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ABSTRACT
P4’s data-plane programmability allows for highly customizable
and programmable packet processing, enabling rapid innovation in
network applications, such as virtualization, security, load balanc-
ing, and trac engineering. Researchers extensively use Mininet,
a popular network emulator, integrated with BMv2, for fast and
exible prototyping of these P4-based applications, but due to its
lower performance in terms of throughput and latency compared to
a production-grade software switch like Open vSwitch, it is crucial
to have an accurate and scalable emulation testbed. In this paper,
we develop a lightweight virtual time system and integrate it into
Mininet with BMv2 to enhance delity and scalability. By scaling
the time of interactions between containers and the underlying
physical machine by a time dilation factor (TDF), we can trade time
with system resources, making the emulated P4 network appear
to be faster from the viewpoint of the switch/host processes in
the container. Our experimental results show that the testbed can
accurately emulate much larger networks with high loads, scaled
by a factor of TDF with extremely low system overhead.
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1 INTRODUCTION
Modern hyperscale data center, service provider, and carrier net-
works are increasingly built on open switch hardware and open
software running on servers that support virtual network func-
tions. As the demand for higher network throughput and eciency
increases, the traditional xed-function Application-Specic Inte-
grated Circuit (ASIC) switch is being replaced by the more versatile
programmable switch that enables greater control of the data plane
[6]. P4 stands for Programming Protocol-independent Packet Pro-
cessors [14] and it provides a high-level programming language for
dening the packet processing behavior in programmable switch
ASICs. P4 allows network operators and developers to dene how
packets are processed in the data plane, including how they are
parsed, classied, and forwarded, and therefore, enables the creation
of custom network functions, such as rewalls, trac analyzers,
and load balancers, that can be tailored to the specic needs of
modern networks.

The rapid advancement of programmable networks largely de-
pends on successfully translating early-stage research concepts into
practical applications. A realistic and exible testing environment
is often an indispensable tool in achieving such a transformation.
Mininet-BMv2 [9] is a network emulator that supports programma-
bility on both the data plane and control plane and has been widely
embraced by the P4 community. It provides a exible and cost-
eective experimental platform to create, test, and evaluate P4 ap-
plications and protocols. With lightweight OS-level virtualization
technology, Mininet displays good scalability (up to 4096 hosts on
a commodity laptop) and functional delity by running unmodied
code of network applications over the actual Linux kernel. However,
BMv2 is not designed to be a production-grade software switch
[21]. It is intended to be utilized as a tool for designing, testing,
and debugging P4 software. Consequently, BMv2’s performance,
such as throughput and latency, is considerably lower than that of
a production-grade software switch such as Open vSwitch (OVS)
[25]. This limitation can signicantly impact the temporal delity
of Mininet, particularly when emulating high-workload network
scenarios.

To enhance temporal delity in network emulation experiments,
researchers have developed virtual time systems for virtual ma-
chines (VMs) [26] and containers [20]. These systems allow each
virtual node to have an independent clock that can advance at a
customized rate dierent from the wall clock. As a result, the nodes
can perceive their own notion of time as if they are running con-
currently on multiple physical machines, rather than relying on
the system clock. In this paper, we design and integrate a virtual
time system into the Mininet-BMv2 testbed to improve accuracy in
time-dependent P4-based network applications and scenarios.
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We rst present empirical observations of the temporal delity
issues in the existing Mininet-BMv2. We then conduct an error
analysis of Mininet-BMv2 based on these observations. In order
to tackle this problem, we have created and integrated a virtual
time system into Mininet-BMv2. The virtual time system assigns a
virtual clock to each node within Mininet-BMv2, which operates
independently of the physical platform’s system time. The system
is controlled by a barrier-based synchronization controller that
ensures that all nodes are synchronized in virtual time, which helps
maintain high-performance delity and scalability. Throughout
the paper, we refer to the resulting virtual-time-enhanced P4 net-
work emulator as VT-BMv2. We evaluate the performance delity,
synchronization overhead, and system scalability of VT-BMv2 and
compare the measurements to those obtained from Mininet-BMv2.
Our results show that VT-BMv2 signicantly reduces the error of
throughput measurement to a certain percentage, while Mininet-
BMv2 has an error of up to another 82.8% in a 16-switches network
conguration. VT-BMv2 is a lightweight modication of the Linux
Kernel as the experimental results show limited synchronization
overhead. For instance, the synchronization overhead of 256 con-
tainers on 16 CPUs is less than 0.31 ms per cycle, which is roughly
0.13% of the overall execution time. Meanwhile, VT-BMv2 main-
tains a stable and high precision of time even with a large number
of containers. For example, VT-BMv2 can maintain an average TCP
throughput of approximately 97.54% of the desired rate (1000 Mpbs)
during the emulation of a 256-switch network with a high volume
of TCP transmissions.

