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ABSTRACT

AI-enabled software systems (AIS) are prevalent in a wide range
of applications, such as visual tasks of autonomous systems, exten-
sively deployed in automotive, aerial, and naval domains. Hence, it
is crucial for humans to evaluate the model’s intelligence before AIS
is deployed to safety-critical environments, such as public roads.

In this paper, we assess AIS visual intelligence through measur-
ing the completeness of its perception of primary concepts in a
domain and the concept variants. For instance, is the visual per-
ception of an autonomous detector mature enough to recognize
the instances of pedestrian (an automotive domain’s concept) in
Halloween customes? An AIS will be more reliable once the model’s
ability to perceive a concept is displayed in a human-understandable
language. For instance, is the pedestrian in wheelchair mistakenly
recognized as a pedestrian on bike, since the domain concepts bike
and wheelchair, both associate with a mutual feature wheel?

We answer the above-type questions by implementing a generic
process within a framework, called B-AIS, which systematically
evaluates AIS perception against the semantic specifications of a
domain, while treating the model as a black-box. Semantics is the
meaning and understanding of words in a language, and therefore,
is more comprehensible for humans’ brains than the AIS pixel-level
visual information. B-AIS processes the heterogeneous artifacts to
be comparable, and leverages the comparison’s results to reveal AIS
weaknesses in a human-understandable language. The evaluations
of B-AIS for the two vision tasks of pedestrian and aircraft detec-
tion showed a 𝐹2 measure of 95% and 85% as well as 45% and 72%
respectively in the dataset and model for the detection of pedestrian
and aircraft variants.

CCS CONCEPTS

• Software and its engineering→ Requirements analysis; •
Computing methodologies→Machine learning.
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1 INTRODUCTION

The application of data-driven AI (deep learning) has become wide-
spread in a large variety of domains, from computer science to
philosophy and ethics. The AI models, driven by sampling data,
do not conventionally implement pre-defined requirements spec-
ifications [5, 6]. Instead, their inductive nature tends to learn the
specifications from training samples.

This characteristic of deep learning (DL) models is desirable for
engineering software systems operating in domains, which contain
concepts that are difficult for humans to specify, and hence, are
difficult to be programmed (i.e., hard-to-specify domain concepts).
For instance, what is a comprehensive definition of a potential
pedestrian? Specifying, and hence programming, the characteris-
tics of pedestrians versus non-pedestrians is difficult for humans.
Note that specification refers to providing a general description of
both types, which is precise for the existing samples but addition-
ally is comprehensive to cover a large variety of unseen (will be
seen in future) instances. In such cases, DL models, such as deep
convolutional neural networks, are trained on large amounts of
historical data from diverse pedestrians so as to learn the visual
characteristics of pedestrians and non-pedestrians, and distinguish
them from each other. After training, the models’ inductive per-
ception (learnings) of the domain concept and its variants (e.g., the
pedestrian variants) will be then generalized to unseen instances
of the AIS operating environment.

While often successful, generalizing the models perception from
seen instances to not-yet-seen samples may lead to misclassification
of non-pedestrians as potential pedestrians (false positives), or
discarding the actual pedestrians (false negatives). The problem
exacerbates, once types and their features’ variance significantly
differ between the two sub-populations of training and testing.
Misclassifications cause severe hazards, especially in domains with
safety applications, such as automotive, in which the mistypes
of visual perception tasks in the autonomous systems (AS) are
hazardous and safety-related [50]. In such scenarios, confidence in
AIS perception of domain concept variants (instances with various
appearance), which AIS is initially designed and trained to perceive,
is essential for safety assurance purposes [67].

In this regard, several approaches attempt to reason about the
AIS decisions and explain their class predictions. For instance, the
research area of eXplainable Artificial Intelligence (XAI) attempts
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Figure 1: B-AIS: An Automated Framework for Concept Augmentation and Deep Learning Models Evaluation.

to generate human-understandable explanations for decisions made
by AIS, with the ultimate purpose of correcting and improving the
models inference of concepts, for which the model was initially
trained. Our research has a small common ground with XAI, since
both focus on the power of evaluating AI models decisions for
humans [48]. However, this work differs from XAI, since the aim
here is not to explain why and how a correct or incorrect prediction
is made, rather our concern is to evaluate AIS prediction of the
concepts variants, which are shown to be semantically important
to the humans’ perception.

The current research in XAI, fails to provide a benchmark or
point of reference, against which the models’ perception of the
domains concepts could be evaluated [95]. This is often up to the
end users to decide, whether the models’ learnings is enough to
cover the concept variants. This seems relevant in the scenarios,
for which specific domain-knowledge is required to interpret the
models’ predictions (e.g., classifying different types of birds). Yet, in
the majority of domains which adopt AI for visual perception, the
domain concepts are common knowledge, such as specifications
of a pedestrian. The concepts’ variability, learned by the model,
requires to be compared against an external, reliable and compre-
hensive knowledge base. While the existing approaches are helpful
in reasoning about the models’ decisions, they fail to identify what
the model has not yet learned, with respect to the specifications of
the concepts potentially-existing variants.

To this end, this research aims to fill the gap between the speci-
fication (conceptualization) of a targeted domain concept and its
visualization in a dataset, and what a model learns of the concept
variants. We exploit the semantic specifications of domain concepts,
as a reference point, to evaluate the relative completeness and ac-
curacy of the variability of a domain concept in AIS training data,
as well as in the models’ perception of the concept.

The proposed process initially specifies the variants of a concept,
which are important to the accuracy of a model’s perception of
the concept, while AIS is in operation. Referring to the derived
specifications, diversity and relative completeness of the concept’s
instances, expected to be recognized by the model, are evaluated

once in the dataset, and once again in the model. The model is
treated as a black-box during the assessment, since we solely focus
on the model’s final prediction of each variant, while excluding
attention to the process of decision making. The evaluation results
showed that a systematic assessment of AIS, with respect to the
semantics of a domain, enables us to independently determine the
missing concept variants in the dataset and in the model. Once
dataset augmentation and model re-training is based on a bench-
mark, which represents the semantics of a targeted concept, rather
than on an adhoc basis and in the ignorance of the actually missing
variability of a concept, the resultant AIS will be more reliable.

In this document, we specifically focus on supervised training
(solution-based dataset) for the visual perception tasks in data-
driven AIS (deep neural networks), and not other machine learning
paradigms. This paper, in particular seeks to answer the research
questions below:

• 𝑅𝑄1𝑅𝑄1𝑅𝑄1 (Functionality): Can semantic specifications of domain con-
cepts serve as a benchmark to evaluate AIS visual perception of
the concepts?
• 𝑅𝑄2𝑅𝑄2𝑅𝑄2 (Usability): How useful is this evaluation for the improve-
ment of AIS faulty perception of the concepts variants?

Figure 1 illustrates an overview of the B-AIS modules and the
interaction of the three primary algorithms within the framework,
discussed in more details in the following sections.

2 SEMANTIC SPECIFICATION OF DOMAIN
CONCEPTS (ALGORITHM 1)

For the evaluation of deep learningmodels, a reliable reference point
in a human-understandable language is required. This section lays
a semantic ground truth for the specifications of domain concepts.

