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ABSTRACT

Recently, Intelligent IoT (IIoT), including various sensors, has gained
significant attention due to its capability of sensing, deciding, and
acting by leveraging artificial neural networks (ANN). Nevertheless,
to achieve acceptable accuracy and high performance in visual sys-
tems, a power-delay-efficient architecture is required. In this paper,
we propose an ultra-low-power processing in-sensor architecture,
namely SenTer, realizing low-precision ternary multi-layer percep-
tron networks, which can operate in detection and classification
modes. Moreover, SenTer supports two activation functions based
on user needs and the desired accuracy-energy trade-off. SenTer is
capable of performing all the required computations for the MLP’s
first layer in the analog domain and then submitting its results to
a co-processor. Therefore, SenTer significantly reduces the over-
head of analog buffers, data conversion, and transmission power
consumption by using only one ADC. Additionally, our simula-
tion results demonstrate acceptable accuracy on various datasets
compared to the full precision models.

CCS CONCEPTS

- Computer systems organization — Special purpose systems;
Sensors and actuators; « Computing methodologies — Neural
networks.
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1 INTRODUCTION

Cloud-based communication and computation pose several serious
challenges today, including high latency (a large number of nodes
and their geographical distribution), questionable scalability (un-
balanced load among the computers), quality of service (QoS) (it is
difficult to guarantee the same level of service quality), privacy, and
security (data must be securely transferred and stored). It may be
possible to address a number of these issues by shifting computing
architecture from a cloud-centric perspective to a thing-centric one
as the Internet of Things (IoT) or Internet of Everything (IoE) ad-
vances. A global network of 75+ billion IoT devices, including smart
homes, smart cities, smart industries, wearables, and implantable
systems for healthcare, is expected to reach $1100 billion by 2025.
Recently, Intelligent IoT (IIoT) has gained significant attention due
to its capability of sensing, deciding, and acting by leveraging ar-
tificial neural networks (ANN). Through various sensors, such as
CMOS image sensors (imagers), IIoT nodes collect and process data.
Nevertheless, ANNs are extremely storage and computation inten-
sive in order to achieve high accuracy and acceptable performance
in visual systems, making them difficult to implement on edge de-
vices with limited resources. Additionally, many vision applications
require continuous monitoring or detection of anomalies by sensory
systems, while low information density wastes bandwidth, storage,
and computing resources. Towards addressing these challenges, IoT
nodes can process sensed data by incorporating Edge Intelligence
(EI) devices into a thing-centric computing architecture, where data
transferring and data density are reduced by using local comput-
ing at the sensing units. In recent years, researchers have studied
the development of imagers capable of accelerating ANNs. Pixels’
digital outputs can be accelerated using an on-chip processor in
the vicinity of the sensor, forming a paradigm, namely Process-
ing near-Sensor (PNS) [4, 6, 15, 16]. It is also possible to process
pre-Analog-to-Digital converter data, an image, via a Processing
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Figure 1: (a) Proposed SenTer architecture, including an array of (b) pixels and compute add-ons, (c) memory unit consisting of
two buffers, (d) the readout peripherals, and (e) Circuit-level comparator.

in-Sensor (PIS) platform that eliminates redundant output data. Uti-
lizing the PIS unit within an imager (1) reduces power consumption
in converting photocurrents into pixel values, (2) speeds up data
processing, (3) alleviates memory bottlenecks, and (4) simultane-
ously senses and computes. With limited computing and storage
resources, deploying all layers into a pixel array is inefficient and
complicated. Most PIS studies perform some essential computations
like edge detection or, at best, accelerate the first layer and utilize
digital neural network accelerators for the remainder.

In this paper, to make real-time decision-making IIoT devices
a reality, advances are made from both an algorithmic and hard-
ware architecture perspective. Herein, we propose an efficient PIS
scheme with different capabilities to alleviate the power costs of
data conversion and transmission at the cost of accuracy degrada-
tion. Our architecture, SenTer, allows analog convolution, which
supports different activation functions. SenTer supports ternary
weight neural networks that provide energy efficiency by mitigat-
ing the overhead of analog buffers with comparable accuracy to
the floating-point (FP) baseline.

2 BACKGROUND

Data transmission off-chip and ADC bandwidth can be reduced
by systematizing the integration of computing and sensor arrays.
This integration allows for improved power efficiency, higher sam-
pling rates, and better resolution in data acquisition. Additionally,
the integrated system can collect more data points and also re-
duce data processing time. Near-sensor and in-sensor processing
architectures are two efficient approaches for enabling embedded
signal/image processing and computer vision algorithms to be exe-
cuted directly on-chip, prior to data transfer off-chip.