The remainder of the paper is structured as follows: Section 2
discusses the background of P4 and the related emulation testbeds.
Section 3 presents a model and analysis of the temporal error of
Mininet-BMv2. Section 4 outlines the design architecture of VT-
BMv2, a virtual time system that incorporates precise time man-
agement for Mininet-BMv2 as well as implementation details of
VT-BMv2, such as the synchronization controller. Section 5 provides
the performance evaluation of VT-BMv2, including performance
delity, synchronization overhead, and scalability. Section 6 dis-
cusses the related work on virtual time systems and container-based
network emulators. Section 7 concludes the paper with a discussion
of future work.

2 BACKGROUND
2.1 Programming Protocol-independent Packet

Processors (P4)
A P4 switch[14] is a specialized type of network switch that lever-
ages the P4 language to dene and customize the forwarding behav-
ior of network packets. P4 is a domain-specic language designed
specically for programming data-plane processing functions in
networking devices such as switches, routers, and network interface
cards [14].

P4 switches exhibit several unique advantages. First, they pro-
vide a high degree of programmability and exibility. Network
engineers can specify how packets should be processed and for-
warded in the network, including how to classify packets, modify
packet headers, and direct packets to specic ports or network
functions. P4 switches can be used to implement network functions
such as rewalls, load balancers, and intrusion detection systems.

Second, P4 hardware switches provide high-performance packet
processing and forwarding capability, making them suitable for use
in high-speed networking applications such as data centers and 5G
telecommunications networks. [24]

P4 has gained widespread attention in recent years as the de-
mand for programmable network devices has increased. Some ex-
amples of P4 hardware switches include the Barefoot Tono switch
ASIC[5], the Intel Tono 2 switch ASIC[8], and the Stratum switch
system[10] from the Open Networking Foundation. These switches
are specically designed to be used in large-scale data centers and
cloud computing environments, where high-performance and pro-
grammable network devices are essential to meet the demands of
modern applications and services. For example, the Aurora 710[4]
is a P4 hardware switch based on Barefoot Tono[5] switching
silicon. It has 32 QSFP28 interfaces, each capable of supporting 100
Gbps line rate communication.

2.2 Emulation Testbed for Programmable
Networks

As the adoption of P4-based network applications grows, it becomes
crucial to validate and test them in a realistic environment before
deploying them in production. This is because P4 allows for the
creation of highly customized behaviors, which can have a signi-
cant but unknown impact on network performance and reliability.
Hardware testbeds are commonly used, but they are expensive and
limited in size. Virtualized networking environments, like Mininet-
BMv2 [9], are often used for the initial validation of P4 applications,
allowing for the creation of a realistic network environment with
multiple P4 switches, hosts, and even programmable controllers.

Mininet is a popular network emulator that utilizes Linux con-
tainers to run scalable network experiments. With Mininet, users
can create a virtual network environment for testing, development,
and evaluation. Mininet supports OpenFlow-enabled switches [23]
that operate in kernel space for eciency, such as Open vSwitch
[25]. These switches are virtually linked and connected to con-
tainers through virtual interfaces, creating an emulated network
topology. This makes Mininet a valuable tool to emulate complex
network environments and study the behavior of networks and
protocols in a controlled environment. While Mininet does not na-
tively support P4 switches, tools like BMv2 [7] enable P4 switches
to be used with Mininet through the P4 Runtime environment and
P4 compiler. This makes Mininet a valuable tool for studying the
behavior of P4-based networks in a controlled environment.

BMv2 is an open-source software switch built on top of the
P4 programming language. It is a exible platform for designing
and testing custom packet-processing pipelines and specifying how
packets should be processed and forwarded. BMv2’s simplicity
and programmability make it a popular tool for researchers and
network developers to experiment with new network architectures
and protocols without the need for expensive hardware.

