

1 **Spontaneous formation of hole-selective contact and absorber for efficient**
2 **perovskite solar cells**

3 Xiaopeng Zheng^{1†}, Zhen Li^{2†}, Yi Zhang^{4†}, Min Chen^{1†}, Tuo Liu⁵, Chuanxiao Xiao¹, Danpeng
4 Gao², Jay B. Patel^{1,3}, Darius Kuciauskas¹, Artiom Magomedov^{3,8}, Rebecca A. Scheidt¹, Xiaoming
5 Wang⁷, Steven P. Harvey¹, Zhenghong Dai⁶, Chunlei Zhang², Daniel Morales³, Henry Pruett⁵,
6 Brian M. Wieliczka¹, Ahmad R. Kirmani¹, Nitin P. Padture⁶, Kenneth R. Graham⁵, Yanfa Yan⁷,
7 Mohammad Khaja Nazeeruddin⁴, Michael D. McGehee^{1,3}, Zonglong Zhu^{2*}, Joseph M. Luther^{1*}

8 ¹National Renewable Energy Laboratory, Golden, CO 80401, United States.

9 ²Department of Chemistry and Hong Kong Institute for Clean Energy, City University of Hong
10 Kong, Kowloon 999077, Hong Kong.

11 ³Department of Chemical and Biological Engineering and Materials Science and Engineering,
12 University of Colorado, Boulder, CO 80309, United States.

13 ⁴Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne
14 (EPFL), Sion CH-1951, Switzerland.

15 ⁵Department of Chemistry, University of Kentucky, Lexington, KY 40506, United States.

16 ⁶School of Engineering, Brown University, Providence, RI 02912, United States.

17 ⁷Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and
18 Commercialization, University of Toledo, Toledo, OH 43606, United States.

19 ⁸Department of Organic Chemistry, Kaunas University of Technology, Kaunas 50254, Lithuania.

20 *Corresponding author. Email: joey.luther@nrel.gov (J.M.L.); zonglzh@cityu.edu.hk (Z.Z.)

21 [†]These authors contributed equally to this work.

22 **Abstract: Simplifying the manufacturing processes of renewable energy technologies is**
23 **crucial to lowering commercialization barriers. Here, we report for the context of perovskite**
24 **solar cells (PSCs) that the hole-selective contact and perovskite light absorber can**
25 **spontaneously form in one solution coating procedure for efficient inverted PSCs. By**
26 **incorporating phosphonic or carboxylic acids directly into perovskite precursor solutions,**
27 **we observe that the molecules self-assemble on the indium tin oxide substrate during**
28 **perovskite film processing, forming a robust self-assembled monolayer (SAM) as an excellent**
29 **hole-selective contact, along with crystallization of the perovskite. This solves a common**
30 **wettability issue and simplifies device fabrication, advancing the manufacturability of PSCs.**
31 **We obtained a power conversion efficiency of 24.5% for p-i-n geometry PSCs. The devices**
32 **retained >90% of their initial efficiency after 1200 hours of operating at maximum power**
33 **point under continuous illumination. The approach shows good generality as it is compatible**
34 **with different SAM molecular systems, perovskites, solvents, and processing methods.**

35
36 Perovskite solar cells (PSCs) have attained outstanding power conversion efficiency (PCE)
37 approaching 26% due to the advances in compositional engineering¹, solvent engineering^{2,3}, phase
38 stabilization^{4,5}, contact and interface engineering⁶⁻¹⁰, and defect passivation¹¹⁻¹⁷. These efficient
39 PSCs are usually fabricated using multiple steps to sequentially deposit charge carrier transport
40 layers, perovskite absorber, interfacial treatment layers, and electrodes. Reducing the number of
41 device processing steps without sacrificing device efficiency is advantageous to reducing the
42 complexity of process and manufacturing costs, which will aid in the manufacturability of PSCs.

43

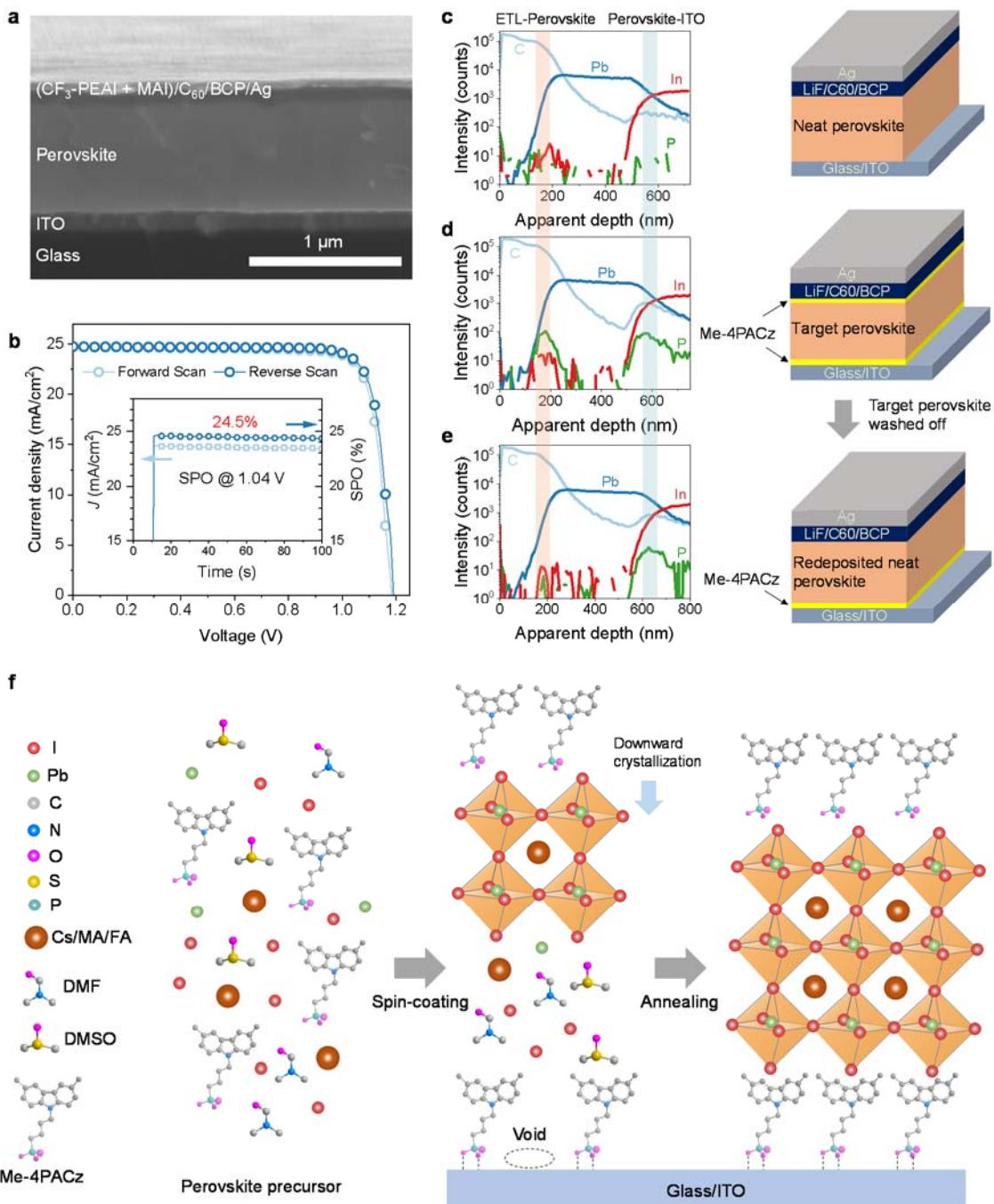
44 In the inverted configuration, the use of p-type additives, such as 2,3,5,6-tetrafluoro-7,7,8,8-
45 tetracyanoquinodimethane (F4TCNQ), fluorinated tetraarylbenzo [1,2-b:4,5-b']dipyrrol-1,5-yl
46 alkanediylsulfonate salt (BDPSO), and CuSCN, in perovskite precursor solution has been explored
47 to remove the hole transport layer (HTL) deposition step by modifying the energetic alignment at
48 the indium tin oxide (ITO)/perovskite interface ¹⁸⁻²¹. This strategy achieved PSCs of 20.2% PCE
49 ¹⁸. However, despite this effort, this concept of HTL-free devices has not proliferated and the PCEs
50 of HTL-free devices lag significantly behind those of regularly structured devices.

51

52 Recently, some of the most promising inverted PSCs have utilized a self-assembled monolayer
53 (SAM) formed by carbazole-containing phosphonic acids (PAs), such as 2PACz ([2-(9H-carbazol-
54 9-yl)ethyl]phosphonic acid), MeO-2PACZ ([2-(3,6-dimethoxy-9H-carbazol-9-
55 yl)ethyl]phosphonic acid), and Me-4PACz ([4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic
56 acid), as a hole-selective contact due to their ability to conformally coat rough surfaces and high
57 selectivity of hole extraction with low interface electron trap density ²²⁻²⁷.

