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Abstract—In the Artificial Intelligence of Things (AIoT) era,

always-on intelligent and self-powered visual perception sys-

tems have gained considerable attention and are widely used.

Thus, this paper proposes TizBin, a low-power processing in-

sensor scheme with event and object detection capabilities to

eliminate power costs of data conversion and transmission and

enable data-intensive neural network tasks. Once the moving

object is detected, TizBin architecture switches to the high-

power object detection mode to capture the image. TizBin

offers several unique features, such as analog convolutions en-

abling low-precision ternary weight neural networks (TWNN)

to mitigate the overhead of analog buffer and analog-to-digital

converters. Moreover, TizBin exploits non-volatile magnetic

RAMs to store NN’s weights, remarkably reducing static

power consumption. Our circuit-to-application co-simulation

results for TWNNs demonstrate minor accuracy degradation

on various image datasets, while TizBin achieves a frame rate

of 1000 and efficiency of ∼1.83 TOp/s/W.

1. Introduction
Internet of Things (IoT) devices are expected to reach

$1100B in revenue by 2025, with a web of interconnec-
tions estimated to consist of approximately 75+ billion
IoT devices, including wearable devices as well as smart
cities and industries [1], [2]. Artificial Intelligence of Things
(AIoT) nodes are composed of a variety of sensors, which
are used to collect and process data from the environment
and people. There is usually a great deal of redundant
and unstructured sensory data captured. The conversion and
transmission of large raw data to a backend processor are
energy-intensive, high-latency, a memory bottleneck, and
low-speed feature extraction at the edge [1], [3]. Those
issues can be addressed by shifting computing architecture
from a cloud-centric way of thinking to a thing-centric
(data-centric) perspective, where IoT nodes process sensed
data. Despite such challenges, artificial intelligence tasks
that require hundreds of layers of Convolutional Neural
Networks (CNNs) have severe computational and storage
constraints. There has been considerable advancement in
both software and hardware to improve CNN efficiency by
mitigating the “power and memory wall” bottleneck.

There has been considerable exploration of shallower
but wider CNN models, quantizing parameters, and net-
work binarization in algorithm-based approaches [4], [5]. A
recent development is reducing computing complexity and
model size by using low-bit-width weights and activations.
By converting the Multiplication-And-Accumulate (MAC)
operation into the corresponding AND-bitcount operations
in [4], the authors performed bit-wise convolution between
the inputs and the low-bit-width weights. Binarized convolu-

tional neural networks, as an extreme quantization method
[3], have achieved acceptable accuracy on both small [6]
and large datasets [5] by removing some high precision
requirements. By binarizing the weight and/or input fea-
ture map, they offer a promising solution to mitigate the
aforementioned bottlenecks in storage and computation.

From the hardware point of view, the underlying oper-
ations should be realized using efficient mechanisms. The
conventional processing elements are designed to work with
a von-Neumann computing model involving separate mem-
ory and processing blocks interconnected via buses, which
poses serious problems, such as long memory access latency,
limited memory bandwidth, energy-hungry data transfer,
and high leakage power consumption, which limit the edge
device’s efficiency and working time [2]. Additionally, this
presents several major issues at the upper level, including
bandwidth congestion and security concerns. The concept
of instant image pre-processing with smart image sensors
has therefore been extensively investigated [2], [7]–[9] as
a potential remedy. Using an on-chip processor, pixels’
digital outputs can be accelerated where the sensor is lo-
cated, paving the way for enhanced sensor paradigms such
as Processing-Near-Sensor (PNS). Other promising alter-
natives are a Process-in-Sensor (PIS) platform [8], [10]
that processes pre-Analog-to-Digital Converter data and a
hybrid PIS-PNS [1] platform to incorporate vision sensors
and eliminate redundant data output. Generally, PIS units
process images before transmitting them to an on-chip
processor for further processing. Typical designs rely on
this type of data transfer (from CMOS image sensors to
memory), which reduces the speed of feature extraction.
With this PIS unit, a computation core can (i) significantly
reduce the power consumption of converting photo-currents
into pixel values used for image processing, (ii) accelerate
data processing, and (iii) alleviate the memory bottleneck
problem [1], [2].