Mininet-BMv2 provides high functional delity to P4 applica-
tions by accurately implementing the P4 language specications.
However, BMv2’s performance in terms of throughput and latency
is generally slower compared to hardware switches or production-
grade software switches like Open vSwitch [25]. This performance
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gap may create temporal delity issues in network emulation when
using Mininet-BMv2.

Mininet-BMv2 also faces scalability challenges due to the impre-
cise time management and process scheduling of Linux container
technology. Mininet employs Linux container technology, an OS-
level virtualization technique that enables a group of processes,
including virtual hosts and application processes running inside
the container, to have an independent view of system resources,
such as process ID, le system, and network interfaces, and shares
the kernel with other containers. In contrast to VM-based virtualiza-
tion techniques where each virtual node has a copy of the entire OS
kernel, the virtual nodes in Mininet-BMv2 are lightweight, making
it possible to achieve scalable network emulation. Although the
lightweight virtual nodes in Mininet-BMv2 enable scalable network
emulation, the execution order and burst lengths of virtual nodes
are mostly managed independently by the host machine’s operat-
ing system. This results in temporal delity issues, particularly in
large-scale network emulation scenarios, which motivates us to
explore a container-based virtual time system to provide precise
time management services to Mininet-BMv2 in this work.

3 TEMPORAL ERROR ANALYSIS OF
MININET-BMV2

We perform experiments to demonstrate temporal delity issues of
Mininet-BMv2 as motivating examples for this work. The experi-
ments were conducted on a 64-bit Linux platform (Ubuntu 20.4.5
with Linux Kernel version of 5.8.1) with two AMD EPYC 7662 CPUs
and 1 TB RAM. Each experiment was repeated at least 10 times inde-
pendently. We selected two distinct network topologies, including a
linear topology as shown in Figure 1 and a ring topology as shown
in Figure 2. Three sets of experiments were conducted to show the
issues of temporal delity and scalability in Mininet-BMv2.

Figure 1: Linear network topology

Temporal Fidelity. Figure 3 shows the experimental results
with the linear network topology consisting of two hosts and 16
switches inMininet. The link delay was set to 1ms using the TCLink
module and the link bandwidth was congured using the trac
control (tc). We used Iperf3 to measure the TCP throughput be-
tween the two hosts. The X-axis of the gure represents the link
bandwidth, while the Y-axis represents the average TCP throughput.
We use both BMv2-based P4 switch and Open vSwitch (OVS) in the
experiments for comparison. The orange line indicates the measure-
ments with BMv2 and the green line indicates the measurements
with OVS. The blue dashed line represents the ideal throughput
(i.e., link bandwidth) under the current conguration.

The results of the experiments show that Mininet-BMv2 can
maintain a good performance close to the line rate when the link
bandwidth is less than 100 Mbps. However, the throughput of the
testbed is at 130 Mbps when the link bandwidth reaches around

Figure 2: Ring network topology

Figure 3: TCP throughput in a linear network topology with
16 switches and varying link bandwidth.

180 Mbps. The throughput remains the same even though the link
bandwidth keeps increasing, resulting in a signicant gap between
the expected throughput and the actual measurements. Given one
key advantage of the P4 switch is the high-performance packet
processing speed, a saturation throughput at 130 Mbps in a small-
scale emulated network scenario is not desired. In contrast, OVS
can maintain a high throughput closer to the line rate as shown in
Figure 3. Further exploration of the OVS performance limitation
reveals that OVS can reach a throughput of up to 30 Gbps on the
experimental host machine.

Various BMv2 implementations, such as simple_switch, sim-
ple_switch_grpc, psa_switch [19], have dierent performance (e.g.,
the maximum throughput ranges from 40 Mbps to 1 Gbps). The
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instance shown in Figure 3 uses simple_switch_grpc, and the result
shows a maximum throughput of around 170 Mbps. Our experi-
mental results using simple_switch can achieve a throughput of up
to 1 Gbps. However, BMv2 still exhibits signicantly lower through-
put than OVS, which can be attributed to the tracing features of
BMv2 that provide a rich tool for developers to debug but introduce
overhead and slow down the overall performance. The experiment
results indicate that turning on all tracing features could result in
a performance decrease of up to 30.7%. Despite its slower perfor-
mance, BMv2 remains one of the most widely used P4 software
switches due to its excellent exibility and customizability. Its com-
patibility with network testbeds such as Mininet also makes it easy
to integrate into various testing environments. Furthermore, virtual
time techniques like time dilation have shown promise in scaling
BMv2’s performance for high-speed P4 network scenarios. By slow-
ing down the time advance rate, BMv2 can be scaled by multiple
times, making it a valuable tool for testing and evaluating complex
P4-based networks.