58

59 We report the spontaneous formation of both the SAM hole-selective contact and the absorber for
60 efficient inverted PSCs. We introduced various molecules directly into the perovskite precursor
61 solution and the molecules self-assembled as a SAM onto the ITO substrate during perovskite film
62 processing, forming an excellent hole-selective contact. The devices are completed by passivating
63 the top surface and applying the contacts, resulting in cells with a PCE of 24.5% with >1200 hours
64 of stable operation under illumination. [The approach is compatible with different molecules,](#)
65 [perovskite compositions, solvent systems, and coating methods.](#)


66

67 **Perovskite film preparation and dynamic process of SAM formation**

68 First, we show the procedure by using Me-4PACz, which is a PA with a carbazole body,
69 incorporated into the precursor solution in 4:1 dimethylformamide (DMF):dimethyl sulfoxide
70 (DMSO) solvent to make 1.56 eV bandgap $\text{Cs}_{0.05}(\text{FA}_{0.92}\text{MA}_{0.08})_{0.95}\text{Pb}(\text{I}_{0.92}\text{Br}_{0.08})_3$ (FA,
71 formamidinium; MA, methylammonium) with various concentrations of Me-4PACz added
72 between 0 and 2 mg/mL¹³. Throughout this manuscript, we will refer to a perovskite film that
73 contained Me-4PACz in the precursor as the “target” perovskite and one without the PA as a “neat”
74 perovskite. The target perovskite films were directly deposited on the ITO-coated glass substrate
75 without the processing of an HTL. In parallel, we also prepared neat perovskite films on glass/ITO,
76 glass/ITO/2PACz, and glass/ITO/Me-4PACz substrates. We observed that the perovskite films
77 processed on ITO/Me-4PACz showed very poor coverage due to poor wetting, which may arise
78 from methyl substitutions (**Supplementary Fig. 1**)²⁸, compared with perovskite films on
79 ITO/2PACZ (**Supplementary Fig. 2**). The target perovskite film with Me-4PACz included in the
80 precursor achieved full coverage on glass/ITO substrate comparable to the neat perovskite
81 precursor directly deposited on glass/ITO substrate. There is no change in bandgap after
82 introducing Me-4PACz (**Supplementary Fig. 3**). The top-view SEM images show that the average
83 grain size of a perovskite film with Me-4PACz (0.5 mg/mL) is slightly larger than that of a neat
84 perovskite film (**Supplementary Fig. 4**). We further increased the additive concentration to 2
85 mg/mL, which results in reduced grain size, indicating that there is an optimal concentration of the
86 additive molecules for ideal crystallization. Dark current mapping by conductive atomic force
87 microscopy (C-AFM) showed that the perovskite films with optimized Me-4PACz concentration
88 showed the smallest dark current compared with both the neat film and the film with high Me-
89 4PACz concentration (**Supplementary Fig. 5**).

90

91

92

93 **Fig. 1. Perovskite thin film preparation and characterization.** (a) SEM cross-section image of a
 94 target 1.55 eV PSC. (b) J-V curves of the champion target 1.55 eV PSCs. The inset shows the

95 *stabilized power output (SPO). (c to e) TOF-SIMS profiling of 1.56 eV PSCs, along with a device*
96 *stack diagram depicting the layers. A simplified device stack without surface passivation treatment*
97 *was used. (c) Neat PSC. (d) Target PSC. (e) Target perovskite film was washed off, and a neat*
98 *perovskite film was redeposited in a finished device. (f) Illustration of SAM formation and*
99 *perovskite crystallization process.*

100

101 We fabricated inverted PSCs structured as glass/ITO/perovskite/passivation agent/C₆₀/BCP/Ag.
102 The passivation agent is a mixture of 4-trifluorophenylethylammonium iodide (CF₃-PEAI) and
103 methylammonium iodide (MAI) with 2:1 weight ratio^{29, 30}, and the
104 Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})₃ perovskite films (E_G~1.55 eV) has a thickness about 800 nm
105 (**Fig. 1a**). **Figure 1b** shows the forward and reverse current density-voltage (*J-V*) characteristics
106 of a champion target 1.55 eV PSC with 24.5% PCE (confirmed with stabilized power output
107 (SPO)). The Me-4PACz concentration-dependent *J-V* curves demonstrate that the optimal
108 concentration for 1.55 eV devices is 0.25 mg/mL (**Supplementary Fig. 6**). At higher Me-4PACz
109 concentration, the performance drops dramatically mainly because of reduced shunt resistance;
110 The PCEs of devices with lower Me-4PACz concentrations decrease slightly mainly from the loss
111 of *V_{oc}*, which we expect is the result of direct contact between the perovskite and ITO.

112

113 To gain an understanding of how and where the Me-4PACz SAM forms, we used a simplified
114 device stack without a surface passivation treatment, structured as glass/ITO/perovskite (1.56
115 eV)/LiF/C₆₀/BCP/Ag, for optical and structural characterizations, unless otherwise noted. The
116 thickness of the perovskite films is about 650 nm (**Supplementary Fig. 7**). The Me-4PACz
117 concentration-dependent *J-V* curves demonstrate that the PCEs of the 1.56 eV PSCs are highest

118 when the concentration is between 0.25 and 1 mg/mL (**Supplementary Fig. 8**), and the devices
119 deliver a PCE of 22.6% (**Supplementary Fig. 9**).

120

121 We then characterized these devices using depth profiling with time-of-flight secondary ion mass
122 spectrometry (TOF-SIMS) (**Fig. 1c** to **1e**). For the target perovskite film, a pronounced
123 phosphorous (P) signal from the Me-4PACz is located at both the ITO-perovskite interface and
124 the perovskite-electron transport layer (ETL) interface (**Fig. 1d**), which indicates that the Me-
125 4PACz molecules are excluded to the top and bottom interface during the perovskite film
126 processing. We then removed the target perovskite film by dissolving it in dimethylformamide
127 (DMF), which yielded an optically clear substrate. We then redeposited a neat perovskite film and
128 performed TOF-SIMS again. We still observed a P signal of similar magnitude at the ITO-
129 perovskite interface when depth profiling this new film deposited without Me-4PACz additive
130 (**Fig. 1e**). This result was further confirmed with X-ray photoelectron spectroscopy (XPS,
131 **Supplementary Fig. 10**), showing the presence of P on the ITO surface with the target perovskite
132 film washed off. The TOF-SIMS and XPS results suggest that Me-4PACz SAMs formed on ITO
133 during the perovskite film processing due to the strong bond between PAs and ITO.

134

135 Seeking to investigate the dynamic process of SAM formation, we also performed experiments to
136 wash off the perovskite intermediate-phase film containing Me-4PACz using DMF while still
137 partially wet. We then redeposited a neat perovskite film on the substrate (**Fig. 2a**). The resulting
138 device shows a PCE of only 18.4% (**Fig. 2b**). The cell was inferior in performance to a target
139 device (V_{OC} of 1.08 V vs. 1.14 V and FF of 78.9% vs. 83.3%) indicative of SAM-free regions

140 leading to direct contact between the ITO and perovskite. Here we conclude that prior to the
141 perovskite crystallization, the SAM is loosely packed and incomplete.

142

143 We further fabricated neat PSCs on the substrate with the target perovskite film washed off after
144 full crystallization. The resulting device shows a much higher PCE (21.7%) with a V_{oc} of 1.12 V,
145 compared with the neat devices fabricated on the ITO substrate with intermediate-phase film
146 containing Me-4PACz washed off. This result demonstrates that a denser and robust SAM formed
147 on the ITO substrate during the perovskite film crystallization process. Perovskite films have been
148 shown to follow a top-to-bottom downward crystallization process initialized by the evaporation
149 of residual solvent from the top surface of “wet” films³¹. We surmise that the Me-4PACz gets
150 pushed downward and concentrated on the ITO surface during the film formation. The phosphonic
151 acid headgroups bind strongly to the ITO substrate spontaneously forming a robust SAM³².
152 Residual Me-4PACz is present on the perovskite top surface. Me-4PACz is too large to be
153 incorporated into the lattice and we do not see a substantial P signal throughout the film but cannot
154 rule out a very small amount at grain boundaries. [The 1.55 eV PSCs also showed a similar SAM](#)
155 [formation process \(Supplementary Fig. 11\).](#)

156

157 **Figure 1f** shows the schematic illustration of dynamic process of SAM formation. Some Me-
158 4PACz molecules bind to the ITO surface via covalent bond/chemisorption and form a loosely
159 packed SAM during the perovskite precursor application, but a denser and robust SAM forms
160 during the perovskite film crystallization process.

161

162 We further performed *in situ* real-time photoluminescence (PL) to monitor the perovskite
163 crystallization process (**Supplementary Fig. 12**). The result shows that the formation of the neat
164 and target film is similar, and the target film has overall higher PL intensity during crystallization,
165 indicating fewer defects in the target perovskite film.

