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ABSTRACT

While the conventional software components implement pre-defined
specifications, Machine Learning (ML)-enabled Software Compo-
nents (MLSC) learn the domain specifications from the training
samples. Thus, the MLSC’s data-driven and inductive reasoning
becomes highly reliant on the quality of the training dataset, which
are often arbitrarily collected in ad hoc manners. The random col-
lection of samples leads to a significant gap between the actual
specifications of a real-world concept, and the picture that a dataset
represents of the concept, reducing MLSC generalizability, particu-
larly in perceptual tasks where understanding the environment is
an important factor of accurate prediction.

To fill the gap between the conceptualization of a targeted do-
main’s concept and its visualization in the MLSC dataset, we pro-
pose exploiting semantic specification of the concept to identify the
concepts’ missing variants in the data. We first, semantically specify
hard-to-specify targeted domain’s concepts and second, refer to the
derived specifications to evaluate the diversity and relative com-
pleteness of MLSC collected datasets. The systematic augmentation
of training datasets, with respect to the semantics of the domain, im-
proves the quality of an arbitrarily collected dataset and potentially
yields more reliable models. As a proof of concept, we automati-
cally acquired the existing semantic knowledge for specifying the
automotive domain concept “pedestrian.” Augmenting the state-of-
the-art pedestrian datasets accordingly, the evaluations showed that
semantic augmentation outperforms brute-force machine learning
in satisfying the MLSC accuracy requirements.

CCS CONCEPTS

« Software and its engineering — Requirements analysis;
Software reliability; - Computing methodologies — Object
detection; Semantic networks.

ACM Reference Format:

Hamed Barzamini, Mona Rahimi, Murteza Shahzad, Hamed Alhoori. 2022.
Improving Generalizability of ML-enabled Software through Domain Speci-
fication. In Ist Conference on Al Engineering - Software Engineering for Al
(CAIN’22), May 1624, 2022, Pittsburgh, PA, USA. , 12 pages. https://doi.org/
10.1145/3522664.3528589

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CAIN’22, May 16-24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9275-4/22/05...$15.00
https://doi.org/10.1145/3522664.3528589

181

1 INTRODUCTION

As deploying ML algorithms in Software Engineering (SE) is rapidly
increasing, the domain specifications are transforming from being
explicitly articulated in the textual format or formal rules to being
implicit within a set of training data, such as images and video
frames. Unlike conventional software systems that implement a set
of pre-defined “agreed-upon” specifications gathered from stake-
holders and customers [22], the MLSC learn and suggest the spec-
ifications from collected examples [24]. This characteristic of the
MLSC is desirable for programming hard-to-specify concepts for
which limited description exists to guide software programmers.
For instance, in the automotive domain, many of the advanced
automated driving functionalities require software components to
perceive the environment. The majority of these functionalities
may not be completely specifiable due to the presence of hard-
to-specify concepts in the MLSC operating environment [58]. For
instance, what is the exact specification for recognizing a potential
pedestrian? The concept of a pedestrian is hard to specify, as it has
various instances with characteristics that are hard to predict (e.g.,
pedestrians differ from each other in terms of clothing, size, and
shape) [49]. Whereas human drivers use their intuition to recognize
various instances of pedestrians, the MLSC learn the concept from
a limited set of images and video frames of pedestrians in a training
dataset. As such MLSC perceive a concept through inductive reason-
ing, generalizing the common features that the ML model discovers
in varying instances of the concept in a collected dataset [5].
However, due to being collected in unsystematic manners, datasets
used to train ML models are generally limited in the number and
diversity of samples they comprise [20, 45]. For instance, the most
recently established datasets in the context of autonomous driving,
such as Caltech [13], KITTI [17], CityPersons [74], and EuroCi-
tyPerson (ECP) [6], are collected by a vehicle-mounted camera aim-
lessly navigating rural roads [20]. Unguided collection of pedestrian
images may result in an incomplete, unrepresentative, and undiver-
sified dataset, leading to biased models. For example, the inspection
of a commonly used pedestrian dataset revealed the lack of images
of pedestrians in wheelchairs [44]. A prior research performed a
simple cross-dataset evaluation to reveal that the majority of the
state-of-the-art pedestrian detectors are biased and, therefore, are
vulnerable to small domain shifts [20]. As such, they may perform
well on the datasets they have been trained on, yet they perform
poorly on unseen datasets. This is because the existing pedestrian
detectors are tailored for some target datasets, which may not be
a complete or fair representation of the actual pedestrians in the
operational domain. Without a comprehensive pedestrian dataset
that includes a wide variety of the concept’s instances, there will be
a significant and inevitable misalignment between the specification
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Figure 1: A high-level overview of the approach: (1) Extract
domain knowledge (2) to infer partial specifications (3) to
be used for dataset semantic augmentation (4) to improve
accuracy in state-of-the-art pedestrian detectors.

of a domain’s concept that MLSC is designed to detect and what a
collected dataset represents as the targeted concept [24, 50].
In this regard, this paper aims to answer a general question:

“Does making use of semantic specifications of a targeted domain’s
concept improve the concept’s representation in MLSC training dataset,
to increase their detection accuracy?”

Thus, the goal herein is to make MLSC better meet domain
specifications by augmenting the inductive nature of ML with
domain analysis. The augmentation occurs through incorporating
semantic knowledge into MLSC training datasets, which in turn
compensates for the missing variants of a concept within the dataset,
providing an augmented source of knowledge for ML models. In
this regard, we propose an automated approach to formally specify
hard-to-specify domain concepts instead of allowing MLSC to learn
the specifications solely from a set of arbitrarily collected samples.
Referring to the derived specifications, we further validate the
presence of the domain specifications in the collected samples,
which in turn characterizes the extent to which the dataset contains
or lacks features that are important to learn a domain concept.
If a specification is not present in a state-of-the-art pedestrian
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dataset, we augment the dataset with the missing specification. Our
experiments verified that systematic selection of images, according
to domain specifications, results in a more representative dataset,
which in turn, generates more generalizable and accurate MLSC.
To the best of our knowledge, this is the first study to exploit
domain specifications to evaluate dataset quality (in terms
of semantic completeness) with the purpose of improving
MLSC perception accuracy.