Scalability. We evaluated the performance of BMv2 in network
topologies of varying sizes. We rst conducted experiments us-
ing the Mininet-BMv2 testbed and measured the TCP throughput
of a linear topology network with dierent numbers of switches,
ranging from 1 to 256. The links in the network had a bandwidth
of 500 Mbps and a delay of 1 ms. Figure 4 presents the results
of our experiments. The blue dashed line represents the desired
throughput, whereas the orange line shows the measured through-
put. The results indicate that the throughput deviates from the
desired behavior as the number of switches increases, with a signif-
icant downgrade in performance when the network scale surpasses
64 switches. For example, the network of four switches achieved
an average throughput of 495.6 Mbps, which was 99.12% of the
desired rate. However, the 256-switch network had a much lower
throughput of 87.6 Mbps, which was only 17.5% of the desired rate.
Moreover, we found that the variance of the throughput increased
with the network scale.

Figure 4: TCP throughput performance in a linear network
topology with varying number of switches, link bandwidth
xed at 500 Mbps.

We then investigated the scalability of Mininet-BMv2 with a
more complex scenario. We created a testbed with a ring topology
consisting of 256 switches, where each switch was connected to a
virtual host in Mininet. All links in the network had a bandwidth of
1000 Mbps and a delay of 1 ms. We split the hosts into pairs, e.g., (h1,
h2), (h3, h4),...(h255, h256), and measured the throughput within
each pair of hosts. We generated TCP ow between h1 and h2 for
the rst 40 seconds of the experiment, and then initiated TCP ow
for all the other paired hosts. We expected the throughput between
each pair of hosts to remain at the rate of 1000 Mbps, since the
ow of each pair of hosts did not overlap with the links from the
other pairs. However, the results were far below the line rate with
signicant disturbances. To illustrate our ndings, we selected four
pairs among the 256 hosts and plotted their TCP throughputs over
time in Figure 5. The results show that within the rst 40 seconds,
the throughput between h1 and h2 remained at the desired rate
of 1000 Mbps. However, after the other hosts started transmitting
ows, the throughputs of all four pairs dropped signicantly to
around 212 Mbps, which was substantially lower than the expected
rate.

Figure 5: TCP throughput over time in a 1000-Mbps band-
width, 256-switch ring network topology

The main cause of the inaccuracy in Mininet-BMv2 is due to
the fact that containers are multiplexed on a single physical ma-
chine, sharing the same system clock and other resources of the
underlying machine. Additionally, the execution order and dura-
tion of containers can vary unpredictably during an experiment,
depending on the availability of physical resources (i.e. CPU and
network bandwidth) on the host machine. When the number of
containers exceeds the host machine’s capacity, containers must
race and wait for resource availability, while the system clock keeps
ticking. Consequently, each container’s perception of time reects
the serialization of execution on the host machine, rather than the
execution of their tasks. This can cause a problem with temporal
delity, especially when emulating large-scale networks where the
host machine’s resources are overwhelmed.
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To overcome the issue of temporal delity, virtual time systems
have been developed for VMs and containers used in network emu-
lation experiments [11, 13, 16, 17, 22, 27]. Each container has its own
independent virtual clock that progresses only when the container
is in the execution or waiting state. Moreover, a time dilation factor
(TDF) [18] is assigned to each virtual clock, which represents the
ratio of wall-clock time to the perception of time in the container.
For instance, a TDF of 10 means that the container experiences one
second of time advancement for every ten seconds of wall-clock
time, making the virtual node run at 10x the speed of the real world.
By increasing the scale of interactions between containers and the
underlying machine, this technique can make a 100 Mbps link ap-
pear like a 1 Gbps link from the container’s perspective. In this
paper, we utilize the TDF-based virtual time system to enhance the
temporal delity of Mininet-BMv2.