AIS domain concepts are often socially specified, as their variants
are large and unpredictable. Due to the concepts intuitive nature,
humans have a common knowledge of what they mean, yet de-
lineating the concepts in natural language is inherently difficult
for humans. In fact, the concepts indescribable nature is the major
motivation for adopting AI to specify them rather than program-
ming their perception. For instance, for pedestrian no relatively
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complete domain document exist. Although there are a few general
domain semantic webs that include a limited specification of the
term pedestrian, such as WordNet [49], theses sources fail to ade-
quately capture all varying instances of the concept in sufficient
details. For example,WordNet defines a pedestrian as a łperson who
travels by footž and associates the word with the terms walker and
footer. This definition is limited given that it excludes, for example,
pedestrians riding a bike, roller-skating, or using a wheelchair. It
also fails to describe a pedestrian’s appearance in terms of attributes,
such as clothing and posture.

To build a semantic benchmark, the primary function of algo-
rithm one, 𝑆𝑐 ← 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑦 (𝑐), receives a concept as an input (e.g.
pedestrian) and returns a set of partial specifications. To tackle the
challenge of specifying intuitive domain concepts, this function
extracts domain knowledge from a large set of online knowledge-
bases, such as online books, articles, encyclopedia, dictionaries,
semantic webs, legal documents, social media, news feeds, as well
as data in the form of image and video frames in public reposito-
ries. To specify the partial specifications, the online sources are
automatically searched for both linguistic and visual information.

In cases that domain knowledge is stored in the textual for-
mat, a wide range of Natural Language Processing (NLP) tech-
niques [9, 14, 89], such as topic modeling [89, 97], text classifica-
tion [9, 97], and summarization [22, 31, 82] are adopted and adapted
to automatically mine, retrieve and and process the textual informa-
tion for important accompanying features of the concept. The im-
portance of the features are determined based on a combination of
multiple metrics, including semantic, lexical, syntactic characteris-
tics, such as cosine similarity [59], frequency of co-occurrence [16],
and grammatical importance [87].

Further to process visual sources of domain knowledge, such
as available video and image sets, a variety of image processing
techniques and convolutional neural networks (CNNs) [55, 80, 94],
are adopted. For instance, scene graph generation (SGG) tech-
niques [80, 92, 96], which translate the pixel-level visual data, such
as video and image information, to natural language.

The process iteratively and incrementally specifies the concepts
variants by identifying a list of terms (features) which repeatedly
(1) accompanying the concept, such as terms which most frequently
appeared before and after the term pedestrian in highly-ranked
corpora (e.g. careless pedestrian and pedestrian appearance); (2)
co-occurring with the concept, such as terms that frequently ap-
pear with the concept in the same phrase, paragraph, or page (e.g.
wheelchair); (3) semantically are closely related to the given concept
according to a large corpora (e.g. sidewalk).

Later, adopting a part-of-speech tagging algorithm[4], the most
frequent relations between the concept and the extracted terms are
specified. For instance, pedestrian is careless; has an appearance;
walks on sidewalk; and is in wheelchair. As such, the final presen-
tation of partial specifications are in the form of triplets of łsubject
(concept variant)-predicates (the potential relations)-object (important

features)ž, such as pedestrian-is-man,man-has-bag,woman-walking-

crosswalk, and handicap-sitting-wheelchair.
Note that while implementation details of this function is further

discussed in Section 5.1.1, a wide variety of techniques for build-
ing domain knowledge, such as semantic webs, are researched and
proposed in the requirements engineering domain[1, 12, 21, 35, 47],

and therefore, the implementation of this step is not limited to a cer-
tain approach. Furthermore, this work focuses on the exploitation
of domain semantics, for assessing AIS visual perception, as the
authors previously disseminated several systematic and pragmatic
processes for the construction of semantic webs for hard-to-specify
domain concepts (citations are removed due to the double-blind
review process and will be added if accepted).

Due to heterogeneous information, namely linguistic and visual,
the retrieved multimodal information is individually processed for
each modality. As such, each source is independently processed
and translated into a mutual and human-understandable language.
The combined features from both sources are then organized into a
universal structured format. To structure and re-use the extracted
information, a series of machine learning (ML) techniques, such as
classification and clustering [36, 88], are applied to meaningfully
organize the information in a more human and machine-readable
format, namely semantic webs [2, 7, 72]. Once built, the bench-
mark is leveraged for the purpose of explanation, assessment, and
augmentation of AIS.

Algorithm 1 : Semantic Specification of Domain Concepts

Require: Domain concepts C against which AIS is evaluated.
1: 𝐴𝑟𝑟𝑎𝑦 𝐷𝑐 ← 𝐶 ⊲ Domain Concepts
2: function Specify(c)
3: for each 𝑐 ∈ C 𝑖𝑛 𝐷𝑐 do

4: Array 𝑆𝑐 ← 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑦 (𝑐);
5: end for

return 𝑆𝑐
6: end function

3 IDENTIFICATION OF DATASET MISSING
VARIANTS (ALGORITHM 2)

This section describes an algorithm, which takes the outcome of
the first algorithm (partial specifications) as an input and assesses
a given AIS dataset against the semantically important features of
the domain concept and its variants.

The lack of diversity in AIS unsystematically- and arbitrarily-
gathered training instances will lead to a gap between the specifi-
cations of a domain’s concept and what the model will learn as the
targeted concept [34, 69]. To tackle this problem and improve AIS
generalizability, a large body of research propose to apply dataset
certification and augmentation methods [28, 33, 39, 40, 74, 91].

Data augmentation are techniques used to increase the amount
of data by adding slightly modified copies of already existing data
or newly created synthetic data from existing data[73]. These tech-
niques leverage the existing instances of a domain concept in the
data as the base for generating the additional samples, while leaving
out variances of the concept which are initially missing from the
original dataset. While data augmentation is sometimes effective,
the process heavily relies on the assumption that more information
can be extracted from the original dataset through augmentation.
The dataset missing instances of a domain concept may contain a
different set of features, entirely unfamiliar to the model, but simi-
lar to the actual input data during the AIS operation. For instance,
the inspection of a commonly used pedestrian dataset revealed the
lack of images of pedestrians in wheelchairs in several widely-used
pedestrian datasets [57].
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AIS commonly-used training datasets are often collected in un-
systematic manners and therefore, are generally comprised of sam-
ples, limited in number and diversity [27, 61]. For instance, the
established datasets in the context of autonomous driving, such
as Caltech [19], KITTI [23], CityPersons [99], and EuroCityPerson
(ECP) [11], are collected by a vehicle-mounted camera aimlessly
navigating rural roads [27].

3.1 Image Conversion: 𝑖𝑚𝑔𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝐼𝑚𝑎𝑔𝑒)

In AIS visual perception tasks, the training datasets contain im-
ages and video frames of domain concepts, which AIS is expected
to recognize during its operation. For instance, to train an object
detector for recognizing pedestrians in the automotive domain,
the model is trained with datasets, which contain video frames of
different-looking instances of pedestrian, while Algorithm 1’s es-
tablishes specifications of domain concepts, which are representing
humans’ semantic knowledge, in the form of natural language. For
the purpose of dataset assessment, the dataset’s visual language is
therefore translated into natural language.

Note that the XAI explainability differs from generating descrip-
tions from images which we propose here. Descriptions report the
visual information in an image, whereas in XAI explanations, the
attempt is to understand why a certain class is appropriate for a
piece of given visual information[29].