We address this problem in the context of automated driving
systems, where the correct description of real-world concepts is
critically important for safety reasons, such as correct pedestrian
recognition to avoid accidents. In this domain, we focus on the
concept of pedestrian due to its importance for the perception of
autonomous vehicles from the environment. Our contributions are:

e We demonstrate that the SE domain analysis task can be adopted,
adapted, and applied to the process of engineering MLSC.

e We demonstrate that by the use of semantic specifications of a
targeted domain’s concept, we can evaluate, reason, and augment
the representation of the concept in MLSC training datasets.

e We propose a novel and generalizable method for deriving partial
specifications, where definitive specifications are not feasible, and
for exploiting the specifications to assess and improve the semantic
completeness of MLSC training dataset.

This research is fundamentally different but complementing to the
work in the computer vision domain whose primary focus is on im-
proving the MLSC robustness through pixel-level transformations
of the existing images in the dataset, such as occlusion, rotation,
and translation. Here we instead focus on improving the MLSC
generalizability of a targeted domain’s concept by search-
ing through an external semantic space of prior knowledge
to incorporate the missing variances of the concept into the
dataset. Instead of addressing visualization concerns, such as incor-
porating visible and invisible noise into adversarial examples, we
fill the gap between the conceptualization of the targeted concept
and its visualization in the dataset.

Section 2 describes the proposed approach for mining relevant
terms from the existing knowledge sources. Section 3 explains the
procedure to derive partial specifications from the terms. Section 4
evaluates completeness, accuracy, and usefulness of specifications.
Finally, Sections 5-8 describe potential applications of our work,
related work, threats to validity, and conclusion and future work.

2 GATHERING DOMAIN KNOWLEDGE

(Figure 1- @): The use of domain knowledge can play a significant
role in improving the quality and efficacy of software development
process. For this reason, several studies in the SE domain have pre-
viously sought to extract domain knowledge for various concepts
from the existing domain documents [8, 19, 65]. Several studies have
gone further by capturing the retrieved information in the form
of a semantic web or ontology [11, 32]. However, some concepts
are inherently difficult to explicitly delineate, yet most humans
have an intuition of what they refer to. One primary challenge in
gathering domain knowledge for the hard-to-specify concepts is
the lack of domain documents. For instance, pedestrian is a socially
constructed concept for which no relatively complete domain doc-
ument exists. Although there are a few general domain semantic
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webs that include a limited specification of the term pedestrian,
such as WordNet [38], they fail to adequately capture all varying
instances of the concept in sufficient detail. For example, WordNet
defines a pedestrian as a “person who travels by foot” and associates
the word with the terms walker and footer. However, this definition
is limited given that it excludes, for example, pedestrians riding a
bike, roller-skating, or using a wheelchair. It also fails to describe
a pedestrian’s appearance in terms of attributes, such as clothing
and posture.

To tackle the challenge of limited documents, we adopted two
complementing approaches to gather the existing domain knowl-
edge for the concept pedestrian: textual-based and visual-based.
Both of these methods acquire domain knowledge through iden-
tifying a set of important attributes associated with the concept.
However, they are different in terms of the sources they refer to gain
semantic information, as well as in the processing methods they
apply to the source artifacts, due to the artifacts type differences.
In the first approach, existing human knowledge was our source of
reference, whereas, in the second, we combined a set of benchmark
pedestrian datasets to form a super dataset as a point of reference.
To summarize, we first searched the existing textual sources to
extract information about the pedestrian concept and then extended
the list of attributes through processing visual sources, including
images and video frames of different-looking pedestrians.

Figure 1 represents an overview of our proposed approach. We
initially collect important attributes of a potential pedestrian from
both sources (step 1). We further infer a set of partial specifications
of a potential pedestrian in the form of simply structured relation-
ships between the extracted attributes and a pedestrian (step 2).
With reference to the derived specifications, we augment a state-
of-the-art pedestrian dataset for missing specifications (step 3). We
compare the accuracy of the two commonly used pedestrian detec-
tors once before the augmentation and again after both random
and semantic dataset augmentation (step 4).

Our primary question is the applicability of the approach-derived
specifications (indicating the applicability of domain semantics)
for improving MLSC generalizability (RQ2). Yet, our evaluation
consists of two distinct phases designed to evaluate the efficacy of
our approach through addressing two key research questions:

e RQ1: Accuracy and Completeness: How accurately and
completely can the proposed approach establish partial spec-
ifications of a hard-to-specify domain concept?

e RQ2: Usefulness: How useful are the established specifi-
cations for semantic augmentation of datasets to improve
MLSC generalizability?

2.1 Textual Knowledge

(Figure 1- @ @): To exploit human knowledge as a reference, we
searched online repositories of American and British English books.
We selected Google books repository containing about 40 million
book titles with 155 billion words from American English and 34
billion words from British English, published between 1500 and
2019 [15]. Mining the repository, we selected terms that frequently
appeared immediately before and immediately after the term pedes-
trian, as well as those that appeared up to four terms apart. This
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step resulted in 1,329 initial and 265 final distinct terms accom-
panying the term pedestrian. Further, to remove the less relevant
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Figure 2: Box plot of similarity scores for terms retrieved
from Wikipedia and Google News.

terms, we used semantic similarity as a second filter. We first se-
lected two public and widely used corpora, namely Wikipedia and
Google News, built on a substantial number of words, 400,000 and
3 billion, respectively. Using Gensim library [47], we transformed
each corpus into a set of Word2vec models, whereby each unique
word in the corpus was assigned a corresponding vector in the
space [37]. Word vectors were positioned in the vector space such
that words that share common contexts in the corpus were located
close to one another in the space. Second, querying this imple-
mented two-layer neural network model for each final term, a score
between -1 and 1 was assigned to each term, representing their
cosine similarity to the term pedestrian, according to Wikipedia
and Google News corpora. Finally, we selected terms only with
similarity scores within the upper quartile (75th percentile) of all
the terms’ similarity scores. As such, the cutoff value appeared to
be 0.3258 and 0.2137 for Wikipedia and Google News, respectively.
Figure 2 represents the box plots for both corpora, Wikipedia, and
Google News similarity scores. After removing the out-of-the-range
terms, 135 distinct terms remained.

