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Modular, adaptive, and decentralised water 
infrastructure: promises and perils for water justice 
Justin Stoler1, Wendy Jepson2,3, Amber Wutich4,  
Carmen A Velasco5, Patrick Thomson6, Chad Staddon7 and  
Paul Westerhoff5   

Climate change, ageing infrastructure, and funding shortfalls 
threaten the sustainability of modern, 20th century centralised 
water systems by increasing drinking water costs and 
undermining water security, particularly for underserved 
populations. Modular, adaptive, and decentralised (MAD) water 
infrastructures can address this by using novel technologies, 
institutions, and practices to produce, transport, and store 
clean water in the absence of — or integrated alongside — 
existing centralised water infrastructure. Examples of MAD 
water systems include: next-generation ultrafiltration systems, 
atmospheric water capture systems, mobile water treatment 
stations, and innovative container-based systems. These 
decentralised models require a justice-oriented framework to 
unlock the promise of sustainable access to safe, reliable, 
affordable water supply for a more mobile, just, and resilient 
world. We propose a model for advancing justice-oriented MAD 
water. 
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Introduction 
For the last century, centralised water supply infra-
structure has been the global gold standard for potable 
water delivery. Yet, 2 billion people globally lack access 
to safely managed drinking water, with 4 billion facing 
severe water insecurity at some point each year [1,2]. 
Climate change presents new challenges for the sus-
tainability of modern water systems, which are often 
poorly maintained and increasingly approaching the end 
of their service lives [3]. Ageing pipelines, reliance on 
outdated treatment and sensor technology, and un-
precedented urbanisation alter water demand patterns 
that cumulatively compromise centralised water systems  
[4]. Climate-induced infrastructure losses, associated 
with both chronic (e.g. drought) and acute (e.g. flood) 
weather events, compound local government financial 
constraints and further undermine the sustainability of 
water infrastructure by inhibiting system upgrades and 
replacement [5,6]. The prospect of costly rebuild-or-re-
locate decisions in coastal areas, which house over a third 
of the global population, also undermines funding for 
badly-needed maintenance and upgrades [7]. Additional 
global issues, such as replacement of lead service lines, 
or retrofitting treatment for modern contaminants such 
as per- and polyfluoroalkyl substances (PFAS), exert 
additional financial pressure on water systems [8,9]. 

A large body of literature has analysed the tradeoffs of 
centralised, decentralised, and hybrid water systems  
[4,10,11]. Over-reliance on centralised, and centralising, 
water infrastructure that is increasingly vulnerable to 
floods, fires, and drought beckons a paradigm shift in this 
era of managed retreat, climate change, and overall 
greater human mobility due to socio-environmental 
disruption [12,13]. Disruptive innovations are already 
reshaping the energy and waste sectors through decen-
tralised capture and service delivery [14–16]. The water 
sector is at the cusp of a similar wave of innovation. 

This review summarises emerging realities for water 
insecurity in an era of disruption, and new developments 
that we call modular, adaptive, and decentralised (MAD) 
water infrastructure. These technologies can improve 
system resiliency [17] and may also present a ‘soft path’ 
to hard-engineered systems for resource-poor 
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communities where climate disruption is minimal [18]. 
These technologies may also cause unintended con-
sequences that exacerbate water insecurity if they are 
unaffordable, disproportionately lead to system dis-
connection by wealthier users, or reduce household 
water autonomy [19,20]. 

By bridging the engineering and social sciences, we can 
expedite the paradigm shift already underway with re-
spect to water delivery while ensuring water justice, 
security, and sustainability under conditions of climate 
disruption. We are interested in how physical and social 
infrastructure can be creatively re-imagined, particularly 
in low-income and vulnerable communities that already 
suffer from poor or limited water infrastructure. We 
present examples of emerging technologies for MAD 
water supply and summarise MAD water themes that 
warrant additional consideration for water justice. 