166

167 **Characterization of perovskite films and interfaces**

168 Given the ability to simultaneously form a SAM and perovskite layer and then remove only the
169 perovskite layer with DMF, we further examined the electronic structure of ITO substrates and
170 perovskite films by ultraviolet photoelectron spectroscopy (UPS). We washed off the perovskite
171 films and compared the work function (Φ) of the ITO substrates. We observed a significant change
172 in the Φ from 4.33 eV (identical to that of bare ITO) for the ITO substrates after rinsing away the
173 neat perovskite to 4.94 eV for the ITO substrates with removed target perovskite (**Fig. 2c**). Density
174 functional theory (DFT) calculations show that the electric dipole moment of Me-4PACz increases
175 the work function of the ITO surface (**Supplementary Fig. 13** and **Supplementary Fig. 14**). We
176 also detected a clear signature from the Me-4PACz SAM on ITO with a highest-occupied
177 molecular orbital (HOMO) of 5.59 eV for the ITO substrate after rinsing away the target perovskite
178 (**Fig. 2d**). The Φ of the top of the perovskite film also increases from 4.54 (neat) to 4.66 eV (target)
179 (**Fig. 2e**), and the valence band maximum (VBM) changes from 5.88 (neat) to 5.74 eV (target)
180 (**Fig. 2f**), revealing that the target perovskite film becomes less n-type compared with the neat film
181 (**Fig. 2g**). The VBM of the modified perovskite aligns well with that of the HOMO of Me-4PACz
182 on the ITO substrate after the target perovskite is washed away. Therefore, Me-4PACz likely
183 promotes extraction of the photo-generate holes at the perovskite-ITO interface while also serving
184 to increase the selectivity of the contact.

185

186 We next used cross-sectional Kelvin probe force microscopy (KPFM) to probe the charge carrier
187 extraction barriers at the bottom interface (ITO/perovskite)^{33,34}. The first derivative of the potential
188 difference (measured between the probe and cross-section surface of the sample) shows the
189 electric-field distribution relative to the metallurgical interfaces. Previously we found that the main
190 junction is located at the perovskite-ETL interface with a potential barrier at the HTL-perovskite
191 interface³³. Here, we observed a significant potential barrier at the ITO/perovskite interface
192 induced by a mismatch of energetic alignment on the ITO/perovskite (neat) interface
193 (**Supplementary Fig. 15**). The potential barrier at the ITO/perovskite interface is remarkably
194 reduced for the target perovskite film, which could facilitate the hole extraction at the
195 ITO/perovskite interface. To gain an understanding of the impact of SAMs on the charge carrier
196 separation and transport at the top interface (perovskite/ETL), we analyzed the direction of the
197 interface dipole induced by Me-4PACz (**Supplementary Fig. 16**). PAs have been shown to also
198 anchor to the perovskite film surface with the alkyl tail pointing upward³⁵. The molecular dipole
199 induced by Me-4PACz on the top surface would thus have the same polarity as below the
200 perovskite and could promote electron extraction to the ETL. Thus, contrary to a conventional
201 HTL (such as PTAA, Spiro-OMeTAD, etc.), SAMs can be present on both sides of the perovskite
202 absorber provided that the dipole is pointing in the same direction to promote charge carrier
203 extraction at both interfaces (**Supplementary Fig. 16**).

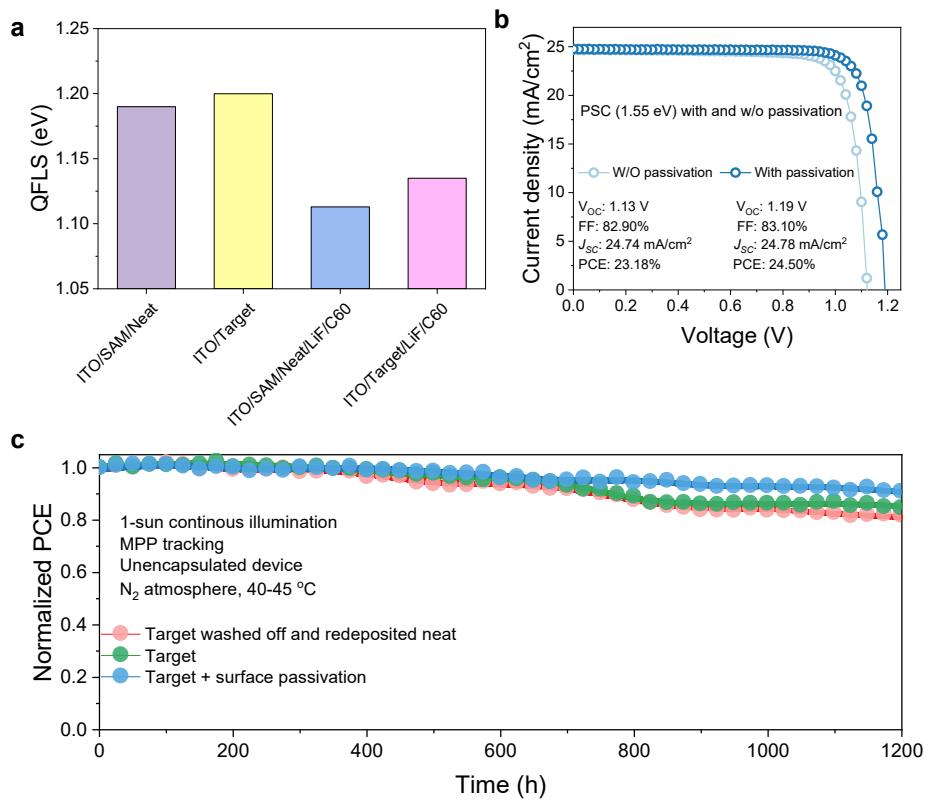
204

205 We performed time-resolved photoluminescence (TRPL) with the perovskite films on glass and
206 glass/ITO/PTAA substrates. TRPL for the perovskite films on glass substrates showed that the
207 perovskite film with 0.5 mg/mL Me-4PACz has the longest average lifetime (τ_{ave}) of 520.5 ns

208 compared with 305.0 ns for neat perovskite film (**Fig. 2h** and **Supplementary Table 1**), which
209 suggests that Me-4PACz reduces surface nonradiative recombination. We also measured TRPL
210 for the perovskite films with and without Me-4PACz on glass/ITO/PTAA substrates and fitted the
211 results with a bi-exponential decay equation. If we assume τ_1 is dominant by charge extraction to
212 the transport layers and τ_2 is dominant by interface recombination, as the assignments of the fast
213 decay and slow decay in the literature³⁶, the target perovskite film on ITO/PTAA shows shorter τ_1 ,
214 indicating faster hole-extraction, and longer τ_2 , indicating the reduced interface recombination
215 (**Supplementary Fig.17** and **Supplementary Table 2**). Tan et al. reported that 2PACz efficiently
216 passivates deep traps in perovskite because of the chemical bonding between Pb and O from the
217 phosphoryl group of the 2PACz³⁷. Another PA additive, 2-aminoethylphosphonic acid, has been
218 demonstrated to passivate positively charged defects (such as iodine vacancies (V_I) and
219 lead–iodine antisites (PbI)) and therefore improve the device efficiency and durability³⁸.

221 **Fig. 2. Characterization of SAM formation, energetic alignment, and carrier lifetime. (a)**
222 *Schematic illustration of intermediate-phase/perovskite film washing off and neat perovskite film*
223 *redeposition process. (b) J-V characteristics of the neat PSCs fabricated on substrates with*
224 *intermediate-phase/perovskite film washed off. (c to f) UPS (10.2 eV excitation) of the secondary*
225 *electron cutoff (c) and valence band (d) regions of the ITO and ITO/SAM substrates after washing*

226 off the neat perovskite and target perovskite film, respectively. UPS of the secondary electron
227 cutoff (e) and valence band (f) regions of the neat and target perovskite films, respectively. (g)
228 Energy-level scheme extracted from UPS. (h) TRPL of perovskite films with different Me-4PACz
229 concentrations on glass substrates.