4 DESIGN AND IMPLEMENTATION
We design and implement VT-BMv2, an emulation testbed that inte-
grates virtual time systems into Mininet-BMv2 network emulator to
improve performance delity and scalability. VT-BMv2 comprises
two layers: (1) a Container-based Network Emulator integrated
with a virtual time interface module, which provides each container
with a virtual time perception, and (2) a Synchronization Controller
that manages container execution and time synchronization. The
architecture of VT-BMv2 is illustrated in Figure 6.

Figure 6: Architecture design of VT-BMv2

4.1 Container-based Network Emulator
A network emulation testbed typically consists of two main com-
ponents: virtual nodes, such as hosts and switches, and virtual
links connecting these nodes. In our approach, Container-based
Network Emulator inherits from Mininet-BMv2 and enables the
creation of virtual nodes using Linux containers. Each container

represents a virtual host/switch within the emulation and has its
own independent namespace including IP addresses and virtual net-
work interfaces. The emulation supports multiple types of switches,
such as Open vSwitch and BMv2-based P4 switches, which oer
high functional delity through the use of compiler and runtime
libraries. Virtual links, such as veth for Ethernet emulation, connect
containers in the virtual network. To manage network trac on
virtual links, we use Trac Control (tc), a Linux kernel tool that
implements rules and congurations for loss, delay, link bandwidth,
and trac prioritization.

We have developed a Virtual Time Interface by making minor
modications to the Linux Kernel, such as task_struct structure,
and gettimeofday function. This interface enables containers in
the network emulation to maintain an independent virtual clock
and a TDF, which gives each container a sense of virtual time.
The interface intercepts and handles time-related functions, such
as gettimeofday and nanosleep. When a process inside a con-
tainer invokes a time-related system call, the Virtual Time Interface
bypasses the default system call and redirects the call to a mod-
ied function that calculates the return value based on the con-
tainer’s virtual clock. Five elds, isVirtual, virtualStartTime,
runTime, TDF, virtualTime are added to task_struct in Linux
kernel (include/linux/init_task.h) to enable virtual clock.

• isVirtual: A binary ag that equals 1 when the container
is integrated with virtual time.

• TDF: The time dilation factor that scales the virtual clock’s
speed relative to the physical clock.

• virtualTime: The time passed in the virtual clock of the
container.

• virtualStartTime: The wall-clock time when a container
is rst dilated.

• runTime: The wall-clock time when the virtual time is last
updated.

Algorithm 1 presents pseudocode for a modied Linux system
call, gettimeofday. When called by a regular process, this function
returns the result from the original system call. However, if the pro-
cess is integrated with a virtual clock, the modied gettimeofday
function calculates the run time, adjusts it with TDF, and updates
the virtual time.

Algorithm 1: Virtual Time Interface
Function geimeofday (lxc)

if lxc.isVirtual == 1 then
runTime = now - lxc.virtualStartTime;
dilatedRunTime = (runTime - lxc.runTime)/lxc.tdf;
virtualTime = lxc.virtualTime + dilatedRunTime;
lxc.runTime = runTime;
lxc.virtualTime = virtualTime;
return virtualTime;

else
return do_original_gettimeofday();

end
end

38



SIGSIM-PADS ’23, June 21–23, 2023, Orlando, FL, USA Gong Chen, Zheng Hu, and Dong Jin

4.2 Synchronziation Controller
To enhance the delity and scalability of VT-BMv2, a barrier-based
conservative synchronization module, named Synchronization Con-
troller, is designed to manage the execution and synchronize virtual
time among containers. As shown in Figure 7, the advancement
of emulation is split into multiple cycles. Each cycle contains two
phases: synchronization and execution. At the beginning of the syn-
chronization phase, all containers are stopped. The Synchronization
Controller interacts with the virtual time interface to extract the
current state of each container and calculates the expected running
time of each container in the next cycle. The execution time is
carefully calculated to guarantee that the virtual time of each con-
tainer is synchronized at the end of execution. The execution time
is determined by two factors, containers’ time dilation factor 
and a user-dened parameter , which denes the maximum
execution time a container can obtain for one cycle. Suppose there
are  containers in the emulation, denoted as  where  ranges
from 1 to . The TDF and execution time of each container  , is
denoted as  and  , while  is the max TDF among all
the containers. Since all the containers ought to have synchronized
virtual time at the end of the cycle, we have

∀0 < ,  <= 



=

 

 
(1)

We can observe from Equation 1 that a container execution time
is proportional to its  . The container with  is granted
the largest execution time, , in the current cycle. Therefore,
the execution of each container is

∀0 <  <=   =



× (2)

The synchronization controller assigns each container to a spe-
cic CPU and schedules the execution of processes within the
container using a round-robin method. Note that VT-BMv2 enables
the parallel execution of containers with multiple CPUs and the
number of CPUs can be customized. Each container is granted a
high priority when assigned to a CPU to ensure that it runs without
being preempted by other processes (e.g., sched_priority is set
to 99).