Table 1: Terms extracted from textual and visual sources with
their similarity and average of confidence scores.

Terms Similarity Score(Txt.)

Ave. Confidence(Img.)
0.616, 0.530, 0.416, 0.407,
0.513, 0.449, 0.300, ...

Src

Text bicyclist, bike, jaywalking,
motorist, wheelchair, blind,
handicapped, ...

0.173, 0.328, 0.248, 0.304,
0.166, 0.342, 0.240,...

Image sidewalk, street, jacket,
bag, head, building, tree, ...

The upper section of Table 1 represents a few examples of the fi-
nal remaining terms with their associated similarity scores. Among
all the terms, several terms explicitly described a potential pedes-
trian with respect to a prospective adjective (e.g., blind or hand-
icapped) or a possible accompanying object (e.g., wheelchair or
bike). However, certain terms did not necessarily specify a par-
ticular pedestrian, but provided useful information regarding the
context in which the instances of the concept appear. For example,
the terms sidewalk, stairs, and safety do not particularly describe a



CAIN’22, May 16-24, 2022, Pittsburgh, PA, USA

pedestrian, yet the first two terms specify a place where a poten-
tial pedestrian may appear, and the last one determines a desired
requirement for pedestrians. There were a few terms that neither
described potential pedestrians nor provided descriptive informa-
tion directly relevant to pedestrians. The majority of these terms
instead described the context factors, such as driver, collision, and
accident. The next section explains our method to place the more
meaningful terms in a descriptive format.

We additionally mined a wide range of other existing textual
sources, such as knowledge graphs, dictionaries, glossaries, and
encyclopedias for terms with relatively more “known” relationships
to the term pedestrian, as well as sources that contained more fre-
quently updated content, such as social media and news feeds.
However, to avoid evaluation bias, we did not use these sources
for domain specification inference and instead reserved this data
to evaluate RQ; further, discussed in detail in Section 4. A com-
plete list of the terms extracted from all sources of knowledge and
the other artifacts of this paper can be accessed from our publicly
available online repository!.

2.2 Visual Knowledge

(Figure 1- @ @)): To further extend the list of concept-accompanying
terms, we additionally utilized the existing visual sources of knowl-
edge. We initially referred to the three most commonly used datasets
of images and video frames of pedestrians: Caltech [13], CityPer-
sons [74], and EuroCity Persons (ECP) [6]. The pedestrian dataset
benchmarks are proposed from the context of autonomous driv-
ing. However, these datasets are monotonous, such that they lack
diverse scenarios. Hence, we selected two additional large-scale
human datasets, CrowdHuman [55] and WiderPerson [75], which
unlike pedestrian datasets are not limited to traffic scenarios and
include images of people in more generic contexts, such as people
in parks, restaurants, and selfies. We added these two datasets to
narrow the gap between real-world humans and current pedes-
trian detection benchmarks. Recent research has shown that cross-
dataset evaluation of a model trained on a human dataset produces
more accurate predictions than models trained only on pedestrian
datasets [20]. Table 2 represents the summary of the datasets. We
refer to the combination of the five datasets as the super dataset.
To detect terms associated with the classes of pedestrian and per-
son in the super dataset, we used an anchor-based object detection
technique related to computer vision and image processing. The
process of object detection typically happens through two levels:
one involving image classification and the other object localization.
While image classification assigns an object to one or multiple exist-
ing classes, object localization identifies the location of a potential
object through drawing an imaginary surrounding bounding box
around its extent. To localize an object, the anchor-based object
detection algorithm first predicts an object’s position in an image
by creating numerously fixed and predefined anchor boxes around
it. Anchor boxes are, therefore, referred to as candidate boxes that
a model initially predicts to identify an object’s location, size, and
shape. Later, the detector calculates probability and other attributes,
such as Intersection over Union (IoU), for each anchor box. IoU
is an evaluation metric that identifies the overlap of each anchor

!https://github.com/SEFORAT/MLClassifiers
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Figure 3: The pre-trained Faster R-CNN detected objects in
an image of a pedestrian from the ECP dataset.

box with the predicted bounding box by the model. Assessing the
calculated attributes, the model refines the initial anchor boxes
to finally propose an optimal bounding box for label prediction.
For instance, Figure 3 illustrates a few of the detected objects and
their ultimate predicted bounding boxes. The application of anchor
boxes improves the detector’s performance, as the entire image can
be processed at once. The object detector additionally estimates a
confidence score, representing the probability of the box containing
the predicted object. Finally, the classification accuracy is computed
according to standard metrics such as recall, precision, and mean
average precision (mAP) scores with respect to a predefined loU
threshold, specifying the overlap of the predicted boundary with
the ground truth for a true positive prediction.
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Figure 4: Scene Graph partially drawn from USGG generated
tuples for Figure 3. Subjects and objects are illustrated in
blue, while predicates are in green.

Following recent work in the computer vision domain [61, 62,
70, 73], we selected a pre-trained anchor-based Faster Region-based
Convolutional Neural Network (Faster R-CNN) model [48] as the
underlying object detector for the super dataset. Region-based Con-
volutional Neural Networks (R-CNNs) incorporate a selective search
algorithm into the network to identify potential regions from an im-
age to label and create bounding boxes. Despite R-CNNs success in
object detection, they are typically computationally expensive [48].
To address this problem, Faster R-CNN replaces the selective search
algorithm with a region proposal network which, in turn, reduces
the number of proposed regions generated while ensuring precise
object detection [48].
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Table 2: Super Dataset statistics

Caltech(1Frame/Second) CityPersons ECP(Day) CrowdHuman WiderPerson
Training Images 2,143 2,975 23,892 15,000 8,000
Persons 13,674 19,238 201,323 339,565 287,131
Persons/Image 0.32 (all frames) 6.47 9.2 (all conditions) 22.64 3.2
Distinct Persons 1,273 19,238 201,323 339,565 287,131

Table 3: Details of the detected objects and relationships by Faster-R-CNN and USGG in each dataset of the super dataset.

