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Abstract
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, 
monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene 
(LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for 
sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently 
converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photomet-
ric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due 
partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. 
These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec−1, a detec-
tion limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10−5 to 10−1 M, which was 
significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of 
sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg 
L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate 
the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in 
general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.

Keywords  Graphene · Solid-contact ion selective electrodes · Potentiometry · Electrochemical Sensors · Food safety · Food 
additives

Introduction

Nitrite salts are one of the most important additives applied 
in the curing process of meat products [1–3]. These salts 
not only improve the color and flavor of cured meats but 
also play a major role as inhibitors of microbial growth, in 
particular, Clostridium botulinum [4–7]. Nonetheless, the 
use of nitrite salts as a preservative and curing agent has 
raised concerns about human health as nitrite reacts with 

hemoglobin to form methemoglobin, which reduces the 
capacity of blood to carry oxygen, in addition to reacting 
with secondary amines and amides to form the potentially 
carcinogenic compounds, N-nitrosamines [8, 9]. Thus, 
limitations to nitrite levels in food products and drinking 
water have been implemented, with regulations varying 
from country to country, as studies began to show that low 
contents of nitrite salts do not promote relevant levels of 
N-nitrosamines formation [10–12]. For instance, in the USA, 
sodium nitrite has a maximum limit that varies with cured 
meat type from 120 to 200 ppm, according to the USDA, and 
as low as 1 ppm in drinking water, according to the EPA [13, 
14]. Given the importance of quantifying nitrite, there is a 
need for reliable and rapid methods to monitor its levels in 
food products; ideally, methods that do not require complex 
or costly manufacturing processes and are easy to use, with 
minimal sample preparation.
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The range of analytical methods for nitrite monitoring 
has been comprehensively reviewed by other groups [15–17] 
with electrochemical sensors providing rapid, sensitive, 
and portable alternatives to other analytical methodolo-
gies, including spectrophotometric [18], chromatographic 
[19–21], capillary electrophoresis [22], spectrofluorimetric 
[23–25], colorimetric [26–29], and electrochemilumines-
cent [30] techniques. The current standard Griess method 
(AOAC official method 973.31), a colorimetric method, 
requires trained personnel and is time-limited since the solu-
tions expire 8 h after preparation, and time-consuming with 
sample preparation and dilutions required to accommodate 
its linear range [31].

Carbon nanomaterials such as graphene are being 
explored in various electrochemical applications due to their 
large surface area, high electrical conductivity, mechanical 
resistance, and thermal conductivity [32–34]. In particular, 
3D-carbon nanomaterials, such as graphene sponge, carbon 
nanofibers, micro/nanostructure printed graphene, and laser-
induced graphene, build upon these material properties by 
providing an electrode with much higher surface area for 
increased analyte-to-electrode interaction and biorecognition 
agent loading, and consequently higher biosensor sensitivity 
[35]. There are many methods for fabrication of 3D-gra-
phene structures, including electrochemical deposition [36], 
freeze-drying [37], and hydrothermal synthesis [38]; how-
ever, issues with integrating as-fabricated 3D graphene into 
electrochemical sensors reduce their high-throughput and 
scalable fabrication. To simplify the 3D-graphene sensor 
fabrication, various printing techniques, including inkjet 
[39, 40], screen [41], and 3D printing [42, 43], have been 
explored. However, post-print annealing techniques such as 
high-temperature [44], photonic [45], and rapid-pulse laser 
annealing [39] are required to improve electrical conductiv-
ity (similar to printed metals, i.e., < 1 k Ω) and 3D nano/
micro structuring.

Another promising approach for 3D-graphene-based sen-
sors is to use a laser treatment that combines direct-write 
printing and post-print annealing to fabricate highly porous, 
3D-graphene-based structures. In 1991, Schumann et al. 
demonstrated that a UV laser treatment to polymers such 
as polyimide and polybenzimidazole converted them into 
conductive materials [46]. The Tour group at Rice Univer-
sity in 2014 used a CO2 laser to convert polyimide [47] and 
other materials [48] into a 3D porous graphene structure, 
known as laser-induced graphene (LIG). Such LIG material 
has disordered graphitic structures that expose edge sites, 
promoting efficient electron transfer of electroactive species 
[49, 50]. Additionally, LIG surface chemical and physical 
properties such as porosity, thickness, electrical conductiv-
ity, and surface hydrophobicity can be tuned [51]. Recent 
studies in LIG formation and surface properties, includ-
ing ours [52, 53], have demonstrated that controlling laser 

power, focus, and the number of lasing steps can create LIG 
with super-hydrophilic or super-hydrophobic surfaces, even 
in the open ambient in some cases, improving conductivity 
and electrochemical performance for sensing applications 
[51, 54–56]. Understanding these properties allows for the 
reliable fabrication of scalable electrodes.