In the computer vision domain, a wide range of advanced R-
CNNs, such as Faster R-CNNs [64], are proposed and developed
for the performance of visual perception tasks (i.e. image classi-
fication and object detection) [65, 80, 81, 92]. A majority of these
networks are previously trained on large-size datasets and are able
to recognize various generic objects with a high accuracy.

In addition, a pre-trained model can be re-trained for a specific
domain to improve the model’s perception of varying instances of
the domain concepts. For instance, models are trained for obstacle
detection in a particular domain, since for example, potential obsta-
cles are differently described in the automotive and naval domains
(e.g. car vs. a light house). The trained neural models will then iden-
tify the potential regions of an image for the presence of objects,
specify the objects extension (bounding boxes), and provide each
object with a label with domain-specific terms [41].

Furthermore, as mentioned earlier, one area of work in computer
vision focuses on developing SGG, generating natural language
descriptions of multiple scenes (objects and their relations) in an
image [80, 81, 92, 96]. Once trained, the neural model is able to iden-
tify and describe the features, associated with the domain concepts.

A more recent class of work took advantage of the encoder-
decoder architecture in neural networks to train transformers, en-
abled to infer associations between different artifact types, such as
between lingual (text) and visual (image) artifacts ViLBERT[46], Vi-
sualBERT [43], VLP[100], OSCAR[44, 98], DALL-E[60], and CLIP[56].
More details in this regard is provided in related work (Section 6).

Applying and repeating the above-mentioned methods for the
primary concepts of a domain provide a human-understandable
description of the concepts variants as they are represented in a
dataset. Please note that the non-identified primary features, pre-
viously marked as important by algorithm 1, may not necessarily
represent a missing concept variant in the visual dataset. For in-
stance, if the above-mentioned models are not well-trained for the

identification of a domain’s features, then failure to identify them in
a given dataset will be mistakenly counted as the dataset weakness,
while the problem is in fact an object detection or a classification
concern and not a sign of an incomplete data. To minimize such
scenarios, we propose to initially train domain-specific object de-
tectors for sensitive feature concepts in domains, for which safety
is a primary concern (i.e., safety-critical domains).

Algorithm 2 : Identification of Missing Variants in Data

Require: 𝑆𝑐 and AIS Dataset to be evaluated.
1: function Evaluate(Dataset)
2: for each 𝐼𝑚𝑎𝑔𝑒 ∈ D𝑎𝑡𝑎𝑠𝑒𝑡 do

3: Array 𝑇𝑟𝑛𝑖𝑚𝑔 ← 𝑖𝑚𝑔𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝐼𝑚𝑎𝑔𝑒);
4: Array 𝑆𝑖𝑚𝑐 ← 𝑠𝑖𝑚𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑆𝑐 ,𝑇𝑖𝑚𝑔);
5: end for

6: 𝑟𝑒𝑝𝑜𝑟𝑡 ← Evaluate (𝑆𝑐 );
7: return 𝑟𝑒𝑝𝑜𝑟𝑡

8: end function

3.2 Semantic Identification: 𝑠𝑖𝑚𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑆𝑐 ,𝑇𝑖𝑚𝑔)

Once the visual content of a dataset is translated into natural lan-
guage, the content is comparable to the semantic specifications of
the domain, extracted from humans sources of knowledge (output
of algorithm 1). This mapping provides an insight about the missing
and under-represented variants of domain concepts in the data. For
the purpose of comparison, we propose to exploit the semantic
similarity between the humans specifications and dataset descrip-
tions as a metric to identify the associations. In addition, measuring
semantic similarity compensates for the possible terminology dif-
ferences in the domain and dataset specifications. The magnitude
of the similarity score reflects the level of confidence that a primary
variant of a domain concept is present in the dataset.

Please note the extent to which the missing variants of a concept
is revealed in this step depends on the relative completeness of the
semantic benchmark, automatically created in the first algorithm.

4 IDENTIFICATION OF MISSING VARIANTS
BY MODEL (ALGORITHMS 3)

A comprehensive dataset does not guarantee that a model fully
captures the primary features of domain concepts. Yet, laying a
foundation with a systemically-enriched dataset, while the con-
cepts specifications is referenced, is necessary for AIS success. After
semantic enrichment of the dataset, to evaluate AIS comprehension
of the concepts variants, the model is relatively evaluated against
the established standard. For this, unlike XAI approaches, explain-
ing the model’s decision, we adopt a black-box testing method to
identify the concept variants which the model fails to recognize.

Regardless of CNN notable success in the recent years, the neural
models have long been known as łblack-boxž [26]. This title is given
to the complex neural models since explaining their prediction is
difficult for the end users due to the model’s complex structure.
In image processing, the majority of ML models operate on image
features, such as pixel values, which do not correspond to high-
level concepts that humans could easily understand. In a safety
context in particular, delegating decisions to black-boxes without a
clear explanation of the models perception skills, we risk the severe
consequences of a possible incorrect recognition.
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Table 1: High-level topics of pedestrian domain concept.

T. Pedestrian Topic Variants

a Transportation Modes: passenger, vehicle, subway...

b Train Transport: train, railway, rail, line, subway, station...

c Road Types: alley, bridleway, path, footpath, boulevard...

d Accidents: license, speed, fine, offense, violation, reckless...

e Road Types: freeway, interstate, turnpike, route...

f Racial Protest: constable, arrest, police, protest...

g Pedestrians inCustoms: custom, disney, snoopy, mickey...

h Auto-Detect Challenges: detection, sift, ocr, pixel, statue...

i Walking Disabilities: wheelchair, disable, leg, ataxia...

j Safety: safety, nhtsa, barrier, hazard, bumper, guardrail...

k Children: infant, harness, baby, rider, bicycle, stroller...

l CarTech Faults: collision, vehicle, fatality, brake, v2x, v2v...

m Background: building, wall, concrete, apartment, house...

n Careless Ped.: random, walker, jaywalking, magazine...

o Campers: camping, hikers, footpath, trail...

A well-balanced dataset does not provide assurance that a model
fairly learns the primary features of concept variants. For exam-
ple, a model can be biased towards detecting bicycles instead of
wheelchairs as both contain the feature wheel. Specifying what a
model has learned helps to improve the models interpretation of
the mistaken concept variants through re-balancing the dataset,
re-configuring the model, or re-training a different-type model. For
instance, one could identify the missing variants to augment the
training dataset with potentially under-specified concepts which
have not been properly learned by the ML model. For example, if
a feature is identified in the benchmark (e.g. wheelchair) but ana-
lyzing the model reveals that the model fails to recognize several
associating concept variants (e.g. pedestrians in wheelchair), aug-
menting the dataset with instances of this variant offers the model
a chance to better learn the concept variants.

Table 2: High-level topics of aircraft domain concept.

T. Aviation Topic Variants

a UAV: uav, drone, dji, aerial...

b Early Aircraft: flyingboat, glider, kite, floatplane...

c Aviation: aircraft, aerodynamic, spacecraft, balloon...

d Aircraft Type: bomber, fighter, beechcraft, prototype...

e Aircraft Mission: squadron, airfield, fighter, dh60, hornet...

f Boeing: 737s, 737ng, bombardier, airline, ATI...

g Aerospace Engineer: aeronautics, optimization, mechani-
cal, monoplane, navy, superjet...

h Airline: aeroflot, lufthansa, fleet, airport, boeing, airbus...

i Flight: plane, hijack, crash, flight, anxiety, radar, officer...

j Pilot: pilot, flew, aerial, corporate...