Caltech CityPersons ECP CrowdHuman WiderPerson
Objects (O) 64,290 89,250 716,760 450,000 240,000
Distinct O 92 87 115 147 145
Pedestrians (P) 5,606 10,034 58,216 172,751 116,227
P-Relationships (R) 13,360 38,520 280,100 299,280 159,980
Distinct R 219 264 682 839 513
R/Image 6.23 12.95 11.72 19.95 20

The adopted Faster R-CNN in our approach was equipped with
ResNeXt-101-FPN backbone [33, 69], a batch size of 8, and an initial
learning rate of 8 x 10%, and was trained on the training set of
Visual Genome, a large and dense general dataset containing 108,077
images with a detailed description of each image [29]. The dataset
contains 75,729 unique objects (labels), and each image has an
average of 35 objects, 26 attributes, and 21 pairwise relationships
between objects. Analyzing the labels of the dataset, we decided
to consider the labels People, Person, Woman, Man, Boy, Girl, Kid,
Child, Guy, and Lady as potential pedestrians [29].

We used the detector on all images in the super dataset to extract
additional terms that are likely to be associated with a potential
pedestrian. The network detected a total of 1,560,300 objects in
the images. Analyzing the confidence scores associated with the
detected objects, we observed a diverse range of numbers, changing
from the highest 0.9923 to the lowest 0.0005. Therefore, to gener-
ate more accurate final specifications of a potential pedestrian, we
removed terms with an average confidence score of 0.15. The re-
maining objects with the highest confidence scores had an average
score of 0.3654. The upper part of Table 3 represents the statisti-
cal details of the detected objects, distinct detected objects, and
detected pedestrians—including objects with labels people, person,
woman, man, boy, girl, guy, and lady—by Faster R-CNN in each
dataset. After removing objects with low confidence scores, an
average of 26% of the remaining objects were potential pedestrians.

The lower part of Table 1 indicates a few examples of the re-
trieved terms and their confidence scores. Some terms, similar to
the extracted textual terms, do not directly describe potential pedes-
trians but rather the context in which pedestrians appear, such as
building, tree, and stop sign. The following section explains our
method for identifying such terms.

3 DERIVING DOMAIN SPECIFICATIONS

(Figure 1-@): This section describes our method for deriving a set
of partial specifications, in the form of simple relationships between
the retrieved terms and the term pedestrian. Given previously re-
trieved textual and visual terms, we partially specified a potential
pedestrian as a set of (i) attributes that explicitly describe a po-
tential pedestrian, such as a child or woman; (ii) objects that may
accompany a pedestrian, such as a wheelchair or a purse; and (iii)
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themes that a potential pedestrian may be associated with, such as
a walkway and sidewalk. The approaches to derive specifications
for the textual and visual terms are discussed separately, as our
processing method differed for textual and visual sources.

3.1 Textual Knowledge

(Figure 1- @ @): For each distinct term, an individual rule was
inferred. Each rule corresponds to the construction of a single tu-
plefsubject, predicate, object], where the subject is always pedestrian,
the predicate describes a potential relationship between the subject
and object, and finally, the object represents the term that the subject
is in relationship with. Therefore, each previously extracted term
replaces an object in a tuple.

To replace predicates, we initially explored retrieving verbs from
sentences that contained the pair of object and pedestrian as the sub-
ject. For this, we applied part-of-speech tagging using the Python
library for Natural Language Processing (NLP), namely Natural Lan-
guage Toolkit (NLTK) [35]. We first wrote a Python wrapper script
to use the NLP tagger to parse and tag the verb in each sentence
with subject-object pair. However, after merging all the predicates
which belonged to the same pair, we found that the majority of
pairs had many potential predicates. For instance, in one record, we
had pedestrian as the subject, freeway as the object, and {killed, hit,
run, closed, cross, identified, filmed, dies, struck, call, crossing, backed,
injured, forcing} as a set of predicates.

Thus only for representation purposes, we further limited the
predicates to three less specific categories of is-a, has-a, and does
relations. The predicate between the subject pedestrian and the ob-
Jject is selected according to the grammatical structure of the object,
applying part-of-speech tagging. The is-a predicate is selected for
objects with the role of a noun, has-a is placed between the subject
and objects with an adjective tag, and does is placed between the
subject and objects with all other roles. For instance, if wheelchair
was retrieved as an object, with the part of speech determined to be
a noun, then the predicate to be placed between the subject pedes-
trian and the object wheelchair is selected as has-a, to form the rule
“pedestrian has-a wheelchair”. As another example, the retrieval of
the terms handicapped and jaywalking functioning as an adjective
and verb, respectively, resulted in the addition of two new rules:
“pedestrian is-a handicapped”, and “pedestrian does jaywalking”. The
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Table 4: A few examples of the derived specifications in form of Subject-Predicate-Object tuple

Source Spec. Subject Predicate  Object

S1-3 pedestrian  has-a {bike, wheelchair, safety...}
Textual Sy_7 pedestrian  does {jaywalking, walking, crossing...}

Sgs—10  pedestrian is-a {handicapped, blind, drunk...}

Si0-20 pedestrian is {people, person, woman, man, boy, girl, kid, child, guy, and lady}
Visual Sp1-26 pedestrian  wearing {pant, shirt, shoe, jean, shorts, jacket...}

Sp7-32  pedestrian  carrying {bag, umbrella, surfboard, skateboard, jacket, paper...}

S33-41 pedestrian  has {head, leg, arm, face hair, mouth, nose, neck, eye...}

Siz-46 pedestrian walking on  {sidewalk, street, track, railing, snow...}

Sa7-50  pedestrian  riding {horse, bike, skateboard, motorcycle...}

full list of predicates is available on our online repository in the
form of an .owl document.

