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Abstract—Convolutional Neural Networks (CNNs) are widely
used due to their effectiveness in various Al applications such as
object recognition, speech processing, etc., where the multiply-
and-accumulate (MAC) operation contributes to ~95% of the
computation time. From the hardware implementation perspec-
tive, the performance of current CMOS-based MAC accelerators
is limited mainly due to their von-Neumann architecture and
corresponding limited memory bandwidth. In this way, silicon
photonics has been recently explored as a promising solution for
accelerator design to improve the speed and power-efficiency of
the designs as opposed to electronic memristive crossbars. In
this work, we briefly study recent silicon photonics accelerators
and take initial steps to develop an open-source and adaptive
crossbar architecture simulator for that. Keeping the original
functionality of the MINSIM tool [1], we add a new photonic mode
that utilizes the pre-existing algorithm to work with a photonic
Phase Change Memory (pPCM) based crossbar structure. With
inputs from the CNN’s topology, the accelerator configuration,
and experimentally-benchmarked data, the presented simulator
can report the optimal crossbar size, the number of crossbars
needed, and the estimation of total area, power, and latency.

Index Terms—Silicon photonics, accelerator, convolutional neu-
ral network, crossbar

I. INTRODUCTION

With the rise in computer vision and machine learning
projects, CNNs have become essential in software algorithm
developments. Especially, their strengths in feature extraction
have made them applicable to a wide variety of applications
from facial recognition to natural language processing [1],
[2]. As CNNs have grown in usage, their corresponding
hardware has had to develop to improve their performance and
scalability. Current research focuses mainly on application-
specific integrated circuits (ASIC) accelerators to reduce the
power consumption and run time of these neural networks as
opposed to general-purpose CPUs and GPUs. With multiply-
and-accumulate (MAC) operation consisting of ~95% of the
CNN’s computation time, selecting the best architecture is vital
in optimizing the performance parameters [3]-[6].

Many CNN accelerators have been proposed in the elec-
tronic domain, which have limitations due to the von-Neumann
structure. The separate memory and processing units lead
to a high energy requirement in moving data and limited
bandwidth in how fast data transfers can be made. Silicon
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Photonics is a promising alternative to CMOS-based elec-
tronics since its inherent parallel structure and light speed
computations increase speed, bandwidth, and power-efficiency
[7]-[9]. The optics domain reduces the complexity of matrix
multiplication from O(N?) to O(1) which leads to a reduction
in computational time of MAC operations [2], [7], [8]. In
addition, silicon photonics has allowed the creation of CMOS-
compatible integrated photonic devices, which combine the
speed of optical computation and the lower cost of CMOS
manufacturing [7], [10]. As silicon photonics neural network
accelerators have shown to be an efficient solution to the von-
Neumann architecture bottleneck in conventional designs [11],
[12], developing a behavioral-level end-to-end framework
for silicon photonics accelerators is essentially and widely
needed.

In this study, we take the initial steps to realize an open-
source simulation framework for silicon photonics accelerators
developed on top of MNSIM V1.1 [1]. We keep the existing
ReRAM-crossbar functionality of MNSIM and add a new
simulation mode for the photonics domain. This simulation
mode is set to give a decent estimation of the total area,
energy, latency, and power of the pPCM-crossbar-based CNN
accelerators. The presented framework in this work is mainly
developed based on the silicon photonics accelerator in [12]
and tested for various crossbar sizes. This work can provide a
proper guideline and flexibility in comparing electronics and
photonics crossbar accelerators considering various network
structures.

II. BACKGROUND
A. Neuromorphic Computing with ReRAM Crossbars

Neural networks are computational models developed based
on the functionality of neurons and synapses in the human
brain. Inputs sent into a node are multiplied by weights, which
are representative of neurotransmitters sent between cells, and
added with the bias value of the node. Deep Neural Networks
(DNNS5) consist of multiple layers of these nodes to complete
numerous MAC calculations. Through setting inputs/outputs
and backpropagation, the values of the weights and biases
are optimized to best model a set of data, which is later
used to predict future results. Furthermore, applying non-linear
activation functions to inner layers of neurons, such as ReLU,
Sigmoid, and Tanh, allows networks to model the behavior of
non-linear data-sets.
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Fig. 1: Hardware implementation of a single M x M ReRAM
crossbar array pair (positive and negative array) as an analog
dot-product engine [15], [19].

