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ABSTRACT
Recently, Intelligent IoT (IIoT), including various sensors, has gained

significant attention due to its capability of sensing, deciding, and

acting by leveraging artificial neural networks (ANN). Nevertheless,

to achieve acceptable accuracy and high performance in visual sys-

tems, a power-delay-efficient architecture is required. In this paper,

we propose an ultra-low-power processing in-sensor architecture,

namely SenTer, realizing low-precision ternary multi-layer percep-

tron networks, which can operate in detection and classification

modes. Moreover, SenTer supports two activation functions based

on user needs and the desired accuracy-energy trade-off. SenTer is

capable of performing all the required computations for the MLP’s

first layer in the analog domain and then submitting its results to

a co-processor. Therefore, SenTer significantly reduces the over-

head of analog buffers, data conversion, and transmission power

consumption by using only one ADC. Additionally, our simula-

tion results demonstrate acceptable accuracy on various datasets

compared to the full precision models.

CCS CONCEPTS
• Computer systems organization→ Special purpose systems;
Sensors and actuators; • Computing methodologies→ Neural
networks.
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1 INTRODUCTION
Cloud-based communication and computation pose several serious

challenges today, including high latency (a large number of nodes

and their geographical distribution), questionable scalability (un-

balanced load among the computers), quality of service (QoS) (it is

difficult to guarantee the same level of service quality), privacy, and

security (data must be securely transferred and stored). It may be

possible to address a number of these issues by shifting computing

architecture from a cloud-centric perspective to a thing-centric one

as the Internet of Things (IoT) or Internet of Everything (IoE) ad-

vances. A global network of 75+ billion IoT devices, including smart

homes, smart cities, smart industries, wearables, and implantable

systems for healthcare, is expected to reach $1100 billion by 2025.

Recently, Intelligent IoT (IIoT) has gained significant attention due

to its capability of sensing, deciding, and acting by leveraging ar-

tificial neural networks (ANN). Through various sensors, such as

CMOS image sensors (imagers), IIoT nodes collect and process data.

Nevertheless, ANNs are extremely storage and computation inten-

sive in order to achieve high accuracy and acceptable performance

in visual systems, making them difficult to implement on edge de-

vices with limited resources. Additionally, many vision applications

require continuousmonitoring or detection of anomalies by sensory

systems, while low information density wastes bandwidth, storage,

and computing resources. Towards addressing these challenges, IoT

nodes can process sensed data by incorporating Edge Intelligence

(EI) devices into a thing-centric computing architecture, where data

transferring and data density are reduced by using local comput-

ing at the sensing units. In recent years, researchers have studied

the development of imagers capable of accelerating ANNs. Pixels’

digital outputs can be accelerated using an on-chip processor in

the vicinity of the sensor, forming a paradigm, namely Process-

ing near-Sensor (PNS) [4, 6, 15, 16]. It is also possible to process

pre-Analog-to-Digital converter data, an image, via a Processing

https://doi.org/10.1145/3583781.3590225
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Figure 1: (a) Proposed SenTer architecture, including an array of (b) pixels and compute add-ons, (c) memory unit consisting of
two buffers, (d) the readout peripherals, and (e) Circuit-level comparator.

in-Sensor (PIS) platform that eliminates redundant output data. Uti-

lizing the PIS unit within an imager (1) reduces power consumption

in converting photocurrents into pixel values, (2) speeds up data

processing, (3) alleviates memory bottlenecks, and (4) simultane-

ously senses and computes. With limited computing and storage

resources, deploying all layers into a pixel array is inefficient and

complicated. Most PIS studies perform some essential computations

like edge detection or, at best, accelerate the first layer and utilize

digital neural network accelerators for the remainder.

