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Abstract—In this work, we leverage the uni-polar switching
behavior of Spin-Orbit Torque Magnetic Random Access Mem-
ory (SOT-MRAM) to develop an efficient digital Computing-in-
Memory (CiM) platform named XOR-CiM. XOR-CiM converts
typical MRAM sub-arrays to massively parallel computational
cores with ultra-high bandwidth, greatly reducing energy con-
sumption dealing with convolutional layers and accelerating
X(N)OR-intensive Binary Neural Networks (BNNs) inference.
With a similar inference accuracy to digital CiMs, XOR-CiM
achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up
compared to the recent MRAM-based CiM platforms.

Index Terms—SOT-MRAM, computing-in-memory, binary
neural networks

I. INTRODUCTION

Binary Neural Networks (BNNs) have been developed as
a solution to eliminating the need for massive Multiply-
ACcumulate (MAC) operations and memory usage of Con-
volutional Neural Networks (CNNs) by forcing the in-
puts/weights/gradients to be binary specifically at the forward
propagation level. BinaryConnect [1] uses binary weights to
train deep neural networks on MNIST and CIFAR-10 data sets,
with near state-of-the-art results. In BinaryNet [2], weights
and activations are binarized as extensions to BinaryConnect.
The XNOR-NET [3] algorithm offers a simple and accurate
solution for large-scale data-sets and produces almost identical
results as AlexNet’s full-precision results.

From the hardware design point of view, the isolated pro-
cessing and memory units connected via data buses, in the
von-Neumann architecture, impose many challenging prob-
lems such as long memory access delay, the limited band-
width of the memory, significant congestion at I/Os, massive
data communication energy, and huge leakage current power
consumption for storing network data in customary volatile
memory [4], [5]. To address these concerns, Computing-in-
Memory (CiM) CNN accelerators, as a potentially viable way
to address the so-called memory wall challenge, have been
widely explored [4], [6]–[8]. The main idea of CiM is to
embed logic units within memory to process data by leveraging
the inherent parallel computing mechanisms and exploiting
large internal memory bandwidth. It could lead to remarkable
savings in off-chip data communication energy and latency. An
ideal CiM architecture should be capable of performing bulk
bit-wise operations used in a wide spectrum of applications
[8], [9]. The CiM architectures have recently become even
more popular when integrating with emerging Non-Volatile

Fig. 1. (a) SOT-MTJ device and SOT-MRAM bit-cell with uni-polar switch-
ing, (b) Fast and consecutive uni-polar switching of SOT-MRAM.

Memory (NVM) technologies. Spin-Orbit Torque Magnetic
Random Access Memory (SOT-MRAM) [5] is one of the
most promising NVMs offering non-volatility, low switching
energy, superior endurance, excellent retention time, and high
integration density. IMCE [5], CMP-PIM [7], and GraphS [10]
leverage bi-polar switching SOT-MRAM designs. They can
activate two or more memory rows storing weights and inputs
and execute a reduced-cycle and parallel X(N)OR operations
on the Bit-lines required in BNNs through modified sense
amplifiers. However, storing input feature maps of BNNs on-
chip could impose extra write power that can be avoided by
employing recent design methods such as [11], [12].

In this work, we present an efficient CiM platform named
XOR-CiM. XOR-CiM converts typical SOT-MRAM sub-
arrays based on a uni-polar switching mechanism to massively
parallel computational cores to accelerate X(N)OR-intensive
applications. The main contributions of this work are listed
here. (i) We propose a novel fast in-memory X(N)OR mech-
anism based on uni-polar switching SOT-MRAM; (ii) We de-
velop micro-architecture and circuits required to convert every
SOT-MRAM array to a potential computational core; (iii) We
take BNN as a potential application and show how XOR-
CiM can process such networks in parallel computational sub-
arrays.

II. SOT-MTJ WITH UNI-POLAR SWITCHING

SOT-MTJ device as shown in Fig. 1(a) is a composite struc-
ture of Spin Hall Metal (SHM) and Magnetic Tunnel Junction
(MTJ). The resistance of MTJ with parallel magnetization in
both magnetic layers (data-‘1’) is lower than that of MTJ with
anti-parallel magnetization (data-‘0’). Each SOT-MRAM cell
located in our proposed computational sub-arrays is a SOT-
MTJ associated with the Write Word Line (WWL), Read Word
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Line (RWL), Write Bit Line (WBL), Read Bit Line (RBL),
and Source Line (SL) as shown in Fig. 1(a). The deterministic
switching of perpendicular SOT-MTJ requires an external in-
plane magnetic field that hampers its application for a scalable
SOT-MRAM design [13]. To mitigate this issue, state-of-the-
art designs adopted in-plane SOT-MTJ structures to avoid
random switching in perpendicular SOT-MTJ [14] or used
Spin Transfer Torque (STT) assisted SOT switching methods
[15]. Recently, field-free, deterministic, and high-speed SOT-
MTJ switching mechanisms have been proposed leveraging
uni-polar switching current [13], [16]. The magnetization
dynamics of the MTJ’s free layer under such a SOT can
be given by the following Landau–Lifshitz–Gilbert (LLG)
equation [16], [17]:
∂−→m
∂t