In this paper, we propose a novel low-power processing
in-sensor scheme with event and object detection capabilities
to alleviate power costs of data conversion and transmission,
namely, TizBin. It offers several unique features, such as
analog convolutions enabling low-precision ternary weight
neural networks (TWNN) to mitigate the overhead of analog
buffer and analog-to-digital converters. Once the moving
object is detected, TizBin, as an always-on intelligent visual
perception architecture, switches to the high-power object
detection mode to capture the image.

2. Background

Sensors that detect a field of view are responsible for
generating a stream of pixels representing the scenic event

770

2022 IEEE 40th International Conference on Computer Design (ICCD)

2576-6996/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCD56317.2022.00117

20
22

 IE
EE

 4
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r D
es

ig
n 

(I
C

C
D

) |
 9

78
-1

-6
65

4-
61

86
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
C

D
56

31
7.

20
22

.0
01

17

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 02,2023 at 15:08:11 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Distribution of mean absolute deviation where image is
divided into 5× 5 patches for (a) MNIST, (b) FashionMNIST, (c)
MCFD, and (d) SVHN datasets.

for a backend processor, which is analogous to the function
of the eye-brain system. The human eye’s retina contains
130 million pixels, with only 1.3 million synaptic connec-
tions to the brain, indicating a high sparsity ratio. This mas-
sive sparsity is key to minimizing power consumption and
latency, as well as preventing redundant information from
being sent to the brain. The correlation between raw images
within local regions tends to be positive, and a small amount
of data is passed on to the higher processing stages. In the
biological vision system, early sensory processing reduces
redundancy based on information-theoretical considerations
[11]. It is argued that this model explains how the visual sys-
tem eliminates redundancy by predicting incoming signals
and has an internal model of how to eliminate these signals
[12]. It has been determined that if an image frame is divided
into logical regions, the homogeneous ones comprise the
majority of the redundancies. A measurement of variation
enables the identification of these regions. To do so, the
following expressions are utilized, where the mean absolute
deviation (MAD) is the hardware-friendly and approximated
version, and μ is the mean value.

σ
2 =

Σn

i=1(xi − μ)2

n
, MAD =

Σn

i=1|xi − μ|

n
(1)

Figure 2 depicts the data distribution in MNIST, FashionM-
NIST, MCFD, and SVHN. For instance, in the three first
datasets (a)-(c), there are many regions with zero value.
SVHN (d), however, has fewer homogeneous regions due
to the higher background to foreground pixel ratio.

2.1. Near/In -Sensor Processing Background

Systematic integration of computing and sensor arrays
has been widely studied to eliminate off-chip data transmis-
sion and reduce ADC bandwidth, known as a processing-
near-sensor (PNS) [9], [13], combining sensor and process-
ing element so-called processing-in-sensor (PIS) [14], [15],
[25], [26], and finally integrating pixels and computation
unit, known as a processing-in-pixel (PIP) [8], [9]. In [9],
photocurrents are converted into pulse-width modulation
signals, and a dedicated analog processor is used to perform

Figure 2: Visual systems with different architectures; (a) Con-
ventional architecture, (b) PNS architecture, (c) PIS architecture,
and (d) PIP architecture, where green and orange boxes indicate
the pixel and the sensors. respectively, and blue boxes represents
where the computing are performed.

feature extraction, reducing the amount of power consumed
by the ADC. To run spatiotemporal image processing, 3D-
stacked column-parallel ADCs and processing elements are
implemented and utilized in [2]. The CMOS image sen-
sor with dual-mode delta-sigma ADCs described in [16]
is designed to process 1st-conv. layer of binarized-weight
neural networks (BWNN). Charge-sharing tunable capaci-
tors are used by RedEye [17] to implement the convolu-
tion operation. By sacrificing accuracy in favor of energy
savings, this design reduces energy consumption compared
to a CPU/GPU. However, for high accuracy computation,
the required energy per frame increases dramatically by
100×. As a PIS platform, MACSen [8] processes the 1st-
conv. layer of BWNNs with the correlated double sampling
procedure and achieves speeds of 1000fps in computation
mode. This method, due primarily to the SRAM-based PIS,
however, suffers from a humongous area overhead and high
power consumption. An example of a pulse-domain algo-
rithm is [18], which optimizes near-sensor image processing
by using photodiode arrays and an ADC to minimize design
complexity and increase cost and speed.

