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Abstract

Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence,
monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene
(LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for
sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently
converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photomet-
ric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due
partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane.
These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec™!, a detec-
tion limit of 0.3 +0.1 mg L' (mean + standard deviation), and a broad linear sensing range from 107> to 10~! M, which was
significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of
sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg
L-!in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate
the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in
general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.

Keywords Graphene - Solid-contact ion selective electrodes - Potentiometry - Electrochemical Sensors - Food safety - Food
additives

Introduction

Nitrite salts are one of the most important additives applied
in the curing process of meat products [1-3]. These salts
not only improve the color and flavor of cured meats but
also play a major role as inhibitors of microbial growth, in
particular, Clostridium botulinum [4-7]. Nonetheless, the
use of nitrite salts as a preservative and curing agent has
raised concerns about human health as nitrite reacts with
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hemoglobin to form methemoglobin, which reduces the
capacity of blood to carry oxygen, in addition to reacting
with secondary amines and amides to form the potentially
carcinogenic compounds, N-nitrosamines [8, 9]. Thus,
limitations to nitrite levels in food products and drinking
water have been implemented, with regulations varying
from country to country, as studies began to show that low
contents of nitrite salts do not promote relevant levels of
N-nitrosamines formation [10—-12]. For instance, in the USA,
sodium nitrite has a maximum limit that varies with cured
meat type from 120 to 200 ppm, according to the USDA, and
as low as 1 ppm in drinking water, according to the EPA [13,
14]. Given the importance of quantifying nitrite, there is a
need for reliable and rapid methods to monitor its levels in
food products; ideally, methods that do not require complex
or costly manufacturing processes and are easy to use, with
minimal sample preparation.
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The range of analytical methods for nitrite monitoring
has been comprehensively reviewed by other groups [15-17]
with electrochemical sensors providing rapid, sensitive,
and portable alternatives to other analytical methodolo-
gies, including spectrophotometric [18], chromatographic
[19-21], capillary electrophoresis [22], spectrofluorimetric
[23-25], colorimetric [26-29], and electrochemilumines-
cent [30] techniques. The current standard Griess method
(AOAC official method 973.31), a colorimetric method,
requires trained personnel and is time-limited since the solu-
tions expire 8 h after preparation, and time-consuming with
sample preparation and dilutions required to accommodate
its linear range [31].

Carbon nanomaterials such as graphene are being
explored in various electrochemical applications due to their
large surface area, high electrical conductivity, mechanical
resistance, and thermal conductivity [32-34]. In particular,
3D-carbon nanomaterials, such as graphene sponge, carbon
nanofibers, micro/nanostructure printed graphene, and laser-
induced graphene, build upon these material properties by
providing an electrode with much higher surface area for
increased analyte-to-electrode interaction and biorecognition
agent loading, and consequently higher biosensor sensitivity
[35]. There are many methods for fabrication of 3D-gra-
phene structures, including electrochemical deposition [36],
freeze-drying [37], and hydrothermal synthesis [38]; how-
ever, issues with integrating as-fabricated 3D graphene into
electrochemical sensors reduce their high-throughput and
scalable fabrication. To simplify the 3D-graphene sensor
fabrication, various printing techniques, including inkjet
[39, 40], screen [41], and 3D printing [42, 43], have been
explored. However, post-print annealing techniques such as
high-temperature [44], photonic [45], and rapid-pulse laser
annealing [39] are required to improve electrical conductiv-
ity (similar to printed metals, i.e., <1 k Q) and 3D nano/
micro structuring.

Another promising approach for 3D-graphene-based sen-
sors is to use a laser treatment that combines direct-write
printing and post-print annealing to fabricate highly porous,
3D-graphene-based structures. In 1991, Schumann et al.
demonstrated that a UV laser treatment to polymers such
as polyimide and polybenzimidazole converted them into
conductive materials [46]. The Tour group at Rice Univer-
sity in 2014 used a CO, laser to convert polyimide [47] and
other materials [48] into a 3D porous graphene structure,
known as laser-induced graphene (LIG). Such LIG material
has disordered graphitic structures that expose edge sites,
promoting efficient electron transfer of electroactive species
[49, 50]. Additionally, LIG surface chemical and physical
properties such as porosity, thickness, electrical conductiv-
ity, and surface hydrophobicity can be tuned [51]. Recent
studies in LIG formation and surface properties, includ-
ing ours [52, 53], have demonstrated that controlling laser
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power, focus, and the number of lasing steps can create LIG
with super-hydrophilic or super-hydrophobic surfaces, even
in the open ambient in some cases, improving conductivity
and electrochemical performance for sensing applications
[51, 54-56]. Understanding these properties allows for the
reliable fabrication of scalable electrodes.