= −γµ0
−→m×

−−−→
Heff+α−→m×

∂−→m
∂t

−λDLξJ
−→m×(−→m×−→σ )−λFLξJ

−→m×−→σ
(1)

where −→m denotes the unit vector of the free layer, γ and µ0 are
the gyromagnetic ratio and the vacuum permeability, respec-
tively.

−−−→
Heff represents the effective field and α the is Gilbert

damping constant. Here, λDL and λFL represent the strengths
of the damping-like and field-like torque, respectively. −→σ is
the unit vector of the SOT-induced spin polarization. J is
the current density and ξ is device-dependent parameter. It
is experimentally shown that with a proper λFL/λDL ratio,
the uni-polar SOT-MTJ switching can be achieved. Therefore
magnetization direction of the free layer can be periodically
changed regardless of the polarity of the charge current flowing
through the SHM [13], [18], [19]. Our macrospin simulation
result in Fig. 1(b) shows how a fast (<1 ns) and consecutive
(10 write operations) uni-polar switching of SOT-MRAM can
be achieved.

III. PROPOSED XOR-CIM DESIGN

A. Overview

XOR-CiM is developed as a high-performance and energy-
efficient accelerator for X(N)OR-intensive applications such
as BNNs [3]. The overall architecture of XOR-CiM is shown
in Fig. 2(a) mainly consisting of the kernel storage array,
result array, and a Computation Control Unit (CC). Each array
is composed of 1024×512 SOT-MRAM cells connected to
a voltage driver, row decoder, and sense amplifier unit. We
propose to store only one of the repetitively-used operands,
e.g., shared weights in the BNNs in the kernel storage
while the second operand (activation) could be fed into to
accelerator through the CC unit. With XOR-CiM, bit-wise
convolutions in BNNs can be supported efficiently thanks to
the following equation, which computes the dot-product of
two vectors, A and W using XNOR and Bitcount as A⊛W
= BitCount(XNOR(A,W)). Here ⊛ represents the binarized
convolution using bit-wise logic and bit-count operations and
activation-A and weight-W are vectors ∈{0,1}. A fast and
parallel in-memory X(N)OR operation can be accomplished
through a new mechanism discussed in the next subsection.
After XNOR computation, to perform the Bit-Count task, the
SOT-MRAM result array storing XNOR results will be read
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Fig. 2. (a) The proposed XOR-CiM architecture with (b) SOT-MRAM-based
kernel storage and result storage arrays.

out. The output of sensory circuitry is then connected to a
CMOS counter unit. In this way, the counter can count the
number of ones in the resultant bit vector to generate the output
feature maps.

B. Fast In-memory X(N)OR Design

Leveraging ultra-fast deterministic uni-polar switching of
the SOT-MRAM, a fast in-memory X(N)OR design is pro-
posed herein inspired by [19], [20]. In uni-polar switching,
each time a writing current with a large enough magnitude is
applied to the SOT-MTJ through the SHM, regardless of the
direction of the applied current, the magnetization switches
periodically. With this observation, we realized that if the
number of switching pulses is even, the MTJ’s final state
will be equal to its initial state. And, if the number of
switching pulses is an odd number the MTJ would end up
in a state opposite to its initial state. As the XOR function
gives ‘1’ output when the number of ‘1’ inputs is odd, the
uni-polar switching feature of SOT-MTJs can be exploited to
implement this logic efficiently. The proposed X(N)OR circuit
implementation is shown in Fig. 3(a). The core of our design
is composed of two SOT-MRAMs and a CC unit part. The
W-SOT-MRAM in the kernel storage array stores the BNN
weight and the result of the X(N)OR operation is written at
Y-SOT-MRAM in the result array. Hereafter, we assume the
SOT-MRAM with an anti-parallel state (i.e., high-resistance),
represents logic ‘0’, and the SOT-MRAM with an parallel state
represents logic ‘1’ (i.e., low-resistance).

In XOR-CiM, the W and A are applied by the CC unit to the
Y-SOT-MRAM as switching currents in two stages as indicated
in Fig. 3(a). As a result, two back-to-back write operations are
performed on Y-SOT-MRAM and the final state of the Y-SOT-

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2023 at 16:32:56 UTC from IEEE Xplore.  Restrictions apply. 



