix of size 26x42 (matrix-2). 
AlphaFold provides residue-by-residue confidence scores of 
the predicted secondary structure of a protein sequence. A very 
low confidence score is generally associated with a lack of 
secondary structure. We approximated the confidence score in 
each window by calculating the mean confidence score in that 
window. We concatenated this feature in matrix-1 horizontally 
resulting in a 26x42 size for matrix-2. This feature matrix was 
used for further analysis. 

We scaled each property (z-score standardization) in 26 
windows over the entire dataset to make the mean of features 
equal to 0 and unit standard deviation. The standardization was 
followed by min-max normalization so that the values of 
properties lie between 0 and 1. The scaled input was used for 
training, validation, and testing of the neural network. We used 
a training-validation-test split ratio of 70:20:10. 

B. Neural network architecture 
To classify protein sequence as an AD, we used a neural 

network architecture that contains: (i) two convolutional neural 
network layers to extract and compress sequence information 
from the input, (ii) an attention layer to selectively focus on the 
features that are more important for the prediction, (iii), two 
bidirectional long short-term memory (biLSTM) layers to 
capture the interdependence of the sub-sequences in a 
sequence, and (iv) a dense layer to connect to the output layer 
(Fig. 1). 



 

Fig. 1. Neural network architecture. 

To evaluate the performance of the neural network, the 
accuracy, precision, recall, and F1 score of each class 
individually were calculated as follows: 

                Accuracy = !"#$	&'()*)+$(	,	!"#$	-$./*)+$(
!'*/0	1"$2)3*)'4(

 (1) 

                Precision = !"#$	&'()*)+$(
!"56	&'()*)+$(	,	7/0($	&'()*)+$(	

 (2) 

                   Recall = !"#$	&'()*)+$(
!"#$	&'()*)+$(	,	7/0($	-$./*)+$(

 (3) 

                         F1	score = 8	9	&"$3)()'4	9	:$3/00
&"$3)()'4,:$3/00	

 (4) 

To identify the optimal architecture with the highest F1 
score, the neural network’s performance on the test dataset was 
evaluated for different activation functions of the convolutional 
layer, the inclusion of an attention layer at different positions, 
and the inclusion of AlphaFold prediction probabilities in the 
input feature matrix. The neural networks were consistently 
trained for 20 epochs upon comparison of the best F1 score 
(Table 3). The neural network with the highest F1 score on the 
test dataset was chosen for further analyses, including 
benchmarking. The test dataset was not used during training or 
validation making it unbiased for benchmarking. 

TABLE III.  THE NEURAL NETWORK’S PERFORMANCE WITH DIFFERENT 
ARCHITECTURES, PARAMETERS, AND INPUTS USING TEST DATASET. 

Activation function F1-score 

Sigmoid 0.9115 

TanH 0.9127 

Relu 0.9149 

Gelu 0.9195 

Feature Matrix F1-score 

26 x 41 0.9161 

26 x 42 (including AlphaFold) 0.9195 

NN Architecture F1-score 
Conv1D-Dropout-Conv1D-Dropout-BiLSTM-

BiLSTM-Dense 0.9112 

Conv1D-Attention-Dropout-Conv1D-Dropout-
BiLSTM-BiLSTM-Dense 0.9159 

Activation function F1-score 
Conv1D-Dropout-Attention-Conv1D-Dropout-

BiLSTM-BiLSTM-Dense 0.9118 

Conv1D-Dropout-Conv1D-Attention-Dropout-
BiLSTM-BiLSTM-Dense 0.9170 

Conv1D-Dropout-Conv1D-Dropout-Attention-
BiLSTM-BiLSTM-Dense 0.9179 

Conv1D-Dropout-Conv1D-Dropout-BiLSTM-
Attention-BiLSTM-Dense 0.9172 

 

Both L1 and L2 regularization were included into the first 
convolutional layer of the model, controlling the model 
complexity. The following hyperparameters were used for upon 
testing the different neural network architectures, parameters, 
and inputs, as well as for the final network (Table 4): 

TABLE IV.  HYPERPARAMETERS USED FOR THE FINAL NEURAL NETWORK. 

Hyperparameters Values 

Optimizer Adam 

Learning rate 1e-3 

Dropout probabilities 0.3 

Kernel rate 2 

Filters 100 

Batch size 64 

 

C. Feature importance  
To find the importance of each 42 calculated properties in 

the feature matrix for model prediction, we used SHapley 
Additive exPlanations (SHAP) [9]. We used GradientExplainer 
to obtain the SHAP value associated with each feature. SHAP 
values indicate the impact of features on the model output. We 
performed this analysis on both classes separately using the 
feature matrix of sequences that were classified with the highest 
2% probability score. 

