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ABSTRACT

In this paper, we propose IMA-GNN as an In-Memory Accelerator
for centralized and decentralized Graph Neural Network inference,
explore its potential in both settings and provide a guideline for
the community targeting flexible and efficient edge computation.
Leveraging IMA-GNN, we first model the computation and com-
munication latencies of edge devices. We then present practical
case studies on GNN-based taxi demand and supply prediction
and also adopt four large graph datasets to quantitatively compare
and analyze centralized and decentralized settings. Our cross-layer
simulation results demonstrate that on average, IMA-GNN in the
centralized setting can obtain ~790X communication speed-up com-
pared to the decentralized GNN setting. However, the decentralized
setting performs computation ~1400x faster while reducing the
power consumption per device. This further underlines the need
for a hybrid semi-decentralized GNN approach.
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1 INTRODUCTION

Graph data structures appear naturally in many fields such as user
accounts in a social network, atoms in a chemical molecule, and
vehicles in a traffic system. Graph Neural Networks (GNN) extend
deep learning to graph data by combining graph structure and
node information through message passing and aggregation [8, 20].
This enables GNNs to deliver node embeddings to serve multiple
downstream graph tasks such as node classification (inferring the
class label of a node), link prediction (estimating the possibility of
a link between given nodes), and graph classification (inferring the
class label of a graph). Essentially, GNNs obtain embeddings for
the nodes in a given graph. Each node has a computational graph
composed of its k-hop neighboring nodes. Node embeddings are
obtained by alternating between message passing, i.e., communicat-
ing local information across nodes, and aggregation where received
messages along with previous node information are used to obtain
an updated embedding. Message passing is done according to the
graph structure, whereas aggregation is done by the (trainable)
neural network layers of the GNN model [10, 22]. As shown in
Fig. 1, for a sample input graph G, first, in the aggregation stage,
each node aggregates the information from all neighbors (nodes
2,4,7,8,9) with its own data (node 3) and creates the Z matrix
that represents the aggregated node features from node 3 and its
neighbors. During the feature extraction stage, the result of the
aggregation stage (Z) is fed into a Multi-Layer Perceptron (MLP)
or a Convolutional Neural Network (CNN) model to generate the
output matrix indicated by O. The GNN workflow performs the
same steps for all the nodes in the graph.
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Figure 1: GNN’s aggregation and feature extraction stages for
a sample input graph.
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Figure 2: (a) The proposed IMA-GNN architecture with resistive CAM traversal core, resistive MVM aggregation, and feature
extraction cores, (b) Resistive MVM crossbar, (c) Resistive CAM crossbar.

Graphs in many real-world application areas are naturally enor-
mous. For example, social media and e-commerce graphs such as
Facebook and Amazon graphs have billions of nodes and edges.
Furthermore, local node features are typically of large dimensions
ranging between hundreds to several thousands [9]. This creates a
corresponding time and memory space demand for training and test-
ing on the underlying GNN models [24, 25]. This is because nodes
are mutually dependent, and therefore, graphs can not be arbitrarily
divided into smaller subgraphs. Techniques such as neighborhood
sampling [7] may help to some extent, but depending on the graph
structure, even a sampled computation graph and associated fea-
tures may not fit in the memory of a single GPU. Besides, off-chip
memory access is a critical issue in the Von-Neumann computing
architecture [2, 3, 11, 16] and to minimize the latency and power con-
sumption, the Processing-in-Memory (PIM) accelerators have been
set forth focusing on centralized GNNs. Along this line, HyGNN
[22] supports hybrid computing and memory access patterns and
performs GCN computations efficiently using a hybrid architecture.
Utilizing two dedicated processing engines, HyGNN tackles irreg-
ularity with an aggregation engine and leverages regularity with
a combination engine. The irregularity arises from the topology-
dependent aggregation process which is inherently random and
sparse, while the transformation process is a neural network opera-
tion that has a static and regular execution pattern. In the same way,
GRIP [10] divides the GNN computations into different engines.
Multiple parallel prefetch and reduction engines have been used for
aggregation to alleviate the irregularity. For regular computation
and memory access patterns, GRIP utilizes a high-performance ma-
trix multiply engine with dedicated memory. Another edge-centric
paradigm, EnGN [14], has been also implemented using a ring-
edge-reduce dataflow. EnGN alleviates the poor locality of sparse
and random connected vertices (nodes). AWB-GCN [6] proposes
a hardware-based workload distribution auto-tuning framework
consisting of three workload rebalancing techniques to alleviate
the extreme workload imbalance. PIM-GCN [4] presents a node-
stationary dataflow with support for compressed sparse row and
column graph representations.