AVdd

WD

SA
OUT

C1

C1C2

C2

RWL

WWL

WWL CC Unit

Y

W

CL

RWL

Iw
Ii

Sense Amplifier

Counter
Counter

(a) (b)

CLK

CLK CLK

Vsense Vref

OUT OUT

Vlow Vhigh

read̀
Vlow Vhigh

read̀

Fig. 3. (a) The proposed in-memory X(N)OR circuit implementation. Here,
W, A, and Y represent weight, activation, and output, respectively. (b) Sample
BNNs mapping technique.

TABLE I
PROPOSED XOR TRUTH TABLE

Weight Activation Y(t) Y(t+t0) Y(t+2t0)(XOR)
‘0’ ‘0’ ‘0’ ‘0’ ‘0’
‘0’ ‘1’ ‘0’ ‘0’ ‘1’
‘1’ ‘0’ ‘0’ ‘1’ ‘1’
‘1’ ‘1’ ‘0’ ‘1’ ‘0’

MRAM will be the XOR result. Considering the initial state of
Y-SOT-MRAM as logic ‘0’ (at t0), in the first writing stage, the
CC unit applies the weight current (Iw). If the W-SOT-MRAM
stores logic ‘1’ data with low resistance, the amplitude of the
Iw is high enough to switch the Y-SOT-MRAM. Otherwise,
the Iw current can’t switch the Y-SOT-MRAM and at t+t0,
it remains in its initial state. In the second writing stage, the
CC unit applies activation current (IA) based on the A’s binary
value. If the A is ‘1’, a large enough IA passes through Y-SOT-
MRAM and switches its magnetization, otherwise if A data is
‘0’, no writing current is applied by CC unit to Y-SOT-MRAM
and the output remains unchanged at t+2t0. After these two
back-to-back writing stages, the Y-SOT-MRAM can be read
using a pre-charged sense amplifier as shown in Fig. 3(a).
Since SA generates data and its complementary logic at the
same time, we can obtain both XOR and XNOR functions.
The truth table of the proposed XOR scheme with timing
considerations is illustrated in Table I. Based on Table I, in
every writing cycle the Y, changes if the corresponding writing
reference data is ‘1’. Thus, after two cycles, the result would
be the XOR of the W and A. In the next section, more details
will be provided about the X(N)OR operation. Fig. 3(b) gives
a sample data mapping method for XOR-CiM where a one-
layer neural network computation can be easily converted to
a fully parallel scheme. As shown, activation can be applied
in parallel through the CC unit to the kernel storage array to
perform XNOR logic.

IV. PERFORMANCE EVALUATION

The XOR-CiM’s memory sub-array organization has been
configured with 1024 rows and 512 columns per mat organized

TABLE II
DEVICE PARAMETERS USED IN THE SIMULATION.

Symbol Quantity Values
α Damping coefficient 0.3

θSHM Spin Hall angle 0.3 [24]
Hk Perpendicular magnetic anisotropy 2.2× 105A/m
Ms Saturation magnetization 1× 106A/m

tMgO MgO thickness 0.8 nm
tsl Free layer thickness 1.2 nm
RA MTJ Resistance area product 10× 10−12Ωm2

TMR Tunnel Magneto resistance 240%
ρSHM Resistivity of SHM (W) 200µΩcm [25]

(L.W )MTJ MTJ dimention 20× 20nm2

(L.W.t)SHM SHM dimension 60× 35× 0.5nm3

in an H-tree routing manner, 2×2 mats per bank, 8×8 banks
per group; in total 16 groups. At the device level, we jointly
use the Non-Equilibrium Green’s Function (NEGF) and LLG
with spin Hall effect equations to model SOT-MRAM bit-
cell [21], [22] with the device parameters listed in Table II.
At the circuit level, a Verilog-A model of a uni-polar SOT-
MRAM device is developed to co-simulate with the interface
CMOS circuits at 45nm in SPICE. At the architectural-
level, we modified the NVSim [23] to report performance for
XOR-CiM operations with input from the device/circuit level
results. At the application level, a behavioral-level simulator
is developed in Matlab to calculate the latency and energy
that XOR-CiM spends on BNNs with a mapping optimization
framework to maximize the performance according to the
available resources.