PNS architecture is a type of architecture for image processing
where the processing is done close to the sensor, either on the same
chip or near the sensor, prior to data transfer to an external pro-
cessor. The PNS unit receives the raw data from the sensor and
performs any necessary calculations or processing before sending
the data to the main system. This type of architecture is typically
used in applications where data needs to be collected from multiple
sources and different types of sensors. Near-sensor processing can
also be used in applications where data needs to be collected from
multiple locations. PNS reduces the amount of data that needs to
be transferred off-chip and processed, allowing for higher signal
processing and vision performance. According to [7], the CMOS
image sensor includes dual-mode delta-sigma ADCs designed to

process the first convolutional (conv.) layer of binary-weight neural
networks (BWNNs). RedEye [10] implements convolution using
charge-sharing tunable capacitors. By sacrificing accuracy in favor
of energy savings, this design reduces energy consumption. This
system utilizes a custom image sensor integrated with a low-power
digital signal processor to perform image processing tasks. In[16],
vertically stacked column-parallel ADCs and processing elements
are implemented and utilized to run spatiotemporal image process-
ing. To reduce the amount of power consumed by the ADC, [6]
converts photocurrents into pulse-width modulated signals, which
are then processed by a dedicated analog processor.

PIS, on the other hand, involves the integration of processing
capabilities directly into the sensor itself. This approach allows sen-
sors to perform necessary calculations or processing before sending
the data to the main system. This includes algorithms running on
multiple cores and algorithms adapted for ultra-low-power oper-
ation. More precise and accurate vision results can be achieved
by enabling complex image processing functions to be performed
directly within the sensor itself. PIS also enables on-chip memory,
allowing data to be stored and processed on-chip. This type of ar-
chitecture is typically used in applications where data is collected
quickly, such as industrial automation and security systems. As a
PIS platform, MACSen [15] integrates MAC (multiply-accumulate)
operations directly into the image sensor and leverages double
sampling to process the first conv. layer of BWNNSs. As a result,
visual data may be processed efficiently in real-time at the point
of acquisition without requiring additional power-hungry devices.
However, this method suffers from high power consumption and
huge overhead due to the SRAM-based design. Although PNS can
provide more flexibility and scalability, it can also be more com-
plex and expensive to implement [6, 9]. PIS can be more compact
and efficient but may be more limited in processing capabilities
[2, 3,12, 13]. PNS is an ideal choice for lower-end processing needs,
while PIS is a better choice for applications requiring more so-
phisticated algorithms. In CMOS image sensors, either of these
architectures can reduce data transfer and processing overhead and
enhance computing efficiency.

3 PROPOSED ARCHITECTURE

We propose SenTer as an ultra-low-power sensor for event detec-
tion and classification targeting TinyML applications, shown in
Fig.1. SenTer consists of a compute focal plane (CFP) (Fig. 1(b)), a
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Table 1: Ternary Values regarding the stored weights.

Bufferp Buffer; Represented Output

Wa) (W) Weight Current
X 0 0 0
0 1 -1 -Icpp
1 1 1 Icpp

W,

“1[o]1 ‘1101
NEIE of1]1
1]-1]-1 1)11]1
1|0|0|... 1|0|0|---
Original Ternary Buffery (W)

Weights

Buffero (W)

Figure 2: Mapping the original ternary weights into two ded-
icated buffers.

column controller (CC), memory components (Fig. 1(c)), and a read-
out circuit (Fig. 1(d)). The proposed architecture operates in two
event detection and object classification modes. Since the SenTer
architecture is able to implement the first layer of a ternary multi-
layer perceptron within a sensor, there is no need for a row decoder
to read pixels in a row-wise manner. Removing the row decoder
compared with conventional convolution-in-pixel structures leads
to more power saving at the cost of application generality. The CFP
comprises a m X n pixel array, and m X n computes add-ons (CPs),
ie., 28 X 28, as depicted in Fig. 1(b). Depending on a stored weight
read from the memory unit, a CP generates a current on a shared
bit-line. Finally, in the Readout module, this value converts to 1-to-8
bits according to the configuration of the proposed ADC. All the
components and their functionalities are outlined in the following
sections, which consume ~0.0255 yW power in total.