D. Unsupervised clustering 
To find the correspondence between the classes and potential 

subclusters, we performed a Principal Component Analysis 
(PCA) with 10 components and plotted it using T-distributed 
Stochastic Neighborhood Embedding (t-SNE) for both classes. 
To identify clusters within the sequences classified to have AD 
function, we used unsupervised clustering. Specifically, we first 
selected the most important features identified by SHAP as those 
that scored above 50% of the top scoring feature, which led to 
12 features. These 12 features were calculated for the entire 30 
AA sequence without using a sliding window approach. Next, 
we performed a PCA with 3 components, which equals 70.216% 
of the variance in the dataset, on these most important features. 
K-means clustering was performed on the three components of 
PCA to obtain 10 clusters and plotted it using t-SNE with a 
perplexity of 250 and early exaggeration of 4 for class 1 
(sequence classified as AD). We used a higher value of 
perplexity as it defines a clearer shape and distance between the 
cluster. 



III. RESULTS 

A. Designing a neural network for predicting activation 
domains 
To predict AD activity, the amino acid properties, such as 

side chain properties, and disordered sequences properties, such 
as charge and hydrophobicity patterning, are required. Thus, to 
accurately predict ADs, we opted to calculate a feature matrix, 
which consists of a total of 42 calculated properties (see 
Methods). To explore hidden patterns and the structure of our 
feature matrix prior to training, we performed a PCA followed 
by t-SNE plotting (Fig. 2A-C). The two classes were not linearly 
separable in the t-SNE plot, which substantiates the motivation 
to implement a neural network to learn complex features to 
predict AD function (Fig. 2A-C). To this end, we used the 
calculated feature matrix as the input dataset (see Methods). 
Since amino acid sequences are sequential data where the 
function depends on the properties but also the position of the 
amino acids, we employed convolutional and Bi-LSTM layers 
in our neural network architecture (see Methods). 

 

Fig. 2. Features as input for a sequential multi-layer neural network. (A-C) 
The 42 quantified properties were clustered using principal component analysis 
(PCA) and t-SNE for class 1 (A), class 0 (B), and both (C). (D) Neural network 
performance F1 score. 

We trained neural networks with two different sets of feature 
matrices, where one set contains an additional feature that 
represents the secondary structure of the sequence, an indicator 
of the presence of an intrinsically disordered region [7], [10]. In 
addition, we tested different positions of the activation layer in 
our neural network architecture and different activation 
functions used during training (see Methods). We compared 
performance and selected the neural network architecture and 
hyperparameters with the highest F1 score. We found that the 
neural network with 2 convolutional layers followed by an 
attention layer and 2 Bi-LSTM layers performed the best with 
an F1 score of 91.95% on the test dataset (Fig. 2D).  

B. Benchmarking 
To assess the computational performance of our model, we 

compared our neural network to ADpred, a recently published 
AD prediction neural network [5]. In addition to a different 
architecture, a key difference between the two models is the 
preprocessing of the input data. While ADpred performs one-
hot-encoding of the sequence and includes one secondary 
structure feature, our approach computes several side chain 
properties and properties associated with intrinsically disordered 
proteins. To show that using a feature matrix as input can 
alleviate the challenges associated with predicting ADs (i.e. the 
lack of a conserved sequence), we used our test dataset and 
compared the predictions from our neural network with 
ADpred’s predictions (Fig. 3). We used ADpred’s trained 
model, which was trained on the same dataset. ADpred 
computes a prediction score for each AA and recommends 
classifying an AD when the prediction scores are abovc e ≥ 0.8 
over at least 10 continuous AA. Using these criteria, as well as 
considering a less stringent classifiation relying on only 1 AA 
above the recommended prediction threshold of 0.8, our neural 
network outperformed ADpred for accuracy, recall, and F1 
score. While, our neural network did not have a higher precision 
than the benchmark. Taken together, we showed that computing 
sequence descriptors and properties advance the model’s ability 
to predict ADs. 

 

Fig. 3. The neural network’s performance. Comparison of the performance of 
our neural network (Current_NN) and ADpred using the test dataset. ADpred’s 
performance was evaluated using a 0.8 prediction threshold for at least 1 AA 
(ADPred_1AA) and 10 consecutive AAs (ADPred_10AA). 