Potentiometric ion-selective electrodes have been applied
for sensitive and selective ion monitoring [57, 58] in many
applications that include in-field water environment analysis
(heavy metals, perchlorate, calcium, and iodide) [59-64] to
in vivo biomedical applications (potassium, calcium, nitric
oxide, lithium) [65-69]. Traditional liquid-junction ISEs
have an inner liquid (electrolyte) that requires maintenance
due to liquid leaching. In contrast, solid-contact ion-selec-
tive electrodes (SC-ISEs) remove this inner liquid allowing
the ion-selective membrane to make direct contact with the
transducing layer. To replace the liquid-junction, SC-ISEs
must exhibit minimal potential drift between the transducer
and ion-selective membrane [70, 71]. LIG-based electrodes
have the potential to fulfill these requirements and to be a
promising solid-contact transducer for the fabrication of
SC-ISEs, as explored in recent studies regarding fertilizer
monitoring in soil (NO;~ and NH,*) [72], evaluating human
hydration levels and pH in urine (K* and NH,*) [73, 74],
as well as human sweat monitoring [75, 76], and surface
water quality monitoring (NO5™) [52]. Despite their advan-
tages, LIG-ISE for nitrite sensing has not been explored.
Most electrochemical detection of nitrite is based on elec-
trochemical oxidation or reduction. However, problems with
electrode-passivation and fouling effects can occur, reducing
the sensitivity of the method, which has been circumvented
with the use of power ultrasound to clean the electrode [77],
nevertheless, affecting portability and in-field applications.
Additionally, most electrochemical sensors for nitrite require
multiple and laborious steps to fabricate the electrodes, with
detection ranges that are not within the regulated levels for
food analysis (upper limit of 200 ppm) [78]. The detection
ranges are often in the nanomolar range, except for a few
cases, requiring several dilutions and sample preparation
steps, and are mostly limited to proof-of-concept demon-
stration in water samples [78].

In the present work, we successfully developed a
nitrite-selective potentiometric sensor based on LIG to
measure nitrite levels in cured meats. For this purpose,
we systematically fabricated hydrophilic and hydrophobic
LIG-electrodes using a CO, laser and evaluated the elec-
trochemical and material properties. To characterize the
material changes, we evaluated the resulting LIG surfaces
for their morphology (SEM), surface composition and
chemical structure (XPS and Raman), and static contact
angle, providing a correlation between the LIG platform
and the resultant electrochemical properties. We showed
that the double-lasing process reduces the surface oxygen
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content, increases the contact angle, and the sp2 carbon
content, exhibiting a better performance as a material for
ion-sensing applications. The resulting LIG-ISE sensor is
capable of monitoring nitrite in cured meats, with results
comparable to the standard method (Griess method) and
within the range imposed by the USDA regulations [13].

Experimental section
Materials

Nitrite ionophore VI, tetrahydrofuran (THF), high-molec-
ular-weight polyvinyl(chloride) (PVC), 2-nitrophenyl
octyl ether (2-NPOE), sodium nitrite, sodium nitrate,
potassium hexacyanoferrate (II) trihydrate, potassium
ferricyanide, and the Griess reagent kit for nitrite deter-
mination (G-7921) were purchased from Millipore Sigma
(Saint Louis, MO, USA). Commercial polyimide (PI) was
purchased from McMaster-Carr (Elmhurst, IL, USA), and
silver-chloride epoxy ink (C1-1001) from Engineering

CO> laser

layer

Materials Systems (Delaware, OH, USA). Sodium chlo-
ride, potassium chloride, potassium sulfate, and ELISA
microplates were obtained from Thermo Fisher Scientific
(Waltham, MA, USA). Sausage, ham, and bacon were
purchased at a local grocery store. All chemicals were
analytical grade, and solutions were prepared using deion-
ized (DI) water with a resistivity of approximately 18.2
MQ cm.

Fabrication of LIG-electrodes

Hydrophilic and hydrophobic electrodes were fabricated
using a 75-W M2 Epilog CO, laser, wavelength 10.6 mm,
(Epilog Laser, CO, USA), and a polyimide film, thick-
ness ~0.127 mm, under ambient conditions, as previously
reported [52]. Hydrophilic LIG-electrodes (1X-LIG) were
fabricated using a single-lasing process. Meanwhile, hydro-
phobic LIG-electrodes (2X-LIG) were fabricated using a
successive double-lasing process. The electrodes presented
a circular working area (5 mm in diameter), shown in Fig. 1,
and a squared contact pad (9 mm?) at the other end protected
with conductive silver paste. The portion between the two

1. Silver ink
2. Passivation

3. Selective

Membrane

Fig. 1 Fabrication steps for a LIG-based ion-selective electrode
(ISE). a Laser-induction process onto a polyimide film. b Cross-sec-
tional SEM image of the working electrode area. ¢ Application of the

three main components that make up the ISE. d Cross-sectional SEM
image of the working area covered with the ion-selective membrane
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ends was isolated by applying a passivation layer of fast-
drying nitrocellulose-based lacquer.

The nitrite-selective membrane was prepared by dissolv-
ing 6.4 wt.% nitrite ionophore VI, the main compound of
the membrane used to promote the ionic exchange, 24.7
wt.% PVC, the polymeric substrate, 68.9 wt.% 2-NPOE, the
plasticizer that helps solubilize the ionophore and is inert to
ion exchange, in 1 mL of THF, the solvent that allows the
mixing of the other components, which will be completely
evaporated. The mixture of chemicals was stirred using a
vortex until the compounds were completely dissolved; then,
10 pL of the fresh membrane was drop-casted onto the work-
ing area of the LIG-electrodes. After overnight drying, the
ion-selective electrodes (ISEs) were conditioned in 1 mM
NaNO, for 24 h before being tested, as a crucial step for
the selective membrane to reach an optimum target-ion con-
centration and ensure that the measured potential would be
stable [79, 80].