This process resulted in 42 has-a, 11 does, and 4 is-a relation-
ships. The rest of the terms with minor roles, such as adverb and
preposition, were removed as they did not specifically describe a
potential pedestrian. Among the established relationships, several
resulted in meaningful descriptions of a potential pedestrian, while
a few yielded less valid phrases. For instance, the terms bicyclist
and motorist are more descriptive of a pedestrian with the selec-
tion of is-a rather than has-a as the predicate. However, since their
role is determined as a noun, the method derives the specification
“pedestrian has-a {motorist, bicyclist}”. Another example is the word
parking, identified as a verb although it may also be referring to
the place of parking and therefore, has the role of a noun. The
upper section of Table 4 contains a few examples of the established
specifications. The complete list is placed in our publicly available
repository. In the next subsection, we describe our approach for
identifying additional rules.

3.2 Visual Knowledge

(Figure 1- @ @): To infer partial specifications from the extracted
terms out of images and video frames, we similarly established a
relationship between a detected potential pedestrian (people, per-
son, woman, man, boy, girl, kid, child, guy, and lady) and each term.
Although here, for this purpose, we generated a Scene Graph (SG)
from each of the 52,010 images in the super dataset. A generated
SG from an image provides an abstract structured representation
of the image content. Scene Graph Generation (SGG) is a well-
researched problem in the computer vision domain [70, 73], and
has received increasing attention from the research community
due to its use for visual reasoning tasks [71]. SGG targets different
semantic levels and describes a scene by extracting relationships
between the detected objects. These relationships can be repre-
sented by directed edges, that connect two objects in the form of a
subject-predicate-object phrase, such as woman-wearing-shorts.

To generate the scene graphs, we selected a state-of-the-art Un-
biased SGG (USGG) framework that uses causal inference [61]. The
USGG first builds an initial causal graph for the set of objects in an
image, and further removes the mistakenly inferred relationships
due to counterfactual causality. The model, therefore, generates rel-
atively less biased results by distinguishing between the main effect
and side effects. The USGG framework demonstrated significantly
improved predictions over other frameworks, such as Iterative Mes-
sage Passing [70], MOTTFs [62, 73], and VCTree [29]. The model is
previously trained across 75k object categories and 37k predicate
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categories [61]. We selected this model as it also provides more
fine-grained relationships from the ostensibly probable but trivial
ones, such as replacing near with behind/in front of, and on with
standing on/walking on/parking on/driving on. Figure 4 represents a
partial scene graph drawn from a subset of the generated tuples by
USGG corresponding to the image in Figure 3.

Since USGG also uses Faster R-CNN with the same parameters,
trained on the same dataset, Visual Genome, it detected relation-
ships between the same set of objects that we previously extracted in
Section 2.2. Applying USGG to the super dataset, a total of 1,083,060
relationships were detected. Among them, we selected 469,709 of
the most confident ones (with the average confidence score of 0.15)
that contained a potential pedestrian (people, person, woman, man,
boy, girl, kid, child, guy, and lady). The lower part of Table 3 rep-
resents the number of detected pedestrian-related relationships,
distinct relationships, and an average number of detected relation-
ships per image for each dataset, while the bottom part of Table 4
shows a few examples of the derived specifications in the form of
subject-predicate-object tuples. We manually added specifications
10 to 20, S19—20 (the first row) since we considered these labels as
a potential pedestrian. The rest of the specifications in the table
were established by USGG. The complete set of the derived partial
specifications can be found in our publicly available repository.

4 EVALUATION

This section addresses the two research questions specified in Sec-
tion 2 regarding the relative completeness and accuracy of semanti-
cally reasoned specifications and, most importantly, their usefulness
in improving generalizability of object detection:

4.1 Completeness and Accuracy (RQ)

(Figure 1-RQ1): We do not claim that the proposed approach gener-
ates absolute complete or definitive specifications of domain con-
cepts, yet the experiments indicated that the semantic specifications,
which the approach derived for the concept pedestrian, effectively
served our primary purpose of outlining a hard-to-specify domain
concept to enrich the MLSC training dataset:

4.1.1 Completeness: Due to the presence of several sources of
uncertainty in MLSC operational domain, such as domain shifts
and environmental uncertainties, proving absolute completeness of
the inferred specifications in such way that they covers the entire
instances of potential pedestrians within any context, seems im-
possible. Instead here, we provide evidence of the incompleteness
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of currently used pedestrian datasets relative to the derived specifi-
cations. Table 5 reports the number of specifications inferred from
each aforementioned dataset that were missing from the remaining
four datasets. As previously shown in Table 3, potentially due to the
large size of CrowdHuman and ECP datasets (in terms of number
of objects and relations) in comparison to the other datasets, it
is somewhat reasonable to observe the highest number of unique
specifications in these two datasets. Similarly Caltech and CiyPer-
son datasets with the lowest number of unique objects and relations
contain a lower number of mutually exclusive specifications.

Table 5: Datasets mutually exclusive specifications.

ECP CrowdH. WiderP.
231 250 43

Caltech CityP.
6 9

Unique Spec.

While the results do not provide evidence for completeness of
the approach-inferred specifications, they indicate that randomly
collected datasets, formed to serve the same purpose, are incomplete
relative to each other, supporting our work of addressing such
incompleteness. This is appropriate to remind the readers that the
overall performance of ML algorithms depends on the extent to
which a dataset represents the original distribution rather than its
size. Therefore, unsystematically increasing the size of a training
dataset—in this case for instance training with the super dataset—
does not necessarily improve a model’s generalizability, overfits the
models, and reduces computing performance in large models [2, 12,
34, 43]. To demonstrate this, Section 4.2.2 carries out experiments,
comparing models performance trained on randomly augmented
datasets and on semantically augmented datasets.

