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Abstract—Convergence bidding is a financial instrument that
is widely adopted in recent years in two-settlement electricity
markets to reduce the price gap between the day-ahead market
(DAM) and the real-time market (RTM). This paper, for the first
time, investigates the operation and impact of convergence bids
(CBs) during blackouts. First, the amount of load shedding in the
RTM is modeled as a function of the amount of the cleared CBs
in the DAM. The sign of the slope of this function is proposed
as a metric to determine if a CB exacerbates or heals the power
outages. Next, a series of mathematical theorems are developed to
obtain and characterize this new metric under different network
conditions. It is proved that, when there is no congestion in
the DAM, the metric is always greater than or equal to zero.
When there is congestion in the DAM, the metric can be positive
or negative. Using numerical case studies, we show that, not
only when there is no congestion, but also most often when
there is congestion, the introduced metric is positive. Therefore,
supply CBs almost always hurt the system during blackouts while
demand CBs almost always help the system. Furthermore, the
impact of load shedding on the profit of CBs is also analyzed. It
is shown that, load shedding usually creates advantage for supply
CBs and disadvantage for demand CBs in terms of their profit.
The implications of these results are discussed. We also analyze
the real-world market data from the California Independent
System Operator (ISO) during the blackouts in August 2020.
It is shown that, the decision by the California ISO to suspend
CBs during this event matches the mathematical and numerical
results that are obtained and discussed in this paper.
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NOMENCLATURE

Indices, Sets, and Symbols

Ng Set of generation bids

1 Index of generation bids

Np, Set of demand bids

J Index of demand bids

Nep Set of convergence bids

J Index of convergence bids

A B,C Subset of generation bids Ng

D,EF Subset of demand bids Ny,

G,H,I Subset of convergence bids Ny,

(+ymin/maz gymbol for variables upper/lower limit

()* Symbol for optimal value of a variable
Parameters

A,a Matrix and diagonal elements of the quadratic

coefficients for generation bids in the DAM
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b,b Vector and elements of linear coefficients for
generation bids in the DAM

C,c Matrix and diagonal elements of the quadratic
coefficients for demand bids in the DAM

d,d Vector and elements of linear coefficients for
demand bids in the DAM

M,m Matrix and diagonal elements of the quadratic
coefficients for convergence bids in the DAM

q,q Vector and elements of linear coefficients for

convergence bids in the DAM
\ Vector of CBs in the DAM

E,e Matrix and diagonal elements of the quadratic
coefficients for generation bids in the RTM

k, k Vector and elements of linear coefficients for
generation bids in the RTM

S Matrix of shift factor in the system

v Incidence matrix for x

(S) Incidence matrix for z

Q Incidence matrix for v

c Vector of transmission line capacities

L Vector of actual consumption in the RTM

Variables
LS The total amount of load shedding
CB The total amount of cleared convergence bids

s Vector of load shedding at all nodes

X Vector of generation bids in the DAM

z Vector of demand bids in the DAM

v Vector of convergence bids in the DAM

y Vector of the actual generation in the RTM
) Lagrange multipliers of the lower and upper
limits of generation and demand in the DAM

>

v Lagrange multipliers corresponding to the
power balance equation in the DAM
0 Lagrange multiplier corresponding to the

transmission line constraint in the DAM

7aPAM LMP in the DAM

7K™ LMP in the RTM
Abbreviations

CB Convergence Bid

DAM Day-Ahead Market

RTM Real-Time Market

LMP Locational Marginal Price

ISO Independent System Operator

FCSP Feasibility Check Subproblem

KKT Karush-Kuhn-Tucker

APnode  Aggregate Pricing Node

DLAP  Default Load Aggregated Point



I. INTRODUCTION

Convergence bidding, a.k.a., virtual bidding, is a financial
market mechanism in two-settlement electricity markets that
is used by Independent System Operators (ISOs) to reduce the
price gap between the day-ahead market (DAM) and the real-
time market (RTM) [1[]-[5)]. California ISO and all the other
ISOs in the United States utilize convergence bids (CBs) [3]].

A demand (supply) CB is a bid to buy (sell) energy in the
DAM without any obligation to consume (produce) energy.
If the CB is cleared in the DAM, then the bidder is charged
(credited) at the DAM price and credited (charged) at the RTM
price. The difference between the earning in the RTM (DAM)
and the cost in the DAM (RTM) is paid to the bidder [6].

A. Motivation

While the basic principles of convergence bidding have been
studied in the academic literature and industry reports, so far,
there has not been any study to examine the operation and the
impact of convergence bids during major blackouts.

Addressing this open problem is critical and necessary. On
one hand, as we will show in this paper, there is a drastic
change in how CBs affect the electricity markets when there
are major power outages. On the other hand, there is a growing
trend in the circumstances that cause power outages, such as
heat-waves, winter storms, and other climate issues [7].

Therefore, the ISOs are increasingly facing new challenges
when it comes to the use of CBs. Accordingly, in this paper, we
seek to answer the following research questions: 1) Despite be-
ing a financial tool, does convergence bidding have an impact
on the required amount of load shedding during blackouts? 2)
If the answer is ‘yes’, then how can we understand and explain
such impact and its extent and circumstances? 3) Conversely,
is there a relationship between load shedding and the profit of
supply CBs and demand CBs during power outages? 4) Can
we use the answers to the above questions to explain why
the California ISO decided to entirely suspend CBs for four
days during the blackouts which were caused by a major heat-
wave in August 2020? 5) What else can we learn from this
real-world incident in California, such as with respect to the
profitability and impact of CBs during major power outages?

B. Summary of Contributions and Discoveries
The discoveries and contributions in this paper are as follow:

1) Obtaining rigorous analytical formulations to capture
and explain the relationship between load shedding and
convergence bidding during power outages. To the best
of our knowledge, this is the first paper to study the
operation and impact of CBs during power outages.

2) The amount of load shedding in the RTM is modeled as
a function of the amount of the cleared CBs in the DAM.
The sign of the slope of this function is examined as a
new metric to determine if a cleared CB is exacerbating
or healing the power outages. We mathematically obtain
this metric under different network conditions.

3) It is proved that, when there is no congestion in the
DAM, the metric is always greater than or equal to zero.