In this paper, to make real-time decision-making IIoT devices

a reality, advances are made from both an algorithmic and hard-

ware architecture perspective. Herein, we propose an efficient PIS

scheme with different capabilities to alleviate the power costs of

data conversion and transmission at the cost of accuracy degrada-

tion. Our architecture, SenTer, allows analog convolution, which
supports different activation functions. SenTer supports ternary

weight neural networks that provide energy efficiency by mitigat-

ing the overhead of analog buffers with comparable accuracy to

the floating-point (FP) baseline.

2 BACKGROUND
Data transmission off-chip and ADC bandwidth can be reduced

by systematizing the integration of computing and sensor arrays.

This integration allows for improved power efficiency, higher sam-

pling rates, and better resolution in data acquisition. Additionally,

the integrated system can collect more data points and also re-

duce data processing time. Near-sensor and in-sensor processing

architectures are two efficient approaches for enabling embedded

signal/image processing and computer vision algorithms to be exe-

cuted directly on-chip, prior to data transfer off-chip.

PNS architecture is a type of architecture for image processing

where the processing is done close to the sensor, either on the same

chip or near the sensor, prior to data transfer to an external pro-

cessor. The PNS unit receives the raw data from the sensor and

performs any necessary calculations or processing before sending

the data to the main system. This type of architecture is typically

used in applications where data needs to be collected from multiple

sources and different types of sensors. Near-sensor processing can

also be used in applications where data needs to be collected from

multiple locations. PNS reduces the amount of data that needs to

be transferred off-chip and processed, allowing for higher signal

processing and vision performance. According to [7], the CMOS

image sensor includes dual-mode delta-sigma ADCs designed to

process the first convolutional (conv.) layer of binary-weight neural

networks (BWNNs). RedEye [10] implements convolution using

charge-sharing tunable capacitors. By sacrificing accuracy in favor

of energy savings, this design reduces energy consumption. This

system utilizes a custom image sensor integrated with a low-power

digital signal processor to perform image processing tasks. In[16],

vertically stacked column-parallel ADCs and processing elements

are implemented and utilized to run spatiotemporal image process-

ing. To reduce the amount of power consumed by the ADC, [6]

converts photocurrents into pulse-width modulated signals, which

are then processed by a dedicated analog processor.

PIS, on the other hand, involves the integration of processing

capabilities directly into the sensor itself. This approach allows sen-

sors to perform necessary calculations or processing before sending

the data to the main system. This includes algorithms running on

multiple cores and algorithms adapted for ultra-low-power oper-

ation. More precise and accurate vision results can be achieved

by enabling complex image processing functions to be performed

directly within the sensor itself. PIS also enables on-chip memory,

allowing data to be stored and processed on-chip. This type of ar-

chitecture is typically used in applications where data is collected

quickly, such as industrial automation and security systems. As a

PIS platform, MACSen [15] integrates MAC (multiply-accumulate)

operations directly into the image sensor and leverages double

sampling to process the first conv. layer of BWNNs. As a result,

visual data may be processed efficiently in real-time at the point

of acquisition without requiring additional power-hungry devices.

However, this method suffers from high power consumption and

huge overhead due to the SRAM-based design. Although PNS can

provide more flexibility and scalability, it can also be more com-

plex and expensive to implement [6, 9]. PIS can be more compact

and efficient but may be more limited in processing capabilities

[2, 3, 12, 13]. PNS is an ideal choice for lower-end processing needs,

while PIS is a better choice for applications requiring more so-

phisticated algorithms. In CMOS image sensors, either of these

architectures can reduce data transfer and processing overhead and

enhance computing efficiency.

3 PROPOSED ARCHITECTURE
We propose SenTer as an ultra-low-power sensor for event detec-

tion and classification targeting TinyML applications, shown in

Fig.1. SenTer consists of a compute focal plane (CFP) (Fig. 1(b)), a
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Table 1: Ternary Values regarding the stored weights.