The Synchronization Controller uses a greedy scheduling algo-
rithm to assign containers to CPUs based on the current workload
of each CPU. The algorithm selects the CPUwith the least workload
at the current moment and assigns the container to it. Each CPU in
the emulation is assigned a kernel thread (kthread), which main-
tains a list of containers associated with the CPU. These kthreads
control the execution order and burst length of each container dur-
ing the execution phase. Algorithm 2 presents the pseudocode for
the scheduling algorithm.

The overhead of the algorithm is bounded by  ( × ), where
 is the number of designated CPU cores and  is the number of
containers. Although it may not always provide the optimal so-
lution, using a more ne-tuned scheduling algorithm [28] could
increase the time and space complexity, leading to more overhead.
An alternative approach is to maintain a min heap based on the ag-
gregated execution time of each CPU, which reduces the complexity
of searching for the CPU with the minimal workload from  ()

to  (). The design and analysis of more ecient scheduling
algorithms will be considered in future work.

Algorithm 2: Schedule the Containers on Multiple CPUs
def scheduling ( list_kthread, list_lxc )

// Each CPU core is assigned with a kthread

// Each kthread maintains a linked list to
hold containers that are to be executed on
them in the next cycle

for LXC in list_lxc do
// Linearly scan all kthread to find the

one, tk, with minimal workload

tk;
for ck in list_kthread do

if tk.exe_time <= ck.exe_time then
tk = ck;

end
end
// Append container to kthread’s execution

list and update workload

tk.list_lxc.append(lxc);
tk.exe_time += LXC.exe_time;

end
end

Once the scheduling phase is completed, the Synchronization
Controller initiates the execution phase by starting the kthreads.
The kthreads of each CPU wake up or pause the containers in a
sequential manner based on their predetermined execution length
and order, which was determined by the controller during the pre-
vious synchronization phase. It is worth noting that the execution
length of a container can vary over cycles due to changes in TDF,
as specied in Equation 2.

The existing virtual time systems use two primary mechanisms
to control container execution: (1) a timer-based approach, such as
[22], and (2) an instruction-based approach, such as x [11] and y
[12]. The timer-based approach determines the execution length
of a container based on the amount of real-world time elapsed,
using techniques such as SIGSTOP and SIGCONT signals and high-
resolution timers like hrtimer. In contrast, the instruction-based
approach perceives the execution length based on the number of
executed binary instructions, utilizing perf [2] to count instructions
and ptrace [3] to control container execution. Algorithm 3 illustrates
the detailed implementation for advancing the emulation by one
cycle.

5 SYSTEM EVALUATION
In this section, we evaluate and analyze the performance of VT-
BMv2 regarding performance delity, system overhead, and scala-
bility. The experiments are conducted on the same Linux machine
mentioned in Section 3.
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Algorithm 3: Parallel Execution and Control
def progressForOneCycle ( list_kthread, list_lxc )

// Schedule containers among kthread

scheduling ( list_kthread, list_lxc );
for kthread in list_kthread do

// start_kthread will be executed in

parallel

start_kthread(kthread);
end
// Wait until all kthreads to complete and

join the main process

wait_kthreads(list_kthread);
end
def startKthread ( kthread)

for lxc in kthread.list_lxc do
// wakeup lxc using SIGCONT

wakeup(lxc);
// set a count down using highresolution

timer

// when time up, pause lxc using SIGSTOP

set_hrtimer(lxc, lxc.exe_time);
hrtimer.callback = pause(lxc);

end
join_main_process();

end

Figure 7: Barrier-based conservative synchronization

5.1 Performance Fidelity
We conducted two sets of experiments using the linear network
topologies of 16 and 64 BMv2 switches on Mininet-BMv2 and VT-
BMv2. The goal of the experiments is to measure TCP throughput
between hosts on opposite ends of the network. The results of the
experiments are shown in Figure 8, where the X-axis represents
the link bandwidth and the Y-axis represents the average TCP
throughput. The orange line shows measurements with Mininet-
BMv2, the green line shows measurements with VT-BMv2, and the
blue dashed line represents the ideal throughput under the current
conguration.