When there is congestion in the DAM, the metric can
be positive or negative. We explain how this can happen
based on the parameters of the system. These results
clearly show that, despite being financial instruments in
the DAM, CBs can affect load shedding in the RTM.

4) We use numerical case studies to confirm the analytical
results. Importantly, we show that, not only when there
is no congestion, but most often even when there is
congestion, the new metric is positive. The conditions
for the metric to be negative is very rare. Therefore, we
conclude that supply (demand) CBs almost always hurt
(help) the system during major power outages.

5) Furthermore, we also examine how load shedding can
affect the profit of CBs. Our analysis in this part is
again both analytical and numerical. We show that load
shedding usually creates advantage for supply CBs and
disadvantage for demand CBs in terms of their profit
in the electricity market. This might be unfair; because
as we previously mentioned, supply CBs exacerbate the
power outages while demand CBs heal the outages.

6) The real-world market data from the California ISO
during the blackouts in August 2020 are analyzed to
better understand the implications of the above results.
By analyzing the market data, we show that the decision
by the California ISO to suspend CBs during expected
outage conditions very well matches the mathematical
and numerical results that we obtained in this paper.

C. Literature Review

To the best of our knowledge, there is no other paper that is
specifically concerned with understanding the impact of CBs
on load shedding or their operation during power outages.
However, when it comes to the analysis of CBs under normal
conditions, i.e., when the network does not suffer from major
power outages, there is a rich body of literature about CBs.

The existing literature can be divided into three groups.
First, there are papers that study the impact of CBs on
electricity markets under conditions other than blackouts [_8]]—
[11]. The impact of CBs on the efficiency of the California
ISO market is studied in [8]]. In [9], the impact of virtual bids
on price volatility in the New York ISO market is examined.

Second, there are papers that are concerned with the poten-
tial use of CBs to manipulate the prices in electricity markets,
such as in form of market strategies involving financial trans-
mission rights [[12f], or in form of cyber attacks [[13]].

Third, there are papers that propose new strategies for
convergence bidding to increase the profit for the CB market
participant, e.g., see the strategies in [[14]]—[|17].

While there is not much relevance between this manuscript
and the papers in the second and the third groups, this paper
can be considered to belong to the first group of papers.
However, our focus here is on analyzing CBs under the
unexplored context of blackouts, which is completely new.

Throughout this paper, we set up our system model based
on the core concepts that are adopted in the California ISO
market. All our real-world case studies too are based on the
California ISO market. Accordingly, there can exist some



relevant features that are used in other markets that we do
not consider in this paper. One such example is the concept of
scarcity pricing that is used by some ISOs during emergency
conditions and blackouts [18]]. Scarcity pricing can potentially
affect the operation of convergence bids. However, the pros
and cons of using sparsity pricing mechanism, as well as
whether and how they may have impact on convergence
bidding, are beyond the scope of this paper. It should be noted
that, there are some recent discussions and debates on whether
this particular mechanism does actually work in practice and
why it previously did not perform as expected, e.g., during the
August 2020 blackouts in California [[19]—[21].

II. RELATIONSHIP BETWEEN CONVERGENCE
BIDDING AND LOAD SHEDDING

To understand the potential impact of CBs during blackouts,
we need to obtain the relationship between the cleared CBs in
the DAM and the load shedding in the RTM. This can be done
mathematically by expressing load shedding as a function of
the cleared CBs; as we will discuss throughout this section.

A. Basic Market Formulations

Understanding the role of CBs in electricity markets re-
quires examining both the DAM and the RTM.
First, consider the following DAM optimization proble

minimize (0.5 x’Ax+b"x) - (0.527Cz +d"z)
+(0.5vIMv +q'v) (1)

subject to 1"x-1Tz+1%v=0 2)
—¢c<S(Px—0Oz+0Qv)<c 3)
XM < g < xmax 4
Zmin S z S Zmax (5)
vmin <v< ymax (6)

where x is the vector of generation bids; z is the vector of
demand bids; and v is the vector of CBs. Matrix S contains
the shift factors in the network; and c¢ is the vector of
transmission line capacities. Matrices ¥, ©, and €2 are the
incidence matrices for generation bids, demand bids, and CBs,
respectively. Matrices A, C, and M and vectors b, d, and q
are the quadratic and linear coefficients for the generation bids,
the demand bids, and convergence bids, respectively.

Once the DAM is cleared, we can obtain the total amount
of the cleared CBs in the DAM as follows:

CB=1"v*, (7
where v* is the optimal solution in (I)-(®) for the CBs.

'Here, we focus on the most fundamental components of the problem
formulation in a typical two-settlement electricity market. This helps us gain
new insights about the core subject in this paper, with a reasonable and
manageable level of details in the mathematical formulations.

Next, consider the following RTM optimization problem:

minimize 05y"Ey +Kkly 8)
y

subject to 17y -1"L =0 9)

—c<S(Py—-0OL)<c (10)

Xmin Sygxmax (11)

g(x’) <y <h(x") (12)

where y is the vector of the actual generation in the RTM;
and L is the vector of the actual consumption in the RTM.
Parameters ¢, x™", and x™* are the same as in the DAM
problem. Matrix E and vector k are the quadratic and linear
coefficients of the generation bids in the RTM, respectively.
Regarding notations g(-) and h(-) in the constraint in (12},
they limit the actual output of the generation units in the RTM
based on the outcome of the DAM optimization problem in
(I)-(). Here, x* is the optimal generation schedule in the
DAM. Functions g(-) and h(-) are set for each generator
based on its operational requirements [22]]. For example, some
generators, e.g., nuclear plants, cannot physically lower their
actual output below their optimal DAM schedule. As a special
case, one can set g(x*) = x* and h(x*) = x™**, which
in that case, the formulation in (8)-(T2) matches the one in
[6]. However, our analysis in this paper is general; and we
do not need to choose any specific form for functions h(-)
and g(-). Our only assumption is that, for each generator i,
we have g;(-) < h;(-), i.e., the lower bound cannot exceed
the upper-bound; and function h;(-) is non-decreasing, i.e., a
higher generation schedule in the DAM may not cause a lower
upper-bound for the actual generation in the RTM.