Surface characterization

Bare electrodes were characterized considering the two
lasing processes, which provided hydrophilic and hydro-
phobic graphene-based surfaces. Sheet resistances of both
electrodes were measured with a Hall measurement system
(MMR H5000, MMR Technologies, San Jose, CA, USA)
using the Van der Pauw method with a 1 X 1 cm sample and
electrical contact at the four corners. The static contact angle
measurements were performed using a ramé-hart model 90
goniometer (ramé-hart instrument co., Succasunna, NJ,
USA), applying a 3-uL droplet of pure water onto the sur-
face of the electrodes. Angle measurements were performed
using the software DROPimage Pro (ramé-hart instrument
co., Succasunna, NJ, USA).

Raman spectra were obtained using a DXR Raman
Microscope (Thermo Fisher, Waltham, MA, USA), with
acquisitions of 32 scans under an exposure time of 7.5 s and
a2 cm™! resolution. A 780-nm laser operating at 20 mW
with a 10 X objective was used. The results were analyzed
with OMNIC™ 9.7 software (Thermo Fisher, Waltham,
MA, USA).

The surface chemistry of the bare LIG-electrodes was
analyzed through X-ray photoelectron spectroscopy (XPS),
performed with a Kratos Amicus/ESCA 3400 (Kratos Ana-
lytical, Manchester, UK). Unmonochromated Mg K, X-rays
were irradiated on the samples with 240 W, and the energy
of photoelectrons vertically emitted were analyzed using a
DuPont type analyzer. The pass energy was set at 150 eV,
and the raw data were processed using CasaXPS (Casa Soft-
ware Ltd., Teignmouth, UK).

Top-view and cross-sectioned images from scanning elec-
tron microscopy (SEM) were obtained using a FEI Quanta
250 field emission microscope (FEI Technologies, Hillsboro,
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OR, USA) at 150%, 500, and 1500 X magnification, and
at an accelerating voltage of 10 kV. The material samples
were coated with 2-nm iridium to increase the conductivity.

Electrochemical characterization and sensing

Cyclic voltammetry (CV) and constant current chronopo-
tentiometry (CP) measurements were performed using a CH
Instruments electrochemical analyzer (model CHI7018E,
CH Instruments Inc., Austin, TX, USA). All experiments
were conducted with the developed electrodes as the work-
ing electrode and an external Ag/AgCl electrode witha 1 M
KCl liquid junction as the reference electrode. CP and CV
analyses used a three-electrode set-up with a platinum wire
electrode as the counter electrode and an Ag/AgCl electrode
as the reference electrode. Open-circuit potentiometry (OCP)
was used to calibrate the sensors, conduct the selectivity and
water layer tests, and nitrite sensing. All OCP measurements
were obtained using a PalmSens4 potentiostat (PalmSens,
Netherlands) equipped with a MUXS8-R2 multiplexer.

Cyclic voltammetric measurements for 1X-LIG and
2X-LIG were performed in 5 mM ferro/ferricyanide redox
probe, prepared in 0.1 M KCl as the electrolyte, with poten-
tial sweep ranging from — 0.4 to 1.0 V, and scan rates of 10,
25, 50, 75, 100, and 150 mV s~!. These voltammograms
were used to estimate the electroactive surface area (ESA)
of the electrodes (see Supplementary information for details,
Eq. S1).

Analysis based on chronopotentiometry and water layer
test were used to measure the potential stability of the ISEs.
For the CP measurements, after a previous conditioning step
in 0.1 M NaNO, for 24 h, a current of + 1 nA was applied for
60 s each (120 s total), and the potential was recorded with
electrodes immersed in 0.1 M NaNO,.

The water layer test was carried out by measuring the
OCP of the ISEs made from both 1X-LIG and 2X-LIG
electrodes over 24 h. The electrodes were first exposed to a
1 mM solution of target ion (NaNO,) for 4 h, followed by
1 mM solution of an interfering ion (KCl) for another 4 h,
and finally returned to the initial target ion solution for a
16-h incubation step, with rinsing steps between transfers
[72].

The developed ISEs based on 1X-LIG and 2X-LIG sub-
strate were calibrated from 1077 to 10~' M NaNO, with
additions at each 0.5 log. Calibrations were performed in
DI water under agitation at 300 rpm. Ionic activity coef-
ficients were calculated using the extended Debye-Hiickel
equation (Eq. S3 in Supplementary information). Selec-
tivity coefficients were obtained by the fixed-interference
method [81] for three specimens of ions common in cured
food (C17, NO;™, and H,PO,"). For this analysis, similar to
the calibrations described above, a large range of NaNO,
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concentrations was added into a constant concentration of
1 mM of each interfering ion. Then, the selectivity coef-
ficients were calculated using Eq. S5 (see Supplementary
information). The “response time” was the time required to
reach 95% of the steady-state signal (t95) after each target
ion addition. The sensitivity was obtained as the mean slope
of the linear portion of the calibration curve, and the limit of
detection (LOD) was calculated using the 3 ¢ method [82].