In the realm of DNN acceleration, analog resistive crossbar
memory is a popular memory array structure due to its high
memory accessing bandwidth and in-situ computing capability.
The current-mode weighted summation operations perform the
MAC computations in the artificial neural network, making it
one of the most promising candidates as the basic computing
unit for neural network accelerator design [13]-[16]. Architec-
ture ISAAC [17] uses this model to improve the throughput
and energy by 14.8x and 5.5, respectively, compared to a
well-known ASIC architecture. PipeLayer [18] achieves the
speedup and energy saving of 42.45x and 7.17 x, respectively,
compared with a GPU platform on average. However, many
non-ideal effects, such as IR-drop (i.e., wire resistance), Stuck-
At-Fault (SAF), thermal noise, shot and random telegraph
noise [19], [20], are hampering the progress of hardware
implementations of large-scale DNNs on ReRAM crossbar-
based electronics accelerators.

The primary computation performed by analog ReRAM
crossbars is the current-mode weighted summation operation
(i.e., dot-product), where the architecture of the crossbar and
its peripheral circuits are shown in Fig. 1. This array setup
is widely used in crossbar-based dot-product engines [19],
[21] for performing convolution computation with positive and
negative kernel values. The inputs to the crossbar array are
n-bit binary bit-strings, as shown in Fig. 1, which are first
converted by the Digital-to-Analog Converter (DAC) array into
voltages V;. Since the reference voltage Vir is set to Vpp /2, the
current flowing into the differential ADC in the j-th column
pair (i.e., two corresponding columns in the positive and the
negative array) can be described as:

M
e =3 (V= Vi) - (@1, - 61 ) W

i=1
where ij is the conductance of a ReRAM cell indexed by @
and j in the positive and negative arrays, respectively. Equation
(1) performs the dot-product computation between two vectors
V — Vit and G:“j — G:j. However, a software-hardware co-

design is essential when using the ReRAM crossbar array since
mapping the DNN parameters into the crossbar-based accel-
erator requires a series of signal conversions, as introduced in
(18], [19].

B. Behavioral-Level Simulators

While many crossbar-based neuromorphic computing sim-
ulators have been developed in the electronic domain such as
MNSIM [1], Neurosim [22], etc., in this short study, we mainly
focus on MNSIM. The ReRAM-Based Neuromorphic Com-
puting System (MNSIM) simulates memristor-crossbar CNN
accelerators to determine the most efficient crossbar size and
crossbar number along with the corresponding area, energy,
power, and latency of that design running neural networks.
The weighting function is calculated through a matrix of
conductance values saved in the memristor cells multiplied by
a vector of input voltages. The activation function of the output
voltages is performed through peripheral modules, which the
user can design in the input configuration file to MNSIM.
Along with accelerator configuration, the user inputs the
topology of the CNN for the accelerator to use. Details such
as the number of layers, types of layers, kernel size, stride,
and input/output length are required. MNSIM optimizes the
accelerator architecture by targeting one parameter specific,
either total area, energy, power, or latency, which is selectable
by the user. On the other hand, Neurosim [22] also estimates
the area, latency, dynamic energy, and leakage power of
accelerator architectures, but unlike MNSIM does not focus
on CNNs. NeuroSim can simulate designs with SRAM, digital
emerging nonvolatile memory (eNVM), and analog eNVM
synaptic devices.

C. Silicon Photonics Accelerators

Current silicon photonics accelerators can be categorized
into two groups: ones based on micro-resonators [7], [9],
[23] and ones based on p-PCM [12]. An array of microring
or microdisk resonators are commonly used in these accel-
erators to perform MAC computations. Alternatively, pPCM
in a crossbar structure has also been used to perform the
same calculations. A well-designed silicon photonics CNN
accelerator has been presented based on a Microring Res-
onator (MRR) crossbar structure in [23]. In this design, the
programmable nanophotonic processor removes inner loops,
which have previously been shown to cause resonator-like
feedback with MRRs, allowing it to be more applicable for
large-scale integration. In addition to the crossbar structure, a
frequency comb source is utilized along with an erbium-doped
amplifier to create a multi-wavelength optical source. MAC
operations are then completed through the multi-wavelength
input being altered by the phase shifts of the MRR cells, which
are set according to the weight matrix of the neural network.

Similar to this work, in [12], another silicon photonics
crossbar-based CNN accelerator has been presented, that
leverages the pPCM instead of MRRs. As shown in Fig. 2,
each input is encoded into a wavelength on a photonic-chip-
based microcomb and sent into the on-chip MAC unit of
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Fig. 2: Diagram of the all-optical dot-product engine. A photonic frequency comb generates the input vectors by using a
continuous-wave (CW) laser device equipped with wavelength division multiplexers (MUXs). A wavelength multiplexer is
used to group the entries of different input vectors sent to the on-chip MAC unit to perform the computation. Following
the combination of the correct wavelengths using a wavelength division demultiplexer (DEMUX), the dot-product results are
obtained from the photodetectors (PD) followed by digital signal processing (DSP) unit [12].

crossbars. The pPCM cells store the values of a kernel matrix,
by absorbing a certain value of light determined by their
phase configuration, and alter the wavelengths of the incoming
signals to perform the weighing function and feature filtering.
Our simulator is modeled around this accelerator design with
the pPCM crossbar structure.