Our proposed framework evaluates the relative completeness of
models perception of domain concepts and the extent to which, the
model was able to capture diversity of the concepts instances during

the training. For this, the model is evaluated with the specification
of each instance, as is collected in the semantic benchmark. To pass
each concept variant to the model as an input, each specification
is required to initially be transformed into a set of images which
fairly display the concept variant for a given description. Once
the textual specification of each variant is converted into visual
data, the variant’s instances are then fed to the AIS model. The
expected response of the model is obviously the classification of the
entire variants as the main concept. For instance, once wheelchair
appears as a primary feature of handicapped variant of pedestrians,
the specification is converted into several visual instances of this
variant, and is passed to the model. The model’s prediction against
the verdict, which here is the prediction of pedestrian, is evaluated
for each instance of a pedestrian in wheelchair.

4.1 Image Creation: 𝑖𝑚𝑔𝐶𝑟𝑒𝑎𝑡𝑒 (𝑠)

The pixel-level format of the AIS-comprehensible input requires
non-trivial transformations of the benchmark specifications to vi-
sual data (e.g. images or video frames). The converted instance
needs to fairly reflect each concept variant.

Since the specifications of concept instances are in natural lan-
guage, any of the commonly-known search engines could be lever-
aged for the purpose of retrieving variant-relevant images [38]. In
addition to the text-based engines which return image results, im-
age search engines are in particular designed for seeking visual data,
such as ImageRover [71], WebSeek [75], Diogenes [38], and Atlas
WISE [37]. They primarily differ in design and implementation of
sub-tasks, such as the methods for data gathering and digestion,
indexing and query specification, which will impact their retrieval
ability. The appropriate engine could be evaluated according to its
image similarity, Web coverage, and performance efficiency [84].

Additionally, several image alignment algorithms are developed,
allowing to discover the correspondence relationships among im-
ages with varying degrees of overlap. The produced alignments are
leveraged by various image stitching algorithms to solve the limita-
tion of image/video availability, blending the images in a seamless
manner to create new ones [3, 52, 70]. These technologies could
provide visual translations of concept variants specifications.

4.2 Model Detection:𝑚𝑜𝑑𝑒𝑙𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝑆𝑖𝑚𝑔)

Once each specification is converted to pixel-level information, AIS
performance in detecting each concept variant demonstrates the
extent to which the model learned the given variant during training.
When the model fails to recognize a variant in the majority of its
given instances, themodel is potentially not yet well-trained for that
particular variant of the concept. For instance, processing a variety
of images and video frames of diverse pedestrians in wheelchair, we
expect the majority of the classification decisions to be pedestrian
in a binary classifier. Verifying that the model is able to detect a
concept’s primary variants, contained in an internet-scale semantic
benchmark, may not particularly guarantee the same behavior
during the operation (due to the environment-related uncertainties)
but it brings us closer to ensure that a concept is well-learned by a
model with respect to humans semantic perception.



ASE ’22, October 10ś14, 2022, Rochester, MI, USA Hamed Barzamini, Mona Rahimi

5 EVALUATION

In this section we conducted four experiments to assess the func-
tionality and usability of our framework.

We selected the automotive domain for several reasons. First,
the aforementioned domain suffers remarkably from lack of specifi-
cations [58, 68, 76, 86]. Second, AIS misperception of surroundings
in this domain leads to significant loss of life or damage to proper-
ties and environment. Third, this domain is of our and our industrial
collaborators’ interest, who provide us with domain-specific knowl-
edge, once required. In this domain, we selected pedestrian as the
targeted domain concept due to its criticality for the primary vi-
sion perception tasks in safety-relevant applications, such as in
pedestrian detection.

We repeated the experiments in the aviation domain for the
primary concept of aircraft to assess the generalizability of the
B-AIS. We observed a similar behavior of B-AIS, as well as similar
promising results in the both domains.

5.1 𝑅𝑄1𝑅𝑄1𝑅𝑄1: Functionality Assessment

To assess the functionality, we initially constructed a semantic
benchmark for the domain concept (experiment 1). The automatically-
established benchmark is then leveraged to identify the weaknesses
present in a dataset (experiment 2) and further the faulty detections
by the model (experiment 3).

Algorithm 3 : Model’s Black-box Evaluation

Require: 𝑆𝑐 and AIS Model to be evaluated.
1: function Evaluate(Model)
2: for each 𝑠 ∈ S𝑐 do

3: Array 𝐼𝑚𝑔𝑠 ← 𝑖𝑚𝑔𝐶𝑟𝑒𝑎𝑡𝑒 (𝑠);
4: Array 𝑉𝑟𝑑𝑐𝑡𝑠 ←𝑚𝑜𝑑𝑒𝑙𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝐼𝑚𝑔𝑠 );
5: end for

6: 𝑟𝑒𝑝𝑜𝑟𝑡 ← Evaluate (𝑉𝑟𝑑𝑐𝑡𝑠 );
7: return 𝑟𝑒𝑝𝑜𝑟𝑡 ;
8: end function

5.1.1 Experiment 1: Identification of Domain Concepts (Algorithm

1). To build a semantic ground truth, we developed a process which
initially searches through a large set of knowledge-bases for any
term, contextually related to the input, creating an initial domain-
specific search query. This process is computationally expensive
since a large set of knowledge bases, such as Google n-gram[51]
Onelook [53] and, RelatedWords [63] are thoroughly searched for
each query. Google n-gram is an online search engine that pro-
vides a search for 155 billion words from American English and
34 billion words from British English and provides high-frequency
terms associated with a given term as a search query. The Relat-
edWords is an open-source project that runs several algorithms,
such as word embedding, to convert words into multidimensional
real-valued vectors representing their meanings. The generated
vectors of the words are then mapped in a space of pre-computed
vectors according to a set of existing corpora. The similarity of the
words is then calculated according to the cosine similarity of the
angle between their associating vectors, which is representative
of the vectors distance in the space. RelatedWords also uses Con-
ceptNet [77] to retrieve words that have meaningful relationships
to our query. Onelook indexes over a thousand online dictionaries
and encyclopedias to return the words related to a search query.

In addition to dictionaries and encyclopedias, Onelook internally
works on Datamuse API to search various data sources.

We implemented a two-phase process to retrieve the most re-
lated terms to our initial seed, pedestrian. First, the Google n-gram
knowledge base is searched for accompanying and co-occurring
terms with each concept. The database will return all terms that
more frequently occurred within a given short distance (up to four
terms before and after) of the initial term. Yet to identify the re-
lated terms that did not appear within our identified range, the
RelatedWords and OneLook are searched for semantically related
terms to the input. This process resulted in retrieving about 412
pedestrian-related terms, as well as 700 aviation-related terms.

We then applied lemmatization to the retrieved words, resulting
in 358 and 518 related terms respectively for pedestrian and air-
craft [8]. We decided to use lemmatization rather than stemming
since both reduce the inflectional forms of terms, while lemmati-
zation preserves the derivationally related words, such as those
starting or ending with un-, dis-, mis-, -ness, -ish, -ism, -ful, and
-less. This is accomplished by specifying the words’ part-of-speech
tags (grammatical roles).

Given the expanded list of domain-specific terms, to further
improve the quality of the search, each term was automatically
searched in additional sources, possibly including detailed specifi-
cations of the concept-related term, such as online dictionaries and
documents. For this purpose, two different online encyclopedias,
namely Britannica andWikipedia, were first searched for each term
in the extended list.