The results indicate that the accuracy of VT-BMv2 outperforms
Mininet-BMv2 when emulating P4 networks. Mininet-BMv2 can

(a)

(b)

Figure 8: Comparison of TCP throughput between Mininet-
BMv2 and VT-BMv2 with a link delay of 1 ms. The emulation
network is constructed using a linear topology with (a) 16
and (b) 64 BMv2 switches.

only maintain delity, i.e., close to the line rate, when the link band-
width is relatively low, such as under 400 Mbps with 16 switches
(Figure 8a) and under 200 Mbps with 64 switches (Figure 8b). How-
ever, the throughput of Mininet-BMv2 remains constant even when
the link bandwidth increases, leading to a signicant discrepancy
between the expected and actual throughput. For example, when
the link bandwidth is set to 1000 Mbps, the throughput of Mininet-
BMv2 with 64 switches is only 301.5 Mbps, resulting in an error of
approximately 69.8%. In contrast, VT-BMv2 maintains a consistent
and accurate TCP throughput even at high link bandwidths, with
a much smaller deviation from the expected throughput. For ex-
ample, with a bandwidth of 1000 Mbps on the 16-switch topology,
VT-BMv2 achieves a high throughput of 988.7 Mbps with a TDF of
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5, which is only 1.13% dierence from the desired bandwidth. This
behavior can be attributed to the ability to eectively manage and
schedule container execution in virtual time.

(a)

(b)

Figure 9: Comparison of synchronization overhead among
dierent network sizes: (a) absolute overhead, and (b) over-
head as a proportion of runtime.

5.2 Virtual Time System Overhead
In a multi-processing system, synchronization overhead typically
refers to the additional time and resources needed to ensure that
multiple processes can access shared resources. However, in this
paper, our focus is to evaluate the additional overhead incurred
by the virtual time system in the emulator. Since VT-BMv2 uses a
conservative barrier-based synchronization approach, the primary
overhead is incurred within the barrier. This includes the time taken
by each kernel thread to complete task scheduling and the time
taken to start or wait for kernel threads to join.

The relationship between the synchronization overhead and the
number of nodes is depicted in Figure 9a. As the number of con-
tainers increases, the overhead grows linearly, and more containers
result in a higher workload of task scheduling. However, the ratio
of synchronization overhead shown in Figure 9b decreases even
as the number of containers increases. This is because the execu-
tion time increases linearly with the number of containers, and
the improvement in execution time is more signicant than the
cost of the increased overhead, resulting in performance gains with
more containers. We also observe that the synchronization over-
head increases as the number of CPUs increases. This is because
each CPU is associated with a kernel thread, more time is needed
to start or wait for threads to join, and more CPUs increase the
scheduling complexity. As illustrated in Figure 9, when emulating
256 containers on 16 CPUs, the overhead introduced by VT-BMv2
is 0.31 ms with a synchronization ratio of 0.13%.

To measure the overhead of modifying the Linux kernel on sys-
tem calls, we conducted experiments on the modied version of
the gettimeofday function. The results show that the modied
function introduces an additional overhead of 1304.8 nanoseconds,
whereas the original call only takes 330.3 nanoseconds to return.
The increased overhead is due to the need to query the previous
status of the container, calculate the current virtual time, and up-
date the container’s status every time the modied system function
is called.

5.3 Scalability
In order to examine the scalability of VT-BMv2, we conducted
experiments on linear topology networks with varying numbers of
switches, ranging from 1 to 256. The link bandwidth and delay were
congured as 1000 Mbps and 1 ms, respectively. Figure 10 shows
the experimental results. We observe that as the network scale
increased, the throughput of Mininet-BMv2 signicantly decreased,
while VT-BMv2 was able to maintain a throughput close to the
desired rate. In the 256-switch network, Miniet-BMv2 achieved a
throughput of only 86.4 Mbps, while VT-BMv2 achieved a much
higher throughput of 901.8 Mbps. By integrating the virtual time
system, VT-BMv2 reduced the error rate from 91.4% in Mininet-
BMv2 to just 9.8%.