Similar to the previous state-of-the-art works, we mainly
focus on the first layer for the following reasons and ob-
servations. From the accuracy point of view, in the most
quantized neural network accelerators, the first and the last
layers of the networks remain in the full-precision, floating-
point domain, while in [19], authors showed that in vision-
based applications, the input feature map generally includes
fewer channels (e.g., red, green, and blue) compared to the
internal layers (e.g., 512). Thus, the first convolution layer
often has the least computation [20], while communications
are relatively high. Besides, continuous-valued inputs can
be easily handled as fixed points with n bits of preci-
sion. An example of a 4-bit fixed point input would be
s = x.wb; s =

∑4
n=1 2

n−1(xn.wb), where x4
1 is the most

significant bit of the first input, w is 1-bit weights, and a
is a 4-bit input. From the efficiency perspective, because
raw image data is full precision, the first layer’s convolu-
tion operations are the performance bottleneck in different
hardware/software co-design accelerators and require a lot
of memory and processing resources [21]. We used the
deep neural network energy estimation tool developed by
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Figure 3: Energy consumption for a 3-layer MLP network.

Yang et al. [22] to demonstrate that the first layer of our
target network consumes more power. Figure 3 depicts the
breakdown of normalized energy consumption according to
layers. As observed, layer one consumes much more energy
than the other layers for computation (purple block) and
data movement (the other three blocks). On the other hand,
in conventional image sensors: most of the power (>96%
[23]) is consumed by processing and converting pixel val-
ues. That means pixel circuits consume only 4 percent of
power to perform photovoltaic conversions, whereas signal
amplification, digital-to-analog conversion, and data trans-
mission consume most of the power; finally, almost all the
PNS/PIS/PIP systems are hardwired, so the functionalities
are limited to simple pre-processing tasks such as 1st-layer
BWNN computation.

2.2. SOT-MRAM
Figure 4a shows a Spin-Orbit Torque Magnetic Random

Access Memory (SOT-MRAM) device structure used in
this work. The storage element in SOT-MRAM is SHE-
MTJ [24], a composite device structure of a Spin Hall
Metal (SHM) and Magnetic Tunnel Junction (MTJ). The
binary data is stored as resistance states of MTJ. Data-
‘0’(/‘1’) is encoded as the MTJ’s lower(/higher) resistance or
parallel(/anti-parallel) magnetization in both magnetic layers
(free and fixed layers). Here the flow of charge current
(±y) through the SHM will cause accumulation of opposite
directed spin on both surfaces of SHM due to spin Hall
effect [24]. Thus, a spin current flowing in ±z is generated
and further produces spin-orbit torque (SOT) on the adjacent
free magnetic layer, causing a switch of magnetization. Each
cell located in the computational sub-array is connected with
a Write Word Line (WWL), Write Bit Line (WBL), Read
Word Line (RWL), Read Bit Line (RBL), and Source Line
(SL). The bit-cell structure of 2T1R SOT-MRAM and its
biasing conditions are shown in Fig. 4b and 4c, respectively.
In this work, the magnetization dynamics of Free Layer
(m) are modeled by LLG equation with spin-transfer torque
terms, which can be mathematically described as [24]:

dm

dt
= −|γ|m×Heff + α

(
m×

dm

dt

)

+ |γ|β(m×mp ×m)− |γ|βε′(m×mp) (2)

β = |
�

2μ0e
|

IcP

AMTJ tFLMs

(3)

where � is the reduced plank constant, γ is the gyromagnetic
ratio, Ic is the charge current flowing through MTJ, tFL is

(a)

Operations
Write

‘1’(‘0’)
Read

WWL VDD 0
RWL 0 VDD

RBL 0 IREAD

WBL VWP (VWN ) 0
SL 0 0

(b) (c)