B. Analysis of Load Shedding

Once the power grid exceeds its generation capacity or
its transmission capacity, load shedding becomes necessary
in order to maintain a stable operation. The concept of load
shedding is inherently relevant only to the real-time operation
of the system in the RTM. It is not relevant to in the DAM.

In order to analyze the RTM under the circumstances of load
shedding, we must examine the Feasibility Check Subproblem
(FCSP) in the RTM. If the RTM optimization problem in (8)-
(I2) is infeasible, then it requires load shedding. Of main
concern here is the minimum amount of load shedding that
is required in order to make the RTM optimization feasible:

minsirglize 17s (13)
subject to 17y —1"(L—-s)=0 (14)
—c<S(Py-0O((L-5))<c (15)
Xmin < y < xmax (16)
g(x") <y < h(x") 17)
s>0 (18)

where s is the vector of minimum required load shedding. The
rest of the notations in (T13)-(I8) are the same as those in the
basic RTM optimization problem in (8)-(12).
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Fig. 1. Three cases for load shedding as a function of cleared CBs: (a) No
Impact; (b) Monotone Impact; (c) Non-Monotone Impact.

Once the FCSP is solved, we are interested in examining
the total amount of load shedding in the system:

LS =1"s", (19)
where s* is the optimal solution of the FCSP in (I3)-(T8).

C. Impact of Convergence Bids on Load Shedding

Let us define the following functional relationship between
the amount of the cleared CBs in the DAM and the total
amount of load shedding per the FCSP in the RTM:

LS = f(CB),

where CB is defined in (7) and LS is defined in (I9).
Consider the slope of the above functional relationship:

ALS
ACB’

If the slope is positive, then an increase in the amount of the
cleared CBs results in more load shedding in the system. If
the slope is negative, then an increase in the amount of the
cleared CBs results in less load shedding in the system.

In this regard, we can distinguish three cases with respect
to the impact of cleared CBs on the amount of load shedding:

Case 1 (No Impact): There is no relation between the total
amount of load shedding and the amount of the cleared CBs.
Accordingly, the slope in is always zero, and function f(+)
is always flat, see Fig. 1(a). Interestingly, this case matches
the implicit assumption in the existing literature about CBs.
Since CBs are financial instruments in the DAM, while load
shedding is a physical action in the RTM, it is generally
assumed that CBs do not have any impact on load shedding.

Case 2 (Monotone Impact): There is a direct and monotone
relationship between the total amount of load shedding and the
amount of the cleared CBs. If the relationship is monotone
increasing, then the slope in is always positive. If the
relationship is monotone decreasing, then the slope in is
always negative. An example for a monotone relationship is
shown in Fig. 1(b), where the slope is always positive, i.e.,
increasing C'B always results in increasing LS.

Case 3 (Non-Monotone Impact): Although there does exist
a direct relationship between the total amount of load shedding
and the cleared CBs, the relationship is not monotone. There-
fore, the sign of the slope of function f(-) in may vary
depending on the amount of the cleared CBs. An example for
a non-monotone relationship is shown in Fig. 1(c).

(20)

21

While Case 1 is not of concern in this paper, as it does not
indicate any issue with the CBs as far as their impact on load

shedding is concerned, Case 2 and Case 3 are both important
and insightful and can be investigated in more details. This
important analysis is conducted in Sections [[II-Al and |III-B

D. Impact of Load Shedding on CB Profit

When the network experiences load shedding, the basic
formulation of the RTM optimization problem in (8)-(12)
changes according to the following revised formulation:

minimize 05y Ey+Kkly (22)
y

subject to 1Ty —1T(L—s*) =0 (23)

—c<S(Py-0O(L-5"))<c (24)

Xmin < y < xmax (25)

g(x') <y < h(x") (26)

where s* is the optimal solution of the FCSP in (I3)-(I8).
The above optimization problem is the basis to calculate the
LMPs in the RTM. The LMPs are calculated based on the dual
variables associated with the constraints in (22)-(26), c.f. [6].
Let us denote the vector of LMPs in the RTM by 7R™,
Similarly, let us denote the vector of LMPs in the DAM by
wPAM The latter is calculated based on the dual variables
associated with the constraints in the DAM optimization in
(I)-(3). We can use the following vector of price difference to
determine whether a cleared CB is profitable at each bus:

DAM (27)

P _ 7,‘_RTM )

If the difference is positive, then the supply CB is profitable.
If it is negative, then the demand CB is profitable.

Similar to the functional relationship in Section[[I-C| we can
examine how the price difference in may change when
there is a change in C'B. Since load shedding only affects the
RTM, it has no impact on the prices in the DAM. Therefore,
we only need to examine the impact of load shedding on the
prices in the RTM, i.e., the impact of LS on 7wR™, We will
discuss this subject in details in Section [[II-C|

In summary, we seek to understand two types of relation-
ships: 1) the impact of CBs on load shedding; 2) the impact
of load shedding on the profits associated with the CBs. These
two relationships will build the foundation for us to investigate
the operation and the impact of CBs during blackouts.

III. ANALYTICAL RESULTS

This section contains our core analytical results. First, we
propose two theorems to obtain the slope of function f(-),
as defined in @]), under two different operating conditions:
with and without transmission line congestion in the DAM.
After that, we will also examine the relationship between load
shedding and the profit associated with the cleared CBs.

A. Slope of f(-) with No Congestion in the DAM

Suppose there is no congestion in any transmission line
in the DAM. Importantly, we do notr make any assumption
regarding transmission line congestion in the RTM.

Theorem 1: If there is no congestion in the network in the
DAM, then regardless of the congestion status in the RTM, the



relationship between the amount of the cleared CBs and the
required amount of load shedding is always monotone. This
can be mathematically expressed as:

ALS
_— >
ACB —
In such monotone relationship, increasing (decreasing) a sup-
ply CB will result in more (less) load shedding. As a result, a
supply (demand) CB will exacerbate (heal) the power outage.
Proof of Theorem 1: Since there is no congestion in the
DAM, the inequality constraints in (3) are eliminated. We want
to calculate the slope of function f(-), which is defined in (1)
Accordingly, we can use the infinitesimal version of the chain

rule for multi-variable functions to obtain:

Az} ) 9

ALS > ALS  Ah(xy)
ACB Ahi(z¥) Az ACB

i€Ng

0. (28)

where for each generation unit ¢, notation z; is the correspond-
ing optimal generation schedule in the DAM optimization
problem, and h;(x}) is the corresponding upper-bound in the
inequality constraint in (I7) in the FCSP.