To further demonstrate the improvement of VT-BMv2, we con-
ducted another set of experiments using the same network scenario
described in Figure 2 with Mininet-BMv2 results shown in Figure 5.
We created a ring topology consisting of 256 switches, with each
switch connected to a virtual host in Mininet. All links in the net-
work had a bandwidth of 100 Mbps and a delay of 1 ms. We split the
hosts into pairs, e.g., (h1, h2), (h3, h4),...(h255, h256), and measured
the throughput between each pair. Figure 11 shows the throughput
of four selected pairs. In comparison to the result shown in Figure 5,
we observed that VT-BMv2 is capable of maintaining high delity
in a large-scale P4 network with a massive volume of transmis-
sion. For example, under the same conguration, VT-BMv2 can
maintain a stable TCP throughput of about 98.9% of the desired
rate (1000 Mbps), which is approximately 4.6 times higher than the
throughput achieved by Mininet-BMv2 shown in Figure 5.
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Figure 10: Scalability evaluation of Mininet-BMv2 and VT-
BMv2 using linear topology networks with 1000 Mbps link
bandwidth and 1 ms link delay.

Figure 11: TCP throughput over time in a ring network topol-
ogy with 256 switches and 1000 Mbps link bandwidth.

6 RELATED WORK
6.1 Virtual Time System
Several virtual time systems have been proposed based on the
concept of time dilation factor (TDF), which was introduced by
DieCast [17, 18] as a means of precise scaling of system capacity
to match the behaviors of the target network that often exceeds
available physical resources by trading time with system resources.
DieCast denes TDF as the ratio of the rate at which time passes
in the physical world (wall-clock time) to the perception of time
by virtual machines (virtual time) [18]. Other notable virtual time
systems include SVEET! [15], and TimeJails [16].

To enhance the high-delity and scalability of network emula-
tion, Anonymous introduces a scheduling-based virtual time system

for OpenVZ [1], an OS-level virtualization technology. The system
assigns each process an independent virtual clock. The modied
scheduler determines the execution order and burst length for each
process. As a result, all virtual clocks advance in a synchronized
window to enhance temporal delity and ensure the causality of
emulated events. Other virtual time systems, such as TimeKeeper
[22], are variations of this approach.

Our approach shares similarities with Anonymous where a light-
weight virtual time system is implemented through direct kernel
modication of time-related system calls in the Linux kernel. How-
ever, we are the rst to apply virtual time in the context of P4
network emulation and demonstrate the eectiveness of a virtual
time system in improving the performance of an early-stage model,
such as BMv2, to near-production levels.

6.2 Container-based Emulation
Virtualization technologies, including Xen [13], OpenVZ [1], and
Linux Containers (LXC) [20], oer isolated execution environments
for running unmodied network application code on a physical
machine. These environments provide experimenters with features,
such as a process tree, le system, and network interfaces with IP ad-
dresses. Among these technologies, container-based virtualization,
like LXC, has better performance and scalability than other options
like Xen (para-virtualization) and QEMU (full-virtualization). This
is because LXC allows multiple Linux instances to run on a single
host while sharing the kernel, which creates less overhead than
traditional virtual machines like Xen and VMWare that require
separate kernels for each virtual machine.

Mininet is a commonly used network emulator that utilizes
container-based virtualization techniques to construct virtual net-
works for network protocol and application testing. Our work in-
volves making minor modications to the Linux Kernel source
code to enable virtual time and synchronization features within
the Mininet containers. The modication details are elaborated in
Section 4.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we discover and analyze the delity and scalability
issue in Mininet-BMv2. We then design and implement a P4 em-
ulation testbed, VT-BMv2 integrated with a virtual time system.
Based on our comprehensive evaluation, Mininet-BMv2 is capable
of maintaining high temporal delity and scalability with limited
synchronization overhead. However, one drawback of using TDF to
scale resources is the increased execution time. For example, setting
a TDF of 2 requires emulation to run for 20 seconds to simulate a
10-second experiment. Selecting an appropriate TDF that meets net-
work conguration requirements without signicantly increasing
execution time can be challenging. Our future work is to develop a
TDF adapter that can dynamically adjust the TDF of each container
to optimize runtime and meet conguration requirements.
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