230

231 **PV performance and stability**

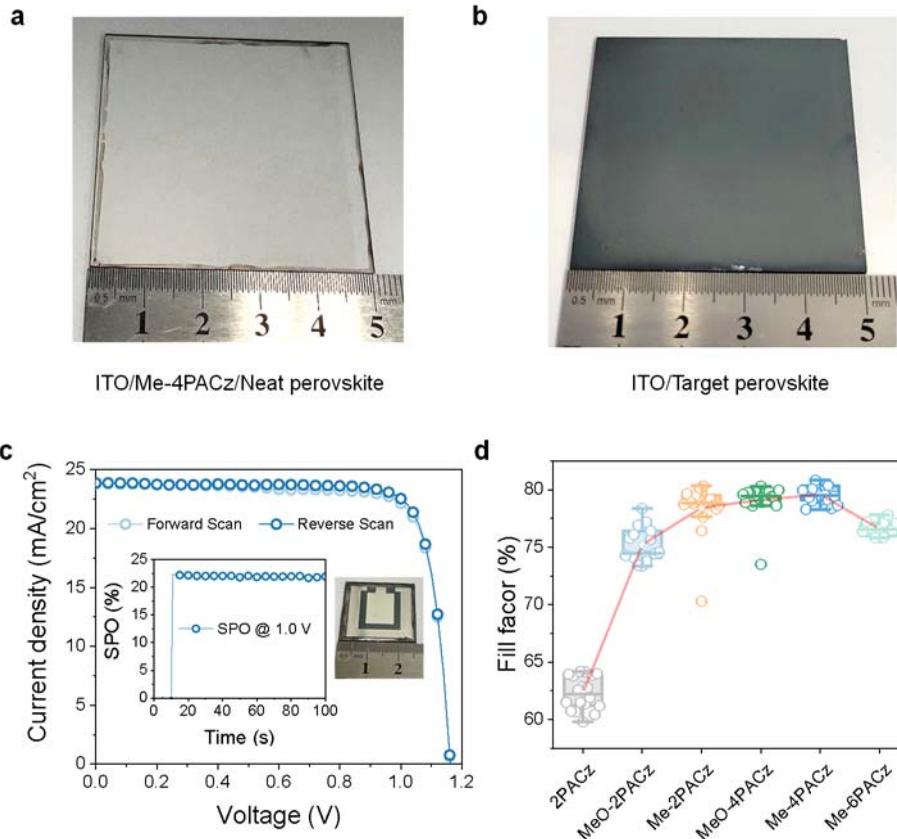
232 We tested this approach on a wide bandgap composition $\text{Cs}_{0.05}\text{FA}_{0.8}\text{MA}_{0.15}\text{Pb}(\text{I}_{0.75}\text{Br}_{0.25})_3$ ($E_G \sim 1.68$
233 eV), which is commonly used for perovskite-silicon tandem solar cells²⁵, to demonstrate the
234 generality of this concept. The target device showed a PCE of 20.3% with a V_{OC} of 1.14 V from
235 the reverse scan (**Supplementary Fig. 18**). Using a quasi-Fermi level splitting (QFLS) approach,
236 we found that after covering the perovskite with C_{60} , consistent with previous reports³⁷, both
237 ITO/Me-4PACz/neat perovskite and ITO/target perovskite stacks showed room for possible
238 improvement of the voltage by 65-80 mV (**Fig. 3a**). We ascribe this to incomplete passivation of
239 defect states on the perovskite surface. To confirm, we thereafter passivate the perovskite surface
240 using a mixture of $\text{CF}_3\text{-PEAI}$ and MAI to further improve the device efficiency^{29, 30}. XPS result
241 confirms the co-existence of Me-4PACz and $\text{CF}_3\text{-PEAI}$ on the perovskite surface (**Supplementary**
242 **Fig. 19**). The PCE of the 1.68 eV PSCs was improved to 21.6% with a V_{OC} of 1.19 V, after surface
243 passivation (**Supplementary Fig. 20**). We also applied this approach in a 1.8 eV perovskite
244 composition ($\text{Cs}_{0.15}\text{FA}_{0.85}\text{Pb}(\text{I}_{0.6}\text{Br}_{0.4})_3$) which is commonly used as a front cell for all-perovskite
245 tandems³⁹, and the target 1.8 eV devices showed a PCE of 18.6% with a high V_{OC} of 1.29 V
246 (**Supplementary Fig. 21**).

247

248 A PCE of 24.5% with a high V_{OC} of 1.19 V was also achieved for 1.55 eV PSCs with surface
 249 passivation, along with a J_{SC} of 24.78 mA/cm² and FF of 83.1% from the reverse scan (**Fig. 1b**
 250 and **Fig. 3b**). The 24.5% PCE represents a significant improvement over the previous highest
 251 reported PCEs for HTL-free PSCs, and within one percentage point of the highest PCE for inverted
 252 PSCs (**Supplementary Table 3**). The narrow PCE distribution confirms good reproducibility
 253 (**Supplementary Fig. 22** and **Supplementary Table 4**). The external quantum efficiency (EQE)
 254 was integrated against the solar spectrum to estimate a J_{SC} of 24.6 mA/cm² in agreement with the
 255 $J-V$ measurement (**Supplementary Fig. 23**).

256
 257 **Fig. 3. Device photovoltaic characteristics and stability.** (a) The calculated QFLS of the
 258 glass/ITO/Me-4PACz/neat perovskite, glass/ITO/target perovskite, glass/ITO/Me-4PACz/neat
 259 perovskite/LiF/C₆₀, and glass/ITO/target perovskite/LiF/C₆₀. (b) J-V curves of the target 1.55 eV
 260 PSCs with and without surface passivation. (c) Operational stability of neat 1.55 eV PSC

261 *fabricated on the substrate with target perovskite washed off, and target 1.55 eV PSC with and*
262 *without surface passivation. Normalized PCE as a function of time under the following conditions:*
263 *1-sun continuous illumination, MPP tracking, unencapsulated, N₂ atmosphere, and operating cell*
264 *temperature of ~40-45 °C.*


265

266 We evaluate the operating stability using maximum power point (MPP) tracking of the
267 unencapsulated 1.55 eV devices under continuous illumination (**Fig. 3c**). The neat device
268 fabricated on the substrate with target perovskite washed off, with Me-4PACz only on the bottom
269 interface, retained 82% of initial PCE after 1200 hours of continuous operation. The target devices
270 with and without surface passivation, with Me-4PACz on both the bottom and top interface,
271 retained 91% and 85% of initial PCE, respectively.

272

273 **Blade-coating of PSCs and evaluation of different PAs**

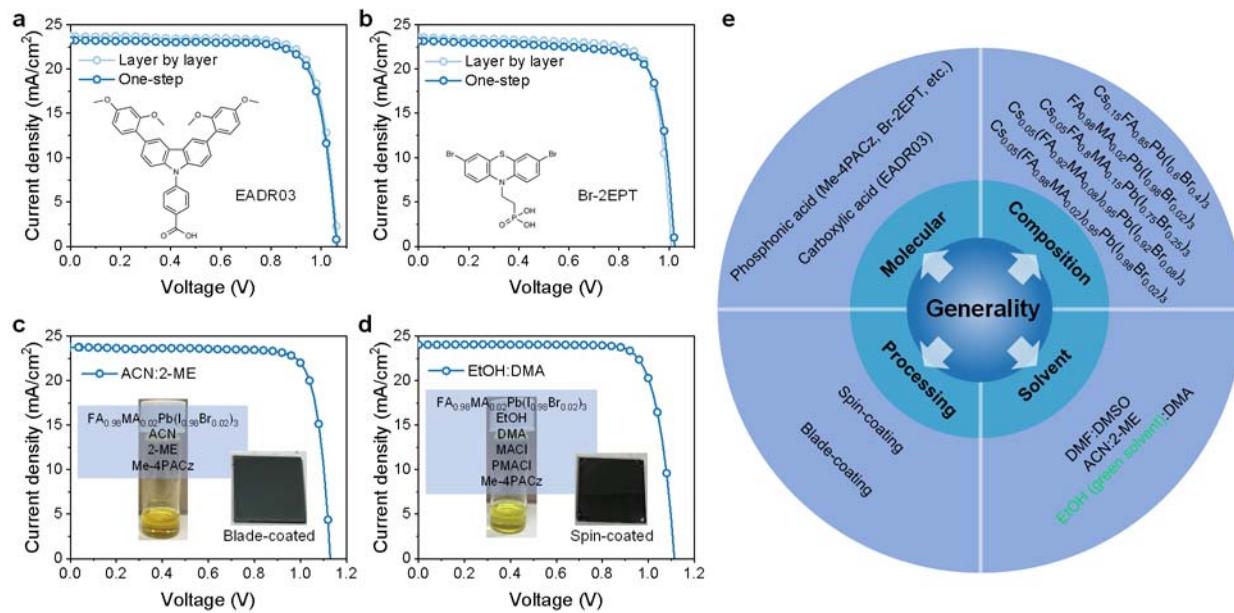
274 Encouraged by the high device performance, we further evaluated the film uniformity and
275 upscaling capability by making PSCs via blade-coating. Due to severe wetting issues of trying to
276 process perovskites directly onto Me-4PACz SAM, we observed that there is almost no perovskite
277 remaining on the ITO/Me-4PACz substrate (**Fig. 4a**). By contrast, the blade-coated target
278 perovskite film with Me-4PACz included in the precursor achieved full coverage on glass/ITO
279 substrate (**Fig. 4b**). A 1-cm² blade-coated target device achieved a PCE of 22.5% from the reverse
280 scan, with a *V_{oc}* of 1.16 V, a *J_{sc}* of 23.88 mA/cm², and a FF of 81.23%. (**Fig. 4c**). The SPO
281 efficiency is 22.1%. The narrow PCE distribution confirms good reproducibility (**Supplementary**
282 **Fig. 24**) and this overcomes a manufacturability challenge of poor wetting from perovskite inks
283 on a SAM-coated surface.