Figure 4: (a) SOT-MRAM device structure, (b) Schematic
and (c) biasing conditions of SOT-MRAM bit-cell.

the thickness of free layer, ε′ is the second Spin transfer
torque coefficient, and Heff is the effective magnetic field,
P is the effective polarization factor, AMTJ is the cross-
sectional area of MTJ, mp is the unit polarization direction.
Note that the ferromagnets in MTJ have In-plane Magnetic
Anisotropy (IMA) in x-axis [24]. With the given thickness
(1.2nm) of the tunneling layer (MgO), the Tunnel Magneto-
Resistance (TMR) of the MTJ is ∼ 171.2%.

3. TizBin Architecture

We propose TizBin as an efficient and reconfigurable
event and object detection sensor architecture to address the
aforementioned challenges and limitations. TizBin consists
of an m × n Compute Focal Plane (CFP) array, row and
column controllers (Ctrl), command decoder, sensor timing
Ctrl, a memory/computing unit, and readout/ADC/SA cir-
cuitry. The sensors operates in three modes, i.e., sensing,
event detection, and object detection modes. The CFP is
designed to co-integrate sensing and processing for low-
power but high classification accuracy image processing ap-
plications. The output, i.e., preprocessed layer, is transmitted
to an on-chip deep learning accelerator to accelerate further.
Designing a domain-specific accelerator is out of scope.

Figure 5: Proposed TizBin architecture.
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Figure 6: (a) The proposed sensor design, and its various
phases (b) pre-charge, (c) evaluation, and (d) reading.

3.1. Proposed Pixel and Its Phases

The proposed pixel, as shown in Fig. 6a has 2 inputs and
2 outputs, which comprises 5 transistors, one Photodiode
(PD), and one capacitor. There are three essential phases
in pixels: pre-charge, evaluation, and reading. In the pre-
charge phase, CPD capacitor will charge to the VDD value,
and then, in the evaluating phase, CPD will be discharged
based on the resistance of the PD (based on light intensity).
There are two design considerations and novelties, compar-
ing the proposed pixel design to previous works: (1) the
CPD capacitor will only be discharged in the evaluation
phase due to the T5 transistor. As a result, in the reading
phase, the pixel value remains unchanged; therefore, we do
not need to charge CPD from ‘0,’ decreasing overall power
consumption; (2) The T1 transistor is added to turn off the
pixel using the control unit. By turning off this transistor,
CPD is never charged, providing reconfigurability for the
pixel and saving more power.

In the pre-charge phase, Rst = ‘0’ therefore, if En =
‘0’ then CPD will be charged to VDD through T1 and T2;
otherwise, T1 is off, and there is no path to charge CPD.
This is how we turn off the pixels. In this phase, discharge
= ‘0’; therefore, T5 is off (Fig. 6b). In the evaluation phase
(Fig. 6c), after charging CPD, both Rst and discharge signals
change to ‘1’. In this step, based on the light’s density, the
photodiode’s resistance will change; as a result, different
values of CPD will be discharged through the T5. In the
reading phase, as shown in Fig. 6d, values of the pixels are
read row by row based on the Ri signal. In this phase, Rst
= ‘1 and discharge = ‘0’; as a result discharging process
will stop through T5, and the value of the CPD will stay
constant. When row ith is selected using the control unit,
T4 will be turned on, and T3 creates a current based on
the CPD voltage on its gate. This current will convert to
the voltage on the SBL line and will be measured using
the readout circuit at the end of each SBL. Since pixels
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Figure 7: Relationship between the power consumption and
two types of factors, (a) temperature, and (b) mismatch.

are read in a row-by-row manner, it takes a while. Thus,
in 3T and 4T -pixel designs, values of the lower pixels
are changed, resulting in more power consumption than the
proposed pixel. In our architecture, T5 prevents undesir-
able discharging and saves more power while generating
a more explicit photo. The proposed pixel simulates various
situations, including temperature and mismatching of both
capacitor and transistor sizes. As shown in Fig. 7a and 7b
the proposed design is more resilient in both situations.