Distributed (decentralized) GNN training and inference [12, 21]
is based on dividing a given graph into smaller subgraphs that
can be more easily processed with distributed devices. Despite its
ability to mitigate the computation overhead by load sharing, de-
centralized GNN operation faces a major bottleneck; the excessive
communication overhead between nodes in different distributed
devices [24]. To the best of our knowledge, this work is among the
first to explore and compare the in-memory acceleration of central-
ized and decentralized GNN settings and to offer a design guideline
to the community. The contributions of this paper are as follows: (1)
We develop a PIM architecture with RRAM arrays based on a set of
innovative micro-architectural designs that can be optimized and
used for centralized and decentralized GNN inference for efficiency
and speed-up; (2) We model the latency and power consumption
of GNN accelerators implemented in centralized and decentralized
settings considering the computation and communication between
edge devices; and (3) We present a bottom-up evaluation framework
to analyze the performance of the whole system in real scenarios
and through adopting large graph datasets.

2 PROPOSED IMA-GNN

2.1 Architecture Overview

The IMA-GNN is a high-performance and energy-efficient RRAM
crossbar-based accelerator developed to execute GNN’s pivotal
operations in both centralized and decentralized settings inspired by
[4]. As shown in Fig. 2(a), IMA-GNN comprises three computation
cores, i.e., traversal, aggregation, and feature extraction as well as
peripherals such as a buffer array and a controller. The traversal core
consists of resistive Content Addressable Memory (CAM) crossbars
capable of search and comparison operations (Fig. 2(c)). All resistive
CAM crossbars on the bottom side are connected to a shared vector
generator & scheduler unit and then to a high-bandwidth bus to
communicate with other cores at the top. The aggregation core
includes resistive crossbars (Fig. 2(b)) to perform in-situ Matrix-
Vector-Multiplication (MVM) operations for the feature aggregation.
The feature extraction core is designed with a similar resistive
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crossbar but a different size to take care of transformation in GNN
inference. The crossbars are connected to a shared activation unit.

2.2 MVM & CAM Crossbars

The RRAM crossbar memory arrays are widely explored as a poten-
tial parallel engine to execute MVM operation and scan and search
[2-4]. As shown in Fig. 2(b) in the MVM crossbars, the weight pa-
rameters are first stored as resistance states in each RRAM device in
a 1-Transistor-1-RRAM (1T1R) structure, and then the input binary
bit-strings, as the inputs to the crossbar array, are converted by the
Digital-to-Analog Converter (DAC) into voltages V; and applied to
Bit-Lines (BLs) in parallel. The weighted currents generated from
the RRAM cells sharing a Source-Line (SL) are accumulated result-
ing in an intrinsic dot-products operation. The accumulated values
are then sampled by Sample & Hold unit and then converted to
binary data using Analog-to-Digital Converters (ADC). The partial-
product results from each SL are further processed by the Shift
& Add unit to generate the final result. As shown in Fig. 2(c), in
the CAM crossbars, each Ternary CAM (TCAM) cell consists of
2-Transistor-2-RRAM (2T2R) to accomplish the XNOR search oper-
ation on each pair of cells. For this operation, BL and BLs are valued
with the search data by the Search Data Driver. Accordingly, the
Sense Amplifier connected to Match-Lines (MLSA) senses whether
the row is a match or mismatch with the reference connected to
Vdd. In the compare operation, BLs are grounded and BLs are con-
nected to increasing calibrated voltages from the Least Significant
Bit (LSB) to the Most Significant Bits (MSB).