Potentiometric ion-selective electrodes have been applied 
for sensitive and selective ion monitoring [57, 58] in many 
applications that include in-field water environment analysis 
(heavy metals, perchlorate, calcium, and iodide) [59–64] to 
in vivo biomedical applications (potassium, calcium, nitric 
oxide, lithium) [65–69]. Traditional liquid-junction ISEs 
have an inner liquid (electrolyte) that requires maintenance 
due to liquid leaching. In contrast, solid-contact ion-selec-
tive electrodes (SC-ISEs) remove this inner liquid allowing 
the ion-selective membrane to make direct contact with the 
transducing layer. To replace the liquid-junction, SC-ISEs 
must exhibit minimal potential drift between the transducer 
and ion-selective membrane [70, 71]. LIG-based electrodes 
have the potential to fulfill these requirements and to be a 
promising solid-contact transducer for the fabrication of 
SC-ISEs, as explored in recent studies regarding fertilizer 
monitoring in soil (NO3

− and NH4
+) [72], evaluating human 

hydration levels and pH in urine (K+ and NH4
+) [73, 74], 

as well as human sweat monitoring [75, 76], and surface 
water quality monitoring (NO3

−) [52]. Despite their advan-
tages, LIG-ISE for nitrite sensing has not been explored. 
Most electrochemical detection of nitrite is based on elec-
trochemical oxidation or reduction. However, problems with 
electrode-passivation and fouling effects can occur, reducing 
the sensitivity of the method, which has been circumvented 
with the use of power ultrasound to clean the electrode [77], 
nevertheless, affecting portability and in-field applications. 
Additionally, most electrochemical sensors for nitrite require 
multiple and laborious steps to fabricate the electrodes, with 
detection ranges that are not within the regulated levels for 
food analysis (upper limit of 200 ppm) [78]. The detection 
ranges are often in the nanomolar range, except for a few 
cases, requiring several dilutions and sample preparation 
steps, and are mostly limited to proof-of-concept demon-
stration in water samples [78].

In the present work, we successfully developed a 
nitrite-selective potentiometric sensor based on LIG to 
measure nitrite levels in cured meats. For this purpose, 
we systematically fabricated hydrophilic and hydrophobic 
LIG-electrodes using a CO2 laser and evaluated the elec-
trochemical and material properties. To characterize the 
material changes, we evaluated the resulting LIG surfaces 
for their morphology (SEM), surface composition and 
chemical structure (XPS and Raman), and static contact 
angle, providing a correlation between the LIG platform 
and the resultant electrochemical properties. We showed 
that the double-lasing process reduces the surface oxygen 
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content, increases the contact angle, and the sp2 carbon 
content, exhibiting a better performance as a material for 
ion-sensing applications. The resulting LIG-ISE sensor is 
capable of monitoring nitrite in cured meats, with results 
comparable to the standard method (Griess method) and 
within the range imposed by the USDA regulations [13].

Experimental section

Materials

Nitrite ionophore VI, tetrahydrofuran (THF), high-molec-
ular-weight polyvinyl(chloride) (PVC), 2-nitrophenyl 
octyl ether (2-NPOE), sodium nitrite, sodium nitrate, 
potassium hexacyanoferrate (II) trihydrate, potassium 
ferricyanide, and the Griess reagent kit for nitrite deter-
mination (G-7921) were purchased from Millipore Sigma 
(Saint Louis, MO, USA). Commercial polyimide (PI) was 
purchased from McMaster-Carr (Elmhurst, IL, USA), and 
silver-chloride epoxy ink (Cl-1001) from Engineering 

Materials Systems (Delaware, OH, USA). Sodium chlo-
ride, potassium chloride, potassium sulfate, and ELISA 
microplates were obtained from Thermo Fisher Scientific 
(Waltham, MA, USA). Sausage, ham, and bacon were 
purchased at a local grocery store. All chemicals were 
analytical grade, and solutions were prepared using deion-
ized (DI) water with a resistivity of approximately 18.2 
MΩ cm.