4.1.2  Accuracy: Given that manually verifying the correctness of
specifications for describing pedestrians is highly subjective, we
constructed multiple binomial classifiers for detecting potential
association between a wide range of terms and the term pedestrian.
The classifiers were trained on knowledge sources that (i) were
not previously used for specifications retrieval and (ii) contained
relatively “known” relationships to the term pedestrian. This allows
unbiased testing on unseen data and prevents classifiers bias to-
wards possibly incorrect unknown relationships. Considering the
two characteristics, we built a training set from endorsed dictionar-
ies, glossaries, and encyclopedias, using Onelook, a web interface
to search through 18,955,870 words from 1,061 general dictionar-
ies and glossaries, as well as more specific ones, such as science,
technology, and slang [1]. As an additional source, we traversed
ConceptNet, a commonly used knowledge graph to reason about
associations between words, which contains verified and relatively
known relationships [59]. During training, these terms served as
positive instances, while negative instances were selected through
pairing the term pedestrian with a set of random non-associated
terms using the same sources and process. These negative instances
may, therefore, by chance, contain a small number of positive but
yet unknown related pairs. We accepted this “noise” as a character-
istic of the larger problem we seek to solve. The process of sample
collection resulted in 575 positive and 692 negative samples.
Given the collected positive and negative samples, six classifiers
were built (representing different classes of models) to recognize
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Table 6: Precision, Recall, F1, and F2 on the testing set

LR NB DT RF SVM K-NN
Precision 0.77 0.73 0.76 0.76  0.76 0.77
Recall 0.77 054 074 0.76 0.76 0.77
F1 0.77 0.62 074 0.76 0.76 0.77
F2 0.64 047 061 0.63 0.63 0.64

potential associations between a term with the term pedestrian.?

These classifiers measured several features, both semantic-based,
such as cosine similarity, and lexical-based, such as frequency of co-
appearance, to learn the existing patterns. The classifiers included
Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT),
Random Forest (RF), Support Vector Machines (SVM), and K-Nearest
Neighbor (K-NN). LR and NB are both probabilistic classifiers, LR
makes a prediction using a logistic function to model the class
variable, whereas NB learns how the data was generated given
the results. DT uses a tree structure, in which leaves and branches
represent class labels and conjunctions of features, while RF chooses
the mode of a multitude of DTs decisions as the final label. SVM is
another non-probabilistic model that maps the training data to a
higher dimension and searches for a hyperplane that separates the
classes. Finally, K-NN classifies by a popularity vote of K neighbors.

During the testing process, the approach-derived specifications
served as the positive samples, while the same number of random
terms were selected as the negative ones. Negative testing sam-
ples were randomly selected from the same sources, following the
same processes from which previously the negative training sam-
ples were extracted. Finally merging positive and negative samples
as a balanced testing set, the trained classifiers either agreed or
disagreed with the association in each sample.

The results are reported in Table 6, using the standard metrics,
precision, recall, F;, and F. As reported, the average agreement
between the models is 0.75, 0.72, 0.73, and 0.61 in terms of pre-
cision, recall, F1, and F2, respectively. Please note, the primary
concern here is the accuracy of the established associations (posi-
tive samples) and less with the associations that are not established
(negative samples) since the positive samples present associations
in the approach-generated specifications rather than the negative
ones. The intention of training classifiers is thus, to assess the per-
centage of our established associations (positive instances) that
are mutually predicted positive by the classifiers (true positives).
As such, in our experiments recall is the fair measurement ver-
sus precision, and F2 (favoring recall) is more informative than F1.
Yet, we report precision and F1 as factors representing the fitness
of the trained model for the entire test set. Additionally, positive
testing samples that the classifiers disagreed with, may not neces-
sarily represent incorrectly established associations as our manual
post-process investigation verified. These results can possibly be
improved through a finer training. However, we did not adjust the
initial experiments and reported the preliminary results.

2The classifiers were built with the open source Python ML library scikit-learn [42].
The optimal values for hyper-parameters of each individual classifier were found
through adopting a method, called exhaustive grid search. This method exhaustively
implements and evaluates a classifier with all combinations of different parameter
values to retain the best combination. As such the final hyper-parameters were set
to: LR (penalty=11, C_value=0.2); DT (max_depth=4, min_sample_split=3); RF (crite-
ria=entropy, max_depth=40, min_sample_split=30, n_estimator=20); K-NN (K=180);
and finally SVM (gamma="scale’, kernel="linear’).
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Figure 5: ResNet-50 mAP-50%, mAP-75%, mAP on pedestrian classification before and after semantic augmentations.
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Figure 6: Darknet-53 mAP-50%, mAP-75%, mAP on pedestrian classification before and after semantic augmentations.

4.2 Usefulness (RQ)

(Figure 1- @ & @): We conducted two series of experiments to
answer RQ; regarding usefulness of the derived specifications in
improving MLSC prediction accuracy. The experiments differ with
respect to the selected benchmarks, as well as the applied detectors:

4.2.1 Semantic Augmentation vs. Before Augmentation: We selected
CityPersons as the base dataset (to be augmented), since it contained
relatively lower number of images within the super dataset and
lacked a high number of the derived specifications. The publicly
available pedestrian datasets often do not release ground truth
associated with the testing set to establish public challenges for
training the most accurate model on their test dataset. Therefore, we
randomly reserved 15% of the base training data with the purpose
of using it as our testing set later. This way we were able to perform
an unbiased evaluation of the models on unseen images. We refer
to the remaining 85% of CityPersons dataset as base dataset (70%
and, 15% respectively for training and validation).

We then used the remaining datasets in the super dataset as the
supplementary source for the purpose of semantic augmentation.
Among the previously derived specifications from each dataset, we
identified those which were missing from the base dataset. As such,
we retrieved 2,797 associated images with the missing specifications,
split the images to 70% for training, 15% for validation and 15% for
testing, and added them to the corresponding sets in the base dataset
(details shown in Table 7).