There are three fractions in the formulation in ([29). We
claim that the following inequalities hold for these fractions:

ALS
20 0 VieN 30
AnGn S0 ViENe (30)
Ah;(z*
L’(?) >0, VieNg, 31)
Azi
Az
7 < . .
o <0, VieNg (32)

From (29), if these three inequalities are true, then we have
(28). In other words, if we can show that the three inequalities
in (30)-(32) hold, then the proof of Theorem 1 is complete.

First, consider the inequality in (30). The fraction in this
inequality captures the sensitivity of the optimal objective
value in the FCSP in (I3)-(I8) with respect to the upper-bound
parameter in the inequality constraint in (I7). Since FCSP is
a minimization problem, and also because increasing h;(x})
results in relaxing the constraint in (17), we can conclude
that increasing h;(x}) cannot result in increasing the optimal
objective value in FCSP. In other words, if Ah;(x}) > 0, then
ALS < 0. Thus, the inequality in @ is indeed true.

Next, consider the inequality in (3I)). It is the direct result
of the fact that, for each generator i, function h;(-) is non-
decreasing; as we discussed at the end of Section Thus,
no further proof is needed regarding the inequality in (3I).

Finally, consider the inequality in (32). Verifying this in-
equality is not straightforward. It requires a detailed mathe-
matical discussion. Therefore, for the rest of this proof, we
focus on explaining why the inequality in (32)) is true.

Given x* as the optimal generation schedule in the DAM
optimization problem, let us define the following three sets:

A=1{i|i€ Ng, 2™ <z} <P}, (33)
B={il|i€ Ng, z} =z}, (34)
C=1{i|i€ Ng, z} =z}, (35)

Similarly, given z* as the optimal load schedule in the DAM
optimization problem, we define the following three sets:

D={jljeNy, 2" < zf <z}, (36)
E={jlje Ny, 2 =2z}, (37)
F={jlj€ Nz, zj =2} (38)

Similarly, given v* as the optimal CB schedule in the DAM
optimization problem, we define the following three sets:

G ={k|j e Nep, v} <vj <vP™}, (39)
H={k|j € N¢g, v; =v"}, (40)
I'={k|j€ Ncg, vj =vj"*}. 41)

Accordingly, we can rewrite the equality in (2)) as follows:

* min max *
E%"‘E%"‘Emi —Ezj

icA ieB ieC jED
- Z 2P Z 2P 4 CB = 0. (42)
JjeE JEF
Note that, from (7) and (39)-@T), we have:
CB=>) vi+ > v+ op>*=1Tv".  43)

keG keH kel

However, since our goal is to obtain the sensitivity in (32)
with respect to C'B, we keep C'B as an explicit term in {@2)),
i.e., we do not expand C'B in based on its terms in @3).
From and (36), we do not know the value of x; for any
i € A, and the value of z; for any j € D. To obtain them, we
use the Karush-Kuhn-Tucker (KKT) conditions [23]. From the
KKT conditions for the DAM optimization problem in (T))-(6)),
excluding (3) due to absence of congestion, we have:

Vi € Ng,
V] € NL;

a;x; + b, + A — 0 + v =0,

—cjzi —dj+ A =0 v =0,

(44)
(45)

where ¢; and \; are the Lagrange multipliers corresponding to
constraint x?“i“ < z; and constraint x; < x;*%, respectively;
0; and A; are the Lagrange multipliers corresponding to
constraint z;-nin < z; and constraint z; < z;-nax, respectively;
and v is the Lagrange multiplier corresponding to the equality
constraint in . As for a;, b;, c;j, and dj, they are the
corresponding entries in A, b, C, and d, respectively.

It must be noted that, in addition to (44) and (@3)), one can
also write the KKT conditions in terms of taking the deriva-
tives of the Lagrangian function over vy for all £ € Negp.
However, we do not need any such equation in our analysis;
because we already have CB as an explicit term in (#2).

From (33) and (36), we have:

JE=A=0, VieA, (46)
1=\ =0, VjeD. 47)
By replacing (#6) in (@4), and also by replacing in (@3),

and after reordering the terms, we can obtain:

x; = —(b; +v")/a;, Vi€ A,

2f = —(d; +v")/e;, VjeD.

(48)
(49)



By placing @]) and @9) in @I) we obtain:
— Z -t Z _|_ Z xmln + Z max

’LGA 'LEA icB eC
ZI ST ST I
jep jep 9 jeE
—) T+ CB=0. (50)
JjeEF

By obtaining v* from (50) and then replacing it in for
each generator ¢ € A, we can obtain:

b1
:z:i:fa—i—a—ix 1/ Z——Z

i€A jED €

+1/ Ziiz sznln+zx;na:c

€A jED i€B ieC
_ § me § Zmaw § § . (51)
JjeE JEF zeA

Since the DAM optimization problem is a convex optimiza-
tion problem, parameter a; > 0 for all generators ¢ € Ng and
parameter c¢; < 0 for all loads j € Ny. Thus, we have:

Z**Z

i€EA

(52)

Hence, the coefficient of C'B in @ is always negative; and
for any ¢ € A, the optimal solution z} is always a decreasing
function of C'B. This confirms the inequality in (32).

In summary, the inequalities in (30)-(32) hold. Therefore,
the inequality in holds; and the proof is complete. |

From Theorem 1, when there is no congestion in the DAM,
and regardless of the congestion status in the RTM, the amount
of cleared CBs has a monotone impact on the amount of load
shedding. This matches Case 2 in Section

This means that, when the RTM problem is infeasible, i.e.,
when there is a need for load shedding in the RTM, the more
cleared CBs in the DAM, the more load shedding in the RTM.

Therefore, if C'B is positive (supply), then increasing it will
result in more load shedding; and if C'B is negative (demand),
then increasing it will result in less load shedding.

Under the circumstances in Theorem 1, supply CBs in the
DAM exacerbate load shedding in the RTM.