The Google search engine was secondly utilized for each term,
being replaced in a search query as łWhat is the term?ž. The docu-
ments related to the first 100 returned links were retrieved for each
query. We performed level one web scraping for each document,
meaning that we only extracted the textual information and not
the additional links within each page. This phase retrieved a large
set of documents related to each augmented term.

As we used publicly available services, we faced Google search
engine rate limit of 5 requests per 20 minutes and 20-30 requests
per minute on Wikipedia and Britannica. Given the 358, and 518
terms linked to pedestrians and aircraft respectively and the rate
restriction, the search process took a total of about 47.7 and 24.2
hours, retrieving 51,963 and 26,344 documents for pedestrian and
aircraft respectively. The average length of the retrieved documents
were 52 lines for pedestrian and 480 lines for aircraft as the en-
tries about aircraft were noticeably more lengthy compared to the
pedestrian concept.

Each set of documents is then organized into a meaningful hi-
erarchy of topics. Although topic models, such as LDA [9] and
NMF [42], have shown promises for topic modeling, tuning their
hyper-parameters is often challenging. For this reason, to identify
dominant topics of relevance to the domain concept, we adopted
a transformer-based topic modeling technique [25] shown to pro-
duce highly cohesive clusters [83]. Table 1 partially represents the
output of the first algorithm. Due to space limitations, the rest of
topics are available in our repository 1. Since the validity of the
semantic ground truth was the topic of the authors previous works,
here we focused on developing methods to leverage the semantic

1https://github.com/AI-EnabledSoftwareEngineering-AISE/B-AIS
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benchmark for AIS evaluation with the aim of improving their reli-
ability. For this reason we will not discuss the completeness of the
benchmark in this document.
5.1.2 Experiment 2: Identification of Missing Variants in Dataset

(Algorithm 2). During this experiment, we referred to the specifica-
tions of the concept to semantically evaluate the relative complete-
ness of a commonly-used dataset for visual perception tasks. For
this assessment, we chose the Wikipedia-based Image Text Dataset
(WIT) 2, which consists of 11.5 million image-text samples in 108
languages, containing 37.6 million distinct entities [78].

For evaluation purposes, only entries with English captions,
5,411,978 image-text entries, were selected from the dataset. Further,
as our interest is only in the images related to each domain concept,
we automatically selected the images in the upper quartile (𝑄3),
whose caption similarity score to the concept was within the highest
25% of the entire set, resulting in 1,355,838 text-image entities.

Each WIT image is accompanied with multiple descriptive tex-
tual bodies, providing information about the image and page, from
which the image is retrieved. The textual body contains a reference,
which is the image caption, visible on the wiki page directly below
the image; attribution, which is the text on the Wikimedia page
of the image; alt. description, which is not visible in general, but
commonly used for accessibility and screen readers [78]; and page

description containing the first paragraph of the wiki page context.

Table 3: Similarity measures of the topics’ specifications to

the associating images in the WIT Dataset. The aqua cells

represent the missing topics in the dataset.

Pedestrian Concept Ground Truth

T. # 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄3𝑄3𝑄3 max 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄3𝑄3𝑄3 max

a 544 .51 .04 .54 .67 .19 .16 .30 .78

b 680 .50 .06 .54 .74 .17 .16 .30 .70

c 544 .52 .03 .53 .68 .15 .19 .22 1.00

d 544 .51 .07 .56 .76 .22 .24 .36 1.00

e 815 .53 .04 .55 .66 .21 .20 .30 .88

f 407 .48 .08 .53 .64 .19 .18 .30 .75

g 272 .45 .48 .57 .78 .04 .00 .10 .33

h 408 .42 .09 .53 .66 .12 .11 .20 .70

i 407 .48 .11 .60 .71 .16 .17 .29 .86

j 136 .47 .04 .49 .67 .16 .17 .29 .86

k 272 .45 .04 .46 .58 .21 .20 .33 .89

l 408 .37 .34 .36 .51 .07 .11 .10 .60

m 407 .48 .05 .52 .63 .19 .19 .30 .80

n 408 .43 .05 .46 .61 .08 .12 .14 .57

o 544 .52 .05 .56 .71 .14 .17 .25 .88

According to the authors’ evaluation of this information for
training zero-shot learning models [78], we decided to concatenate
and consider the reference and attribution descriptions of each
image as a description for each image, referring to it as ‘caption’ in
this document. The captions were then searched for the relevance of
the image to each variance of the domain concept in the benchmark.
The page descriptions, containing more detailed information were
reserved for the evaluation of the dataset missing topics, which B-
AIS detected. In this paper, we refer to the descriptions as ‘context’.

2https://github.com/google-research-datasets/wit

Table 4: Similarity measures of the topics’ specifications to

the associating images in the WIT Dataset. The aqua cells

represent themissing topics in the dataset.

Aircraft Concept Ground Truth

T. # 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄3𝑄3𝑄3 max 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄3𝑄3𝑄3 max

a 136 .41 .08 .46 .62 .12 .14 .20 .50

b 264 .42 .08 .47 .64 .31 .20 .43 .86

c 546 .44 .11 .50 .71 .18 .16 .25 .88

d 720 .41 .08 .47 .62 .24 .19 .40 .80

e 707 .40 .07 .44 .64 .30 .23 .44 .89

f 451 .41 .06 .45 .59 .20 .15 .27 .67

g 518 .43 .10 .49 .69 .11 .11 .18 .50

h 952 .37 .08 .43 .61 .20 .14 .30 .88

i 927 .37 .10 .44 .69 .24 .21 .40 .90

j 395 .42 .09 .48 .68 .21 .19 .33 .78

To measure semantic similarity, we initially evaluated and com-
pared three state-of-the-art universal sentence encoders, namely
SBERT [62], USE [13], and InferSent [15] on 1% of our data (54,119
images). While the same data was fed to the three models, their
performance significantly differed. The models nearly generated
similar scores, however the execution time was significantly shorter
for SBERT. We believe this occurred, since SBERT executes both
the query and corpus embedding processes on the same GPU.

SBERT is a pre-trained network, deriving embedding vectors
of given sentences, to identify semantically-relevant sentences by
comparing the cosine similarity of between-vector angles. Adopting
SBERT, the image captions, as well as the specifications of each
topic (from the previous experiment) were embedded in a single
vector space and the cosine similarities were calculated between
the embedding of the specification topics and captions.

Given the image-topic similarity scores, for each topic we se-
lected the images with scores within the highest percentile (99.99%).
The count of the remaining images, as well as the mean, standard de-
viation, 𝑄3, and maximum similarity are respectively shown under
the first tab of Tables 3 and 4, ‘Pedestrian or Aircraft Concept’.

Finally, we flagged a variant as not-covered in the dataset, if
the average similarity of the associated images was lower than the
average of the entire samples in the dataset (0.47 for pedestrian
and 0.40 for aircraft) as shown in bold font and aqua background
respectively in Tables 3 and 4.

Ground Truth: The B-AIS output here is therefore, the missing
variances of the concepts in the selected dataset. For the evaluation
purposes and since manually going through the images was not
feasible, we decided to build an approximate ground truth for the
topics, missing and present in the dataset.