3.1 SenTer Components

3.1.1 Memory Unit. SenTer includes efficient non-volatile mem-
ory (NVM) components to store the first layer weights of an MLP
network. For each ternary weight, two bits (W,) and (W},), weight
representatives, are required that are stored in the memory compo-
nents, bufferg and buffer;, respectively. The combinations of these
bits to generate the ternary weights are summarized in Table 1.
In MLP networks, every node is connected to all the next layer’s
nodes, where each buffer size should be 28 x 28 X k, where k is
the number of nodes in the first hidden layer. Because the SenTer
design utilized 28 X 28 memory elements for event detection tasks,
the actual size of the memory unit is 2 X [28 X 28 X (k +1)]. There is
a row selector positioned within the memory unit to select 28 x 28
weights and connect them to pixels’ CAs.

3.1.2 Compute Focal Plane (CFP). The CFP module is the core
of the SenTer architecture, which performs sensing and analog
computation within a sensor. A pixel observes scenes from an envi-
ronment, and a compute add-on (CA) produces proper currents in
accordance with the specific ternary weights, i.e., € {-1,0,+1}. As
shown in Fig. 3(a), first, all the pixel capacitors (CPD) are charged
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Figure 3: The proposed sensor and its CA in (a) pre-charge,
(b) evaluation, and (c) reading phases.

to Vpp through Ti. Then CPD starts to discharge depending on
the light intensity of the environment through T, and photo-diode
(PD) in Fig. 3(b). In the next step, T; and T disconnect, and the
voltage level of CPD remains unchanged. Thus, in order to gen-
erate positive and negative weights, CPD is connected to positive
and negative voltages through T3 and Ty, respectively, to generate
appropriate currents on the bit-line (BL). As depicted in Fig. 3(c),
one of these two generated currents is chosen using a multiplexer
with Wi, selector. Another weight representative (W) connects
to a transistor located after the multiplexer (75 in Fig. 3) to enable
the pixel by passing the generated negative (-1) or positive (+1)
currents or disconnects/disables the pixel to denote zero weight (0).
Another T5 responsibility is operating as a row controller in the
event detection mode, where inactive pixels should be disconnected
to save power. The functionality of one CA is validated by HSpice
with 45nm CMOS technology, and the transient simulation results
are depicted in Fig. 4. In @), W14 and W;, are equal to 0 and 1, re-
spectively; therefore, based on Table 1, the generated current on BL
is negative. By setting different weight representatives, two other
ternary weights are achieved, shown in @) and @) cycles. As it can
clearly be perceived, In @), regardless of changing W14, because
Wiy, 1s 0, BL remains unchanged, considered as inactive pixel.

3.1.3 Readout Circuit. The ADCs in conventional image sensors
measure only the value of the activated row at the end of each
column, which means for a m X n sensory array, the design requires
m ADCs and n clock cycles to read the full array. While in an MLP
network, there is no need for each pixel’s exact value; therefore,
the SenTer architecture utilizes only one ADC without having a
row selector. The proposed readout module is depicted in Fig.1(d),
including additional components that are added to the conventional
ADC, realizing various activation functions. The transistor-level
schematic of one comparator is shown in Fig. 1(e).
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Figure 4: Transient simulation of one pixel and its CA, w.r.t
weight W;.
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Figure 5: Transient vectors for the proposed ADC in the nor-
mal, ReLU, and sign modes.

In the proposed ADC, by changing the control signals C; and
Co, SenTer is able to switch between the normal operation and the
activation functions, including ReLU and Sign, to save more power
at the cost of accuracy degradation. By changing the —V,..¢ to 0,
the ADC’s functionality switches from the normal to the ReLU
operation. In this case, to have the same accuracy as normal mode
[-27, 27 1], SenTer turns off approximately half of its comparators
and encoder |0, 27 — 1]; otherwise, more accuracy is achieved using
RelU, [0, 28— 1]. Furthermore, the sign function equals the most
significant bit in the normal mode. The transient results of the
proposed ADC are shown in Fig. 5, where Vsepse alters from —0.5V
to +0.5V while £V, sets to +0.3. For simplicity, a 3-bit ADC is
considered; however, their functionalities are identical. The red and
blue signals indicate ReLU and normal outputs for a 3-bit ADC, in
which red signals change only in the positive direction of Vsepse.
Moreover, Outs acts similarly to the sign function. It should be
noted that for the sign function, we can turn off irrelevant circuits.