2.3 Accelerator Dataflow

Once the edge buffers shown in Fig. 2(a) on the left have been
loaded with graph data in either centralized or decentralized GNN
settings, the traversal core starts processing edges. The traversal
core performs two essential CAM-based operations, i.e., search and
compare. To maximize the data reuse of feature data in IMA-GNN,
the traversal core implements an efficient node-stationary dataflow
by buffering a set of node features in the buffer array and reusing
it for the aggregation core. IMA-GNN leverages a Compressed
Sparse Row (CSR) format [15] to form the Edge weight array (E),
Column Index array (CI), and Row Pointer array (RP) and loads the
graph data to search and scan CAMs (Fig. 2(a) @). A sample graph
adjacency matrix and the corresponding CSR format are shown in
Fig. 3(a)-(b). Any destination node then operates as an input to the
search CAM as shown in the data mapping in Fig. 3(c) and rows that
match the search data are activated. Matching rows are reference
inputs for comparison in the scan CAM, which determines the
source nodes with edges to the destination node by comparing the
input row with RP (Fig. 3(d)). Next, the vector generator & scheduler
unit receives the result of scan CAM and edge data to render input
control vectors for the aggregation core (Fig. 2(a) @). This will
activate particular rows of resistive aggregation core corresponding
to incoming edges. Next, the aggregation core input buffers receive
input vectors for each destination node along with the destination
node. The aggregation core starts with source node features or
feature dimensions across its own cluster €. IMA-GNN is equipped
with double buffering for feature data and graph data. This feature
enables overlapping writing/programming phases and the traversal
stage. Next, the updated destination node features are fed to the
feature extraction core’s crossbars programmed with weights @.
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Figure 3: IMA-GNN’s hardware mapping and acceleration in
traversal core: (a) Sample graph adjacency matrix, (b) CSR,
(c) Search CAM operation, (d) Scan CAM operation.

Besides, similar to [16], to maximize the crossbar utilization in the
aggregation core, both the aggregation and feature extraction cores
could work in parallel.

3 NETWORK MODELING

We explore both centralized and decentralized GNN landscapes
to fairly model the performance metrics in both settings. Figure 4
shows a sample graph with N (N € Z%) nodes (edge devices). In
the centralized GNN setting, a single powerful node as the acceler-
ator is designed with embedded traversal, aggregation, and feature
extraction cores to communicate through fast inter-network links
(Ln) [17] to aggregate all edge devices’ information and handle the
computation burdens of transformation. These cores have M, My,
and M3 times larger allocated computing hardware for traversal,
aggregation, and feature extraction operations respectively than a
single node in the decentralized mode. Thus, we assume the pro-
cessing capability of the edge device in the centralized setting is
Mji, My, and M3 times larger than the processing capability of a
single node in the decentralized mode in the traversal, aggregation,
and feature extraction operations, respectively. In the decentralized
GNN setting, each edge device is observed as an accelerator with
reduced traversal and aggregation cores and in addition to a copy of
our network, has an embedded feature extraction core processing
L layers. The output of the feature extraction core at each edge
device is only communicated to the adjacent edge devices at a de-
fined cluster as shown in Fig. 4(b). Therefore, the communication
between neighbors through inter-cluster links (L;) [18] generates a
communication volume as well. The bidirectional communication
volume between node-i to node-j is represented as e;,j. Therefore,
the minimization of the accelerator’s computational latency/power
and communication latency/power is a pivotal need in the research
community. We estimate the centralized and decentralized GNN
accelerators’ latency as:

Tnet(N) = Tcompute (N) + Teommunicate (N)- (1)
In an N-edge device graph shown in Fig. 4, denoting by t1, t2, and
t3 the traversal, aggregation, and feature extraction cores’ latency,
respectively, the computation latency of a single node in the decen-
tralized GNNs can be estimated by:

Tcompute—decentralized =t +i+ 13, (2)

where in the centralized setting, considering the processing capa-
bility of a single powerful edge device the computation latency is
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Figure 4: Intra- and inter-edge links in a sample (a) central-
ized versus (b) decentralized GNN.

given by:

Tcnmputefcentralized = (t1/Mi+ /My + t3/M3) X (N —1).  (3)
In the decentralized setting, the communication latency, Teommunicates
can be given by:

Teommunicate-centralized = (te + (cs X t(LC))) X2, (4)
where ¢, is the required time for establishing a connection between
two adjacent nodes, c¢s denotes the number of adjacent nodes in-
side a cluster, t(L.) denotes the latency of the inter-cluster link,
and number 2 is to model a two-way link. We assume that data
communication inside each cluster is done in a sequential way,
thus the number of adjacent nodes is multiplied by the latency of
the inter-cluster link. For the centralized setting, we assume data
transfer between the central edge device and nodes is done in a con-
current way. Therefore, the communication latency, Teommunicates
for centralized inference can be given by:

Teommunicate-decentralized = t(Ln)> (5)

where t(L,) is the latency of the inter-network link. Suppose each
edge device runs a GNN with X-layers, the number of input and
output activations for a layer x for 1< x <X can be given by a(x)
and a(x + 1), respectively. The total power consumption of GNNs
implemented in the proposed accelerator can be developed as:

Pner(N) = Pcompute (N) + Pcommunicate(N). (6)

The first part accounts for the computation power and the sec-
ond part considers communication power for inter-network and
inter-cluster links. In the centralized setting, Peompute—centralized

. . Ecompute-centralized
is given by m and Peommunicate—centralized €20 be
given by p(L,) X 2. Here p(Ly) denotes the power consumption of
the inter-network link and number 2 is to model a two-way transfer.
Ecompute—centralized is Teadily calculated by achieving the energy
consumption values of traversal, aggregation, and feature extrac-
tion cores. As for the decentralized setting, Peompure-decentralized
can be computed with respect to energy and latency parameters. We
consider Zfl‘: 1 Pn(cs(n)(cs(n)—1)) transactions between all acceler-
ators inside the cluster. Considering the X-layer GNN, Peommunicate

can be expressed as follow: X1
1
Pcommunicate-decentralized = m X Z a(x+1) x EperBit (7)
¢ x=1

4 EXPERIMENTS

4.1 Evaluation Framework

To evaluate the performance of the proposed architecture, a compre-
hensive bottom-up evaluation framework is developed as depicted
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Figure 5: Circuit-to-application evaluation framework.

in Fig. 5. At the circuit-level, we use the SPICE model for memris-
tors with the Ag-Si memristor device parameters from [5]. We then
combine the SPICE models of CMOS transistors and memristors
under NCSU 45nm CMOS PDK [1] to fully design and verify the
IMA-GNN cores in HSPICE and to extract performance parameters
such as delay and power consumption. We use the Synopsys De-
sign Compiler to develop the controller and buffer array using a
standard industry-level 45nm technology. At the architecture-level,
we modify and configured the NVSIM-CAM [13] memory evalua-
tion tool and MNSIM [26] with our circuit-level results to extract
the performance parameters for traversal, aggregation, and feature
extraction cores. The results are then fed to an in-house MATLAB
code with the graphs taken as input to calculate the estimated la-
tency and power consumption for various workloads. To have a
fair comparison between GNN settings, we set up IMA-GNN’s tra-
versal, aggregation, and feature extraction cores with 2Kx(512x32),
1K%(512%512), and 256%(128%128), respectively, for the centralized
setting and 51232, 512x512, and 128128, respectively, for the
decentralized setting. It is noteworthy that in addition to the size
and number of crossbars in each core, Several factors determine the
total latency and power consumption of IMA-GNN in each setting,
such as the distribution of graph edges across nodes, the availability
of graph data, on-chip storage, and off-chip data accesses.