III. PROPOSED FLEXIBLE FRAMEWORK

The proposed framework is developed on top of the MNSIM
[1] and enhanced to support new features in a new photonics
simulation mode with a simplified input file layout.

A. Input File Configuration

As shown in Fig. 3, the input file to the adapted MNSIM
consists of two components: a network component and a
configuration component. The network component remains
identical to the original MNSIM [1], with each layer in
the CNN topology being specified as either a convolutional
or Fully-Connected (FC) layer with its corresponding in-
put/kernel specifications. Within the configuration component,
however, the user has the option to select between electronic
and photonic modes. If neither is specified, the electronic mode
is pre-assumed. As shown in the flowchart in Fig. 4, similar
to the electronic mode, the user can opt for a performance
optimization target (i.e., area, energy, power, or latency) in
the photonic mode. Therefore, one of the optimization targets
has to be selected for the program to determine a relevant
and efficient accelerator architecture. The part is identical to
the original input file configuration of MNSIM, where features
such as bit level, minimum and maximum crossbar size, weight
polarity, and a pipeline option are to be selected by the user.

The final part of the configuration component allows for
flexibility in the accelerator design from the crossbar structure.
Based on the user-input’s performance data achieved from

Input Config

Mode selection

#CNN layers

Target output

Weight Polarity

Bit Level

Min/Max Crossbar size

| Photonic Mode || Electronic Mode |

- pPCM crossbar - memistor crossbar
- 45nm nodes - 45nm nodes

- pPCM arealunit: 9.07um2 - vdd: 1

- pPCM latency: 20ps - vth: 12679

- pPCM energy: 50fj/bit - phyGateLength: 018

- 4:1 MUX area: 11.2632pm - capldealGate: 678n

- 4:1 MUX latency: .07ns - capFringe: 17n

- 1:16 DEMUX area: 76.652pm || - capJunction: 1m

-1:16 DEMUX latency: .11ns || - capOx: 37.7m

- 1:4 DEMUX area: 15.4869pm || - effectiveElectronMobilty: 29.77m
- 1:4 DEMUX latency: 08ns - effectiveHoleMobility: 9.527m

- pnSizeRatio: 2.41

- effectiveResistanceMultiplier: 1.51

Not pipelined
Sub-add-on Components x

%‘:’5 1
Area

Latency
Dynamic Power
Leakage Power

- currentOnNmos set
- currentOffNmos set
- currentOnPmos set
- currentOffPmos set

x
Area

Latency
Dynamic Power
Leakage Power

J L

o Accelerator Area: crossbar area + peripheral area (m2)
o Accelerator Latency: crossbar latency + peripheral latency (s)
o Accelerator Energy: crossbar energy + peripheral energy (j

MNSIM
Fig. 3: An overview of input/output files for photonic and
electronic mode.

circuit simulators or experimental results, the tool offers the
flexibility to add new extra components to the accelerator. The
sub-array add-on components option in the input configuration
file allows for peripheral component flexibility beyond the
included components. Then, for each crossbar configuration,
one set of added components is simulated to compute the
accelerator’s total area, energy, and latency.

B. Adapting Algorithm to Photonic Domain

The presented simulator simulates multiple accelerator con-
figurations to find which one produces the lowest target value
(area, energy, or latency). As shown in Fig. 4, by altering the
bit-level, crossbar size, and other input parameters, it simulates
different accelerator options and calculates the number of
crossbars required for each one along with the corresponding
area, energy, and latency. Each of these performance results is
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Fig. 4: Flowchart for the simulation modes in the updated
MNSIM [1].

then saved, and the set of parameters that produces the lowest
target value is outputted to the user.

We utilize MNSIM’s original data-flow structure to adapt it
to the photonic domain. We categorize the existing MNSIM
algorithm as the “electronic mode” which is selectable by
the user. The proposed photonic mode has a similar structure
with fewer input parameters and different functions to compute
area, energy, and latency. As mentioned, the essential structure
for the photonic mode accelerator is modeled on top of [12],
consisting of a pPCM matrix for MAC computation and
multiplexers/demultiplexers for input/output generation. The
performance statistics of pPCM used in the simulator are
adopted from experimentally-benchmarked data and can be
readily updated by the user as shown in Fig. 3.

IV. VALIDATION RESULTS
A. Performance Evaluation

To examine and compare the performance of a silicon
photonics accelerator versus an electronic one, the enhanced
MNSIM is used in this section to determine the area, energy,
and latency at different crossbar sizes. For this experiment,
we selected the well-known AlexNet architecture [24] and
configured the input file accordingly. AlexNet was the first
deep CNN successfully performing ImageNet classification
task with 5 convolutional layers and 3 FC layers.