Water insecurity in the age of disruption 
Water insecurity — the lack of safe, reliable, sufficient, 
and affordable water for a thriving life [21] — is not 
restricted to the developing regions. The myth of uni-
versal and safe provision in the global north is receiving 
increasing attention, as many communities have long 
lacked water coverage [21]. Water insecurity is more 
common for renters and people living in mobile homes; 
for disaster migrants and others living in substandard 
housing; for American Indians, First Nations, and In-
digenous people; for Black, Hispanic/Latinx, and other 
racial/ethnic minority communities; and in informal 
communities [21]. Fragmented water utilities and ageing 
water infrastructure are proving ill-equipped to respond 
to 21st century challenges [22,23]. Climate disruptions 
compound existing water insecurities by triggering cas-
cading technological failures (or emergencies) that fur-
ther erode the efficacy of ageing and unequal water 
infrastructure [24]. 

There are three main reasons why traditional models of 
centralised water service development will not work in 
the climate disaster era. First, disasters across the globe 
directly destroy water infrastructure: wildfires melt 
pipes, hurricanes destroy levees, combined sewer over-
flows pollute waterways, and droughts render storage 
infrastructure useless [25]. Second, climate disruption 
contributes to climate migration and climate retreat, and 
as such, the challenge is to achieve levels of water se-
curity for these mobile populations, whether in refugee 
camps, temporary residences, or new communities  
[26,27]. Third, water quality deterioration — due to 
contamination or groundwater salinisation linked to 
disasters and climate change — makes potable water 
production increasingly costly [25,28], particularly as 
water utilities grapple with the costs of removing 
emerging pollutants such as PFAS and microplastics  

[29]. Indeed, climate-induced disruptions will speed the 
decay of public water infrastructure already underway  
[30], a problem that is even more acute for smaller water 
systems, whether in high- or low-income regions [31,32]. 

Society and technology are slowly coming to grips with 
the limits of 20th century ‘modern water’ [33]. Such a 
revolution is already underway to address other forms of 
resource insecurity. The most progress has been made in 
decentralising energy security through the widespread 
adoption of solar panels, wind turbines, and other low- 
carbon alternatives to centralised energy systems. These 
strategies allow modern households to contribute to, or 
disconnect from, the energy grid [15,16], with justice 
principles ensuring affordable electricity pricing [34] 
despite significant implications for energy governance  
[35]. Similarly, entrepreneurs are using decentralised 
approaches to reduce sanitation insecurity in low-re-
source settings through innovations such as dry toilets 
and container-based sanitation, which convert and 
monetise waste into useful products [36]. The same 
principle is in operation in high-income settings through 
anaerobic digestion systems that turn organic waste 
(faecal sludge, food and garden wastes) into biogas [37]. 
We now discuss how MAD water infrastructure can 
serve 21st-century water needs in just and sustain-
able ways. 

Examples of modular, adaptive, and 
decentralised water infrastructure 
Early generations of decentralised approaches to safe 
drinking water, such as point-of-use chemical and solar 
disinfection, rainwater harvesting, and safe water storage 
have been around for decades [38,39]. Creating the right 
quality water at the right time and place can save energy 
but requires a new generation of decentralised water 
treatment technologies [40]. There are several promising 
new MAD water technologies, and we present examples 
framed around five critical dimensions of water security: 
harvesting, treating, distributing, monitoring, and gov-
erning. 

Harvesting 
In addition to using low-technology harvesting techni-
ques such as rainwater collection, dug wells, and fog 
catchers, MAD systems can also harvest moisture from 
the air to produce useful quantities of clean drinking 
water [41–43]. Passive systems, which take advantage of 
diurnal humidity and temperature variations, are likely 
to be of limited use in areas of higher population density, 
and those with very low humidity. While active systems, 
requiring artificially cooled collected surfaces, are rela-
tively energy intensive [44] and still constrained by 
fundamental thermodynamics [43], nevertheless lend 
themselves to being solar powered and thus in-
dependent of centralised water and energy systems. The 
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water produced is still at risk of contamination from 
airborne pollutants [45] and so may require significant 
treatment, with attendant costs and management issues. 
Although there are limited examples of these systems 
operating at scale, the local autonomy they offer is 
compatible with MAD water principles. 