For sensing purposes, the OCP method was used to meas-
ure the electrical potential difference between the reference
electrode and the working electrode, also called electromo-
tive force (emf). By substituting the measured emf value into
the respective linear equation obtained from the calibration
curve in DI water, it is possible to estimate the concentration
of target ions, using ionic activity equation (see Supplemen-
tal information Eq. S2-S3). This ionic activity relates to the
actual concentration of the target ion in the solution (see
Supplemental, Fig. S4e). The standard colorimetric method
for nitrite detection using the Griess reagent kit [83] was
performed to validate the method proposed in this work.
The Griess method is based on quantitative diazotization of
nitrite with sulfanilic acid, and the formed salt reacts with
N-(I-naphthyl)ethylenediamine (NED), forming an azo dye
that can be quantitatively estimated by spectrophotometry
with readings at 548 nm, according to the information stated
in the kit manual. A linear calibration curve is obtained by
measuring the absorbance of different nitrite concentrations
(Fig. 4b).

Preparation of food samples

Three different types of cured meat were tested to validate
the developed sensors (Fig. S1). For extracting nitrite from
the food samples, 30 g of each food product were sliced and
crushed using a mortar and pestle to increase the surface
area and facilitate nitrite extraction, then stirred in 300 mL
DI water at 70 °C for 10 min, following previous established
protocol [84]. The extracted solution was filtered to remove
large food fragments and then centrifuged at 3260 g-force for
15 min, using a Thermo Scientific Sorvall ST-8R centrifuge
(Waltham, MA, USA). Finally, the supernatant was filtered
with a 0.45-pm sterile syringe filter made of surfactant-free
cellulose acetate (Corning Incorporated, Germany).

Data analysis

The data analysis for calibration curves, including regres-
sion analysis, calculations of sensitivity, and LOD was per-
formed using MATLAB (R2020a, The MathWorks Inc.,
Natick, MA, USA). The ¢ test with a significance level of
0.05 was performed to compare the two methods for nitrite
determination and to compare the two different surfaces of
electrodes (hydrophilic and hydrophobic LIG) using JMP

Pro v.15 statistical software (SAS Institute, Cary, NC, USA).
All figures were plotted in SigmaPlot 14 (Systat Software
Inc., San Jose, CA).

Results and discussion
Surface characterization of bare electrodes

The LIG-electrodes were patterned in a dipstick design pre-
senting a 5-mm diameter circle with a 15-mm long stem
and a 9-mm? contact pad (Fig. 2a). The circular part of the
electrodes was used as the working area (with 19.63 mm?)
for the subsequent deposition of the ion-selective membrane.
The surface morphology of the electrodes was evaluated
using SEM (Fig. 2d—f). Overall, the lasing process generated
a highly porous 3-dimensional structure resulting in a high
surface area. More specifically, 1X-LIG presented vertically
aligned fibers [85] of various heights (Fig. 2d and S2a-b).
Such features were flattened by the second lasing process,
which made the surface more homogeneous and exposed
the rastering traces created by the lasing process. The influ-
ence of the single- and double-lasing process on the mor-
phology of LIG has been previously reported by Chen et al.
(2021) when tunning the lasing process for the fabrication
of hydrophobic LIG [53]. Hjort et al. (2022) observed simi-
lar changes in surface morphology after the second lasing
process when developing ion selective electrodes for nitrate
sensing [52]. Furthermore, cross-sectional images of the
SC-ISEs confirm that the ion-selective membrane applied to
1X-LIG generates thinner films due to the membrane flow-
ing over the electrode stem, which considerably impacts the
water layer test, further discussed below (Fig. S5b—e). Static
water contact angle measurements demonstrated the differ-
ence in surface wettability generated by the different lasing
processes. The second lasing process significantly increased
the hydrophobicity of the LIG-electrodes changing it from
30.2° + 1.3° (first lasing) to 133.4°+0.4°. This near-super-
hydrophobic surface presents a strong water repulsion char-
acteristic that is relevant for the development of ion-selective
electrodes, considering the importance of suppressing the
water layer formation on the surface of the electrode [86].
The distinct lasing settings used to fabricate the electrodes
provided two different material composition surfaces and
corresponding properties. Raman spectroscopy confirmed
the well-established graphitic configuration for LIG-mate-
rials [47, 52] and was also used to compare the structures
of both hydrophilic and hydrophobic surfaces, 1X-LIG and
2X-LIG (Fig. 2b). The three typical peaks, D, G, and 2D,
roughly at 1350 cm™!, 1580 cm™', and 2700 cm™!, respec-
tively, are obtained for materials based on graphene with a
certain level of lattice defects. The D peak represents defects
promoted by breaks and bends in sigma bonds, while the G
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295 290
Binding Energy (eV)

Fig.2 a 1X-LIG and 2X-LIG before and after applying the ion-selec-
tive membrane. b Raman spectra comparing the three typical LIG
peaks for both types of electrodes. ¢ XPS survey exhibiting the clear
decrease of oxygen content from 1X-LIG to 2X-LIG. SEM images of
bare d 1X-LIG electrodes showing the difference in porosity com-

peak is related to in-plane vibration of sp? carbon atoms, dis-
tinctive for graphitic material. In turn, the 2D peak is unique
for graphene structures, which provides useful information
about the stacking order and the number of graphene lay-
ers [87]. Thus, based on the values obtained for G and 2D
peaks, it is possible to calculate the 1,,,/I; ratio regarding the
number of graphene layers that were formed, that is, mon-
olayer, bilayer, or multilayer. The 1X-LIG exhibited I,,/I;
~ 0.25, and similarly, the 2X-LIG exhibited I,,,/I; =~ 0.44,
which means both are based on multilayered graphene (with
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pared with f 2X-LIG. e XPS spectra of bare electrodes showing the
decrease of carbonyl groups from 1X-LIG to g 2X-LIG, and respec-
tive increase of z—z bonds, with insets providing a zoom of the five
peaks and the respective contact angle measurements