A script was implemented so that for each topic, the entire topic’s
associated terms were individually searched in the context (the
page descriptions) of pedestrian- and aircraft-related images in the
dataset. As such, we measured the appearance frequency of topics
relevant terms in the image descriptions. This showed whether or
not the comprehensive description of an image mentions any of
the relevant terms to the topic or to the augmented descriptions of
the topic variants. We marked the topics whose associated terms
on average appeared less frequently than the average of the entire
terms (0.153 and 0.211 respectively for pedestrian and aircraft),
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Table 5: Similarity of the ‘Pedestrian’ topics to the images,

retrieved for AIS semantic black-box evaluation.

Caption Similarity Image Coverage

T. # 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄1𝑄1𝑄1 𝑄3𝑄3𝑄3 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄1𝑄1𝑄1 𝑄3𝑄3𝑄3

a 38 .40 .11 .34 .51 .60 .15 .50 .71
b 36 .40 .12 .36 .49 .66 .22 .68 .71
c 5 .45 .05 .42 .45 .80 .14 .80 .80
d 30 .50 .14 .40 .58 .71 .22 .62 .85
e 50 .43 .12 .36 .53 .75 .21 .57 1.0
f 21 .43 .08 .39 .49 .81 .25 .64 1.0
g 3 .20 .17 .10 .25 .57 .06 .55 .60
h 0 0 0 0 0 0 0 0 0
i 22 .32 .17 .18 .38 .66 .43 .30 .96
j 0 0 0 0 0 0 0 0 0
k 19 .39 .13 .33 .47 .91 .11 .80 1.0
l 10 .45 .02 .44 .46 .57 .20 .50 .64
m 26 .33 .10 .30 .42 .59 .24 .38 .70
n 11 .36 .13 .31 .46 .49 .02 .50 .50
o 40 .43 .12 .37 .51 .73 .17 .58 .83

as not fully covered. The remaining variants were considered as
relatively covered in the dataset with respect to the semantically-
relevant concept variants. The mean, standard deviation, 𝑄3, and
maximum similarity of each topic are respectively reported under
the second tab of Tables 3 and 4, ‘Ground Truth’. The first column
contains corresponding topic ids from Tables 1 and 2.

Table 6: Similarity of the ‘Aircraft’ topics to the images, re-

trieved for AIS semantic black-box evaluation.

Caption Similarity Image Coverage

T. # 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄1𝑄1𝑄1 𝑄3𝑄3𝑄3 𝜇𝜇𝜇 𝜎𝜎𝜎 𝑄1𝑄1𝑄1 𝑄3𝑄3𝑄3

a 7 .46 .07 .45 .50 .49 .31 .20 .75
b 13 .54 .05 .50 .57 .45 .21 .43 .43
c 31 .52 .07 .47 .58 .29 .26 .12 .33
d 35 .54 .07 .50 .71 .43 .20 .30 .58
e 27 .61 .0.7 .59 .64 .51 .28 .29 .67
f 23 .54 .08 .47 .59 .47 .21 .33 .55
g 25 .49 .05 .45 .54 .34 .21 .18 .36
h 47 .56 .08 .52 .60 .47 .19 .30 .60
i 46 .51 .08 .46 .56 .36 .26 .12 .60
j 19 .51 .08 .43 .58 .45 .30 .22 .67

Results Discussion: As shown in Table 3, B-AIS was able to
semantically identify five out of the six missing topics in pedestrian
dataset and one out of three in aircraft dataset relative to the estab-
lished benchmarks respectively with 100% recall and precision of
80% (95% 𝐹2) and 33% recall and precision of 50% (45% 𝐹2).

𝐹 -score measures the accuracy of a test using precision and
recall, while favors recall over precision. Since 𝐹2-measure puts
more attention on minimizing false negatives than minimizing false
positives, reporting 𝐹2 seems more relevant in this research. B-AIS
additionally recognized children variant of pedestrian (topic 𝑖) as
potentially missing in the dataset. Yet searching the description
of the images showed the children-related terms occurred with a
frequency of 0.21 which was lower than the average, and therefore
was considered as not-sufficiently-covered by B-AIS.

Note that for the purpose of the experiments and the safety-
related topics of the selected domain, we implemented B-AIS to be

pessimistic, as we chose to only consider images within the highest
similarity percentile (99.99%) to be related. Further, we decided to
consider all concept variants to be of the same importance, and
therefore, we assigned the same threshold to all the concept variants.
This means, we accepted the risk of false positives, over the false
negatives, appropriate for this domain. However, depending on the
criticality and importance of each variant, one could decide to be
more conservative (select higher threshold) only for specific types,
such as children (topic 𝑘) or pedestrians with walking disabilities
(topic 𝑖), and less concerned with other variants, such as pedestrians
on the sidewalk (topic 𝑐).

Table 7: Statistics of model (OFA) black-box testing of Pedes-
trian variants specifications, before & after re-training.

Before Training After Training

Top. C-Ped. C-Top. 𝐺𝑇𝐺𝑇𝐺𝑇 C-Ped. C-Top.

a 0.29 0.39 0.63 0.32 0.41

b 0.26 0.35 0.86 0.28 0.39

c 0.37 0.36 1.0 0.49 0.46

d 0.41 0.42 0.7 0.52 0.52

e 0.33 0.36 0.66 0.44 0.45

f 0.26 0.36 1.0 0.32 0.42

g 0.24 0.1 1.0 0.31 0.13

h - - - - -

i 0.19 0.31 0.91 0.31 0.4

j - - - - -

k 0.28 0.31 0.95 0.25 0.41

l 0.26 0.35 0.6 0.51 0.37

m 0.26 0.45 0.92 0.35 0.47

n 0.4 0.30 1.0 0.35 0.41

o 0.27 0.32 0.75 0.34 0.38

Avrg. 0.27 0.33 0.84 0.36 0.40

The rest of the columns respectively report the mean, standard
deviation, upper quartiles, and themaximum frequency of the entire
words relevant to the topic in column one.

Table 8: Statistics of model (OFA) black-box testing ofAircraft
variants specifications, before & after re-training.

Before Training After Training

Top. C-Air. C-Top. 𝐺𝑇𝐺𝑇𝐺𝑇 C-Air. C-Top.

a 0.43 0.29 0.86 0.49 0.31

b 0.32 0.42 0.38 0.38 0.41

c 0.40 0.25 0.81 0.50 0.33

d 0.41 0.27 0.83 0.49 0.41

e 0.46 0.27 0.85 0.48 0.34

f 0.44 0.25 0.91 0.42 0.31

g 0.46 0.23 0.84 0.53 0.28

h 0.46 0.31 0.83 0.46 0.36

i 0.34 0.25 0.72 0.38 0.35

j 0.29 0.23 0.58 0.36 0.30

Avrg. 0.41 0.28 0.78 0.45 0.34

5.1.3 Experiment 3: Identification of Missing Variants by Model

(Algorithm 3). Referring to the semantic variants, we selected a
pre-trained model to identify the variances of the domain concepts,
not being recognized by the model. Here, we treated the model as
a blackbox, passing each topic variant as an input, observing and
comparing the model’s response to the expected result.
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Due to the pixel-level perception of the model, we required to
convert each topic variant to the corresponding visual data. For this
purpose, we wrote a script to repeatedly query the Google search
engine for each variant, load the returned image page, retrieve the
image, scrape the image caption, as well as the first paragraph of the
loaded page as the context. The extracted body of text was reserved
to verify the relevancy of the retrieved images from the web to
the topic. For this, we applied SBERT to measure the similarity
of the extracted images descriptions to the corresponding topic
and removed those with lower similarity than the average of all
samples. The first tab in Tables 5 and 6 respectively represents the
final count of the remaining images, the mean of the similarity to
the topic, standard deviation, 𝑄1 and 𝑄3 for each topic. Moreover,
we manually verified the relevancy and removed a couple more
images, which we found irrelevant to the topic. The second column
of the table is representative of this final count. The second part
of the table shows our manual evaluation of each topic’s set of
images. We scored each image based on the number of the relevant
terms contained. Then we measured the total score of the images
in each topic and reported the statistics of this similarity in the
second part of Tables 5 and 6. As shown, this process resulted
in removing all retrieved images for the two pedestrian topics ℎ
and 𝑗 , namely ‘pedestrian-related auto-detection challenges’, and
‘pedestrian safety’.