We then twice trained and validated the formerly introduced ob-
ject detector, Faster R-CNN with ResNet-50 backbone, once with the
base dataset (before augmentation) and once with the augmented
dataset using two 16GB Tesla P100 GPUs for 50 epochs. The train-
ing process took about 8 hours on the base dataset and 10 hours
after the augmentation. We then tested both models on the same
testing dataset with about 841 images, containing 15% of the base
that we reserved, as well as 15% randomly-selected instances of the
superset training dataset. The results are represented in Figure 5 in
terms of the standard object detection metric mAP for (i) 50%, (iii)
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70%, and (iii) the average over multiple IoU levels. The mAP scores
are reported once on the validation set, including the images that
were used to tune the model’s hyper-parameters during training,
and once again, on the testing set.

Table 7: Images Contain Missing Specifications By Datasets

Train Val Test Total
Caltech 201 44 43 288
ECP 871 168 155 1,194
CrowdHuman 562 121 120 803
WiderPerson 358 77 77 512
Total (used in semantic augmentation) 1,992 410 395 2,797

The first bars (blue) represent the model’s performance on the
base dataset (before the augmentation), while the second ones
(yellow) show the performance after the semantic augmentation.
As we hypothesized the model’s performance is improved when
the neural network is trained with a dataset that is systematically
augmented according to the semantics of a domain concept that the
model aims to detect. Note a slight increase in accuracy of software
systems with safety applications in reality translates to preventing
severe damage to people’s lives, properties or the environment.

Since specifications were partly derived using ResNeXt-101 (in-
herited from ResNet), to remove detection bias and assess the
approach in a cross-cutting evaluation, we repeated the experi-
ments with YOLOv3 object detector equipped with Darknet-53
backbone [46]. The training and testing datasets, processes, and
parameters held the same as the previous experiments. Darknet was
trained significantly faster than ResNet50, taking 4 hours before
and 5 hours after the augmentation under the same conditions as
ResNet. The models mAP scores based on 50%, 75%, and the average
IoU are illustrated in Figure 6. In agreement with our objectives,
the base mAP scores are improved when the model is re-trained
with the missing semantics of the domain.

On a side note, both models’ performance improved on the test-
ing set in comparison to the validation set. This provides support
for proper training and the models’ fitness for coping with unseen
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Figure 7: Darknet-53 mAP-50%, mAP-75%, mAP on pedestrian classification after random and after semantic augmentations.

data. The improved accuracy from validation to testing sets is not
due to training underfitted models as we observe the same pattern
for models trained on the base datasets. As shown in Figures 5 and 6
the accuracy generally decreases for higher IoU values, as a correct
answer requires more area of overlap between the predicted and
ground truth bounding boxes.

4.2.2  Semantic Augmentation vs. (Same-Size) Random Augmenta-
tion: To further evaluate the approach, we assessed whether adding
randomly-selected additional images (non-systematic increase in
the size of the training dataset) also result in a more accurate model.
If true, then it became apparent that the detection improvement in
the previous experiments was only due to the use of a larger dataset
for training, not due to the systematic selection of the specification-
guided samples. Hence, once more we trained Darknet with the
same base dataset. However here, while the number of the augment-
ing images were equal to the images in the semantic augmentation,
they were rather randomly selected from the superset. Re-training
the network with the randomly augmented dataset took about 5
hours. After training, we compared the detector’s accuracy on the
same testing dataset, used in the previous experiment, before and
after the augmentation. The detector’s performance is shown in
Figure 7. The results support the effectiveness of using semantic
specifications of domain concepts in improving the generalizability
of pedestrian detection. On a side note, Figures 5, 6, and 7 reported
that the re-trained ResNet generally achieved higher accuracy than
Darknet in detecting pedestrians on the selected base dataset.
Although data augmentation is shown to improve image clas-
sification, its potential has not yet been thoroughly investigated
for object detection [77]. However, due to high cost of annotation,
data augmentation may be of even greater importance for detection
tasks [77]. Therefore this paper investigated the application of sys-
tematic and semantic data augmentation on pedestrian detection
performance. In this work, we first showed hard-to-specify domain-
related concepts can be partially specified by exploiting the existing
domain knowledge. We further found that semantic specifications
of the domain concept pedestrian is effective for identifying the
missing variants of the concept within five commonly-used but
unsystematically-collected pedestrian datasets. We also observed
that by exploiting and incorporating the derived specifications
into the training dataset, we can semantically improve MLSC ac-
curacy in pedestrian detection. Our experiments with CityPerson
as the base dataset showed that semantic augmentation improves
pedestrian detection accuracy in the ResNet and the Darknet-53
respectively 4 and 7 mAP value, while the best augmentation policy
identified in the literature with COCO dataset improves a strong
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baseline on PASCAL-VOC only by +2.7 mAP [77]. Further, repeat-
ing our experiments with the same number of randomly-selected
images, we observed about +1 mAP improvement. This paper se-
lected pedestrian as a critical concept in the automotive domain, yet
the proposed approach and semantic principles are generalizable
to other domain concepts.

5 APPLICATIONS

We foresee further potential applications for this work:

Formal Benchmarks: The presentation of the derived spec-
ifications in the form of a semantic web can represent a formal
definition of the categories between the concepts, data, and entities
and therefore, facilitates effective communication of the extracted
information, knowledge sharing and reuse, and provides a machine-
readable point of reference for hard-to-specify domain concepts.

Dataset Collection: In the proposed approach, we exploit the
learned domain knowledge to compensate (augment) for semantic
weaknesses of existing datasets. Given the established benchmarks,
one can identify the most important dimensions of a concept’s
variations within the domain. The identification of deterministic
features provides guidance for the process of data collection.

Model Verification: A representative dataset is the underlying
condition of a well-trained model, yet does not guarantee that a
particular model equally learns all variations of a concept. The
specifications can be used to verify if the ML model has adequately
learned the concepts variations. A requirement of this application
is to interpret ML models in terms of domain-related features.

Safety Assurance: The majority of suggested verification and
testing methods in safety standards rely on software specifications
being available [50]. Generating a set of pre-defined domain speci-
fications permits verification of ML software components against
this list, improving the process of MLSC safety assurance.

Concept Drift: In ML, concept drift refers to the phenomena
that important attributes of a concept to be predicted will change
over time [64]. To address this, one can use the proposed approach
to repeatedly extract the most recent body of knowledge, update the
stale specifications, and incorporate new images into the dataset.