A. Functionality Analysis

To evaluate the functionality of the XOR-CiM’s X(N)OR
operation, transient simulations for all four possible combi-
nations of W and A are conducted. As mentioned above, for
each XOR operation we need to have two back-to-back writes.
Considering an extra writing step for the initialization, in our
scheme, three writing steps are demanded. Each writing stage
itself has two sub-stages, switching and relaxation times. The
switching time was set to 200 ps in this work. After each
switching, SOT-MRAM devices inherently take a relaxation
time to continue changing their magnetization completely, to
be relaxed in a stable state [26]. If we apply another current
to a SOT-MRAM before it reaches a stable condition, false
data may be written on the MTJ. To prevent writing errors,
we have set 300 ps as relaxation time after each switching. So,
every complete writing step can be done in 500 ps (t0) and the
total time for finalizing an X(N)OR operation in our design is
1.5 ns. Utilizing a pre-charged sense amplifier for reading the
result in 200 ps, the total time for an X(N)OR operation con-
sidering reading the result would be 1.7 ns. Sample waveform
of the main controlling signals, the magnetization direction of
the SOT-MRAM, and its corresponding output data for all four
possible combinations are demonstrated in Fig. 4. As shown
in Fig. 4, the initial state of the Y-SOT-MRAM is considered
as the parallel state (Mz=1.0), which represents logic ‘1’.
Therefore, at the initialization step which begins at 200 ps, the
magnetization of Y-SOT-MRAM switches to an anti-parallel
state (Mz=-1.0) representing logic ‘0’ to get it ready for our
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XOR operation. After this step, the CC unit opens the path
for the Iw by setting the C2 signal to ‘0’. If W=‘0’, which
means that the W is in an anti-parallel state (high-resistance),
Iw can’t switch the state of the Y-SOT-MRAM in 200 ps,
and it remains in anti-parallel state after first XOR writing
cycle. Otherwise, the Y-SOT-MRAM switches to a parallel
state (Mz=1.0). Then, by setting C2 to ‘1’, IA passes through
Y. If the A is ‘1’, a current large enough will pass through the
Y-SOT-MRAM and switches it. By setting the En signal to ‘1’,
corresponding output data can be read from Y. As discussed,
XOR-CiM requires only 1.7 ns to execute X(N)OR operation.
We simulated all four possible combinations of W and A
and measured the power consumption of each possibility.
XOR-CiM consumes on average 15.97µW power to perform
X(N)OR. Considering 1.7 ns operation latency, the average
energy consumption of our proposed design is 27.16 fJ.

B. BNN Acceleration

We compare XOR-CiM with other possible BNN accel-
eration solutions based on MRAM, ReRAM, and DRAM.
Enlarging the chip area brings a higher performance for XOR-
CiM and other designs due to the increased number of sub-
arrays or computational units, though the die size directly
impacts the chip cost. Therefore, to have a fair comparison, the
normalized ISO-capacity results will be reported henceforth.
MRAM: We developed an X(N)OR-friendly CMP-PIM-like
CiM [7] with two-row activation and an MnM-like CiM
[12] with one-row activation based on bi-polar SOT-MTJs
to perform BNNs. DRAM: We developed Ambit- [27] and
DRISA-like [6] accelerators for BNNs. Ambit leverages a
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Fig. 5. (a) Normalized execution time, and (b) Energy consumption of various
CiMs running AlexNet kernels.

triple-row activation mechanism to implement majority gate-
based logic. An X(N)OR logic with this mechanism can take
up to 7 cycles. This is due to inevitable row initializations and
destructive operations in DRAM. As for DRISA, the 1T1C
method with XOR add-on support has been selected for com-
parison. ReRAM: An MPIM-like [28] accelerator with 256
sub-arrays and one buffer sub-array per bank was considered
for evaluation. For evaluation, NVSim simulator [23] was
extensively modified to work with Design Compiler [29] to
emulate MPIM functionality. Note that the default NVSim’s
ReRAM cell file (.cell) was adopted for the assessment.

Figure 5(a) reports the normalized execution time break-
down (based on convolutional layers) of XOR-CiM and the
under-test CiM platforms running the binary-version AlexNET
for SVHN data-set. We observe that XOR-CiM outperforms
the fastest MRAM-based platform (MnM [12]) on average
by ∼1.8× speedup. XOR-CiM with reduced-cycle and intrin-
sic XNOR2 operation also achieves remarkable improvement
over other CiM counterparts, for example, achieving ∼5.7×
speedup over DRISA [6]. Figure 5(b) reports the normalized
energy consumption of XOR-CiM and various CiM platforms.
We observe that XOR-CiM notably reduces the energy con-
sumption for running X(N)OR-based operations compared
with other CiM platforms. XOR-CiM obtains 4.5× energy
saving over the most energy-efficient MRAM platform (i.e.,
CMP-PIM [7]). As compared with MPIM [28], our design
shows ∼5.2× reduction in energy consumption.

V. CONCLUSION

In this paper, we proposed an efficient computing-in-
memory (CiM) platform named XOR-CiM. Utilizing the uni-
polar switching behavior of SOT-MRAM, the presented de-
sign converts typical MRAM sub-arrays to massively parallel
computational cores with ultra-high bandwidth. This platform
is capable of greatly reducing energy consumption dealing
with convolutional layers and accelerating X(N)OR-intensive
binary neural networks. Compared with the recent digital
MRAM-based CiM accelerators, XOR-CiM achieves ∼4.5×
and 1.8× higher energy-efficiency and speed-up, With the
same inference accuracy on SVHN data-set.
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