Later, we adopted a model with image captioning capability,
called one-for-all (OFA) [90]. OFA uses a sequence-to-sequence
learning framework which combines different modalities of data,
here vision and language, for the purpose of performing several
vision tasks, such as image generation and captioning. We selected
this model, since theWIT was not among the OFA training datasets,
as we wanted to evaluate the model, independent of the dataset in
the previous experiment.

Further, each set of images was passed to OFA individually and
the model-generated captions were then semantically compared,
once to the domain concepts pedestrian and aircraft, and once again,
to the topic relevant terms. The similarity scores of captions to the
domain concept is reported in the second column (C-Ped. ans C-
Air.) and to the relevant terms (the concept variant) in the third
column (C-Top) of Tables 7 and 8.

In this experiment we only refer to the first section of the table
under ‘Before Training’ tab. The rest of the table will be discussed
in the following experiment. Finally, the topics, which similarity
measures to the concept or to the variant were lower than the
average of the entire set (0.271 & 0.336 for pedestrian and 0.41 & 0.27
for aircraft) were flagged as model’s potentially-missed variants.

Ground Truth: To evaluate B-AIS detection, two independent
researches, not involved in this project, manually verified each
instance of each variant. One point was added for the presence of
a pedestrian in each image. The scores were further normalized
for each topic, shown in the fourth column of Tables 7 and 8 (GT).
Note that this column has a negative association with the second
and third columns. This means a higher GT score represents the
presence of more pedestrians in the images associated with the topic
and therefore, it is expected that the similarity score of the model’s
output to be higher in the second column. Hence, we marked the
topics with higher scores than the average (0.844) in the ground

truth. Topics with lower GT scores are the topics, for which the
collected images were not representative enough.

Results Discussion: As shown, B-AIS was able to detect seven
out of eight missing topics by the model (87% recall), missing one
topic, 𝑐 about the road types. In addition, the two topics of car-
pedestrian accidents (topic 𝑙 ) and camper pedestrians (topic 𝑜) were
marked as not sufficiently covered (𝐹2 measure of 85%). Similarly,
for the aircraft concept B-AIS was able to detect five out of seven
missing topics with a 𝐹2 measure of 72%, while false positives in-
clude topics 𝑏, 𝑖 , and 𝑗 .

Note that to be persistent in the experiments, while building the
ground truth, we selected the topics above the average coverage to
be labeled as covered, yet as mentioned earlier, we implemented
B-AIS to be pessimistic for the selection of covered topics. As such
topics 𝑙 with 60% coverage, manually assessed, is marked as covered
in the ground truth, while B-AIS marks this topic with as not-
properly-covered. This inconsistency is accepted since the attempt
here is to minimize the risk of false negatives, while keeping the
false positives below an overwhelmingly large number.

5.2 𝑅𝑄2: Usability Assessment

To assess B-AIS usefulness, we re-trained OFA with the images of
the topics which were initially missed by the model, and re-assessed
its performance on the same images in the previous experiment.

5.2.1 Experiment 4: Model Re-training with Missing Topics. The
B-AIS selected topics, for which OFA failed to generate a similar-
enough caption to the pedestrian (marked in the second column
of Table 7) were selected, including 𝑏, 𝑓 , 𝑔, 𝑖 , and𝑚. Referring to
the WIT dataset, we retrieved the set of relevant images to each
topic, labeled by B-AIS in the second experiment. Further %75 of
the images were randomly selected for stage-one training, %15 for
stage-two training purposes. The process of retraining OFA-base
model with the total 1,502 images for 10 and 5 epochs in stage-one
and two of the training process took nearly two hours, using 2
GPUs of 16GB Tesla P100-PCIE.

Once OFA was re-trained with the instances of the variants,
missed originally by the model, for the second time we measured
the model’s perception of the same instances used in the previous
experiment. Finally, we re-measured the performance of the model
referring to the same ground truth for the comparison purposes.
The second tab of Tables 7 and 8, ‘After Training’, provide the
similarity scores of the generated captions by the re-trained model
to the concept pedestrian (columns C-Ped. and C-Air), as well as
the relevant terms of the concept semantic variant (column C-Top).

Results Discussion: As shown in bold font in the fifth column
of Table 7, the similarity scores of the missing topics were improved
by a total of 36%. The average similarity of the model-generated
captions to the pedestrian concept is as well increased from the
average of 0.27 for the entire topics to 0.36, and to the associated
topic is improved from 0.33 to 0.40. In case of the aircraft concept,
the average similarity changed from 0.41 to 0.45 and from 0.28 to
0.34 respectively for the concept and the concept’s topics.

The images 2, 3, and 4 in the automotive, and 5, 6, and 7 in
the aviation domains illustrate examples of the model’s improved
perception in the form of generated captions before and after the
retraining process. As captioned below each image, the first sen-
tence is the initial OFA-generated caption, while ‘After’ shows the
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generated caption by the same model after we retrained it for B-
AIS-identified missing topics.

5.2.2 Discussion of Cost: The online knowledge discovery, includ-
ing processing encyclopedias and dictionaries and retrieving the rel-
evant context, largely relies on the performance of the API, adopted
for the process. For instance, a commercial API may potentially
facilitate the process in comparison to open source APIs. The com-
putational cost of the data cleaning, processing, and topic modeling
are influenced by the size of the retrieved documents. For instance,
the process retrieved 51,963 documents for the concept of pedes-
trian and 26,344 for aircraft. As such, the topics were generated
within about one hour, using a system with an Intel(R) Xeon(R)
CPU E5-2687W v2 @ 3.40GHz and 500GB RAM.

The image processing is computationally more expensive than
processing text, and largely benefits from the use of GPU’s power.
The cost thus directly depends on the quantity and quality of the
GPUs or the other alternative, solutions, such as CPUs, or cen-
tral processing units. Since GPU peak performance and memory
bandwidth are often significantly higher than CPUs, GPU image
processing in general yields significantly lower computational cost.
For instance, in our experiments with a single Tesla P100-PCIE 16GB
GPU, calculating semantic similarity between 5,411,978 captions
and topics pairs took roughly about two hours for each concept of
pedestrian and aircraft. Additionally, fine-tuning the OFA model
took about five hours and twenty minutes for the airplane and four
hours for the concept pedestrian.