3.2. Proposed Peripheral Circuits

Compute Add-on (CA): In addition to the pixel array, our
architecture includes a Memory and Computing Unit (Fig.
8a). The memory unit consists of M × N SOT-MRAM
(Fig. 8b) and one 1D Compute Add-on array (Fig. 8c). The
memory unit functions similarly to a conventional memory
component. While TizBin uses an efficient compute add-
on array to support the computation required for event-
and object-detection tasks. This compute array comprises
M ×N CAs, each connected to a SOT-MRAM within the
memory unit and controlled by the voltage value of each
pixel (VPD). The structure of the CA is shown in Fig. 8c.
The CA array is designed to generate positive and negative
current flow on the Current Bit Line (CBL) based on the
value stored in the memory. Due to the particular structure
of the proposed pixel, the proposed CA can produce positive

Figure 8: The proposed Memory and Computing Unit. (a) Its
structure w.r.t. inputs and output. (b) M ×N SOT-MRAM
cells and 1× (M ×N) CA arrays, and (c) a CA design.
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Figure 9: The proposed circuits of (a) readout, (b) folding
ADC, and (c) sense amplifier.

and negative currents, in addition to zero current, by turning
off the sensor. This way, ternary weights of the DNN can
be stored and processed for the object-detection task.
Readout and ADC: Readout and ADC circuits are shown
on Fig. 9a and Fig. 9b, respectively. These circuits are used
in the sensing and event detection modes. In the readout
circuit (Fig. 9a), the first value of the pixel is stored on
the C1 using transmission gate k1, and in the next step,
after reducing the value of CPD, the new value of the pixel
will be store on the capacitor C2. A subtractor connected
to these capacitors subtracts the old and new values of the
pixel. This value will be measured using the 8-bit ADC. In
the Tizbin structure, we use folding ADC (Fig. 9b) rather
than flash ADC. The folding ADC consists of two parts,
coarse and fine. The coarse circuit is responsible for the most
significant bits (MSBs), while the fine part generates 4 least
significant bits (LSBs). For an 8-Bit flash ADC, we need
256 comparators, while in a folding ADC, we need only
32 comparators. In the sensing mode, we need all 8 bits,
while in event-detection mode, only 4 MSBs are required.
Therefore, TizBin turns off the folding and fine circuit to
save more power and memory.
Sense Amplifier: Transistor-level schematic of the used
sense amplifier is presented in Fig. 9c. As illustrated in the
figure, SA considers three inputs named CLK, mode selector
(MS), and CBL. The functionality of this sense amplifier is
like a sign function. It means that for voltage bigger than
Vref, the output of this circuit will be one; otherwise, the
result is zero. It should be mentioned the output of SA is
valid when CLK = ‘0’ and MS = ‘1’.

3.3. Putting All Together

The proposed TizBin comprises 600 × 600 pixels. We
architect the pixels in the groups of 5×51 called Box as

1. There are 120 boxes with the size of 5× 5.

shown in Fig. 10a. Each pixel box is then divided into two
parts based on its position. The central pixels (i.e., PVT, Fig.
10b) are dedicated to participating in both event and object
detection modes, whereas the rest of the pixels are used
only for object detection. TizBin offers three main modes,
including Sensing, Event-Detection and Object-Detection

modes, which are chosen by a MS signal.

3.3.1. Sensing Mode. Reading the pixels’ values in the
sensing mode is performed in a row-by-row manner; there-
fore, reading all pixels requires r clock cycles, where r is the
number of rows. Initially setting Rst=‘high’ in the sensing
mode in Fig. 6a the PD connected to the T2 transistor turns
into inverse polarization. Turning on the access transistor T4
and k1 switch at the shared ADC (Fig. 9a) allows the C1

capacitor to charge through SBL fully. By turning off T2,
PD generates a photo-current concerning the external light
intensity, which leads to a voltage drop (VPD) at the gate of
T3. Once again, by turning on T4 and this time k2 switch,
C2 is selected to record the voltage drop. Therefore, the
voltage values before and after the image light exposure, i.e.,
V1 and V2 in Fig. 9a, are sampled. The difference between
two voltages is sensed with an amplifier, while this value
is proportional to the voltage drop on VPD. In other words,
the voltage at the cathode of PD can be read at the pixel
output.