Buffer0
(𝑊𝑎)

Buffer1
(𝑊𝑏 )

Represented
Weight

Output
Current

× 0 0 0

0 1 -1 -ICPD

1 1 1 ICPD

Figure 2: Mapping the original ternary weights into two ded-
icated buffers.

column controller (CC), memory components (Fig. 1(c)), and a read-

out circuit (Fig. 1(d)). The proposed architecture operates in two

event detection and object classification modes. Since the SenTer

architecture is able to implement the first layer of a ternary multi-

layer perceptron within a sensor, there is no need for a row decoder

to read pixels in a row-wise manner. Removing the row decoder

compared with conventional convolution-in-pixel structures leads

to more power saving at the cost of application generality. The CFP

comprises a𝑚 × 𝑛 pixel array, and𝑚 × 𝑛 computes add-ons (CPs),

i.e., 28 × 28, as depicted in Fig. 1(b). Depending on a stored weight

read from the memory unit, a CP generates a current on a shared

bit-line. Finally, in the Readout module, this value converts to 1-to-8

bits according to the configuration of the proposed ADC. All the

components and their functionalities are outlined in the following

sections, which consume ∼0.0255 𝜇𝑊 power in total.

3.1 SenTer Components
3.1.1 Memory Unit. SenTer includes efficient non-volatile mem-

ory (NVM) components to store the first layer weights of an MLP

network. For each ternary weight, two bits (𝑊𝑎) and (𝑊𝑏 ), weight

representatives, are required that are stored in the memory compo-

nents, buffer0 and buffer1, respectively. The combinations of these

bits to generate the ternary weights are summarized in Table 1.

In MLP networks, every node is connected to all the next layer’s

nodes, where each buffer size should be 28 × 28 × 𝑘 , where 𝑘 is

the number of nodes in the first hidden layer. Because the SenTer

design utilized 28 × 28 memory elements for event detection tasks,

the actual size of the memory unit is 2× [28× 28× (𝑘 + 1)]. There is
a row selector positioned within the memory unit to select 28 × 28
weights and connect them to pixels’ CAs.

3.1.2 Compute Focal Plane (CFP). The CFP module is the core

of the SenTer architecture, which performs sensing and analog

computation within a sensor. A pixel observes scenes from an envi-

ronment, and a compute add-on (CA) produces proper currents in

accordance with the specific ternary weights, i.e., ∈ {−1, 0, +1}. As
shown in Fig. 3(a), first, all the pixel capacitors (CPD) are charged

Figure 3: The proposed sensor and its CA in (a) pre-charge,
(b) evaluation, and (c) reading phases.

to 𝑉𝐷𝐷 through 𝑇1. Then CPD starts to discharge depending on

the light intensity of the environment through 𝑇2 and photo-diode

(PD) in Fig. 3(b). In the next step, 𝑇1 and 𝑇2 disconnect, and the

voltage level of CPD remains unchanged. Thus, in order to gen-

erate positive and negative weights, CPD is connected to positive

and negative voltages through 𝑇3 and 𝑇4, respectively, to generate

appropriate currents on the bit-line (BL). As depicted in Fig. 3(c),

one of these two generated currents is chosen using a multiplexer

with𝑊1𝑎 selector. Another weight representative (𝑊
1𝑏 ) connects

to a transistor located after the multiplexer (𝑇5 in Fig. 3) to enable

the pixel by passing the generated negative (-1) or positive (+1)

currents or disconnects/disables the pixel to denote zero weight (0).

Another 𝑇5 responsibility is operating as a row controller in the

event detection mode, where inactive pixels should be disconnected

to save power. The functionality of one CA is validated by HSpice

with 45nm CMOS technology, and the transient simulation results

are depicted in Fig. 4. In 1 ,𝑊1𝑎 and𝑊
1𝑏 are equal to 0 and 1, re-

spectively; therefore, based on Table 1, the generated current on 𝐵𝐿

is negative. By setting different weight representatives, two other

ternary weights are achieved, shown in 2 and 3 cycles. As it can

clearly be perceived, In 4 , regardless of changing𝑊1𝑎 , because

𝑊
1𝑏 is 0, 𝐵𝐿 remains unchanged, considered as inactive pixel.