I/l < 1) [88]. The higher this ratio, the better the qual-
ity of the graphene structure [89]. Previous works reported
lower or similar I,,/I; ratios for LIG-materials, with values
ranging from 0.30 to 0.44 [72, 90, 91]. The 2X-LIG dis-
played a higher D peak owing to additional bending in the
carbon structures caused by the double lasing [53]. The I,y/1;
peaks for both LIG-materials were > 1, which is expected
for LIG-materials and might also be attributed to the lasing
process occurring in an uncontrolled atmosphere chamber
[54]. These high D peaks might be related to the presence
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of O, in the air, which provides an oxidative environment,
thus generating rough edges and large pores, as previously
described [54]. In addition, the XPS spectra showed a slight
increase of z—x interactions, which are responsible for the
carbon lattice stacking, after the second lasing. This proves
that the laser-induction converts the sp> carbon structure
mostly present in the PI into sp? type.

The surface chemical composition obtained from XPS
showed that LIG materials are formed by carbon (C) and
oxygen (O). Electrodes fabricated with one lasing step
exhibited 89.96% of C and 10.04% of O, while 96.11% of
C and 3.89% of O were observed after the second lasing. A
reduction of ~2.5 times on the oxygen content after the sec-
ond lasing (Fig. 2c) is directly related to the low wettability
surface obtained, as the oxygen-containing functional groups
exhibit high affinity with water. A similar work reported
a reduction of ~3.9 times on the oxygen content after the
second lasing, which was further related to the hydropho-
bic surface exhibiting a static water contact angle of ~143°
[53]. The clear reduction of carbonyl groups is notable in
Fig. 2e—g, which hinders hydrophilic interaction due to a
lower incidence of hydrogen bonds (see Table S1 in Sup-
plementary information). Additionally, the second lasing
eliminates the vertically aligned structures (Fig. 2d—f) and
creates a microporous surface that can be associated with a
lower droplet adhesion force by increasing the fraction of
liquid—air contact area on the surface (i.e., higher hydro-
phobicity) [53, 92].

Furthermore, the electrical conductivity was not signifi-
cantly different (p =0.7720) when comparing electrodes fab-
ricated using both lasing methods, with a sheet resistance
of 0.231 +0.033 kQ sq" for 1X-LIG and 0.221 +0.046 kQ
sq! for 2X-LIG. These sheet resistance values are substan-
tially lower than other published graphene-based materials,
for instance, 15-20 kQ sq~! for LIG-based sensors fabri-
cated with a low-cost UV-laser [72] and ~30 kQ sq~! for
inkjet-printed graphene devices [93].

Electrochemical characterization

Cyclic voltammetric measurements of bare electrodes were
performed to evaluate both LIG-electrodes and to estimate
their electroactive surface area (ESA). Redox peaks were
observed for both 1X- and 2X-LIG independent of the
scan rate applied (Fig. 3a-b). The peak separation ranged
from 264.82 to 896.18 mV for 1X-LIG and from 191.43
to 526.38 mV for 2X-LIG. The increase in potential peak
separation at faster scan rates indicates a system with limi-
tations in the electron transfer rate [94, 95]. Similarly, the
Randles—Sevcik plots (Fig. S6b—c) demonstrate a linear
increase in peak current with the square root of the scan rate
for both LIG-electrodes, indicating a diffusion-controlled
system [94, 96]. This behavior suggests a quasi-reversible

system that is controlled by both mass and charge transfer
[96, 97]. The calculated ESA for 1X-LIG was 49.84 +4.24
mm?, representing 253.82% compared to the geometric area
(19.63 mm?). Alternatively, the 2X-LIG presented an ESA
of 37.41 +0.97 mm?, which is 190.52% higher than the geo-
metric area. Higher ESA compared to the geometric area is
consistently observed in LIG-based electrodes [73, 91, 98,
99]. The increase in ESA compared to the geometric area
is attributed to the defect-rich highly porous 3D structure
of the LIG, which increases the surface area and, conse-
quently, creates more available sites for electron transfer dur-
ing redox reactions [98, 99]. Despite the significantly higher
ESA (p=0.0080) presented by the 1X-LIG electrodes, the
2X-LIG was used for further sensing application because
it exhibits a hydrophobic surface, which helps improve the
stability of the sensor, as discussed previously and will be
further demonstrated next.