3.1.4  Column controller. SenTer is designed for ultra-low-power
operation. Therefore, the column controller is designed in a way to
a further reduction in power consumption. In SenTer architecture,
each column of the pixel array is connected to a separated Vpp line.
In this case, the column controller is responsible for disconnecting
or connecting columns of pixels to a power supply to save more
power. This feature is useful in event detection mode.

3.2 SenTer Modes

As mentioned earlier, SenTer operates in two modes: event detection
and object classification, elaborated in Algorithm 1.

3.2.1 Event Detection. The proposed low-power event detection
approach is designed to detect small-to-moderate differences be-
tween frames n and n + t, where t € N, namely the difference
margin and can be justified by users’ needs. Smaller ¢ provides bet-
ter accuracy at the cost of power overhead. By setting ¢ = 1, SenTer
checks every two consecutive frames to detect changes/events. The
primary steps of the event detection phase are summarized in lines
1 to 8. First, in line 2, the last row of the memory weight (k+1) is
chosen. All the pixels’ values are read (line 4), and the produced
voltage based on the summation of all currents is measured using an
ADC. Herein, designers can determine which pixels are important
for comparison. One simple arrangement is expressed by equation
1, where the pixel array is partitioned into 3-pixel boxes, 3 3. Thus,
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Algorithm 1 SenTer Mode:

1: procedure EVENT-DETECTION

2: Choose_Weights(k + 1)

3: while (true)

4: pixel_values«—read_pixels_value()
5

> Read the last row of the buffers.

> Only read ON pixels.
: if pixel_values < old_pixel_value — threshold OR pixel_values >
old_pixel _value + threshold > Check the margin
6: Break
7: Enable (Object-Classification)
8: end procedure
9: procedure OBJECT-CLASSIFICATION
10: pixel_values«read_pixels_value()
11: for i in_range k > k is number of nodes in the first hidden layer.
12: read_weights (i) > m X n weights are applied to CA.
13: calculate_node (i) > Calculate MACs regarding the i*"
14: Enable (Event-Detection)
15: end procedure

node.

each box includes nine pixels, including only one ON pixel and eight
inactive ones. In this strategy, SenTer disconnects 2/3 of columns
from Vpp, and only 1/9 pixels remain connected to the ADC by
setting Wj, = 1. Then the measured voltage compares with the pre-
vious one (line 5) to ensure the difference is lower than a threshold.
Lines 4 and 5 repeat until the difference between old_pixel_value
and pixel_value exceeds the threshold. Once it happens, the mode
changes to the object classification mode. It should be mentioned
that the frequency of the loop execution is dependent on the applica-
tion, but generally, the frame rate is lower than object classification.
To exemplify the event detection mode, two inputs from the MNIST
dataset are considered, 7 and 8. Using the proposed algorithm, the
obtained values for the pixel_values variable are approximately
equal to 10 and 19 for 7 and 8, respectively. Therefore, by shifting
the images vertically and/or horizontally, these values vary between
+ 1, which is a good estimate for the threshold parameter.

W 1 if mod (x,3) =2 & x € (i x 28, (i+1) x 28]
k16 =\ 0 otherwise (1)
Wi, =1 whereie {3N-1}

3.2.2  Object Classification. The object classification mode is de-
signed to classify the images using the MLP networks. Herein, all
the pixels are active (ON), and their values are evaluated and held
unchanged in the sensor’s capacitors (line 10). Then the stored
weights (28 X 28) corresponding to sensors are applied to CAs in
line 12. In the next step, using the proposed reconfigurable ADC,
the result of node i*" is measured (line 13). These two steps are
repeated for all the hidden layer’s nodes. In this mode, SenTer per-
forms all the required operations of the first layer, including the
fully-connected and activation layers, within the sensor in the ana-
log domain. The output of this mode is passed to a microprocessor
as the next layer’s input to compute the remaining layers in the
digital domain. Then SenTer changes its mode back to the event
detection mode.

4 EVALUATION RESULTS

In addition to the functionalities of SenTer’s components in the
previous sections, our evaluation phase consists of accuracy and
qualitative comparison with the state-of-the-art PIS-based MLP
accelerators.

Datasets: We evaluated our models on three publicly available
datasets: MNIST[8], FashionMNIST[14], and CBCL FACE[1], shown
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(@) (b)

Figure 6: Samples of three examined datasets, including (a)
MNIST, (b) Fashion-MNIST, and (c) CBCL Face.