284

285 **Fig. 4. Blade-coating of PSCs and evaluation of different PAs.** (a, b) Photographic images of
286 blade-coated (a) neat 1.55 eV perovskite film on ITO/Me-4PACz SAM, and (b) target 1.55 eV
287 perovskite film on ITO. (c) J-V curves of the champion 1-cm² blade-coated 1.55 eV PSC with
288 surface passivation. The inset shows the stabilized power output (SPO) and the photographic
289 image of a 1-cm² blade-coated target device. (d) Comparison of fill factor values of spin-coated
290 1.56 eV PSCs fabricated with different PAs in the perovskite precursor.

291

292 To understand why Me-4PACz enables the spontaneous formation of a robust SAM during
293 perovskite film processing, we compared the photovoltaic (PV) parameters of the 1.56 eV PSCs
294 fabricated with different PAs (2PACz, MeO-2PACZ [(2-(3,6-dimethoxy-9H-carbazol-9-
295 yl)ethyl)phosphonic acid], Me-2PACz [(2-(3,6-dimethyl-9H-carbazol-9-yl)ethyl)phosphonic


296 acid], MeO-4PACz [(4-(3,6-dimethoxy-9H-carbazol-9-yl)butyl)phosphonic acid], Me-4PACz,
297 and Me-6PACz [(6-(3,6-dimethyl-9H-carbazol-9-yl)hexyl)phosphonic acid]) incorporated in the
298 perovskite precursor (**Fig. 4d**, **Supplementary Fig. 25**, and **Supplementary Fig. 26**). The devices
299 with smaller PA (2PACz) show low PV merits (J_{SC} (21.5-22.5 mA/cm²), V_{OC} (0.9-1.06 V), FF (60-
300 65%), and PCE (11.5-14.5%)). When the size of the SAM molecules becomes larger by
301 introducing two methyl or methoxy groups, we observed improved device FF to ~75% for MeO-
302 2PACZ and ~78% for Me-2PACz due to better coverage of the SAM on ITO corresponding to
303 better hole extraction. The FF is further improved to ~79% and ~80% for the devices with PAs
304 with longer alkyl spacer, MeO-4PACz and Me-4PACz, respectively. This result indicates that the
305 larger Me-4PACz molecules are more efficiently repelled to the ITO/perovskite interface and the
306 stronger lateral van der Waals interactions help organize the molecules into high grafting density⁴⁰
307 and well-ordered SAM^{40, 41}. Further increasing the spacer alkyl chain length to 6 for Me-6PACz
308 reduced the FF and PCE due to the detrimental impact of a long spacer on charge extraction^{23, 42}.
309

310 **The generality of the approach**

311 We have demonstrated the generality of the approach above in terms of various perovskite
312 compositions, SAM chemistry, and processing method (both solvent system used and coating
313 procedure). We tested different SAM molecular systems and solvents. PSCs fabricated with
314 carboxylic acid SAM molecule (EADR03, 4-(3,6-bis(2,4-dimethoxyphenyl)-9H-carbazol-9-
315 yl)benzoic acid)⁴³⁻⁴⁵ or phosphonic acid SAM molecule with phenothiazine electron-rich group
316 (Br-2EPT, (2-(3,7-dibromo-10h-phenothiazin-10-yl)ethyl)phosphonic acid)⁴⁶ incorporated in the
317 perovskite precursor delivered similar PCEs compared with the devices fabricated by “layer by

318 layer” deposition method, demonstrating the generality of the approach in terms of SAM molecular
 319 system (**Fig. 5a, b**).

320
 321 Acetonitrile (ACN) with 2-methoxyethanol (2-ME) is a solvent system widely used in scalable
 322 blade-coating of PSCs^{47, 48}. Due to the limited solubility of CsI in the solvent, we used Cs-free
 323 perovskite composition ($\text{FA}_{0.98}\text{MA}_{0.02}\text{Pb}(\text{I}_{0.98}\text{Br}_{0.02})_3$). **Figure 5c inset** shows the photographic
 324 image of the perovskite precursor with Me-4PACz dissolved in a mixed solvent of ACN and 2-
 325 ME, and a perovskite film prepared by blade-coating of the precursor. The target PSCs with Me-
 326 4PACz fabricated by blade-coating using ACN:2-ME showed a PCE of 22.1% from the reverse
 327 scan (**Fig. 5c**).

328
 329 **Fig. 5. Evaluation of different SAM molecular systems and solvents.** (a) J-V curves of the target
 330 1.55 eV PSCs and PSCs fabricated by “layer by layer” method using 4-(3,6-bis(2,4-
 331 dimethoxyphenyl)-9H-carbazol-9-yl)benzoic acid (EADR03) SAM molecule. The inset shows the
 332 chemical structure of EADR03 SAM molecule. (b) J-V curves of the target 1.55 eV PSCs and PSCs

333 fabricated by “layer by layer” method using (2-(3,7-dibromo-10h-phenothiazin-10-
334 yl)ethyl)phosphonic acid (Br-2EPT) SAM molecule. The inset shows the chemical structure of Br-
335 2EPT SAM molecule. (c) J-V curve of a blade-coated target $FA_{0.98}MA_{0.02}Pb(I_{0.98}Br_{0.02})_3$ PSC using
336 ACN:2-ME as a solvent. The inset shows the photographic image of the perovskite precursor with
337 Me-4PACz dissolved in a mixed solvent of ACN and 2-ME, and a perovskite film prepared by
338 blade-coating of the precursor. (d) J-V curve of a spin-coated target $FA_{0.98}MA_{0.02}Pb(I_{0.98}Br_{0.02})_3$
339 PSC using EtOH:DMA as a solvent. The inset shows the perovskite precursor with Me-4PACz
340 dissolved in a mixed solvent of EtOH and DMA, and a perovskite film prepared by spin-coating of
341 the precursor. (e) Summary of the generality of the approach.

342

343 Yun et al. demonstrated a greener solvent system based on ethanol (EtOH) that yields high
344 performance without the need of DMF or ACN which may impede the sustainability aspects of
345 PSCs^{49, 50}. We further explored the EtOH-based green solvent to improve both PSC
346 manufacturability and sustainability. EtOH or isopropanol is the solvent commonly used for the
347 deposition of SAM layer via spin-coating or dipping method²². Following the previous report⁵⁰,
348 we were able to dissolve the perovskite precursor in an EtOH-based solvent. Due to the limited
349 solubility of CsI in the solvent, we used Cs-free perovskite composition
350 ($FA_{0.98}MA_{0.02}Pb(I_{0.98}Br_{0.02})_3$). **Figure 5d** inset shows the photographic image of the perovskite
351 precursor with Me-4PACz dissolved in a mixed solvent of EtOH and dimethylacetamide (DMA),
352 and a perovskite film prepared by spin-coating of the precursor. The target PSCs with Me-4PACz
353 fabricated by spin-coating using an EtOH-based green solvent showed a PCE of 21.6% from the
354 reverse scan (**Fig. 5d**).

355

356 **Figure 5e** summarized the generality of the approach. This approach is compatible with different
357 SAM molecular systems (carbazole- and phenothiazine-based) with both a phosphonic acid and
358 carboxylic acid headgroup, along with multiple (5) compositions of perovskites, solvents
359 (DMF:DMSO, ACN:2-ME, and an ethanol-based green solvent), and processing methods (spin-
360 coating and scalable blade-coating). Further fine optimization of the approach for each condition
361 when using different SAM molecular systems, perovskites, solvents, and processing methods, will
362 enable for obtaining higher device performance.

363

364 **Conclusion**

365 In summary, we have demonstrated that the incorporation of SAM molecules directly into the
366 perovskite precursor enabled a spontaneous deposition of both the hole-selective SAM and the
367 perovskite layer. Our approach emphasizes the synergistic roles of molecular size, dipole direction,
368 dipole strength, energetic alignment, and defect passivation of the perovskite by PAs.
369 Incorporating the SAM molecules into several different types of perovskite precursor solves a
370 critical wetting issue of processing perovskite onto SAM while simplifying the manufacturability
371 and retaining high efficiency when proper defect passivation is applied. **The approach is versatile**
372 **as it allows for the use of different SAM molecules, perovskites, solvents, and coating methods,**
373 **for improving PSC manufacturability and sustainability.**

374

375 **Methods**

376 **Materials.** Formamidinium iodide (FAI), methylammonium iodide (MAI), and methylammonium
377 bromide (MABr) were purchased from Greatcell Solar. 4-trifluorophenylethylammoniumiodide
378 (CF₃-PEAI) was purchased from Xi'an Polymer Light Technology. Lead iodide (PbI₂, ultra dry,

379 99.999%) was purchased from Alfa Aesar. Lead bromide (PbBr_2 , 99.999%), cesium iodide (CsI ,
380 99.999%), lithium fluoride (LiF , \geq 99.98%), anhydrous dimethylformamide (DMF), anhydrous
381 dimethyl sulfoxide (DMSO), and anhydrous chlorobenzene (CB) were purchased from Sigma-
382 Aldrich. 2PACz and Me-4PACz were purchased from Tokyo Chemical Industry (TCI)-America.
383 MeO-2PACz, Me-2PACz, MeO-4PACz, Me-4PACz, Me-6PACz, EADR03, Br-2EPT, C_{60} , and
384 bathocuproine (BCP) were purchased from Luminescence Technology Corp. (Lumtec). All
385 chemicals were used as received without further purification.