3.1.3 Readout Circuit. The ADCs in conventional image sensors

measure only the value of the activated row at the end of each

column, which means for a𝑚×𝑛 sensory array, the design requires

𝑚 ADCs and 𝑛 clock cycles to read the full array. While in an MLP

network, there is no need for each pixel’s exact value; therefore,

the SenTer architecture utilizes only one ADC without having a

row selector. The proposed readout module is depicted in Fig.1(d),

including additional components that are added to the conventional

ADC, realizing various activation functions. The transistor-level

schematic of one comparator is shown in Fig. 1(e).
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Figure 4: Transient simulation of one pixel and its CA, w.r.t
weight𝑊1.
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Figure 5: Transient vectors for the proposed ADC in the nor-
mal, ReLU, and sign modes.

In the proposed ADC, by changing the control signals 𝐶1 and

𝐶2, SenTer is able to switch between the normal operation and the

activation functions, including ReLU and Sign, to save more power

at the cost of accuracy degradation. By changing the −𝑉𝑟𝑒 𝑓 to 0,

the ADC’s functionality switches from the normal to the ReLU

operation. In this case, to have the same accuracy as normal mode

[−27, 27−1], SenTer turns off approximately half of its comparators

and encoder [0, 27 − 1]; otherwise, more accuracy is achieved using

ReLU, [0, 28 − 1]. Furthermore, the sign function equals the most

significant bit in the normal mode. The transient results of the

proposed ADC are shown in Fig. 5, where𝑉𝑠𝑒𝑛𝑠𝑒 alters from −0.5𝑉
to +0.5𝑉 while ±𝑉𝑟𝑒 𝑓 sets to ±0.3. For simplicity, a 3-bit ADC is

considered; however, their functionalities are identical. The red and

blue signals indicate ReLU and normal outputs for a 3-bit ADC, in

which red signals change only in the positive direction of 𝑉𝑠𝑒𝑛𝑠𝑒 .

Moreover, Out3 acts similarly to the sign function. It should be

noted that for the sign function, we can turn off irrelevant circuits.

3.1.4 Column controller. SenTer is designed for ultra-low-power

operation. Therefore, the column controller is designed in a way to

a further reduction in power consumption. In SenTer architecture,

each column of the pixel array is connected to a separated𝑉𝐷𝐷 line.

In this case, the column controller is responsible for disconnecting

or connecting columns of pixels to a power supply to save more

power. This feature is useful in event detection mode.

3.2 SenTer Modes
Asmentioned earlier, SenTer operates in twomodes: event detection

and object classification, elaborated in Algorithm 1.

3.2.1 Event Detection. The proposed low-power event detection

approach is designed to detect small-to-moderate differences be-

tween frames 𝑛 and 𝑛 + 𝑡 , where 𝑡 ∈ N, namely the difference

margin and can be justified by users’ needs. Smaller t provides bet-
ter accuracy at the cost of power overhead. By setting 𝑡 = 1, SenTer

checks every two consecutive frames to detect changes/events. The

primary steps of the event detection phase are summarized in lines

1 to 8. First, in line 2, the last row of the memory weight (k+1) is

chosen. All the pixels’ values are read (line 4), and the produced

voltage based on the summation of all currents is measured using an

ADC. Herein, designers can determine which pixels are important

for comparison. One simple arrangement is expressed by equation

1, where the pixel array is partitioned into 3-pixel boxes, 3×3. Thus,

Algorithm 1 SenTer Mode:

1: procedure Event-Detection
2: Choose_Weights(𝑘 + 1) ⊲ Read the last row of the buffers.

3: while (true)
4: pixel_values←read_pixels_value() ⊲ Only read ON pixels.

5: if 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 < 𝑜𝑙𝑑_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 OR 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 >

𝑜𝑙𝑑_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⊲ Check the margin

6: Break
7: Enable (Object-Classification)
8: end procedure
9: procedure Object-Classification
10: pixel_values←read_pixels_value()
11: for 𝑖 in_range 𝑘 ⊲ 𝑘 is number of nodes in the first hidden layer.