Table 2: Network specifications and parameters

# of params Total paramsin  # of Zeros
s o in lsl')-Layer the Eetwork in 1-Layer
MLP5 5 575050 176208
MLP4 4 567434 187249
MLP3 3 401920 535818 194119
MLP2 2 407050 229006

in Figs. 6 (a), (b), and (c), respectively. MNIST[8] consists of 70000
images of hand-written digits with respective labels for each image.
Each image is a 28 X 28 grayscale image with ten classes. Similarly,
FashionMNIST[14] has 70000 grayscale images of size 28 X 28,
associated with a label from 10 categories. Lastly, the CBCL FACE[1]
dataset contains 19 X 19 grayscale images of two classes: face and
non-face. For each dataset, we resized the images to 2828 grayscale
images before feeding them to the networks. We randomly sampled
10% of the training samples as a validation set.

NN Architecture: We demonstrate the advantages of SenTer through
an image classification task by designing four different MLP archi-
tectures with listed specifications in Table 2. Each network architec-
ture has 512 nodes in the first hidden layer and is reduced by half
until the last layer. The number of parameters in the table includes
both weights and biases.

We implemented the entire networks, training, and testing pipeline
in the PyTorch framework. For optimization, we employ Stochastic
Gradient Descent(SGD)[11] Optimizer. We initialized the learn-
ing rate to 0.001 and scaled it by 0.1 after 60 epochs. We set the
batch size to 32 and trained all the networks to 100 epochs. The
best-performing checkpoint on the validation set is saved, and the
performance on the test set is reported.

Accuracy: We trained each network with full-precision weights
and the ReLU activation function in each layer. Then we evaluated
the performance of the trained model in the following four settings:
(a) using full-precision weights with the ReLU activation function
in the first layer. Then (b) replace the ReLU activation function
with the sign function in the above setting. We then (c) used a
quantized model with ReLU activation in the first layer and finally
(d) the quantized model with the sign activation function in the first
layer. We used a range-based linear quantization [5] to ternarize the
weights of the first layer with values in the range {-1, 0, 1}. In this
quantization technique, we multiply the float value with a numeric
constant, the scale factor. The scale factor (gx) is computed using
W, where n is the number
of bits to encode, which in our case is 2. To minimize the effects
of outliers, we take the 99/ and 15 percentiles of full-precision
weights(xy) as max, ; and min, r, respectively. We then divide the
values into three sections and replace them with the integers {-1, 0,
1}. Table 3 of quantitative performance on test datasets reveals that

the following equation, gx =

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

using ReLU activation with full-precision weights does not signifi-
cantly lower performance when the network size is reduced. In fact,
a smaller network size performs better than larger ones when the
first layer uses quantized weights with ReLU activation. On aver-
age, the accuracy decrease due to quantization is less than 3%, with
some exceptions. The change in the activation function of the first
layer to the sign function leads to a notable decrease in accuracy
but also results in a significant decrease in power consumption.
Performance: As different designs are developed for specific do-
mains, for an impartial comparison, we summarized some of the
state-of-the-art PIS-based accelerators when all units execute the
similar task of processing the 1% -layer of MLP. Table 4 compares the
structure of selective near/in -sensor processing designs that target
MLP implementations. MACSen [15] and PISA [3] architectures tar-
get binary weight neural networks and utilize m X n X k, computing
elements, where m X n is spatial dimension of sensor arrays, and k is
the number of nodes in the first hidden layer. By leveraging Tizbin
[13] and SenTer, the number of computing elements is reduced by
a factor of k, while they support ternary weight neural networks.
PISA and TizBin designs accommodate both processing and sens-
ing functionalities. All the compared PIS architectures measure
every pixel’s value row by row, defining the sensing scheme. While
SenTer can support processing only, it calculates the summation
of all the pixels’ values simultaneously, leading to a considerable
reduction in power consumption. The main advantages of SenTer
over the previous designs include the ReLU activation and usage of
one ADC, which leads to better accuracy and power saving.

5 CONCLUSION

This paper proposed SenTer, a low-power intelligent visual per-
ception architecture, to enable a processing in-sensor scheme with
event detection and object classification capabilities. SenTer per-
forms low-precision ternary MLP in the analog domain to mitigate
the overhead of ADCs. Once an event is detected, it switches to
the high-power object classification mode to classify the input. The
obtained results exhibit acceptable accuracy compared to the full-
precision baseline on three data sets, while SenTer consumes 0.0255
Hw.
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