3.3.2. Event-Detection Mode. The operation principle of
the object-detection mode is explained in three steps, i.e.,
read, calculation (compare), and box activation, presented
using Algorithm 1. In the reading step (line 4), only the
PVT of each box is turned on, and the remaining pixels
are disconnected from the power supply. For example, the
original raw image and only activated PVTs are depicted
in Fig. 11a and Fig 11c, respectively. If we concatenate
these central pixels, Fig 11e is generated, which comprises
only 120 × 120 pixels rather than 600 × 600 pixels. In the
calculation step (lines 6-8 of Algorithm 1), the value of each
PVT is measured like the sensing mode. Nonetheless, in this
step, TizBin does not need to use all 8-bits of ADC, and only
4 bits of each central pixel will be measured and compared
with the value of the pixels in the previous step leveraging
the proposed ADC in Fig. 9. In the precise sensing, if two
values are equal, interpreted as the inactivity, other pixels in
the box remain inactive. In the case, in-quality, interpreted

as the activity (line 7 of Algorithm 1), represents as a region
of interest. In the next Clk cycle, all pixels of these boxes

Figure 10: (a) An M×N pixel array, including M/5×N/5
boxes. (b) Box 1, consisting of 25 pixels and its central pixel.
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Algorithm 1 In-Sensor Event-Detection Algorithm

1: Input: 600× 600 pixel array
2: Output: Activated Boxes
3: procedure ISED

4: pixel values ← Read (central pixels)
5: turn on list = []
6: for i ← 0 to |pixel values| do
7: if pixel values [i] != old pixel values [i] then
8: turn on list.Push (pixel values [i])

9: old pixel values = pixel values
10: while (length (turn on list) !=0) do
11: turn box on (turn on list.Pop)

become active by the control unit, and the new value of
the sensor will be stored in the memory (lines 10 and 11).
The turned-on boxes are shown in Fig 11d. As result, by
changing the mode to object-detection, the results can be
processed by the CNN algorithm with only these areas and
then system turns to the detection mode again.

3.3.3. Object-Detection Mode. In this mode, the CPD

capacitor is initialized to the fully-charged state by setting
Rst=‘high’, similar to the sensing mode. During an evalu-
ation cycle, by turning off T1, the Ctrl Unit activates the
CBL signal, while the Ri signals are deactivated. This will
activate the entire array for a single-cycle MAC operation.
The core idea behind compute add-on shown in Fig. 8c is to
leverage pixel’s VPD as a sampling voltage for T6(/T7) in
v-SOT-MRAMs to generate(/pull) current from the CBLs
simultaneously. To implement multiplications between the
pixel value identified by VPD and the binary weight stored
in SOT-MRAM, a 2:1 MUX unit was devised in every CA,
taking the T6’s source and T7’s drain signals as inputs and
the SOT-MRAM sensed data as the selector. Note that T6
and T7 are connected to VDD and −VDD

3 , respectively. After
exposure, the set of input sensor voltages VPD= [VPD1,1

,
VPD1,2

,..., VPDm,n
] is applied to the gate of T6s and

T7s generating current set I= [I1,1(1), I1,1(2),..., I1,1(v),...,
Im,n(1), Im,n(2),..., Im,n(v)] for the entire array. If the binary
weight equals ‘1’ (Wi=+1), T6 acts as a current source and
generates a current with Ii,j(x) magnitude on the shared
CBL as shown by the red dashed line in Fig. 8c. However,
if the binary weight equals ‘0’ (Wi=-1), T5 transistor acts
as a negative current source and pulls a current with the
same magnitude as Ii,j(x) in the opposite direction from
the shared CBL as indicated by the blue dashed line in Fig.
8c. Please note that T6’s and T7’s gate capacitors as well as
parasitic capacitors will be fully charged to VDD through T1
in the pre-charge cycle, this will significantly keep the pixel
sensitivity when the number of compute add-ons increases.
Mathematically, let Gj,i be the conductance of the synapse
connecting ith to the jth node, the current through that
synapse is Gj,iVi and the collection of the current through
each CBL represents the MAC result (Isum,j=