B. Slope of f(-) with Congestion in the DAM

Next, suppose there is transmission line congestion in the
DAM. The assumption about transmission line congestion is
only regarding the DAM. We do not make any assumption
regarding transmission line congestion in the RTM.

Theorem 2: If there is transmission line congestion in the
DAM, the relationship between the amount of a cleared CB
and the amount of load shedding may or may not be monotone.
In other words, it is possible to have either

ALS

=22 5

ACB = 43

or ALS

ACB
Whether (53)) or (54) holds depends on the system parameters.
That is, under some choices of the system parameters, the
relationship is not monotone. And under some other choices
of the system parameters, the relationship is monotone.
Proof of Theorem 2: For the purpose of this proof, we
assume that congestion is exactly on one transmission line in
the DAM. We denote the transmission line that is congested
in the DAM by index k. Furthermore, we assume that exactly
one CB is cleared in the DAM. We denote the bus where the
CB is cleared by index m. The above scenario is all we need in
order to derive a case under which the monotone property does
not hold under some choices of the system parameters, and it
does hold under some other choices of the system parameters.
Suppose transmission line k is congested such that the
upper-bound constraint in is binding. Every other inequal-
ity constraint in (3) is not binding. Accordingly, we can reduce
(3) to the following scalar upper-bound constraint:

S SWhizi— Y (SO 2+ (SQ)km CB < c,

i€ENg JENL

<0. (54)

(55)

where (S W)y, denotes the entry at row k and column ¢ of
the matrix multiplication S ¥; (S ®); denotes the entry at
row k and column j of the matrix multiplication S ®; and
(S Q)km denotes the entry at row k and column m of the
matrix multiplication S 2. From , and because bus m is the
only bus with a cleared CB in the DAM, we have C'B = v,,.
As in Section [[II-4] let us define A, B,C C Ng as in (33)-
and D, E,F C Ny, as in (36)-(38). Since the inequality
in (33) is binding, it holds as equality at the optimal solution.
From this, together with the results in (33)-(38), we have:

D (SE)iai + Y (ST ™

icA ieB
+D (S 2" =D (S O)y; 2
ieC jED
- Z(S ®)kj Z;nin - Z(S G'))kj Z;m”
JEE jEF
4+ (SQ)pm CB — ¢ = 0. (56)
From (33)-(38), the equality in (2) can be written as:
POEED PELNS SN o
icA ieB ieC jeD
=) AN 4 OB =0 (57)
JEE jEF

Based on and (36), we do not know the value of z
when i € A and the value of z; when j € D. In order to obtain
these unknowns, we can use the following KKT conditions
corresponding to the DAM optimization problem in (I)-(3):

(LZ'ZL'*-< +b; + )\* — (5? + v+ (S ‘Il)k:z 0 = 0,Vi € Ng, (58)
—cjz ] —d; +)\* 5;-‘71/*7(S®)kj 0* =0,Vj € N, (59)

where §; and \; are the Lagrange multipliers corresponding to
constraint z™" < z; and constraint r; < ¥, respectively;



0; and A; are the Lagrange multipliers corresponding to
constraint z;-nin < z; and constraint z; < z;-“a", respectively;
v is the Lagrange multiplier corresponding to the equality
constraint and 6 is the Lagrange multiplier corresponding to
the upper-bound transmission line constraint in (53).

From (33), (36), (58), and (39), we can obtain:

z; ==+ v+ (SW) 0")/a;, Vie A, (60)
zi = —(dj +v* = (SO)y; 0%)/cj, VjeD. (61)
Next, for notational simplify, we define:

" ;:72§+2@
i jep G

a
icA "

+ Z xgnin + Z m;naz _ Z Z;nin _ Z ija.t’ (62)

i€eB ieC jEE JEF

S W);b; SO),d;
i - ST 3 B
i€A i jeD €
) (ST ™+ Y (S W)y 2"
i€B icC
=) (8O); 2 =D (SO 2" — ¢k (63)
JEE jEF

By replacing and in (57), we can obtain:
. 1 1 . (SW);
Azioxh) o (ze

jeD 7 jeA Tt i€A

+CB+1t, =0. (64)

'y (S ?)kj

jeED

By replacing (60) and (6I) in (56), we can obtain:

a3 8 Q)kj Y (S j)ki — o (Z ((S ‘i’i)m)Q

C
jeD 7 icA v icA

S O);)2
+y M + (S pm CB+1t5 =0. (65)
j€D €
In (64), let us refer to the coefficient of v* as g, and the
coefficient of 6* as go. Similarly, in (63), let us refer to the
coefficient of v* as g3, the coefficient of #* as g4, and the

coefficient of C'B as g5. Accordingly, we can express (64)
and (63) in the following simplified forms:

vigr —0%g2 + CB +t; =0,
V*gg — 9*94 + 95 CB + 1o = 0.

(66)
(67)
By solving the system of linear equations in (66) and (67),

we can express v* and 0 as a function of C'B. After that, we
can replace the results in (60) to obtain:

Ary 1 ( 94 — 9295 )
ACB a; 9293 — g194
SW).: —
ICAIT ( 93 — 9195 ) 9
Q; 9293 — 9194

The sign of the above equation can change depending on the
choice of the parameters in the system. Based on the values of
g1, 92, 93, g4, and gs, it is possible that the inequality in (32)
holds; which in that case, the inequality in (28) will hold. In
that case, the relationship between the amount of the cleared
CB in the DAM and the amount of load shedding in the RTM
is monotone. Based on the values of g1, g2, g3, g4, and g5,
it is possible that the inequality in does not hold, to the
extent that the inequality in does not hold either; which
means the relationship between the amount of the cleared CB
in the DAM and the amount of load shedding in the RTM is
not monotone. We will see examples of both scenarios, i.e.,
both monotone and non-monotone cases, in Section |

From Theorem 2, when there is congestion in the DAM, it
is possible for the relationship between the amount of cleared
CBs and the amount of load shedding to be monotone, as in
Case 2 in Section [II-C; or non-monotone, as in Case 3 in
Section It all depends on the values of the parameters.

In practice, when there is congestion in the DAM, in order to
specify which CB will exacerbate the power outage and which
CB will heal the power outage, the ISO needs to calculate the
values of parameters g1, g2, g3, g4, and gs to determine the
sign of the expression on the right-hand-side in (68).