386

387 **Device fabrication.** The patterned glass/ITO substrates were sequentially cleaned with acetone
388 and isopropanol under ultrasonication, and then dried with nitrogen and treated with UV-ozone for
389 15 min. In a typical procedure, perovskite precursor solution (1.7 M
390 $\text{Cs}_0.05(\text{FA}_{0.98}\text{MA}_{0.02})_{0.95}\text{Pb}(\text{I}_{0.98}\text{Br}_{0.02})_3$ for 1.55 eV cells, or 1.4 M
391 $\text{Cs}_0.05(\text{FA}_{0.92}\text{MA}_{0.08})_{0.95}\text{Pb}(\text{I}_{0.92}\text{Br}_{0.08})_3$ for 1.56 eV cells, or 1.5 M $\text{Cs}_0.05\text{FA}_{0.8}\text{MA}_{0.15}\text{Pb}(\text{I}_{0.75}\text{Br}_{0.25})_3$
392 for 1.68 eV cells) was dissolved in a mixed solvent (DMF/DMSO = 4:1 v/v ratio) in a nitrogen
393 glovebox. For the target device, Me-4PACz was added to the perovskite precursor. **2 mg/mL Me-**
394 **4PACz stock solution was prepared by adding 2 mg Me-4PACz powder into 1 mL perovskite**
395 **precursor. We then mixed 2 mg/mL stock solution with neat perovskite precursor (1:3 or 1:7 v/v**
396 **ratio) to get 0.5 or 0.25 mg/mL Me-4PACz perovskite precursor.** The hole-selective contact and
397 perovskite absorber were cast in a single coating step in a nitrogen glovebox. The perovskite
398 precursor containing Me-4PACz was spin-coated on UV-ozone treated glass/ITO substrates at
399 2000 rpm for 2 s and 4000 rpm for 20 s, and 150 μL CB was dropped on the spinning substrate 5 s
400 before the end of the spin-coating process. Subsequently, the sample was annealed at 100 °C for
401 30 min. For the devices with surface passivation treatment, a mixture of 4-

402 trifluorophenylethylammoniumiodide (CF₃-PEAI, 2 mg/mL) and MAI (1 mg/mL) was dissolved
403 in a mixed solvent of IPA: DMF (v/v ratio of 150:1) and dynamically spun on the as-prepared
404 perovskite films at 5000 rpm for the 30 s, then annealing for 100 °C, 10 min. The devices with
405 surface treatment were finished by thermally evaporating C₆₀ (25 nm), BCP (6 nm), and silver
406 (100 nm) in sequential order. For the devices without surface passivation treatment, we
407 sequentially deposited LiF (1nm), C₆₀ (25 nm), BCP (6 nm), and silver (100 nm) to finish the
408 device.

409

410 For 1.80 eV PSC fabrication, 1.2 M perovskite precursor solution was prepared by mixing CsI,
411 CsBr, FAI, FABr, PbI₂, and PbBr₂ according to a chemical formula of Cs_{0.15}FA_{0.85}Pb(I_{0.6}Br_{0.4})₃. 8-
412 10 mol% of excess PbI₂ was added. Me-4PACz was added in perovskite precursor with a
413 concentration of 0.25 mg/mL. The hole-selective contact and perovskite absorber were cast in a
414 single coating step in a nitrogen glovebox. In a typical procedure, the perovskite precursor
415 containing Me-4PACz was spin-coated on UV-ozone treated glass/ITO substrates at 1000 rpm for
416 5 s and 5000 rpm for 30 s, and 200 μL CB was dropped on the spinning substrate 20 s before the
417 end of the spin-coating process. The substrates were immediately transferred to the hotplate and
418 annealed at 100 °C for 20 min. The surface passivation treatment procedure is consistent with the
419 method mentioned above. The devices were finished by thermally evaporating C₆₀ (25 nm), BCP
420 (6 nm) and silver (100 nm) in sequential order.

421

422 0.9 M perovskite precursor solution Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})₃ was used for blade-
423 coating of 1.55 eV cells. For the target device, Me-4PACz was added to the perovskite precursor.
424 Then, the perovskite precursor solution is blade-coated on UV-ozone treated glass/ITO substrate

425 (the blading speed is 10 mm s⁻¹ and the distance between the blade-coater and substrate is 100 μm)
426 at room temperature in ambient air with a relative humidity of ~40%. Next, the as-prepared
427 perovskite substrate was pretreated in a vacuum (<20 Pa) for 5 min, then transferred to the hotplate
428 and annealed at 100 °C for 60 min. The surface passivation treatment procedure is consistent with
429 the method mentioned above. The 1 cm² devices were finished by thermally evaporating C₆₀ (25
430 nm), BCP (6 nm), and silver (100 nm) in sequential order.

431

432 For the devices fabricated by conventional “layer-by-layer” method using EADR03 or Br-2EPT
433 molecule, the molecules were dissolved in IPA with a concentration of 0.25 mg/mL. EADR03
434 solution was heated to 60 °C to increase solubility. The as-prepared solution was spin-coated onto
435 the UV-ozone treated ITO substrate at 4000 rpm for 30 s, then annealing at 100 °C for 10 min.
436 The substrates were then washed with IPA through spin-coating at 4000 rpm for 30 s, followed by
437 annealing at 100 °C for 5 min. 1.7 M Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})₃ perovskite precursor
438 solution dissolved in mixed solvent (DMF/DMSO = 4:1 v/v) was spin-coated on the as-prepared
439 substrates at 1000 rpm for 10 s, and 5000 rpm for 40 s, and 200 μL CB was dropped on the spinning
440 substrate 10 s before the end of the spin-coating process. The substrates were immediately
441 transferred to the hotplate and annealed at 100 °C for 30 min. For the devices with one-step coating
442 process, EADR03 or Br-2EPT was added in perovskite precursor with a concentration of 0.25
443 mg/mL. In a typical procedure, the perovskite precursor containing EADR03 or Br-2EPT was
444 spin-coated on UV-ozone treated glass/ITO substrates at 1000 rpm for 10 s and 5000 rpm for 40
445 s, and 200 μL CB was dropped on the spinning substrate 10 s before the end of the spin-coating
446 process. The substrates were immediately transferred to the hotplate and annealed at 100 °C for

447 60 min. The devices were finished by thermally evaporating C₆₀ (25 nm), BCP (6 nm) and silver
448 (100 nm) in sequential order.

449

450 For the PSCs fabricated using EtOH-based solvent, 1.55 M FA_{0.98}MA_{0.02}Pb(I_{0.98}Br_{0.02})₃ perovskite
451 precursor was prepared by mixing FAI, PbBr₂, PbI₂, and PbBr₂, with addition of 30 mol% MACl,
452 20 mol% PMACl, in a mixed solvent of EtOH and DMA (2:1 v/v). The perovskite precursor
453 solution was heated to 60 °C for 1 h. Me-4PACz was added in perovskite precursor with a
454 concentration of 0.25 mg/mL. The hole-selective contact and perovskite absorber were cast in a
455 single coating step in a nitrogen glovebox. In a typical procedure, the perovskite precursor
456 containing Me-4PACz was spin-coated on UV-ozone treated glass/ITO substrates at 5000 rpm for
457 30 s with gentle nitrogen air flow. The coated films were annealed at 100 °C for 20 min. The
458 surface passivation treatment procedure is consistent with the method mentioned above. The
459 devices were finished by thermally evaporating C₆₀ (25 nm), BCP (6 nm) and silver (100 nm) in
460 sequential order.