Treating 
The use of high-performance small-sized modular 
treatment systems enables decentralised water systems 
to provide fit-for-purpose water quality. This avoids over- 
treating water that subsequently degrades during dis-
tribution or is used in applications which do not require 
high-quality water (e.g. toilets or irrigation). Modular 
treatment systems can be rapidly deployed in private, 
commercial, and government buildings to treat relatively 
small quantities of water to a very high quality, and have 
been especially useful during emergencies when cen-
tralised water systems fail. Modular systems can poten-
tially be mass produced, certified by third-party 
validation centres, and readily installed by homeowners 
or non-specialised plumbers [46]. Many modular treat-
ment technologies, such as carbon block, nanofiltration, 
graphene or reverse osmosis filtration, or UV disinfec-
tion, are already commercially available or very near to 
market. Ultrafiltration (UF) modules have long been 
deployed in low-resource settings where reliable che-
mical disinfection is not guaranteed or locally accepted, 
or is over-reliant on transport and storage of hazardous 
chemicals such as chlorine [46]. Newer gravity-driven 
membrane filtration systems, which feature composite 
membrane and biofilm ultrafiltration, offer household- 
scale solutions with annual costs as low as US$5.71 per 
household [47,48], with hydrothermal solutions to 
backwash the membrane and increase sustainability [49]. 

Distributing 
MAD infrastructures have also been used by tribal 
communities in the US. During the COVID-19 pan-
demic, rapid relief programs combining water quality 
testing, delivery, and a mobile water filtration system in 
a converted school bus, have helped address local water 
pollution issues faced by the Hopi Tribe [50]. Elsewhere 
a decentralised, 100% automatic, off-grid water filtration 
system, can be installed at any groundwater well site to 
provide safe drinking water. This Water Box system has 
been successfully tested in the Navajo Nation for over 5 
years [50] and can produce around 4000 litres of potable 
water per day. Portable MAD systems have also de-
monstrated their effectiveness in the production of 
drinking water in emergency situations. These systems 
can be used as a pre-treatment for RO, MF, or UF 
treatments and can be adapted to meet the water treat-
ment requirements for the duration of the emergency. 
MAD systems can improve health through improved 
water quality at the point of consumption, and have the 

potential to provide sustainable fit-for-purpose water to 
communities. 

Monitoring 
Because MAD water systems are less centralised and 
less hierarchical, they require similarly distributed 
monitoring to optimise operational performance and 
ensure water safety. Low-cost internet-of-things tech-
nology will play an important role. Examples include 
groundwater handpumps outfitted with GSM transmit-
ters contributing to dramatically reduced pump down-
times in rural Kenya by sending messages to local 
mechanics when there is a mechanical failure [51], QR- 
codes as currently linked to distributed sanitation sys-
tems [52], and low-cost Arduino-based sensors for 
monitoring water levels and quality in rainwater har-
vesting systems. To ensure the desired just outcomes of 
a MAD approach these monitoring systems must be 
well-integrated into participatory governance systems, 
and not just technological add-ons [51] that increase 
management or maintenance burdens for households or 
communities. 

Governing 
Modular infrastructures are promising and versatile 
technologies to supplement centralised urban water in-
frastructures, provide continuous water to rural com-
munities, and serve as emergency solutions [18]. 
Emergency deployment of MAD systems is usually 
governed by command-and-control protocols, with costs 
often of lesser concern than speed and technocratic ef-
fectiveness. Sustainable and just use on a longer-term 
basis, including the ability to, for example, regulate de-
mand management during a drought, requires integra-
tion with local governance systems. MAD systems can 
be low-cost, simple to operate, and low-maintenance, 
and in many cases independent of grid energy. Conse-
quently, MAD infrastructures play an increasingly pi-
votal role in the water sector due to the need for more 
flexible and adaptive solutions in urban and rural com-
munities in the context of climate change and sustain-
ability [17,23,53]. Embracing decentralisation risks 
fragmentation without coordination or systemic integra-
tion. The degree of fragmentation in decentralised water 
systems is greatest in low- and middle-income nations 
where there is unreliable or no local supply and house-
holds often use multiple water sources (e.g., rainfall 
collection, local wells, delivery services) to improve 
household water security [54]. Decentralisation is also 
often a reactive adaptation to governance failings in 
centralised systems and requires greater coordination to 
achieve social justice and sustainability goals. 