Potential drifts, standard potential (E®) reproducibility,
and membrane delamination might be attributed to forming
an aqueous film (water layer) between the selective mem-
brane and the solid-contact interface [100, 101]. For this
reason, water layer tests have become an important method
to select and validate SC-ISEs. When an aqueous layer is
formed, a longer time is required for the SC-ISE to reach the
equilibrium potential, and substantial potential drift causes
the need for frequent recalibration. Herein, SC-ISEs made
with both 1X-LIG and 2X-LIG were subjected to two dif-
ferent solutions for a few hours, as previously described,
and the potential was measured (Fig. 3c). The ISE based
on 2X-LIG clearly exhibited a significant (p =0.0001)
lower potential drift, 397.6+29.4 uV h™!, compared to the
1X-LIG, 1262.5+36.2 uV h~!, after returning to the initial
solution 1 mM NaNO, (section c in the Fig. 3c). This differ-
ence suggests that the hydrophobicity observed for 2X-LIG
hinders the formation of a water layer, as previously reported
[52] and contributes to a more stable potential. Moreover,
the membrane applied onto 2X-LIG electrodes was thicker
than the one applied to 1X-LIG (Fig. S5e) due to the mem-
brane flowing over the 1X-LIG electrode stem, which pos-
sibly influenced the poor performance of the single-lasing
electrodes as a recent study has reported that thin ion-selec-
tive membranes might exhibit anomalous potentiometric
response because of changes in the water layer composition
[102].

Another study to evaluate the potential stability was
accomplished using constant current chronopotenti-
ometry by applying a current of +1 nA, which is suffi-
cient to polarize the surface of the electrode to calculate
its capacitance [103] (Fig. 3d). The capacitances of both
ISEs were calculated from Eq. S6. The potential drifts and
capacitances were 11.7+3.1 uV s! and 91.0 +23.7 uF for
1X-LIG, respectively, and 12.4+ 1.0 pV sl and 88.3+8.2
uF for 2X-LIG, which are very close to previous studies

@ Springer



43 Page 8 of 16

Microchim Acta (2023) 190:43

a
800
600 - 1X
< 400
= 2001
T 0
Q 10 mV/s
= -200 1 25 mV/s
= i — 50 mV/s
@) 400 — 75 mV/s
-600 4 — 100 mV/s
— 150 mV/s
-800 T T T T
-0.4 0.0 0.4 0.8
Potential (V)
C
1> —1X
— I € 2 — 92X
e
=1 3
o
3
c i L]
]
]
O -
S -
J /

0 5 10 15 20 25
Time (h)

Fig.3 a, b CV measurements for both 1X-LIG and 2X-LIG bare
electrodes, respectively, at scan rates from 10 to 150 mV sThoe
Water layer test for ISEs based on 1X-LIG and 2X-LIG, immersed
in I mM NaNO, (1), 1 mM KClI (2), and back to 1 mM NaNO, (3)

with graphene-based ISEs, that obtained potential drifts
in the range of 10 to 13 uV s~ and capacitances varying
from 75 to 95 pF [52, 104]. No significant difference was
observed for potential drifts (p =0.5808) and capacitances
(p=0.8425), calculated from chronopotentiometry, when
comparing ISEs made on hydrophilic and hydrophobic sur-
faces. However, the potential drift was notably higher for
the hydrophilic SC-ISE observed from the water layer test.
According to Eq. S6, the calculated capacitance is inversely
proportional to the potential drift, which means higher
capacitances are associated with more stable potential. As
previously stated, one of the conditions for providing a stable
and reliable SC-ISE is ideally nonpolarizable interfaces with
high exchange current densities [105], which implies higher
capacitances. This statement is relevant when considering

@ Springer
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with 2X-LIG displaying lower potential drift. d Chronopotentiometry
responses for both SC-ISEs based on 1X-LIG and 2X-LIG, with no
significant difference observed for potential drift and capacitance val-
ues

the design of SC-ISEs for continuous ion monitoring. In
this study, the capacitance values for both SC-ISEs are not
significantly different, and they are in the range of other
published graphene-based ISEs, but the 1-day measurement
of potential drift (water layer test) displayed a significant
difference for both, which demonstrates the utility of the
hydrophobic LIG for ion sensing and in our particular case
for nitrite ion sensing. Furthermore, the SC-ISE made with
1X-LIG exhibited a larger variability in potential when read-
ing known concentrations of NaNO, compared to 2X-LIG
(Fig. S3a—b and S4a-b). Thus, it implies less accuracy and
consistency, displaying a higher standard deviation for the
NaNO, measurement, which was also considered when
choosing the hydrophobic LIG as a high-quality, stable sen-
sor for potentiometric detection of nitrite.
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Open-circuit potentiometry was used to obtain calibration
curves for nitrite SC-ISE fabricated from 1X- and 2X-LIG in
DI water by incrementally increasing the nitrite levels in the
electrochemical cell. The calibration curves demonstrated
that both types of sensors performed following the Nernst
equation (Eq. S7), which linearly relates the measured
potential with the activity of a target ion, exhibiting sensi-
tivities of 58.2+2.0 and 59.5+0.8 mV dec™!, respectively
(Fig. S3). The reproducibility of both sensors was evaluated
considering the relative standard deviation values (RSD, Eq.
S4) for the respective sensitivities, which are based on the
slope of the linear calibration curve. The RSD values were
3.4% (n=4) and 1.3% (n=4) for sensors based on hydro-
philic (1X-LIG) and hydrophobic (2X-LIG), respectively.
These low values attest to the high reproducibility of the
presented sensors. Additionally, once 2X-LIG was selected
to perform the sensing analysis in real samples, 20 sensors
were tested with sausage, ham, and bacon, and the RSD for
their sensitivity was 5.51% (n=20), indicating that even with
an increase in the sample size, the RSD remains low.
Similar calibrations were performed in the presence of
different salts (NaCl, NaH,PO,, and NaNO;) to evaluate
the effect of interfering ions commonly present in cured
food (Fig. S4d). These calibrations enable the calculation
of the selectivity coefficients (Eq. S5) for each tested ion
and are reported in the last column of Table 1. These
coefficients were relatively similar to a previously
published work that also tested nitrite-ISE [106], where the
logKﬁ"Otz’i for CI~, NO;™, and H,PO,™ ranged from—2 to— 3,
showing that these three ions are not strictly discriminated
by the nitrite ionophore [80] with H,PO,™ showing the
largest interference. Nonetheless, the results for nitrite
determination showed that interfering ions did not
negatively affect the sensor’s performance in food samples.
Previous studies have developed sensors that can detect
nitrite at very low detection limits, often in the nanomolar
range (Table 2); however, not only these sensors require
noble metals and other expensive materials to fabricate, but
also need extensive sample pre-treatments. Most of them
show a limited detection range regarding the upper limit