Fabrication of LIG‑electrodes

Hydrophilic and hydrophobic electrodes were fabricated 
using a 75-W M2 Epilog CO2 laser, wavelength 10.6 mm, 
(Epilog Laser, CO, USA), and a polyimide film, thick-
ness ~ 0.127 mm, under ambient conditions, as previously 
reported [52]. Hydrophilic LIG-electrodes (1X-LIG) were 
fabricated using a single-lasing process. Meanwhile, hydro-
phobic LIG-electrodes (2X-LIG) were fabricated using a 
successive double-lasing process. The electrodes presented 
a circular working area (5 mm in diameter), shown in Fig. 1, 
and a squared contact pad (9 mm2) at the other end protected 
with conductive silver paste. The portion between the two 

Fig. 1   Fabrication steps for a LIG-based ion-selective electrode 
(ISE). a Laser-induction process onto a polyimide film. b Cross-sec-
tional SEM image of the working electrode area. c Application of the 

three main components that make up the ISE. d Cross-sectional SEM 
image of the working area covered with the ion-selective membrane
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ends was isolated by applying a passivation layer of fast-
drying nitrocellulose-based lacquer.

The nitrite-selective membrane was prepared by dissolv-
ing 6.4 wt.% nitrite ionophore VI, the main compound of 
the membrane used to promote the ionic exchange, 24.7 
wt.% PVC, the polymeric substrate, 68.9 wt.% 2-NPOE, the 
plasticizer that helps solubilize the ionophore and is inert to 
ion exchange, in 1 mL of THF, the solvent that allows the 
mixing of the other components, which will be completely 
evaporated. The mixture of chemicals was stirred using a 
vortex until the compounds were completely dissolved; then, 
10 µL of the fresh membrane was drop-casted onto the work-
ing area of the LIG-electrodes. After overnight drying, the 
ion-selective electrodes (ISEs) were conditioned in 1 mM 
NaNO2 for 24 h before being tested, as a crucial step for 
the selective membrane to reach an optimum target-ion con-
centration and ensure that the measured potential would be 
stable [79, 80].

Surface characterization

Bare electrodes were characterized considering the two 
lasing processes, which provided hydrophilic and hydro-
phobic graphene-based surfaces. Sheet resistances of both 
electrodes were measured with a Hall measurement system 
(MMR H5000, MMR Technologies, San Jose, CA, USA) 
using the Van der Pauw method with a 1 × 1 cm sample and 
electrical contact at the four corners. The static contact angle 
measurements were performed using a ramé-hart model 90 
goniometer (ramé-hart instrument co., Succasunna, NJ, 
USA), applying a 3-µL droplet of pure water onto the sur-
face of the electrodes. Angle measurements were performed 
using the software DROPimage Pro (ramé-hart instrument 
co., Succasunna, NJ, USA).

Raman spectra were obtained using a DXR Raman 
Microscope (Thermo Fisher, Waltham, MA, USA), with 
acquisitions of 32 scans under an exposure time of 7.5 s and 
a 2 cm−1 resolution. A 780-nm laser operating at 20 mW 
with a 10 × objective was used. The results were analyzed 
with OMNIC™ 9.7 software (Thermo Fisher, Waltham, 
MA, USA).

The surface chemistry of the bare LIG-electrodes was 
analyzed through X-ray photoelectron spectroscopy (XPS), 
performed with a Kratos Amicus/ESCA 3400 (Kratos Ana-
lytical, Manchester, UK). Unmonochromated Mg Kα X-rays 
were irradiated on the samples with 240 W, and the energy 
of photoelectrons vertically emitted were analyzed using a 
DuPont type analyzer. The pass energy was set at 150 eV, 
and the raw data were processed using CasaXPS (Casa Soft-
ware Ltd., Teignmouth, UK).