In summary, innovative MAD water treatment technol-
ogies will be critical tools for ensuring water security and 
sustainability in the age of disruption, given their ver-
satility in various socio-cultural and political-economic 
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contexts. But MAD approaches also require a justice- 
oriented framework in order to prevent the reproduction 
of historic inequalities in water supply provision. 
Visionary thinking is necessary to drive the technologies, 
institutions, and practices necessary to harvest, treat, 
distribute, monitor, and govern MAD water alongside, or 
in lieu of, centralised water infrastructure. 

Modular, adaptive, and decentralised systems 
for sustainability and water justice 
Serious questions remain as to how MAD water can ad-
vance progress toward achieving universal drinking water 
that is accessible, available, and free from key contaminants 
in a system that is sustainable, equitable, and just. To 
achieve ‘just sustainabilities’ — with twin goals of long- 
term environmental and social wellbeing — the mere 
technocratic provision of accessible, affordable, and safe 
water is insufficient, and in many cases, ineffective or even 
harmful [55,56]. Justice-informed approaches to MAD 
water systems recognise how socio-technical shifts in the 
waterscape reforumulate hydro-social relations, lived ex-
periences and everyday embodiment, and social power [33]; 
and by extension, the conditions necessary to achieve water 
justice [57]. Drawing on the water-capabilities approach, 
securing water is “the ability to engage with and benefit 
from the sustained hydro-social processes that support 
water flows, water quality, and water services in support of 
human capabilities and wellbeing” [58]. So how can MAD 
water systems go beyond SDG benchmarks and be de-
signed, implemented, and maintained to enhance water 
justice and equity in real-world conditions? 

Ongoing research into social infrastructure is the first 
place to look for suitable approaches. Social infra-
structure encompasses formal and informal institutions 
(e.g. norms about water), social networks, and cultural 
values [59] that can potentially regulate and maintain 
physical systems. For example, centuries-old approaches 
to water allocation such as the acequias and similar long- 
standing systems elsewhere around the world were re-
silient in the face of challenge precisely because of their 
flexible, trusted and decentralised decision-making sys-
tems [60]. Such pre-existing social infrastructure offers 
an entry point to reimagine sustainable MAD water 
systems that add new technical functions or capabilities. 

Social dimensions of water provision are a critical part of the 
deployment ecosystem that fosters engaged and mean-
ingful participation in water services [61]. By recognising 
and building on social infrastructure, MAD water systems 
can better align with local cultural values, institutions, and 
priorities. They can also co-create pathways for new water 
norms, practices, and collectivities [62]. 

There is some evidence that MAD water system design 
and implementation can advance water justice in terms 

of promoting collective participation and recognition and 
steer actors away from the individualisation, commodi-
fication, and self-isolating provisioning that often further 
entrenches water insecurity for others [60,63]. Lever-
aging social infrastructure and designing MAD water 
requires productive and generative partnerships with local 
water and environmental authorities. The conventional 
(and centralising) provisioning role of local water au-
thorities in MAD water systems may evolve into more of 
a supportive role that simultaneously distributes risk and 
increases local autonomy for self-supplied or decen-
tralised communities. This increased autonomy will not 
eliminate managerial responsibilities, but rather redis-
tribute these powers across a broader range of local water 
actors [55,57,59], with explicit care to not increase bur-
dens on households. The need for consumers or com-
munities to purchase water services, either directly or 
through local tariffs, from a single large state or private 
entity may be replaced by the need to contract out 
maintenance services. Institutional support is essential 
to ensure that a shift made in the name of subsidiarity 
does not result in passive elite capture [64] or risk 
merely being transferred from those most able to 
manage it to those least able to afford and mitigate 
it [65]. 