∑
i Gj,iVi),

according to Kirchhoff’s law. This is readily calculated
by measuring the voltage across a sensing resistor. This
mechanism converts every input pixel value to a weighted
current according to the SOT-MRAM that is interpreted as
the multiplication in DNNs. For the activation function, we

(a) Frame t1 (b) Frame t2

(c) Turned on PVT pixels (d) t1 and t2 differences

(e) Compressed frame t1 (f) Compressed frame t2

Figure 11: (a) and (b) are two different frames. (c) Only
PVTs are on. (d) Differences between two frames. (e) and
(f) show when only PVT pixels are connected.

designed and tuned a sense circuit connected to each CBL
based on StrongARM latch to realize an in-sensor sign
function [19] as shown in Fig. 9c. The sense amplifier re-
quires two clock phases: pre-charge (Clk ‘high’) and sensing
(Clk ‘low’). During sensing, Isum(x) flows from every CBL
to the ground and generates a sense voltage (Vsense) at the
input of the sense amplifier. This voltage is compared with
the reference voltage by applying a proportional current over
a processing reference resistor (Rpro) activated by the mode
signal. The binary activation is then transmitted through the
bus fabrics to the PNS unit for storage.

4. Simulation Results

Functionality: Figure 12 shows the functionality of one pro-
posed pixel. When En equals VDD, V PD is never charged,
and the produced current on CBL approximately is zero. On
the other hand, by changing the EN value to zero, with the
first Rst clock (‘0’), CPD is charged to VDD, and when Rst
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Figure 12: Transient simulation waveform of a pixel with a
single CA.

is returned to ‘1’ again, and discharge is VDD, CPD starts
discharging. In the end, the value of the V PD has remained
the same. Everything in this step is similar to the previous
one except the weight values. Before starting the sensing
and processing phases, the pre-trained weights should be
written into NVMs and remain unchanged in the proper
memory unit. Nevertheless, to evaluate the output current,
we changed the pixel weights. This simulation indicates
sensor with negative and positive weights produces a current
value of approximately −5μA and +5μA, respectively.

The transient simulation results of an 8× 1 pixel array
are shown in Fig. 13. Herein, eight sensors are connected to
the CBL. The results are obtained in the presence of 15%
process variation in transistor sizing for 1000 simulation
runs. To verify sensors’ functionalities, this evaluation phase
can be divided into two steps. In the first step, some sensors
were disabled. Therefore, the sum of currents according to
their weights becomes approximately −1μA at the rising
edge of the Clk signal. As previously mentioned, the current
value smaller than 0 interprets as ‘0’, and bigger than 0
denotes as ‘1’. Therefore, the output of the SA (out) is
‘0’, whereas, in the second step, the weights changed and
generated a positive current, and out became 1. As depicted
in Fig. 13, the proposed pixel is resilient during the process
variation, and all waveforms approximately have the same
value in each iteration.

Performance Evaluation: Table 1 compares the structural
and performance parameters of selective PIS and PIP de-
signs in the literature. As different designs are developed

300 5 10 15 20 25
0

0.5

1
0

0.5

1

0

0.5

1
0

0.5

1
0

0.5

1

-2
0

2

-4

( )

( )

( )

( )

( )

( )

( )

Figure 13: Transient simulation waveform of an 8×1 sensor
array.

TABLE 1: Performance comparison of various sensor units.

Designs
Technology

(nm)
Purpose

Frame Rate
(frame/s)

Power
(mW )

Efficiency
(TOp/s/W )

[27] 180 2D optic flow est. 30 0.029 0.0041

[9] 180
edge*/blur/sharpen/

1st layer DNN
480

sensing: 0.077
processing: 0.091

0.777

[2] 60/90 STP† 1000
sensing: 230

processing:363
0.386

[8] 180 1st layer BNN 1000 0.0121 1.32

[7] 180 edge*/TMF‡ 100,000 1230 0.535

TizBin 65
edge

1st layer DNN
1000

sensing: 0.025
processing: 0.0088

1.83

* Edge extraction. †Spatial Temporal Processing. ‡Thresholding Median Filter.