The achieved results from the simulator are plotted in
log-scale in Fig. 5. Here we listed our main observations.
As shown in Fig. 5(a), the photonic design shows signifi-
cantly smaller energy consumption at crossbar size of 8x8
to 128128 compared to the electronic design. Another ob-
servation is while the electronic design shows a remarkable
reduction in energy consumption with an increase in crossbar

TABLE I: Accuracy (%) of various acceleration techniques.

Implementation MNIST  FashionMNIST SVHN
Software Baseline 98.6 90.02 97.47
Electronic [17] 97.0 88.17 96.25
Photonic [11] 96.12 89.23 95.5

size, the photonic one remains the lowest at these median sizes.
We can see when the crossbar size goes beyond 256x256, the
electronic accelerator consumes less energy. This stems from
large size of combinational add-ons for photonic design as
crossbar size grows.

These trends swap in Fig. 5(b), with the silicon photonics
accelerator’s latency results decreasing significantly and the
electronic latency results remaining stagnant. Besides the
initial 8x8 crossbar size, all other models show a signifi-
cant reduction in execution time with the photonic model.
Therefore, our experiment confirms that a silicon photonics
accelerator can be potential paradigm to outperform current
electronic designs. Lastly, in Fig. 5(c), both the electronic
and photonic accelerator designs decrease in the area with an
increase in crossbar size, but at all crossbar sizes, the photonic
area results remain smaller.

B. Inference Accuracy

We conducted experiments on several datasets, including
MNIST [25], Fashion-MNIST [26], and SVHN [27] to analyze
the accuracy of a photonic accelerator [11] vs. an electronic
one [17]. MNIST is leveraged as a gray-scale dataset that
contains 70,000 28 x 28 images of handwritten digits from O to
9, 60,000 images for training, and 10,000 images for testing
sets. Similar to MNIST, Fashion-MNIST consists of 28 x28
gray-scale images but includes 10,000 images for each training
and testing set to form ten fashion categories. Finally, we
also exploit SVHN with 73,257 training digits, 26,032 testing
digits, and 531,131 additional digits for extra training data. The
images are pre-processed to 20x20 from the original 32x32
cropped version and fed to the model.

We reported the inference accuracy of an in-house software
baseline developed in python with the electronic and photonic
designs in Table I. For each of the datasets, the inference
accuracy of the electronic and photonic results remains within
one percent of each other and two percent off the software
baseline results. Since the accelerators are so comparable in
accuracy, it leaves the performance results discussed in Section
IV.A to be a tie-breaker between a photonic and electronic
accelerator modeled with the enhanced MNSIM herein.

V. CONCLUSIONS AND FUTURE WORKS

As convolutional neural networks have grown in usage, their
hardware has had to develop to improve their performance and
scalability. Previous electronic-based CNN accelerators are
limited due to their von-Neumann architecture and consequen-
tial high energy requirement in moving data. Silicon photonic’s
inherent parallel structure and light speed computations make
it a promising alternative for the implementation of these
accelerators. In this short study, we adapted MNSIM with a
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Fig. 5: Comparison of a silicon photonics accelerator design with an electronic ReRAM crossbar implemented in the enhanced
MNSIM. To show the impact of the crossbar size on the performance parameters, we increase it from 8x8 to 512x512. Here,

(a) Energy consumption, (b) Execution time, (c) Area.

new photonic mode that makes it to be the first freely available
simulation platform for silicon-photonic crossbar accelerators.
While the original electronic mode is based on a memristor-
crossbar structure, its photonic mode is centered around a
photonic Phase Change Memory crossbar structure. The user
inputs into the network which mode they would like to use,
the topology of the CNN they want to use the accelerator for,
and their target output (options: area, energy, latency). Based
on the selected target output, the enhanced MNSIM simulates
accelerators of different crossbar sizes and outputs the model
to the user that produces the lowest target result along with the
model’s total area, energy, and latency. Through comparing the
simulated results at different crossbar sizes in the two modes,
a silicon photonics design proved to be superior in reducing
the physical size, execution time, and energy consumption of
the accelerator model while maintaining within one percent of
original performance accuracy.

In the future, we hope to add more adaptability to the tool.
Currently, the sub-additional components options in the input
configuration file add those components to each crossbar layer.
We would like to add the option of user-entered components
that will only be used in the first/last layer of the neural
network. In addition, the photonic mode is currently solely
based on a photonic Phase Change Memory crossbar structure.
Our next step will be to allow for selecting components besides
pPCM for the crossbar, such as Microring and Microdisk
Resonators.
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