Top-view and cross-sectioned images from scanning elec-
tron microscopy (SEM) were obtained using a FEI Quanta 
250 field emission microscope (FEI Technologies, Hillsboro, 

OR, USA) at 150 × , 500 × , and 1500 × magnification, and 
at an accelerating voltage of 10 kV. The material samples 
were coated with 2-nm iridium to increase the conductivity.

Electrochemical characterization and sensing

Cyclic voltammetry (CV) and constant current chronopo-
tentiometry (CP) measurements were performed using a CH 
Instruments electrochemical analyzer (model CHI7018E, 
CH Instruments Inc., Austin, TX, USA). All experiments 
were conducted with the developed electrodes as the work-
ing electrode and an external Ag/AgCl electrode with a 1 M 
KCl liquid junction as the reference electrode. CP and CV 
analyses used a three-electrode set-up with a platinum wire 
electrode as the counter electrode and an Ag/AgCl electrode 
as the reference electrode. Open-circuit potentiometry (OCP) 
was used to calibrate the sensors, conduct the selectivity and 
water layer tests, and nitrite sensing. All OCP measurements 
were obtained using a PalmSens4 potentiostat (PalmSens, 
Netherlands) equipped with a MUX8-R2 multiplexer.

Cyclic voltammetric measurements for 1X-LIG and 
2X-LIG were performed in 5 mM ferro/ferricyanide redox 
probe, prepared in 0.1 M KCl as the electrolyte, with poten-
tial sweep ranging from − 0.4 to 1.0 V, and scan rates of 10, 
25, 50, 75, 100, and 150 mV s−1. These voltammograms 
were used to estimate the electroactive surface area (ESA) 
of the electrodes (see Supplementary information for details, 
Eq. S1).

Analysis based on chronopotentiometry and water layer 
test were used to measure the potential stability of the ISEs. 
For the CP measurements, after a previous conditioning step 
in 0.1 M NaNO2 for 24 h, a current of ± 1 nA was applied for 
60 s each (120 s total), and the potential was recorded with 
electrodes immersed in 0.1 M NaNO2.

The water layer test was carried out by measuring the 
OCP of the ISEs made from both 1X-LIG and 2X-LIG 
electrodes over 24 h. The electrodes were first exposed to a 
1 mM solution of target ion (NaNO2) for 4 h, followed by 
1 mM solution of an interfering ion (KCl) for another 4 h, 
and finally returned to the initial target ion solution for a 
16-h incubation step, with rinsing steps between transfers 
[72].

The developed ISEs based on 1X-LIG and 2X-LIG sub-
strate were calibrated from 10−7 to 10−1 M NaNO2 with 
additions at each 0.5 log. Calibrations were performed in 
DI water under agitation at 300 rpm. Ionic activity coef-
ficients were calculated using the extended Debye-Hückel 
equation (Eq. S3 in Supplementary information). Selec-
tivity coefficients were obtained by the fixed-interference 
method [81] for three specimens of ions common in cured 
food (Cl−, NO3

−, and H2PO4
−). For this analysis, similar to 

the calibrations described above, a large range of NaNO2 
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concentrations was added into a constant concentration of 
1 mM of each interfering ion. Then, the selectivity coef-
ficients were calculated using Eq. S5 (see Supplementary 
information). The “response time” was the time required to 
reach 95% of the steady-state signal (t95) after each target 
ion addition. The sensitivity was obtained as the mean slope 
of the linear portion of the calibration curve, and the limit of 
detection (LOD) was calculated using the 3 � method [82].

For sensing purposes, the OCP method was used to meas-
ure the electrical potential difference between the reference 
electrode and the working electrode, also called electromo-
tive force (emf). By substituting the measured emf value into 
the respective linear equation obtained from the calibration 
curve in DI water, it is possible to estimate the concentration 
of target ions, using ionic activity equation (see Supplemen-
tal information Eq. S2-S3). This ionic activity relates to the 
actual concentration of the target ion in the solution (see 
Supplemental, Fig. S4e). The standard colorimetric method 
for nitrite detection using the Griess reagent kit [83] was 
performed to validate the method proposed in this work. 
The Griess method is based on quantitative diazotization of 
nitrite with sulfanilic acid, and the formed salt reacts with 
N-(1-naphthyl)ethylenediamine (NED), forming an azo dye 
that can be quantitatively estimated by spectrophotometry 
with readings at 548 nm, according to the information stated 
in the kit manual. A linear calibration curve is obtained by 
measuring the absorbance of different nitrite concentrations 
(Fig. 4b).