12: read_weights (i) ⊲𝑚 × 𝑛 weights are applied to CA.

13: calculate_node (i) ⊲ Calculate MACs regarding the 𝑖𝑡ℎ node.

14: Enable (Event-Detection)
15: end procedure

each box includes nine pixels, including only one ON pixel and eight

inactive ones. In this strategy, SenTer disconnects 2/3 of columns

from 𝑉𝐷𝐷 , and only 1/9 pixels remain connected to the ADC by

setting𝑊𝑏 = 1. Then the measured voltage compares with the pre-

vious one (line 5) to ensure the difference is lower than a threshold.

Lines 4 and 5 repeat until the difference between 𝑜𝑙𝑑_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒

and 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 exceeds the threshold. Once it happens, the mode

changes to the object classification mode. It should be mentioned

that the frequency of the loop execution is dependent on the applica-

tion, but generally, the frame rate is lower than object classification.

To exemplify the event detection mode, two inputs from the MNIST

dataset are considered, 7 and 8. Using the proposed algorithm, the

obtained values for the 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 variable are approximately

equal to 10 and 19 for 7 and 8, respectively. Therefore, by shifting

the images vertically and/or horizontally, these values vary between

± 1, which is a good estimate for the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 parameter.

𝑊 𝑥
𝑘+1𝑏 =

{
1 if𝑚𝑜𝑑 (𝑥, 3) = 2 & 𝑥 ∈

(
𝑖 × 28, (𝑖 + 1) × 28

]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊 𝑥
𝑘+1𝑎 = 1, where 𝑖 ∈ {3N − 1}

(1)

3.2.2 Object Classification. The object classification mode is de-

signed to classify the images using the MLP networks. Herein, all

the pixels are active (ON), and their values are evaluated and held

unchanged in the sensor’s capacitors (line 10). Then the stored

weights (28 × 28) corresponding to sensors are applied to CAs in

line 12. In the next step, using the proposed reconfigurable ADC,

the result of node 𝑖𝑡ℎ is measured (line 13). These two steps are

repeated for all the hidden layer’s nodes. In this mode, SenTer per-

forms all the required operations of the first layer, including the

fully-connected and activation layers, within the sensor in the ana-

log domain. The output of this mode is passed to a microprocessor

as the next layer’s input to compute the remaining layers in the

digital domain. Then SenTer changes its mode back to the event

detection mode.

4 EVALUATION RESULTS
In addition to the functionalities of SenTer’s components in the

previous sections, our evaluation phase consists of accuracy and

qualitative comparison with the state-of-the-art PIS-based MLP

accelerators.

Datasets: We evaluated our models on three publicly available

datasets: MNIST[8], FashionMNIST[14], and CBCL FACE[1], shown
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Figure 6: Samples of three examined datasets, including (a)
MNIST, (b) Fashion-MNIST, and (c) CBCL Face.

Table 2: Network specifications and parameters

Network # of Layers # of params
in 1𝑠𝑡 -Layer

Total params in
the network

# of Zeros
in 1𝑠𝑡 -Layer

MLP5 5

401920

575050 176208

MLP4 4 567434 187249

MLP3 3 535818 194119

MLP2 2 407050 229006

in Figs. 6 (a), (b), and (c), respectively. MNIST[8] consists of 70000

images of hand-written digits with respective labels for each image.

Each image is a 28 × 28 grayscale image with ten classes. Similarly,

FashionMNIST[14] has 70000 grayscale images of size 28 × 28,

associated with a label from 10 categories. Lastly, the CBCL FACE[1]

dataset contains 19 × 19 grayscale images of two classes: face and

non-face. For each dataset, we resized the images to 28×28 grayscale
images before feeding them to the networks. We randomly sampled

10% of the training samples as a validation set.