4.2 Traffic Demand Forecasting

As a case study on the potential of hardware-accelerated decen-
tralized GNNs in real-world applications, we pick a recent work
on city-wide multi-relational and spatiotemporal taxi demand and
supply forecasting [19]. Figure 6(a) and (b) show sample taxis in a
city region and their corresponding graph representation, respec-
tively. This graph is composed of taxi nodes linked by three edge
types; road connectivity, location proximity, and destination simi-
larity edges linking taxis connected by a road, being nearby, and
targeting nearby destinations, respectively. For each taxi node, the
objective is to predict the values of transportation demand and sup-
ply for a region surrounding it. This is done based on both historical
demands and supplies in the node’s surrounding region and the
corresponding messages shared by other connected nodes (taxis).
Formally, the objective is to train a GNN operator ¥ that predicts
the Q-long future passenger demands and supplies in an m by n re-
gion surrounding each taxi at a time instant ¢, Xy41./40 € R@Xmxn
This is based on the P historical values of the demands and supplies
in this region, and the corresponding P historical values passed

from the k-hop neighboring nodes. So, [X;—p+1:4, G] il Xt41:44+05

where X;_py1.; € RPX™X" and G denotes the node’s computa-
tional graph. Due to the existence of multiple edge types and the
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Figure 6: (a) Taxi representation as a graph, and (b) Decen-
tralized GNN operation.

time-dependency, ¥ is composed of a heterogeneous GNN (het-
GNN) used for message passing, followed by a Long-Short-Term
Memory (LSTM) network to incorporate time dependency, as de-
picted in Fig. 7.

The enormous sizes of transportation graphs make it challenging
to apply the model in [19] in centralized GNN inference. This limita-
tion is further aggravated by the hetGNNs and the huge volumes of
local node information. As a remedy to resolve this limitation, the
authors in [19] propose a decentralized GNN inference approach.
In this approach, each taxi node has a copy of the model (hetGNN-
LSTM), exchanges messages with its k-hop neighbors, and then
uses the hetGNN-LSTM model to predict the demands and supplies
in its surrounding region. A natural advantage of this approach
is handling dynamically varying graph structures. Nevertheless,
despite the promising advantages of decentralization, there is still a
demanding need for reducing the overall computation and commu-
nication latency in the operation of the model. In this experiment,
for the centralized GNN setting, the overall latency (in terms of
transmission delay) for sending and receiving a packet of 300 Bytes
is considered 1.1 ms where the range of the network is 300 me-
ters [17]. This latency is the average overall latency to correctly
receive a packet of 300 bytes. Thus, for a packet size of 864 bytes,
which is the size of our data, the overall transmission delay can
be ~3.3 ms. As for the decentralized GNN setting, we assume that
nodes in the graphs of [19] communicate with each other using an
ad-hoc wireless network that uses channel 9 (2.452 GHz) of IEEE
802.11n, where the transmission power is fixed to —31 dBm, and
bandwidth is 20 MHz. In this configuration, source nodes feed their
messages to nearby proxy (relay) nodes which forward the mes-
sages to the next nodes, and so on. Since source nodes have more
computation compared to proxy (relay) nodes, they incur more

HetGNN HetGNN
— e =

| s yt+l :
Layer 1 Layer k =i Xy Final

Predictions

HetGNN

X5
P > "‘ Road connectivity Edge
/ \ RN Location proximity Edge
| i /} ) Destination similarity Edge
\ /\ bt <+— GNN to node
~ S—— <— — —» Node-to-node

Figure 7: The architecture of the hetGNN-LSTM based pre-
diction in [19].
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Table 1: Computation and communication latency/power.

Settings Centralized Decentralized
Figure of merits Latency Power Latency Power
Traversal 38.43 ns 10.8 mW 7.68ns | 0.21 mW
Aggregation 142.77 ps | 780.1 mW | 14.27 us | 41.6 mW

Feature extraction | 14.53 ys | 32.21mW | 0.37 pys | 3.68 mW
Computation (Net) | 157.34 ps | 823.11 mW | 14.6 ps | 45.49 mW
Communication 3.30 ms - 406 ms -

delay. We leverage the proposed bottom-up evaluation framework
to estimate IMA-GNN architecture performance in both centralized
and decentralized settings. In our evaluation, the number of nodes
(taxis) of the graph and the cluster size (cs) are set as 10000 and
10, respectively. The evaluation results of the latency and power
consumption are tabulated in Table 1.