461

462 For the PSCs fabricated using ACN and 2-ME mixed solvent, 1 M FA_{0.98}MA_{0.02}Pb(I_{0.98}Br_{0.02})₃
463 perovskite precursor solution was prepared by mixing FAI, PbBr₂, PbI₂, PbBr₂ into a mixed solvent
464 of ACN (60%, v/v)/2-ME (40%, v/v). The perovskite precursor solution needs to be heated to 60
465 °C for 1 h. Me-4PACz was added in perovskite precursor with a concentration of 0.25 mg/mL.
466 Then, the perovskite precursor solution was blade-coated on the UV-ozone treated substrate (the
467 blading speed is 10 mm s⁻¹ and the distance between blade-coater and the substrate is 100 μm) at
468 room temperature in ambient air with a relative humidity of ~40%. Next, the as-prepared
469 perovskite substrate was pretreated in vacuum (<20 Pa) for 5 min, then transferred to the hotplate

470 at 100 °C for 20 min. The surface passivation treatment procedure is consistent with the method
471 mentioned above. The devices were finished by thermally evaporating C₆₀ (25 nm), BCP (6 nm)
472 and silver (100 nm) in sequential order.

473

474 **Material characterizations.** The SEM images were taken using a Hitachi 4800 scanning electron
475 microscope. The absorption spectra were obtained by a Shimadzu UV-3600 spectrophotometer.
476 An ION-TOF TOF-SIMS V Time of Flight SIMS (TOF-SIMS) spectrometer was used for depth
477 profiling of the perovskite films according to our previous report⁵¹. Depth Profiling was completed
478 with a 30 KeV Bi₃⁺ Bismuth primary ion beam (0.8 pA pulsed current rastered over a 50 × 50 μm
479 area) and a 1 kV oxygen ion sputter beam (7 nA sputter current) rastered over a 150 × 150 μm
480 area. Photoelectron spectroscopy measurements were conducted in a PHI 5600 UHV system. UPS
481 and XPS measurements both employed an 11 in. diameter hemispherical electron energy analyzer
482 and multichannel detector. The excitation source for UPS was an Excitech H Lyman- α lamp (E-
483 LUXTM121) with excitation energy of 10.2 eV. All UPS measurements were recorded with -5 V
484 sample bias and a pass energy of 5 eV. XPS measurements used an Al K α x-ray excitation source
485 (1486.6 eV) and a pass energy of 30 eV. TRPL measurements were made using an NKT
486 supercontinuum laser (SuperK EXU-6-PP) used for excitation while a Hamamatsu C-10910-04
487 streak camera was used for detection (the fluence is 1.04 microwatts/square millimeter at 0.305
488 MHz and the wavelength is 532 nm).

489

490 Excitation at 632.8 nm (HeNe laser) was used to measure PL emission spectra. A Princeton
491 Instruments HRS300 spectrograph with Si CCD (Pixis F100) and InGaAs (PyLoN IR) detectors
492 was used. The spectral response of the detectors and spectrometer system was corrected using

493 calibration sources (IntelliCal for vis and IR ranges, Princeton Instruments) and placing calibration
494 sources at the sample position. Excitation beam size was determined with a CCD camera. Data
495 was measured in absolute photon numbers using Spectralon reflectance standards (LabSphere Inc.)
496 and assuming that one-sun equivalent fluence for 1.68 eV bandgap is about 1.43×10^{17}
497 photons/(cm²s). The quasi-Fermi level splitting (QFLS) was determined from the spectral fit to the
498 high energy side of the absolute PL emission spectrum⁵².

499

500 The KPFM and c-AFM measurements were performed inside an Ar-filled glovebox. The devices
501 were cleaved from the film side to expose the cross section for KPFM measurements, and the front
502 side of the device was grounded, and bias voltage was applied from the back contact of the devices.
503 KPFM measurements were performed with varying bias voltage from -1 V to +1 V on the same
504 area. AFM images were taken on a Veeco Nanoscope IIIA instrument running in tapping mode.

505

506 **Device characterizations.** Simulated AM 1.5G irradiation (100 mW/cm²) was produced by an
507 Oriel Sol3A Class AAA Solar Simulator in a nitrogen glovebox for current density-voltage (*J-V*)
508 measurements. The intensity of the solar simulator was calibrated with a KG5 filtered Si reference
509 solar cell that was certified by NREL PV Performance Characterization Team, and the spectral
510 mismatch factor was minimized to 0.9923. The device area was 0.122 cm² and was masked with
511 a metal aperture to define an active area of 0.0585 cm². The scanning rate was 0.34 V s⁻¹. The
512 stabilized power output (SPO) of the devices was measured by monitoring the photocurrent current
513 density output with the biased voltage set near the maximum power point. External quantum
514 efficiency (EQE) measurements were taken using a Newport Oriel IQE200. The devices made at
515 City U. of Hong Kong were measured by an Enlitech SS-F5 solar simulator (calibrated to 100 mW

516 cm^{-2} by a silicon reference cell) for J - V measurements and an Enlitech QE-R system for EQE
517 measurements. The long-term operational stability was conducted by applying the PSCs under 1
518 sun equivalent LED lamp in a N_2 -filled glovebox (with the contents of O_2 and $\text{H}_2\text{O} < 10$ ppm). The
519 device operating temperature was measured to be ~ 40 - 45 $^{\circ}\text{C}$. The PSCs were biased at maximum-
520 power-point (MPP) voltage and the power output was tracked by using a multi-potentiostat
521 (CHI1040C, CH Instruments, Inc.). During the MPP test, the J - V curves of the devices were
522 obtained every 12 h to get the proper loads for the MPP.

523

524 **Computation.** DFT calculations were performed using the VASP code with projector augmented-
525 wave potentials⁵³⁻⁵⁵. A kinetic energy cutoff of 500 eV was used to expand the wave functions.
526 The Brillouin zone was sampled with Γ -centered $2 \times 2 \times 1$ k-mesh. The atomic coordinates were
527 relaxed with PBE functional with a force tolerance of 0.01 eV \AA^{-1} ⁵⁶. To model ITO, we used the
528 In_2O_3 crystal structure with 1/3 In atoms replaced by Sn. (222) surface was adopted with O
529 termination (passivated with H).

530

531 **Data availability**

532 The main data supporting the findings of this study are available within the article and its
533 Supplementary Information. Additional data are available from the corresponding authors on
534 reasonable request.

535

536 **References**

- 537 1. Jeon, N.J. et al. Compositional engineering of perovskite materials for high-performance
538 solar cells. *Nature* **517**, 476-480 (2015).
- 539 2. Jeon, N.J. et al. Solvent engineering for high-performance inorganic-organic hybrid
540 perovskite solar cells. *Nat. Mater.* **13**, 897-903 (2014).

541 3. Zhang, H. et al. A universal co-solvent dilution strategy enables facile and cost-effective
542 fabrication of perovskite photovoltaics. *Nat. Commun.* **13**, 89 (2022).

543 4. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α -phase
544 formamidinium lead iodide. *Science* **366**, 749-753 (2019).

545 5. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α -CsPbI₃ perovskite for
546 high-efficiency photovoltaics. *Science* **354**, 92-95 (2016).

547 6. Kim, M. et al. Conformal quantum dot-SnO₂ layers as electron transporters for efficient
548 perovskite solar cells. *Science* **375**, 302-306 (2022).

549 7. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per
550 cent. *Nature* **601**, 573-578 (2022).

551 8. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite
552 modules. *Science* **373**, 902-907 (2021).

553 9. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted
554 perovskite solar cells. *Science* **375**, 434-437 (2022).

555 10. Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable
556 perovskite solar cells. *Science* **375**, 71-76 (2022).

557 11. Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar
558 cells. *Science* **360**, 1442-1446 (2018).

559 12. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. *Nat. Photon.* **13**, 460-466 (2019).

560 13. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-
561 efficiency inverted perovskite solar cells. *Nat. Energy* **5**, 131-140 (2020).

562 14. Jeong, J. et al. Pseudo-halide anion engineering for α -FAPbI₃ perovskite solar cells.
563 *Nature* **592**, 381-385 (2021).

564 15. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of
565 perovskite photovoltaics. *Science* **366**, 1509-1513 (2019).

566 16. Wang, L. et al. A Eu³⁺-Eu²⁺ ion redox shuttle imparts operational durability to Pb-I
567 perovskite solar cells. *Science* **363**, 265-270 (2019).

568 17. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid
569 additives. *Nature* **571**, 245-250 (2019).

570 18. Wu, W.-Q. et al. Molecular doping enabled scalable blading of efficient hole-transport-
571 layer-free perovskite solar cells. *Nat. Commun.* **9**, 1625 (2018).

572 19. Zhou, Z. et al. Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole
573 Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. *ACS Appl.*
574 *Mater. Interfaces* **11**, 22603-22611 (2019).

575 20. Ye, S. et al. A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by
576 Co-deposition of a Hole-Conductor and a Perovskite Layer. *Adv. Mater.* **28**, 9648-9654
577 (2016).

578 21. Zhou, Z. & Pang, S. Highly efficient inverted hole-transport-layer-free perovskite solar
579 cells. *J. Mater. Chem. A* **8**, 503-512 (2020).

580 22. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for
581 perovskite single junction and monolithic tandem solar cells. *Energy Environ. Sci.* **12**,
582 3356-3369 (2019).