6 RELATED WORK

6.1 Domain Specifications

6.1.1 semantic textual similarity. A previous research provided
two methods for generating sentence embeddings which showed
a promising transfer of textual data to a variety of different NLP
tasks [13]. The authors demonstrated that sentence embeddings can
be utilized to achieve accurate results on semantic textual similarity
tasks with a surprisingly small amount of task-specific training
data. They used unsupervised data from a variety of web sources,
including Wikipedia, web news, web question-and-answer pages,
and discussion forums, to train their model. Later supervised data
is adopted from the Stanford Natural Language Inference (SNLI)
corpus [10] to augment the unsupervised learning.

Although BERT [18] received attention for sentence-pair regres-
sion tasks, such as semantic textual similarity, the model requires
both phrases to be supplied, which results in a processing overhead.
Sentence-BERT (SBERT), a pre-trained variant of BERT, employs
triplet network architectures to derive semantically relevant sen-
tence embeddings to be compared using cosine-similarity [62].
6.2 Multimodal Deep Neural Networks

Several recent studies have developed models enabled to process
artifacts of texual and visual format at the same time.

One research implemented a multi-modal two-stream model,
namely ViLBERT, which processes both visual and textual inputs
in separate streams. The streams still interact with each other via
additional layers called co-attention transformer layers [46]. An-
other research group introduced a similar model, called VisualBERT,
containing a stack of transformer layers that implicitly match bits
of an input text and regions in a corresponding input image with

self-attention. The attention weights are then used to align words
and image regions internally [43].

Despite the success of ViLBERT and VisualBERT in vision tasks,
the models are yet required to be distinctly pre-trained for each
specific task. Another Vision-Language pre-training (VLP) model, is
presented by a different research group, which is a unified encoder-
decoder that can be fine-tuned for both caption production and
visual question answering (VQA) tasks [100]. VLP surpass BERT-
based model as it learns a more universal contextualized vision-
language representation by integrating encoder and decoder, allow-
ing models to be fine-tuned for both generation and understanding
tasks.

While VLP trains a single model for both generation and com-
prehension, there are problems with text-to-object semantic align-
ments in the model. A research group presented a framework, called
OSCAR, which employed object tags recognized in photos as an an-
chor point to considerably simplify learning the alignments [44, 98].
Another approach for transformer-based text-to-image generation
is named DALL-E, which auto-regressively model the text and im-
age tokens as a single stream of data [60].

The model uses a two-stage training process, which first trains
a discrete variational auto-encoder to compress an image into the
image tokens, each element of which is then converted into vector
values. Finally CLIP, is a multimodal model which is trained on a
large generic dataset, allowing to skip re-training every time the
model is applied for a different vision-related task [56].

6.3 eXplainable Artificial Intelligence (XAI)

As AI is used more in people everyday life, as well as safety-critical
domains, the AI-based software is facedwith a set of regulations [24],
known as right of explanation, giving individuals the right to obtain
an explanation of the inference of automatically produced by a
model. The attempt of XAI is to have AIS generate rules which are
highly interpretable by humans, meantime saving the accuracy of
trained models. The research in the area could be categorized to
(1) describing explainability notation (2) reviews on explainabil-
ity methods (3) developing new methods for explainability and (4)
evaluating methods explainability [85].

There are several methods adopting graphical representation to
explain the model decision on the image set, such as heat-maps [66,
79] and combination of visual and textual explanation, where the
CNNs are leveraged for object detection and LSTM for the gen-
eration of captions caption[93]. One research work attempted to
improve visual explanation by the use of discriminative loss and
relevance loss, improving the class and image relevancy of expla-
nations, respectively [20].

Other works go further in improving visual explanations. For
instance, one research developed a phrase-critic model which takes
in an image and a candidate explanation as input and attempts to
determine whether the candidate sentence is relevant to the given
image. The model initially grounds the explanation objects in the
given image, to further search for a candidate explanation which
closely resembles the image [30].

The authors of [32] developed a joint approach, which explic-
itly model the compositional linguistic structure of referential ex-
pressions as well as their end-to-end visual grounding. As it is
impossible to achieve a complete transparency in current neural
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Figure 2: a group of people walking

in front of train station. After: peo-

ple wearing face masks walk in front

of train station in London. Topic B:

pedestrian, rail, railway, train...

Figure 3: a group of people looking at

a man in cage. After: A students work-

ing on the scaffolding for the instal-

lation. Topic M: construction, pedes-

trian, structure, building...

Figure 4: a group of people riding

bikes down a street. After: cyclists and

pedestrians wearing face masks ride

on a bike path in a park. Topic K: bike,

cycling, pedestrian, rider...

Figure 5: a plane that is on the ground

in a field. After: A flight 757 crashed

into the ground in the aftermath of the

crash.Topic I: aircraft, crash, wreck-

age, investigator...

Figure 6: a small plane sitting on the

ground in a field. After: A biplane at

the airport in 1908. Topic D: aircraft,

biplane, raf, wing...

Figure 7: a view of the ocean from the

top of a hill. After: A view of the air-

port from the top of the hill. Topic H:

aircraft, airport, airway, flight...

Figure 8: Examples of the model-generated captions before and after re-training with missing topics.

networks [17], it is important to evaluate the models against new
and unseen observations. Our approach evaluates the output of
perception models against a set of domain knowledge. From point
of the XAI our framework keep trained models unchanged and try
to evaluate the model behaviour in certain cases at test time [54].

7 THREATS TO VALIDITY

The topics, identified as missing in the dataset could be identified
due to inability of the applied neural network to precisely map
embeddings, identify the similarity between the embeddings, and
establish a relation between the specifications and image captions.
We aimed to minimize this threat through adopting a well-trained
and state-of-the-art transformer for the identification of the miss-
ing topics. The small error in the evaluation results, verified that
the error could be negligible. For future work, we will use more
advanced image processing techniques, such as scene graph gen-
eration and region captioning [45], to extract more information
from the visual datasets to be compared against our automotive
domain benchmarks. A threat to the construct validity may arise
from the evaluations with a single dataset and model. However,
since the size of the widely-used datasets is often significantly large,
the computational cost of running image processing is extensive.
For the future work, we will extend the experiments to several
dataset and model commonly used by the community. A threat to
the external validity is carrying out the experiments only in two
domain (automotive and aviation). We designed a generalizable
process, and implemented a general framework, and referred to
general knowledge sources. Therefore, no limitation is foreseen

for the extension of the application domain. However, due to the
expensive computations (in terms of computational resources), we
limited the application to the selected concepts for which the accu-
racy of visual perception tasks is particularly important to achieve
functional reliability. In addition, due to the environmental uncer-
tainties, such as noise, in the operational domain, the robustness of
the approach requires further investigations.

8 CONCLUSION

We presented an automated process, implemented in a framework
called B-AIS, for the evaluation of visual perception of AI-enable
software systems (AIS). This generic process first automatically
builds a set of semantic variations of primary visual concepts of a
domain. Later, refers to the semantically delineated concept variants
as a benchmark to measure the coverage of each concept variant,
once in the AIS training visual dataset, and once again in the trained
AIS perception while treating the model as a black-box.

We evaluated B-AIS in the domains of automotive and aviation
for visual detection of pedestrian and aircraft variants. The results
showed that B-AIS identified the missing variants of the concept
pedestrian and aircraft in the dataset with a 𝐹2 measure of 95% and
45% respectively. As future work, we tend to extend the evaluations
to other domains, remove cascading error of the pipeline process,
improve the process to be adopted for dataset augmentation pur-
poses, and generate potential failure reports for the system.
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