Meso-scale institutions can act as brokers of technical 
information about system design, construction and 
maintenance; help lower-income users to access neces-
sary credit; create new value chains; or provide main-
tenance services [66,67]. By incorporating these factors 
into the research design, MAD water systems can be co- 
designed to be sustainable, socially acceptable, and in-
stitutionally supported [68]. To advance further devel-
opment of MAD water socio-technical systems, we 
propose a justice-oriented framework using the same 
five dimensions of water security introduced earlier: 
harvesting, treating, distributing, monitoring, and gov-
erning (Table 1). These themes require focused scien-
tific and technological advances in order to scale MAD 
water systems into viable, sustainable alternatives. 
These themes are also consistent with the lifecycle 
stages of other goods — material extraction, production, 
use, and end-of-life disposal — but present tradeoffs in 
the context of water technology innovation. For ex-
ample, households harvesting water from multiple 
sources may improve their water security and disaster 
resilience, but could complicate water treatment with 
each additional source, and governance may differ by 
source. Such tradeoffs present obstacles to efficient and 
equitable technology transitions. 

Decentralisation may also undermine funding models 
for equitable distribution and monitoring if it allows 
wealthier consumers to disconnect from infrastructure 
relied upon by poorer consumers [69]. The kind of in-
frastructural (social and material) transformation we are 
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proposing with MAD water requires attention to how 
these shifts alter embodied water labour, alter infra-
structural temporalities of decay and repair, and articu-
late different configurations of citizenship [70,71]. These 
new sociotechnological configurations cascade and re-
shape not only social power but the terrain of water 
justice. 

Conclusion 
Communities, researchers, and policymakers should re-
cognize the evolution of MAD water systems and ad-
vance a new vision that is safe, secure, and socially 
equitable. In this new age of disruption, decentralised 
approaches should be part of a formal strategy to ensure 
water security in the face of climate uncertainty and 
weather shocks. We must anticipate the ongoing wave of 
technological innovation in MAD water systems and 
develop new justice-oriented institutional arrangements 
and governance systems that can be tailored to local 
needs and ensure safe water for all. There is still much to 
learn, particularly about strategies for transitioning from 
centralised to decentralised water provision systems  
[72,73], user perceptions of off-grid systems [74], and 
institutional barriers and needs [75]. Nonetheless, de-
centralised systems are poised to address existing chal-
lenges and anticipated future socio-environmental 
disruptions around the world. For many regions, a jus-
tice-oriented MAD approach may be the most viable 
path toward achieving Sustainable Development Goal 6 
for global safe water, and sustaining those gains 
throughout the 21st century. 
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Table 1 

Foundations for a justice-oriented framework for MAD water systems.     

Theme Description Water Justice Concerns  

Harvesting Acknowledges a diversity of water sources and recognises the 
potential benefits to wellness and resilience gained by using 
multiple concurrent sources, as is already the case in many low- 
and middle-income settings. 

Ensuring equal access to the desired mix of water sources for the 
advancement of human capabilities. 

Treating Implements variable treatment processes for acceptable 
drinking, household, agricultural, or industrial water. MAD water 
infrastructure requires use-specific treatment regimens that 
consider traditional and emerging contaminants. 

Fit-for-purpose water, not fit-for-whom water. 

Distributing Recognises a range of techniques for re-distributing water that 
is fit for purpose, including water sharing agreements at 
community (e.g. upstream/downstream) and household (e.g. 
between neighbours) levels, and informal water vending or 
transport systems. Here the small-scale integration of social 
and physical infrastructure can be transformative. 

Ensuring equal access to conveyance infrastructure, including 
subsidisation of start-up or connection fees for lowest-income 
households. 

Monitoring Supports data collection and analysis to help manage water 
infrastructure. We have barely scratched the surface of the 
potential benefits gained from information and communication 
technology (ICT) and sensor advances, such as real-time water 
quality monitoring (micro-networked households), that can help 
us harvest, clean, and convey water. 

Deploying ICT to promote transparency and equity in water 
management and safety, rather than further water 
commodification. 

Governing Provides oversight to ensure equity, justice, and sustainability of 
a water supply. Communities may benefit from new hybrid, 
multiscalar modes of governance that may not be compatible 
with outdated models of centralised infrastructure governance. 

Reconciling community governance and maintenance roles with 
those of centralised systems without increasing burdens on 
community members or leaders. 
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