583 23. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29%
584 efficiency by enhanced hole extraction. *Science* **370**, 1300-1309 (2020).

585

586 24. Levine, I. et al. Charge transfer rates and electron trapping at buried interfaces of
587 perovskite solar cells. *Joule* **5**, 2915-2933 (2021).

588 25. Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. *Joule* **5**,
589 3169-3186 (2021).

590 26. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells.
591 *Nature* **611**, 278-283 (2022).

592 27. Li, G. et al. Structure and Performance Evolution of Perovskite Solar Cells under
593 Extreme Temperatures. *Adv. Energy Mater.* **12**, 2202887 (2022).

594 28. Cassella, E.J. et al. Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating
595 Sprayed Self-Assembled Monolayers. *Adv. Sci.* **9**, e2104848 (2022).

596 29. Shi, W. & Ye, H. Efficient and Stable Perovskite Solar Cells with a Superhydrophobic
597 Two-Dimensional Capping Layer. *J. Phys. Chem. Lett.* **12**, 4052-4058 (2021).

598 30. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted
599 perovskite solar cells. *Nat. Photon.* **16**, 352-358 (2022).

600 31. Chen, S. et al. Crystallization in one-step solution deposition of perovskite films: Upward
601 or downward? *Sci. Adv.* **7**, eabb2412 (2021).

602 32. Hotchkiss, P.J. et al. The Modification of Indium Tin Oxide with Phosphonic Acids:
603 Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic
604 Electronic Applications. *Acc. Chem. Res.* **45**, 337-346 (2012).

605 33. Xiao, C. et al. Junction Quality of SnO₂-Based Perovskite Solar Cells Investigated by
606 Nanometer-Scale Electrical Potential Profiling. *ACS Appl. Mater. Interfaces* **9**, 38373-
607 38380 (2017).

608 34. Jiang, C.-S. et al. Carrier separation and transport in perovskite solar cells studied by
609 nanometre-scale profiling of electrical potential. *Nat. Commun.* **6**, 8397 (2015).

610 35. Park, S.M., Abtahi, A., Boehm, A.M. & Graham, K.R. Surface Ligands for
611 Methylammonium Lead Iodide Films: Surface Coverage, Energetics, and Photovoltaic
612 Performance. *ACS Energy Lett.* **5**, 799-806 (2020).

613 36. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-
614 efficiency large-area pin perovskite solar cells. *Nat. Energy* **3**, 847-854 (2018).

615 37. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with
616 molecule-bridged hole-selective contact. *Nat. Energy* **7**, 708-717 (2022).

617 38. Zhao, Y. et al. Molecular Interaction Regulates the Performance and Longevity of Defect
618 Passivation for Metal Halide Perovskite Solar Cells. *J. Am. Chem. Soc.* **142**, 20071-20079
619 (2020).

620 39. Zheng, X., Alsalloum, A.Y., Hou, Y., Sargent, E.H. & Bakr, O.M. All-Perovskite
621 Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. *Acc.*
622 *Mater. Res.* **1**, 63-76 (2020).

623 40. Kim, M., Schmitt, S.K., Choi, J.W., Krutty, J.D. & Gopalan, P. From Self-Assembled
624 Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of
625 Polymer Brushes. *Polymers* **7**, 1346-1378 (2015).

626 41. Cheng, H. & Hu, Y. Influence of chain ordering on frictional properties of self-assembled
627 monolayers (SAMs) in nano-lubrication. *Adv. Colloid Interface Sci.* **171-172**, 53-65
628 (2012).

629 42. Pathak, A. et al. Disorder-derived, strong tunneling attenuation in bis-phosphonate
630 monolayers. *J. Phys.: Condens. Matter* **28**, 094008 (2016).

631 43. Aktas, E. et al. Understanding the perovskite/self-assembled selective contact interface
632 for ultra-stable and highly efficient p-i-n perovskite solar cells. *Energy Environ. Sci.* **14**,
633 3976-3985 (2021).

634 44. Aktas, E. et al. Role of Terminal Group Position in Triphenylamine-Based Self-
635 Assembled Hole-Selective Molecules in Perovskite Solar Cells. *ACS Appl. Mater.*
636 *Interfaces* **14**, 17461-17469 (2022).

637 45. Aktas, E., Jiménez-López, J., Azizi, K., Torres, T. & Palomares, E. Self-assembled Zn
638 phthalocyanine as a robust p-type selective contact in perovskite solar cells. *Nanoscale*
639 *Horiz.* **5**, 1415-1419 (2020).

640 46. Ullah, A. et al. Novel Phenothiazine-Based Self-Assembled Monolayer as a Hole
641 Selective Contact for Highly Efficient and Stable p-i-n Perovskite Solar Cells. *Adv.*
642 *Energy Mater.* **12**, 2103175 (2022).

643 47. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly
644 efficient solar mini-modules with improved photostability. *Nat. Energy* **6**, 633-641
645 (2021).

646 48. Deng, Y. et al. Tailoring solvent coordination for high-speed, room-temperature blading
647 of perovskite photovoltaic films. *Sci. Adv.* **5**, eaax7537.

648 49. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing
649 perovskite solar cells. *Nat. Sustain.* **4**, 277-285 (2021).

650 50. Yun, H.-S. et al. Ethanol-based green-solution processing of α -formamidinium lead
651 triiodide perovskite layers. *Nat. Energy* **7**, 828-834 (2022).

652 51. Zhao, Q. et al. High efficiency perovskite quantum dot solar cells with charge separating
653 heterostructure. *Nat. Commun.* **10**, 2842 (2019).

654 52. Unold, T. & Gütay, L. in *Advanced Characterization Techniques for Thin Film Solar*
655 *Cells* 151-175 (2011).

656 53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
657 calculations using a plane-wave basis set. *Phys. Rev. B.* **54**, 11169-11186 (1996).

658 54. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals
659 and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **6**, 15-50 (1996).

660 55. Blöchl, P.E. Projector augmented-wave method. *Phys. Rev. B.* **50**, 17953-17979 (1994).

661 56. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made
662 Simple. *Phys. Rev. Lett.* **77**, 3865-3868 (1996).

663

664 **Acknowledgments**

665 This work was authored in part by the National Renewable Energy Laboratory, operated by
666 Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract
667 No. DE-AC36-08GO28308. NREL acknowledges support from by the U.S. Department of
668 Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy
669 Technologies Office (SETO) project "De-risking Halide Perovskite Solar Cells" program (DE-

670 FOA-0000990) for improved manufacturability aspects of perovskite solar cells and support from
671 the Operational Energy Capability Improvement Fund (OECIF) of the Department of Defense for
672 the initial concept. DFT calculations and TRPL acknowledge the support of the Center for Hybrid
673 Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center
674 funded by the Office of Basic Energy Sciences, Office of Science within the US Department of
675 Energy. The work at City University of Hong Kong was supported by Innovation and Technology
676 Fund (GHP/100/20SZ, GHP/102/20GD, MRP/040/21X) and Green Tech Fund (GTF202020164).
677 This work was authored in part by the École Polytechnique Fédérale de Lausanne (EPFL), operated
678 by NPRP grant No. NPRP11S-1231-170150 from the Qatar National Research Fund (a member
679 of Qatar Foundation) and the VALAIS ENERGY DEMONSTRATORS FUND. T.L., H.P., and
680 K.R.G. acknowledge funding from the National Science Foundation under awards OIA-1929131
681 (T.L. and K.R.G) and 2102257 (H.P. and K.R.G). The work at Brown University was supported
682 by the Office of Naval Research (Grant No. N00014-20-1-2574), and by the U.S. DOE's Office
683 of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technology Office
684 (SETO) Award No. DE-0009511. The views expressed in the article do not necessarily represent
685 the views of the DOE or the U.S. Government.

686 **Author contributions**

687 J.M.L and X.Z. conceived the idea and designed the experiments. J.M.L. and Z.Z. supervised the
688 project. X.Z. and Z.L. fabricated the devices and conducted the characterizations. Y.Z., D.G. and
689 C.Z. participated in device fabrication. M.C., J.B.P., R.A.S, D.M., D.K., and B.M.W. performed
690 optical spectroscopy and analysis. T.L. and H.P. carried out XPS and UPS measurements. C.X.
691 conducted and analyzed the KPFM and C-AFM. S.P.H. performed TOF-SIMS. Z.L., Z.D. and
692 N.P.P. contributed to the device MPP stability test. X.W. and Y.Y. performed and interpreted the

693 DFT calculation. A.M., A.R.K., N.P.P., Y.Y., K.R.G., M.K.N., M.C.B., and M.D.M. contributed
694 to the analysis and provided advice. X.Z. and J.M.L. wrote the initial draft and all authors
695 contributed to the final manuscript.

696 **Competing interests**

697 An application (No. 63/363,327) has been made for a provisional patent. M.D.M is an advisor to
698 Swift Solar. The other authors declare no other competing interests.