C. Identifying sequence properties key for activation domain 
predictions 
Because the primary sequence is not critical for AD 

functionality and ADs are generally intrinsically disordered, it is 
challenging to find rules that define ADs. Such a set of rules 
would greatly benefit the identification and classification of 
ADs across species. Moreover, this set of rules will aid in the 
understanding of the mode of action of ADs, how they bind to 
interaction partners, and how they allow for context-specific 
interactions. The idea here is that our neural network can capture 
complex linear and non-linear correlations between the input 
features and the predictions that are generally missed by other 
computational models. To find the input features that impact our 
model’s prediction the most, we used an approach that quantifies 
the importance of input features. Specifically, we computed a 
SHAP (SHapley Additive exPlanations) value for each feature 
of the sequences with the highest 2% prediction probability 
score for both classes (i.e. ADs and non-ADs). For each 



prediction, SHAP assigned an importance value to each input 
feature. As expected, we found properties known to be important 
for AD activity, including hydrophobics, charged residues, 
aromatics, and the fraction of negative residues (Fig. 4). 
Consistently, the counts of tryptophan (W), an aromatic residue, 
and Aspartic Acid (D), an acidic residue, were also found to be 
key for proper AD prediction. Surprisingly, valine (V) and 
glycine (G) residues, two aliphatic residues, appeared to be 
important indicators for AD prediction (Fig. 4). Overall, by 
using this approach, we were able to identify the properties most 
important for AD prediction, and, importantly, we greatly 
improved the interpretability of our neural network. 

 

Fig. 4. Importance of input features. (A) The SHAP values averaged across 
the 26 subsequences for each input feature. The SHAP values were calculated 
for the test dataset classified as AD. (B) Normalized SHAP values ranked from 
most important to least important for both classes (AD and non-AD sequences). 
The SHAP values were averaged across the 26 subsequences and the test 
dataset sequences. 

D. Classifying activation domains using unsupervised 
learning 
In literature ADs have been classified arbitrarily depending 

on their enrichment in acidic residues, glutamine, or proline. 
These three different subclasses of ADs have been shown to 
differ in functionality and transcriptional activation strength. 
The acidic ADs are the most prominent class. However, even 
among the acidic ADs, it has been shown that leucine, aromatic, 
and negative amino acids play an important role. Thus, 
classifying ADs based on the enrichment of solely acidic 

residues, glutamines, or prolines is ambiguous. A less biased 
generalizable classification approach is needed. To overcome 
this challenge, we used our findings and interpretation of our 
neural network to perform unsupervised classification of ADs. 
The idea here is that each AD class will cluster spatially 
separately upon unsupervised clustering. To find the clusters 
among the sequences that have AD function, we opted to use the 
12 most important features identified using our neural network 
while the weakly predictive features would be disregarded. We 
reasoned that the latter features would interfere, while the most 
important features contained the strongest signal for clustering. 
The unsupervised clustering was then projected onto a t-SNE 
analysis (see Methods). The t-SNE plot revealed that the ADs 
can indeed be further divided into subclasses (Fig. 5). Using this 
unsupervised classification approach, we visually imposed 10 
clusters and thus 10 subclasses of ADs (Fig. 5). These AD 
subclasses have sufficient divergent features to form distinct 
clusters and may have their own functionality. 

 

Fig. 5. AD classification. The ADs were divided into 10 subclasses based on 
k-means clustering of the 2D t-SNE output. T-SNE was performed on a 3-
component PCA of the 12 most important features. The colors in the t-SNE plot 
correspond to k-means cluster memberships.      

IV. CONCLUSIONS AND PERSPECTIVES 
The identification of effector domains, including 

transcriptional ADs, would greatly improve our understanding 
of the transcriptional activity, reconstructing gene regulatory 
networks, and identifying novel transcription factors. However, 
predicting ADs is currently challenging as a result of the lack of 
sequence conservation across ADs and the lack of available 
predictive tools. In this study, we developed a multilayer neural 
network containing convolutional, activation, and recurrent 
layers to learn sequence motifs, location, and order. To increase 
the interpretability of our neural network and evaluate the 
learned features, we computed the importance of each input 
feature during prediction. We found the importance of known, 
but also novel sequence properties. Taken together, features that 
correlate with AD function included the presence of aromatic, 
hydrophobic, positive, and negative residues, the fraction of 
residues predicted to be ‘disorder promoting’, and the number 



of valine, tryptophan, glycine, leucine, and glutamine residues. 
This set of important features or rules was further used to 
classify the ADs in an unsupervised manner. For the ADs in our 
random peptide dataset, we imposed 10 subclasses. These 
subclasses could be correlated with or even functionally driving 
cell-type specificity, plant development, or plant response 
specificity. Whether or not members of the different subclasses 
are coregulated with specific cell types, throughout 
development, or upon a plant response remains to be explored 
potentially through single cell sequencing. We envision that a 
sequential pipeline of training a neural network, capturing its 
learned features, and unsupervised classification could be 
applied to ADs from specific species. As such, a species-specific 
and highly specialized network and set of rules for AD 
identification could be generated. 
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