NNArchitecture:Wedemonstrate the advantages of SenTer through

an image classification task by designing four different MLP archi-

tectures with listed specifications in Table 2. Each network architec-

ture has 512 nodes in the first hidden layer and is reduced by half

until the last layer. The number of parameters in the table includes

both weights and biases.

We implemented the entire networks, training, and testing pipeline

in the PyTorch framework. For optimization, we employ Stochastic

Gradient Descent(SGD)[11] Optimizer. We initialized the learn-

ing rate to 0.001 and scaled it by 0.1 after 60 epochs. We set the

batch size to 32 and trained all the networks to 100 epochs. The

best-performing checkpoint on the validation set is saved, and the

performance on the test set is reported.

Accuracy: We trained each network with full-precision weights

and the ReLU activation function in each layer. Then we evaluated

the performance of the trained model in the following four settings:

(a) using full-precision weights with the ReLU activation function

in the first layer. Then (b) replace the ReLU activation function

with the sign function in the above setting. We then (c) used a

quantized model with ReLU activation in the first layer and finally

(d) the quantized model with the sign activation function in the first

layer. We used a range-based linear quantization [5] to ternarize the

weights of the first layer with values in the range {-1, 0, 1}. In this

quantization technique, we multiply the float value with a numeric

constant, the scale factor. The scale factor (𝑞𝑥 ) is computed using

the following equation, 𝑞𝑥 = 2
𝑛−1

𝑚𝑎𝑥𝑥 𝑓 −𝑚𝑖𝑛𝑥 𝑓
, where 𝑛 is the number

of bits to encode, which in our case is 2. To minimize the effects

of outliers, we take the 99
𝑡ℎ

and 1
𝑠𝑡

percentiles of full-precision

weights(𝑥 𝑓 ) as𝑚𝑎𝑥𝑥 𝑓 and𝑚𝑖𝑛𝑥 𝑓 , respectively. We then divide the

values into three sections and replace them with the integers {-1, 0,

1}. Table 3 of quantitative performance on test datasets reveals that

using ReLU activation with full-precision weights does not signifi-

cantly lower performance when the network size is reduced. In fact,

a smaller network size performs better than larger ones when the

first layer uses quantized weights with ReLU activation. On aver-

age, the accuracy decrease due to quantization is less than 3%, with

some exceptions. The change in the activation function of the first

layer to the sign function leads to a notable decrease in accuracy

but also results in a significant decrease in power consumption.

Performance: As different designs are developed for specific do-

mains, for an impartial comparison, we summarized some of the

state-of-the-art PIS-based accelerators when all units execute the

similar task of processing the 1
𝑠𝑡
-layer ofMLP. Table 4 compares the

structure of selective near/in -sensor processing designs that target

MLP implementations. MACSen [15] and PISA [3] architectures tar-

get binary weight neural networks and utilize𝑚×𝑛×𝑘 , computing

elements, where𝑚×𝑛 is spatial dimension of sensor arrays, and 𝑘 is

the number of nodes in the first hidden layer. By leveraging Tizbin

[13] and SenTer, the number of computing elements is reduced by

a factor of 𝑘 , while they support ternary weight neural networks.

PISA and TizBin designs accommodate both processing and sens-

ing functionalities. All the compared PIS architectures measure

every pixel’s value row by row, defining the sensing scheme. While

SenTer can support processing only, it calculates the summation

of all the pixels’ values simultaneously, leading to a considerable

reduction in power consumption. The main advantages of SenTer

over the previous designs include the ReLU activation and usage of

one ADC, which leads to better accuracy and power saving.

5 CONCLUSION
This paper proposed SenTer, a low-power intelligent visual per-

ception architecture, to enable a processing in-sensor scheme with

event detection and object classification capabilities. SenTer per-

forms low-precision ternary MLP in the analog domain to mitigate

the overhead of ADCs. Once an event is detected, it switches to

the high-power object classification mode to classify the input. The

obtained results exhibit acceptable accuracy compared to the full-

precision baseline on three data sets, while SenTer consumes 0.0255

𝜇𝑊 .
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