Importantly, as we will see in the numerical case studies in
Section [[V] the relationship between a cleared CB in the DAM
and the load shedding in the RTM is most often monotone. In
other words, even under the circumstances in Theorem 2, the
results are most often similar to the results in Theorem 1.

C. Relationship between Load Shedding and CB Profit

Recall from Section that, since load shedding only
affects the RTM, it does not affect the LMPs in the DAM.
From this, together with the formulation of the price difference
in (27), in order to examine the impact of load shedding on
CB profit, we only need to examine how 8™ changes when
LS changes. Accordingly, we can present two theorems.

Theorem 3: If there is no congestion in the network in the
RTM, then the relationship between the amount of the load
shedding and the profit of the CBs is always monotone.

This can be mathematically expressed for a supply CB as:

DAM _ RTM
> 0.
ALS -

In such monotone relationship, increasing (decreasing) the
amount of load shedding will result in more (less) profit for
supply (demand) CBs; as a result, a supply (demand) CB will
be advantaged (disadvantaged) by the power outage.

Proof of Theorem 3: When there is no transmission line
congestion in the RTM, the LMP at any bus in the RTM is
equal to the dual variable associated with the power balance
constraint in @ c.f. [6]]. Let us define such dual variable by
aR™: where 7R™ = 7RT™7 Accordingly, we are concerned
with obtaining the sign of the following fraction:

AxRTM
ALS °

From , we can rewrite as lTy — 171, = LS thus
LS is a parameter in the equality constraint in (23). Let Obj*

(69)

(70)



denote the optimal objective value of the RTM optimization

problem in (22)-(26). From the subject of perturbation and

sensitivity analysis in convex optimization, we know that [[24]]:
AObj*

oM — ALS (71)

Therefore, by applying the infinitesimal version of the defini-
tion of derivative, we can express the fraction in (71) as:

ATR™M A (AObj*/ALS)  A’Obj*

ALS ALS ALSZ

where the last fraction is the infinitesimal version of the def-
inition of the second derivative. Since the RTM optimization
problem in (22)-(26) is convex, its objective function is convex
and has a non-negative second derivative [24]. From this,
together with the results in , we can conclude that:

AxRTM
<0.
ALS — 0 (73)

From and (27), and since load shedding does not affect
the prices in the DAM, we can conclude that, the CB profit is
a monotone function of the amount of load shedding. |

(72)

From Theorem 3, increasing load shedding during power
outages results in increasing the profit for supply CBs and
decreasing the profit for demand CBs. This monotone relation-
ship is guaranteed if there is no transmission line congestion
in the RTM. If there is transmission line congestion in the
RTM, then we can present the following theorem.

Theorem 4: If there is transmission line congestion in
the RTM, then the relationship between the amount of the
load shedding and the profit of the CBs may or may not be
monotone. It is possible for a supply CB to have either

PAM _ - RTM
>
ALS >0 (74)
or DAM RTM
s -7
g <O (75)

Whether (74) or holds depends on the system parameters.
That is, under some choices of the system parameters, the
relationship is not monotone. And under some other choices
of the system parameters, the relationship is monotone.

The above theorem is the direct result of the concept of
negative injection shift factor in the analysis of LMPs; a
concept that is extensively studied in the literature [25]], [26].
However, similar to the case in Theorem 2, having a non-
monotone relationship is rare; as we will see in Section m

D. Summary of the Mathematical Results

From Theorems 1 and 3, if there is no transmission line
congestion in the system, then we can identify the following
issue in the operation of CBs during power outages:

The Issue: On one hand, supply CBs exacerbate the power
outages by increasing the required amount of load shedding,
while demand CBs heal the power outages by decreasing
the required amount of load shedding. On the other hand,
load shedding creates advantage for supply CBs by increasing
their profit, while it creates disadvantage for demand CBs by
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Fig. 2. The IEEE 14-bus standard test system that is studied in Section [[V]

@

decreasing their profit. This situation can be unfair; because
it rewards the type of CBs that exacerbate power outages and
punishes the type of CBs that heal power outages.

From Theorems 2 and 4, if there is congestion in the system,
then the above issue may not necessary hold. But, as we will
see in Section the relationship between the cleared CBs
and the amount of load shedding, as well as the relationship
between the amount of load shedding and the profit of CBs
are most often monotone. Thus, the above issue most often
does hold. In fact, it appears that the above issue was behind
a decision by the California ISO to suspend CBs during the
outages in August 2020, as we will discuss in Section [V}

IV. NUMERICAL CASE STUDIES

In this section, we verify the mathematical results in Section
through numerical case studies. All the numerical case
studies are based on the IEEE 14-bus test system, as shown in
Fig. [2| The basic characteristics of the generators, loads, and
transmission lines are as in [27]. We consider the nominal
load at each bus in the IEEE 14-bus test system as the self-
scheduling load in the DAM at that bus. In the RTM, we
assume 25% increase in the actual load compared to the
DAM schedule. The capacity of each transmission line is 45
MW. For the five generators, we have: A = diag(3,2,1,1,2)
and b = [15,10, 14, 14, 10]. The maximum capacity for each
generator is 100 MW. We assume that, the generators use the
same bids in the RTM as in the DAM, i.e., E = A and k = b.

Regarding functions g(-) and h(-) in (12), we assume that:
(i) the generator at bus 1 cannot increase its output more than
30% of its DAM schedule, i.e., for this generator, we have:
h(z*) = 1.3 z*; (ii) the generator at bus 2 cannot increase
its output more than 10% of its DAM schedule, and it cannot
reduce its generation output to less than its DAM schedule, i.e.,
for this generator, we have: h(z*) = 1.1 2* and g(z*) = 2*;
(i) for the generator at bus 3, we have: h(z*) = 1.2 z*.