6 RELATED WORK

Domain Specifications: There have been attempts by different
communities to specify requirements for MLSC by creating (1)
component-level specifications: to define the behavior of MLSC
as a whole with respect to how they address the target applica-
tions [54]. However, in such approaches, the implication of the
high-level specification to the downstream MLSC development
tasks, such as data collection and model selection, is unclear; (2)
dataset specifications: since dataset management is critical to the
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overall quality of systems with MLSC [26, 27]. However, studies in
this area are limited to specific domains; (3) model specifications:
based on the particular machine learning algorithms authors aim
to define how the theoretical properties should hold during im-
plementation [52, 53]; and (4) development process specifications:
to produce consistent results authors proposed that the training
procedure be clearly specified to meet the functional safety stan-
dards [49]. Thus, the lack of specification challenge remains for
domain-specific concepts [49].

Dataset Augmentation: Data augmentation is an effective tech-
nique to alleviate the overfitting problem in training deep net-
works [21, 23, 30, 31, 57, 68]. A large body of research applies dataset
augmentation methods to address the problem of overfitting MLSC
and to improve their generalizability. The existing dataset augmen-
tation approaches rely on the assumption that more information
can be extracted from the original dataset through augmentations.
These augmentations artificially inflate the training dataset size
by either data warping or oversampling [56]. Data warping aug-
mentations transform existing images such that their labels are
preserved. This encompasses augmentations such as geometric
and color transformations [3, 9], random erasing [76], adversar-
ial training [39, 60, 72], and neural style transfer [16]. Oversam-
pling augmentations create synthetic instances and add them to the
training set. This includes mixing images, feature space augmenta-
tions [28, 63], and generative adversarial networks (GANs) [18, 25].
All the research referenced here focuses on visualization concerns
by applying the augmentation to the existing set of images in the
dataset. However, if a feature is initially missing from the dataset,
these approaches can not be used to add the missing feature to the
dataset. As opposed to the existing work, our approach focuses on
filling the gap between conceptualization and visualization.

Pedestrian Detection: In the past decade, pedestrian detec-
tion has received significant attention, as evidenced by over 2,000
research publications [7]. Most existing pedestrian detection algo-
rithms are either based on a set of handcrafted features or features
extracted by deep convolutional neural networks (CNNs) [7]. Be-
fore the success of deep CNNs in computer vision tasks, a variety
of handcrafted feature descriptors, including SIFT [36], LBP [40],
SURF [4], HOG [10], and Haar [66], have been investigated in the
context of pedestrian detection. These handcrafted features usually
extract color, texture, or edge information from images. More re-
cently, with the success of deep learning in generic object detection,
several attempts have been made to apply deep CNN features to
pedestrian detection [41, 51]. Studies show that despite significant
progress, performance still has much room for improvement. In
particular, detection is disappointing at low resolution and for par-
tially occluded pedestrians [14]. Most existing methods focus on
pedestrian detection from a specific type of dataset and cannot
guarantee that the proposed methods will be generalizable to a
significant degree [20, 67]. To that end, our proposed approach
focuses particularly on using domain knowledge to improve MLSC
generalizability in detecting pedestrians.

7 THREATS TO VALIDITY

Internal Validity When there is a causal relationship between
the dependent and the independent type of variable. The level of
detail and completeness of the specifications, in addition to their
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correctness, significantly impacts the MLSC performance. While
absolute completeness of the derived specifications is open to ques-
tion, the results demonstrated relative completeness and improved
prediction ability after the augmentation. Moreover, determining
completeness of specifications of hard-to-specify concepts, such
as pedestrian, is highly inconclusive. Additionally, the inferred
textual-based specifications are inconsistent with regard to their in-
formativity. Some specifications provided more useful, detailed, and
descriptive information of a pedestrian, whereas others described
environment-related attributes. This happened for two main rea-
sons: first, textual terms were extracted out of their context and
second, a limited number of predicates were used. These issues
did not emerge in the visual datasets since the relationships were
inferred in their context and USGG is trained for a wider variety
of predicates. Construct Validity refers to the type in which the
construct of the test is involved in predicting the relationship for
the dependent type of variable. We evaluated our approach with a
limited number of datasets, detectors, and missing specifications,
mainly due to computationally expensive experiments, involving
R-CNNs multiple training on images and video frames. However,
we minimized this threat through selecting the best performing
and most commonly used state-of-the-art datasets and detectors
as well the most confident and repeated specifications, extracted
from large-scale and wide-reaching datasets. External Validity
refers to the type where there is a causal relationship between the
cause and the effect. The experiments in this paper were carried
out only for the domain concept pedestrian. While the approach
and knowledge sources are generalizable, further experimentation
is required to determine whether applying the approach to other
concepts improves MLSC accuracy in other domains.

8 CONCLUSION AND FUTURE WORK

We presented a generalizable approach for characterizing the extent
to which a dataset lacks subsidiary features of a domain concept
pedestrian. While most research to date focuses on dataset bias, such
that a principal direction is sub-sampling an existing dataset, here
we tackled the complex problem of finding elements of a targeted
domain concept that are missing from an image dataset.

We exploited the existing knowledge sources to derive a set of
partial specifications for a potential domain’s concept pedestrian,
whose perception is crucially important for autonomous driving
safety. We first evaluated the accuracy and relative completeness of
the established specifications through training multiple classifiers
and with respect to benchmark pedestrian datasets. Further, to eval-
uate the usefulness of the derived specifications, we compared the
accuracy of pedestrian detectors before, after a specification-based,
and a random-based augmentation of their training dataset. We
plan to create a feature model and semantic web to represent the for-
mal definition of domain concepts. The creation of a semantic web
helps to better communicate the extracted information, facilitates
knowledge sharing and reuse, and provides a point of reference for
the hard-to-specify domain concepts. We additionally refer to the
established benchmarks to identify and retract those features that
seem to be irrelevant to the domain concepts.
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