In view of the results, the decentralized setting in [19] improves
the total computation latency by a factor of ~10x. This is achieved
by reducing the traversal latency, aggregation latency, and feature
extraction latency by factors of 5%, 10X, and ~39X, respectively.
Thus, a huge improvement can be observed in terms of computa-
tion latency. However, in terms of communication, the centralized
setting acts much better than the decentralized setting by incurring
a ~120x less latency. As for computation power consumption, we
observe that the decentralized setting reduces the power budget
per node by a factor of 18X. The aggregation core of IMA-GNN
consumes most of the power in both centralized and decentralized
settings as well as the highest latency. Overall, each of the settings
has its own advantage from a different point of view. In the next
subsection, more graph datasets with different characteristics are
studied in order to further elucidate the pros and cons of centralized
and decentralized settings.

4.3 Graph Datasets

In the second case study, four graph datasets, LiveJournal, Col-
lab, Cora, and Citeseer [4, 23] are used to evaluate the inference
latency using the proposed IMA-GNN in centralized and decentral-
ized settings. Key graph statistics of these datasets are provided in
Table 2. A given vertex is mapped deterministically to a fixed-sized,
uniform sample of its neighbors. Figure 8 shows the latency for
the four aforementioned graph datasets. Each bar consists of two
parts; computation latency and communication latency. For each
dataset, we have two bars representing the latency in the central-
ized (left) and decentralized (right) settings. It can be realized that
in all under-test datasets, the computation latency of the decentral-
ized setting is less than that of the centralized setting. Especially,
the difference between the computation latency of centralized and
decentralized settings is huge in LiveJournal and Collab datasets,
where the graph size is much larger than the other two datasets.
Given Fig. 8, amongst the four datasets, LiveJournal has the largest
computation latency in the centralized settings because it owns
the largest number of nodes. This is because in the decentralized

Table 2: Key statistics of the graph datasets used.

Datasets LiveJournal Collab Cora | Citeseer
Number of Nodes | 4,847,571 372,475 2708 3,327
Number of Edges 68,993,773 | 24,574,995 | 5429 4,732
Feature Length 1 496 1433 3,703
Average Cs 9 263 4 2
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mode, as each node is responsible to do its’ computation, the com-
putation latency is independent of the total number of nodes and
doesn’t increase when the number of nodes grows. Conversely,
in the centralized setting, by growing the number of nodes, the
computation burden of the edge device will increase, causing an
increment in the computation latency. On average for these four
datasets, the decentralized setting performs computations ~1400x
faster. However, the communication latency which is the dominant
part of the total latency is much higher in the decentralized setting
as each node is required to establish a peer-to-peer connection and
transfer data with all adjacent nodes sequentially. According to Fig.
8, Collab has the largest communication latency amongst the four
datasets, in the decentralized settings due to its large average Cs,
where each node is required to communicate with a large number
of adjacent nodes sequentially. However, in the centralized mode,
all nodes are connected to the edge device using a fast and mature
connection and can transfer data in a parallel way. As for the com-
munication latency, for four under-test datasets, the centralized
setting is ~790x faster than the decentralized setting. The perfor-
mance of the IMA-GNN architecture can increase linearly with
an increase in the number of resistive CAM and MVM crossbars
in decentralized setting for various datasets and saturate once the
entire node feature data could be fitted onto the crossbars. However,
it comes at the cost of higher power consumption for each node.

5 CONCLUSION

While the respective benefits of centralized and decentralized GNNs
are known in software implementation, there is a lack of hard-
ware implementation analysis to show the communication and
computation loads in each setting. This work undertakes this task
by modeling and analyzing practical case studies on GNN-based
taxi demand and supply prediction and adopting large-scale graph
datasets. Our cross-layer simulation results demonstrate our pro-
posed platform called IMA-GNN in the centralized GNN setting
can obtain ~790X communication speed-up compared to the de-
centralized GNN setting. However, the decentralized GNN setting
performs computation ~1400% faster while reducing the power
consumption per device. This study is conducted based on certain
assumptions as discussed. Nevertheless, the results extrapolate that
the decentralized GNN setting achieves gains in reducing the com-
putation latency. However, this comes at the expense of increasing
communication overhead and latency. This latency is more strongly
pronounced with larger graphs. This finding confirms the necessity
and the potential of balancing this communication-computation
trade-off through a semi-decentralized setting [19].
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