for specific domains, for an impartial comparison, we esti-
mated and normalized the power consumption when all PIS
units execute the similar task of processing the 1st-layer of
DNN. The TizBin achieves the frame rate of 1000 and the
efficiency of ∼1.83 TOp/s/W as the most efficient design.
However, the structure in [7] achieves the highest frame rate.
As we do not have access to the other layouts’ configura-
tions, it is challenging to have a fair comparison between
area overheads. However, we believe a ballpark assessment
can be made by comparing the number of transistors in
previous SRAM-based designs and TiZBin’s lower-overhead
compute add-on.

4.1. High-level Evaluation

We demonstrate the advantages of TizBin design through
an image classification task. In the original BWNN and
TWNN topologies, all the layers, except the first and last,
are implemented with quantized weights [19], [28], [29].
Since, in image classification tasks, the number of input
channels is relatively smaller than the number of internal
layers’ channels, the required parameters and computations
are small. Thus, converting the input layer will not be a
significant issue [19]. Three PIP designs, including 3T and
4T -pixel designs, and our TizBin are considered. The first
two architectures can implement BWNNs (-1, +1), while
our pixel implements TWNN (-1, 0, +1). After performing
the first layer’s computations, the remaining layers can be
accelerated with an identical NN accelerator. To do so, the
outputs of the 1st-layer are then fed into the second layer
of the algorithm, which is implemented in Python.

NN Architecture: In order to evaluate our design and
perform a fair comparison, we developed a 2-layer MLP
with 1024 inputs, 16 hidden nodes, and 10 outputs.

Datasets: We conduct experiments on several datasets to
evaluate the performance of TizBin, including MNIST [30],
Fashion-MNIST [31], MCFD [32] and SVHN [33]. MNIST
is leveraged as a gray-scale dataset that contains 70,000
28×28 images of handwritten digits from 0 to 9, 60,000
images for training, and 10,000 images for testing sets.
Similar to MNIST, Fashion-MNIST consists of 28×28 gray-
scale images but includes 10,000 images for each training
and testing set to form ten fashion categories. MCFD face
recognition database contains face images of 10 subjects,
where each image is normalized to 20×20 pixels. Training
data consists of 6,977 images, while testing data consists of
24,045 images. Finally, we also exploit SVHN with 73257
training digits, 26032 testing digits, and 531131 additional
digits for extra training data. The images are pre-processed
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to 20×20 from the original 32×32 cropped version and fed
to the model.
Accuracy: We conduct experiments on the mentioned
datasets. The comparison of classification accuracy is sum-
marized in Table 2. The results show that our TizBin archi-
tecture provides higher accuracy can be achieved rather than
BWNNs based on 3T and 4T -pixels. This improvement is
because of three values realized by the proposed pixel. It is
worthy to note that we can alter BWNNs’ values from (-1,
+1) to (0, +1), which causes several issues like no guarantee
for convergence.

TABLE 2: Classification accuracy (%) on MNIST, Fashion-
MNIST, MCFD and SVHN.

Configuration MNIST FashionMNIST MCFD SVHN

BNN [19] 98.6 90.02 – 97.47
PIP [8] 96.0 83.17 90.67 –
TizBin 97.38 85.68 92.30 91.05

*Binarized Neural Network (BNN) and PIP are a software and a
hardware -based implementations, respectively. It worthy noted that, PIP
can be implemented using 4T-pixel and 3T-pixel, while both provide the
same accuracy.

5. Conclusion
This paper proposed TizBin, as an always-on intel-

ligent visual perception architecture that realizes a low-
power processing in-sensor scheme with event and object
detection capabilities. TizBin supports analog convolutions
enabling low-precision TWNN to mitigate the overhead of
analog buffer and analog-to-digital converters. Once the
moving object is detected, it switches to the high-power
object detection mode to capture the image. Our results
demonstrate acceptable accuracy on various data sets, while
TizBin achieves a frame rate of 1000 and efficiency of ∼1.83
TOp/s/W.
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