A. Relationship between Load Shedding and Cleared CB

In order to numerically obtain function f(-) in (20), we
change the amount of the CB at a given bus in the DAM
within a certain range, and we accordingly solve the DAM op-
timization problem in (I)-(5), the RTM optimization problem
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Fig. 4. The numerical results in Case B. The results match Theorem 2.

in (8)-(12), and the FCSP in (T3)-(I8) to obtain the resulting
load shedding in the RTM. We analyze three different cases:

Case A (No Congestion - Monotone Behavior): The
results in this case are shown in Fig. [3] Notice that the load
shedding is a monotone increasing function of the supply CB
and a monotone decreasing function of the demand CB. To
plot these curves, first, we examine a supply CB at an amount
that increases from 0 MW to 10 MW. Next, we examine a
demand CB from 0 MW to 10 MW. One could interpret the
results in Fig. [3] also in terms of changing the CB from —10
MW (demand) to +10 MW (supply). The combined curve
would be monotone increasing. The numerical results in Fig.
[B match the mathematical results in Theorem 1.

Importantly, as we can see in Fig. [ a supply CB exacer-
bates the power outage by increasing the required amount of
load shedding; while a demand CB heals the power outage by
decreasing the required amount of load shedding.

Case B (Congestion - Monotone Behavior): The results in
this case are shown in Fig. ] The capacity of the transmission
lines are 20% less than those in Case A. Accordingly, there
is transmission line congestion in the DAM. At all buses, the
curves in Fig. ] are monotone functions. The numerical results
in Fig. ] match the mathematical results in Theorem 2. In
particular, recall from Theorem 2 that even if some of the
transmission lines are congested in the DAM, it is possible
that the load shedding in the RTM is a monotone function
of the cleared CB at any bus. In this figure, we only see the
curves for two buses in the system. The curves for the rest of
the buses are not shown; because they simply match one of
the curves that are shown in this figure.

For all the buses in Fig. [ a supply CB exacerbates the
power outage; while a demand CB heals the power outage.
Therefore, the ultimate outcome in Case B is similar to Case
A, despite having transmission congestion in the DAM.

Case C (Congestion - Non-Monotone Behavior): The
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Fig. 5. The numerical results in Case C: load shedding as (a) monotone
function of supply and demand CBs; (b) non-monotone function of supply
CBs and monotone function of demand CBs. The results match Theorem 2.

results in this case are shown in Fig. 5] The capacity of the
transmission lines are 35% less than those in Case A and there
is transmission line congestion in the DAM.

Fig. [5[a) shows the total load shedding as a function of the
cleared CBs at buses 3, 8, and 12. Notice that, all the curves
in Fig. [5(a) are monotone. A supply CB at any of these three
buses exacerbates the power outage while a demand CB heals
the power outage. Importantly, the monotone behavior that is
shown in Fig. |§Ka) holds not only at buses 3, 8, and 12, but
also at every other bus, except at bus 5; as we will see next.

Fig. Bb) shows the total load shedding as a function of the
cleared CB at bus 5. We can see that the load shedding is still
being impacted by changing the cleared CB, but it is not a
monotone function of the cleared supply CB at bus 5.

Next, we discuss the non-monotone behavior in Fig. |§Kb).
In this case, the added CB causes congestion in the DAM on
the transmission line between bus 4 and bus 5. Due to this new
congestion, the generation schedule for the generator at bus 3
in the DAM increases (instead of decreasing). Since the output
of this unit in the RTM depends on its DAM schedule, this
generator will have more output in the RTM when a supply
CB is placed at bus 5, which reduces load shedding. This
causes the non-monotone behavior in Fig. [B|b), for the range
of supply CB between 0 to 4 MW. Ultimately, by increasing
the supply CB beyond 4 MW, the output of the generator at
bus 3 reaches its maximum capacity in the RTM. As a result,
its generation output in the RTM is no longer dependent on
its DAM schedule. Accordingly, a supply CB at bus 5 that is
larger than 4 MW causes the same typical monotone effect on
the amount of load shedding that we saw in Cases A and B.

The numerical results in Fig. [5] match the mathematical
results in Theorem 2. It is worth emphasizing that, the above
non-monotone behavior is very rare and it happens only under
some very specific circumstances, as we discussed in Theorem
2. In most cases, the monotone behavior does hold; but there
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do exist cases for which the monotone behavior does not hold.

B. Relationship between Load Shedding and CB Profit

In Theorem 3 in Section we mathematically proved
that if there is no transmission line congestion in the RTM,
then load shedding always results in decreasing (increasing)
the profit of demand (supply) CBs. Therefore, we do not
provide any numerical result for the case in Theorem 3.
Instead, in this section, we numerically obtain the relationship
between load shedding and the profit of CBs in the presence
of congestion in the RTM. We use the same setting that we
introduced in the beginning of Section The results are
shown in Fig. [] Here, we gradually shed the load at bus 3, to
examine the CB profit for placing 1 MWh demand CBs at two
different buses. But 3 is selected for load shedding; because it
has the largest load in the system. The profit of a supply CB
would be exactly the opposite in each case.

As we can see, in both cases, the relationship between the
amount of load shedding and the profit of the CB is monotone.
Increasing the amount of load shedding results in decreasing
the profit of the demand CB. It should be emphasized, that
the same results are achieved at any other bus in the system.
This is despite the fact that there is congestion in the system.

V. REAL-WORLD CASE STUDY

In this section, we discuss a real-world case study related
to the power outages that happened in California due to a
major heat wave during August 2020. The real-world market
data is analyzed to understand different aspects related to the
operation and impact of CBs during this case study.

A. Overview of the Case

During August 14 through August 19, 2020, the state of Cal-
ifornia experienced an extreme heat wave, which significantly
increased the load for its residents. The increased stress on the
electric power system resulted in a series of rotating blackouts
that caused power outages for over 350,000 costumers [28]].
Fig. [/| shows the hourly number of costumers who lost power
during the month of August [29]]. In this figure, the two spikes
show the outages that happened during the peak hours:

e 6:00 PM - 9:00 PM on August 14;
e 6:00 PM - 8:00 PM on August 15.
After that, the amount of load shedding gradually decreased,

although the number of customers who experienced a power
outage remained higher than usual for the next several days.
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Fig. 7. Hourly number of costumers who lost power during the month of
August in the California ISO. The spikes occur on August 14 and 15.
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Fig. 8. Comparing the hourly DAM LMPs and the hourly average RTM
LMPs on August 14 in two of the three DLAPs in California: a) PG&E; b)
SDG&E. The graph for the third DLAP, i.e., SCE, is similar (not shown here).