imposed by federal regulations in the USA [13] (= 4 x 1073
M or 200 ppm of nitrite), which results in the need of sev-
eral dilutions and sample preparation. Furthermore, nitrite
sensors based on potentiometric techniques are not very
common (Table 2), showing an opportunity for implement-
ing this little-explored approach. As usual for potentio-
metric techniques, the sensor developed herein can detect
nitrite in a wide range that spans four orders of magnitude
(Fig. 4a), 0.33 to 4600 ppm, far exceeding the federally set
limit for cured meats as well as for drinking water (1 ppm
according to U.S. Environmental Protection Agency) [14].
Additionally, the developed sensing method does not require
sample dilutions or pre-treatments, avoiding major intrinsic
errors, and exhibits a relative low cost per sensor, approxi-
mately US$ 1.20, considering only material expenses.

A review paper published in 2019 compared more than
a hundred graphene-based electrochemical sensors for
nitrite detection, and all of them used either voltammetry
or amperometry as the electrochemical technique [78]. In
many of these works, in addition to the excessive and labo-
rious steps to obtain the modified electrodes, the detection
ranges were not as wide as expected, except for a few cases
where they were within the regulated levels for food but
only tested in water sources. The ability to address all
existing challenges regarding the stability and reliability
of the measured potential, solid contact surface structure,
and selectivity, the present nitrite sensor, based on a poten-
tiometric technique, offers an alternative method with an
unusual approach and outstanding sensing performance.

Before measuring the potential of food extracts, the sen-
sors were calibrated by measuring the emf of six different
nitrite solutions with known concentrations ranging from
10 to 10,000 uM (Fig. S4e). Average measurement time
was 5 min, and response time at 95% of the stead-state
signal (t95) was 9 s. The emf obtained for each sensor
corroborated with the known nitrite concentrations by
applying it to the linear equations obtained from the cali-
brations. A correlation relating expected and experimen-
tal values are shown in Fig. 4c, where the experimental
values are notably close to the expected ones, especially
at higher concentrations, exhibiting a mean absolute per-
centage error (MAPE) of 6.7% (Eq. S8). These MAPE

Table 1 Electrochemical performance of nitrite SC-ISE based on 2X-LIG and selectivity coefficients at 1 mM interfering-ion concentration

(n=4). Values given are mean =+ standard deviations

Sensitivity (mV/dec) LOD (uM)  Range of detection (M)  Standard potential E° (mV)  Response time (s)  Selectivity coefficient
_ -5 —1 _ pot
59.5+0.8 72+3.6 10™ to 10 13.1+4.0 9+2 logK?e, _174£0.05

108K}, po,y ~3.170.02

logk™

Nor  —1392005
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Table 2 Comparison of recently published reports on electrochemical nitrite sensors
Transducer Functionalization Electrochemical tech- LOD (uM) Detection range (M)  Sample Ref
nique
GCE Hemoglobin/AuNPs- DPV 0.0021 5%10°to 1073 Extract of meat [107]
CMK-8/GC
GCE FeT4MPyP/CuTSP DPV 0.1 5%1077t07.5%107%  Extract of sausage and [108]
vegetables
GCE Cu/MWCNT/RGO SWV 0.03 1077 t0 7.5x107° Extract of sausage, [84]
salami, and cheese
GCE TiO,-Ti;C,Tx nanohy- DPV 0.85 3x107%t0 1.25%x 1073 Water and milk [109]
brid/CTAB/CS
Au-SPE 2-ATP/PVA/GA/AuNPs  DPV 4 ~10 t0 1073 Exhaled breath conden- [110]
sate
GCE Au-HNTs-GO Amperometry 0.03 1077 t0 6.2x 1072 Tap water [111]
GCE Fe-BZIM/Nafion CV and CP <1 10~6to 107* - [112]
GCE GO-MWCNT-Pt/Mb Amperometry 0.93 10%t0 1.2x 1072 Rain, river, and tap water [113]
GCE MWCNT/nitrite-selective  Potentiometry 0.6 107 to 1072 Seawater [114]
membrane
LIG Bare-LIG DPV 0.8 5%107%t04.5x10™*  Tap water and pickle [115]
water
LIG CS DPV 0.9 2%x107%t0 1073 Tap water and lake water [116]
LIG MWCNT-AuNPs SWV 0.9 10 to 1.4x 1074 Tap water and PBS [117]
LIG ION-RGO DPV 721 107 to4x 107 PBS buffer [118]
LIG Bare-LIG DPV 0.27 107 to 7x 107 Buffered solution [119]
LIG Nitrite-selective mem- OCP 7.2 107 to 107! Extract of cured meat This work