In this case study, we focus on the analysis of CBs in
the aggregated pricing nodes (APnodes) in the California ISO
market. In August 2020 and before the event, i.e., from August
1 through August 13, a total of 427 APnodes hosted at least
one CB at any time during this period. A total of 66 market
participants submitted at least one CB to the California ISO
market during this period. The total number of submitted
CBs was 119,332; out of which 56% were cleared in the
market. The total profit that was earned by all the CB market
participants during this period was $982,181.

Of interest among the APnodes in California are the three
Default Load Aggregation Points (DLAPs): Pacific Gas and
Electric (PG&E), Southern California Edison (SCE), and San
Diego Gas and Electric (SDG&E). These three major APnodes
cover Northern, Central and Southern part of California.

B. Convergence Bids: Analysis of the Prices and the Profits

Fig. [8] shows the hourly LMPs during August 14 in the
DLAPs in the California ISO market. The vertical lines in
each figure show the start time and the end time of the
period of power outage (i.e., severe load shedding). At both
DLAPs, we can clearly distinguish two different periods. At
the beginning, and up until the start of the outage period, the
RTM LMP is higher than the DAM LMP; because the network
is experiencing a higher load in real-time than expected.
However, right around the time that the California ISO started
dispatching severe load shedding, the RTM LMPs suddenly
started to drop and became lower than the DAM LMPs.

The exact same situation also happened on August 15, 2020,
as soon as the ISO started dispatching the load shedding across
the system. The figures are not shown here.

From the above observations, while the demand CBs made
profit before the outages, they started losing money as soon
as the outages started. This exactly matches our analysis in
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Section Furthermore, this matches the concern that we
raised in Section because the demand CBs, which are
the type of CBs that help healing the power outages, are being
negatively affected by the power outages.

Next, we examine and compare the profit that is gained by
each cleared CB during two different market conditions:

o During Peak Outage Hours: From 6:00 PM to 9:00
PM on August 14 and also from 6:00 PM to 8:00 PM on
August 15. The results are shown in Fig. Pfa).

« Right Before Peak Outage Hours: From 3:00 PM to
6:00 PM on August 14 and also from 4:00 PM to 6:00
PM on August 15. The results are shown in Fig. O[b).

Notice that, the results in Fig. [O(a) and those in Fig. [J[b)
are the opposite of each other. In Fig.[9fa), 80% of the supply
CBs have positive profit; while in Fig. 0[b), 90% of the supply
CBs have negative profit. Furthermore, in Fig. [0[a), 89% of
the demand CBs have negative profit; while in Fig. Ekb), 78%
of the demand CBs have positive profit.

The above results are very insightful and they confirm some
of the issues that we raised in Section To see this, recall
from Sections and that in most cases, a supply
CB exacerbates the outage circumstances while a demand
CB heals the outage circumstances. Accordingly, one would
expect that a supply CB is punished during the outages while
a demand CB is rewarded during the outages. However, the
occurrence of the outages creates a situation that the supply
CBs are rewarded while the demand CBs are punished.

It is worth noting that, the California power system was
under stress even before the outage period in Fig. J[b); because
the heat wave had already started. However, it had not gone
to the level to cause power outages; as in the case in Fig. [J(a).

In summary, while load shedding is an inevitable remedial
action when the power system is under stress, it has a negative
impact on the electricity market, when it comes to the CBs.
This matches our analysis in Sections [[II-D] and [[V-B|

C. Convergence Bids: Response of the 1SO

The real-world results in Section [V-Bl confirm “the issue”
that we explained through mathematical analysis in Section
[II-D] This is not desirable and it raises the question on how
should the ISO respond to such circumstances?
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Fig. 10. Hourly cleared CBs in August 2020 in the California ISO market.
CBs were suspended during August 18 to August 21.

Importantly, during the period from August 18 till August
21, i.e., shortly after the severe power outages, CBs were
entirely suspended in the California ISO market. CBs were
permitted again after August 21, i.e., after the level of outages
almost returned to its normal level, as we saw in Fig.

Fig. [I0] shows all the cleared CBs in the California ISO
market during the month of August. A total of 81 CB market
participants had at least one cleared bid in August 2020; and
each color in this figure is associated with one of the market
participants. As we can see, there is no cleared CB during
August 18 to August 21, as convergence bidding was fully
suspended for the entire day on these four days.

It should be emphasized that the California ISO has the
authority to suspend CBs when necessary per Tariff Section
7.9. This can be performed to bids already submitted or to
bids that will be submitted in the future at any node [30].

While the reasoning for the California ISO’s decision about
suspending the CBs is not disclosed in details, e.g., see [28]],
this real-world decision does very well match our conclusions
that we obtained mathematically in Sections [[TI] and [[V]

VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the open problem of understanding
the operation and impact of CBs during blackouts. A new
functional approach as well a new metric were introduced
to determine whether a given CB exacerbates or heales the
blackout. A series of mathematical theorems were developed
and numerical analysis were conducted under different net-
work conditions. It was shown that supply CBs typically hurt
the system during blackouts while demand CBs typically help
the system. The impact of load shedding on the profit of CBs
was also investigated. It was shown that, load shedding usually
creates advantage for supply CBs and disadvantage for demand
CBs in terms of their profit. The combination of these various
results raised the issue on whether the operation of CBs is
fair and justified during the blackouts. Therefore, to gain more
insights, we also analyzed the real-world market data from the
California ISO during the blackouts in August 2020. It was
shown that, the decision by the California ISO to suspend CBs
during this event is justified and it matches the mathematical
and numerical results that were obtained in this paper.

This paper can be extended in various directions. First,
there exist mechanisms that are used by some ISOs that can
have impact on the operation of CBs during blackouts. One
example for such mechanism is the use of “scarcity pricing”.
The impact of scarcity pricing can be investigated in the



future. Second, while our system model considers the most
fundamental components of the problem formulation in two-
settlement electricity markets, other components can be added
to problem formulation to expand this analysis in the future,
such as by using nonlinear power flow equations, incorporating
power loss, and adding the voltage constraints. Third, other
alternative formulations for the analysis of load shedding can
also be considered. For example, there are ideas to incorporate
cost efficiency in deciding the amount of load shedding during
blackouts. While the credibility of such considerations should
be examined, they can affect the results in different directions.
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