brane

ATP, aminothiophenol; PVA, polyvinyl alcohol; GA, glutaraldehyde; SPE, screen-printed electrode; HNTs, natural halloysite nanotubes; GO,
graphene oxide; AulNPs, gold nanoparticles; CMK-8, mesoporous carbon composites; CP, chronopotentiometry; CS, chitosan; CTAB, hexadecyl
trimethyl ammonium bromide; CuTSP, copper tetrasulfonated phthalocyanine; CV, cyclic voltammetry; DPV, differential pulse voltammetry;
FeT4MPyP, iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin; GCE, glassy carbon electrode; LIG, laser-induced graphene; Mb, myoglobin; /ON-
RGO, iron oxide nanoparticle with reduced graphene oxide; MWCNT, multiwall carbon nanotubes; OCP, open-circuit potentiometry; RGO,

reduced graphene oxide; SWV, Square wave voltammetry.

results are indicative of the high reliability of the devel-
oped method. The application of MAPE as a loss function
for regression analysis is relevant both from practical and
theoretical points of view because of the existence of an
optimal (real) model that allows for verification of empiri-
cal values, where the consistency can be proved [120].
To validate the method, a standard spectrophotometric
assay that uses Griess reagents for nitrite detection [83,
121] was compared to the potentiometric response obtained
with the developed nitrite sensor. There were no significant
differences for samples analysis of sausage (p=0.2369),
ham (p=0.3025), and bacon (p=0.6141) when compar-
ing both potentiometric and spectrophotometric techniques
(Fig. 4d). For the Griess method, a linear calibration curve
was obtained by measuring the absorbance of solutions with
different nitrite concentrations (Fig. 4b). In this work, all
food samples tested complied with federal legislation, with
nitrite levels below 200 ppm. Based on the present method
and the Griess standard method, respectively, the sausage
samples exhibited 3.8 + 1.1 ppm and 4.7 +0.9 ppm, ham

@ Springer

samples exhibited 23.5 +2.4 ppm and 21.5+3.0 ppm, and
bacon samples exhibited 31.2+4.6 and 29.7 +2.7 ppm of
nitrite. It is relevant to mention that these sensors can be
used multiple times to test different samples in sequence.
Additional studies should be performed in future works to
precisely describe how many times these sensors can be used
and their shelf-life under storage. Furthermore, there is a
growing interest in using SC-ISE sensors for continuous
measurements for in-field applications, and in this case, it
would be desirable to add other conductive materials, such
as metal nanoparticles or conductive polymers to the LIG
surface to increase capacitance that could improve potential
stability, and consequently reduce potential drift [122, 123].

Conclusions

This work reports the successful development of a solid-
contact-ion selective electrode (SC-ISE) by utilizing a laser-
induced graphene (LIG) platform capable of monitoring
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Fig.4 a Calibration curve with half-log step additions ranging from
1077 to 10! M of NaNO,, showing a highlighted linear range, n=4.
b Calibration curve obtained by measuring the absorbance of differ-
ent nitrite concentrations using the Griess reagents kit, inlet: triplicate
of NaNO, (100, 50, 25, 12.5, 6.25, 3.125, 1.5625 uM) reacting with
these reagents. ¢ Comparison between expected and experimental

nitrite levels in cured food products over regulatory compli-
ance ranges. The hydrophobic LIG-electrodes proved more
suitable as SC-ISE than the hydrophilic LIG because it hin-
dered the formation of a water layer with significantly lower
potential drift, contributing to a more stable potential. These
sensors exhibited a wide linear range spanning four orders
of magnitude of nitrite concentration (107 to 10~! M), near-
theoretical sensitivity of 59.5 mV/dec, and a considerably
low detection limit when compared to the limits imposed by
federal regulations. These analytical characteristics resem-
ble or exceed previous nitrite sensing studies [78] and far
exceed the federal limit of ~200 ppm in cured meat [13].
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potential readings at five different nitrite concentrations 50, 100, 500,
10%, and 10.* uM, exhibiting a slight offset from the ideal correla-
tion. d Validation of the developed method compared to the stand-
ard method, with no significant differences for all three types of meat,
units in pM (< 0.05)

Importantly, other ions commonly found in cured meats
did not prevent the sensors from detecting the target ion. In
just 5 min, the ISE-LIG sensor could quantitatively detect
nitrite in extracts of cured meats with no significant differ-
ence from the standard method. In summary, the ISE-LIG
sensor not only demonstrates a sensitive and rapid method
for nitrite monitoring but also has the potential for wide-
spread adoption given its fabrication using inexpensive and
high-throughput laser induction technique that eliminates
multiple preparation steps and does not require modification
of electrodes with nanomaterials as in previous reports [84,
107, 110]. Furthermore, this sensing platform can be easily
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modified for many ions relevant to human health, precision
agriculture, surface and drinking water quality, and food
contaminant monitoring, which suggests its widespread use
in future potentiometric sensing applications.
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tary material available at https://doi.org/10.1007/s00604-022-05615-9.
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