Preparation of food samples

Three different types of cured meat were tested to validate 
the developed sensors (Fig. S1). For extracting nitrite from 
the food samples, 30 g of each food product were sliced and 
crushed using a mortar and pestle to increase the surface 
area and facilitate nitrite extraction, then stirred in 300 mL 
DI water at 70 °C for 10 min, following previous established 
protocol [84]. The extracted solution was filtered to remove 
large food fragments and then centrifuged at 3260 g-force for 
15 min, using a Thermo Scientific Sorvall ST-8R centrifuge 
(Waltham, MA, USA). Finally, the supernatant was filtered 
with a 0.45-µm sterile syringe filter made of surfactant-free 
cellulose acetate (Corning Incorporated, Germany).

Data analysis

The data analysis for calibration curves, including regres-
sion analysis, calculations of sensitivity, and LOD was per-
formed using MATLAB (R2020a, The MathWorks Inc., 
Natick, MA, USA). The t test with a significance level of 
0.05 was performed to compare the two methods for nitrite 
determination and to compare the two different surfaces of 
electrodes (hydrophilic and hydrophobic LIG) using JMP 

Pro v.15 statistical software (SAS Institute, Cary, NC, USA). 
All figures were plotted in SigmaPlot 14 (Systat Software 
Inc., San Jose, CA).

Results and discussion

Surface characterization of bare electrodes

The LIG-electrodes were patterned in a dipstick design pre-
senting a 5-mm diameter circle with a 15-mm long stem 
and a 9-mm2 contact pad (Fig. 2a). The circular part of the 
electrodes was used as the working area (with 19.63 mm2) 
for the subsequent deposition of the ion-selective membrane. 
The surface morphology of the electrodes was evaluated 
using SEM (Fig. 2d–f). Overall, the lasing process generated 
a highly porous 3-dimensional structure resulting in a high 
surface area. More specifically, 1X-LIG presented vertically 
aligned fibers [85] of various heights (Fig. 2d and S2a–b). 
Such features were flattened by the second lasing process, 
which made the surface more homogeneous and exposed 
the rastering traces created by the lasing process. The influ-
ence of the single- and double-lasing process on the mor-
phology of LIG has been previously reported by Chen et al. 
(2021) when tunning the lasing process for the fabrication 
of hydrophobic LIG [53]. Hjort et al. (2022) observed simi-
lar changes in surface morphology after the second lasing 
process when developing ion selective electrodes for nitrate 
sensing [52]. Furthermore, cross-sectional images of the 
SC-ISEs confirm that the ion-selective membrane applied to 
1X-LIG generates thinner films due to the membrane flow-
ing over the electrode stem, which considerably impacts the 
water layer test, further discussed below (Fig. S5b–e). Static 
water contact angle measurements demonstrated the differ-
ence in surface wettability generated by the different lasing 
processes. The second lasing process significantly increased 
the hydrophobicity of the LIG-electrodes changing it from 
30.2° ± 1.3° (first lasing) to 133.4° ± 0.4°. This near-super-
hydrophobic surface presents a strong water repulsion char-
acteristic that is relevant for the development of ion-selective 
electrodes, considering the importance of suppressing the 
water layer formation on the surface of the electrode [86].

The distinct lasing settings used to fabricate the electrodes 
provided two different material composition surfaces and 
corresponding properties. Raman spectroscopy confirmed 
the well-established graphitic configuration for LIG-mate-
rials [47, 52] and was also used to compare the structures 
of both hydrophilic and hydrophobic surfaces, 1X-LIG and 
2X-LIG (Fig. 2b). The three typical peaks, D, G, and 2D, 
roughly at 1350 cm−1, 1580 cm−1, and 2700 cm−1, respec-
tively, are obtained for materials based on graphene with a 
certain level of lattice defects. The D peak represents defects 
promoted by breaks and bends in sigma bonds, while the G 
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peak is related to in-plane vibration of sp2 carbon atoms, dis-
tinctive for graphitic material. In turn, the 2D peak is unique 
for graphene structures, which provides useful information 
about the stacking order and the number of graphene lay-
ers [87]. Thus, based on the values obtained for G and 2D 
peaks, it is possible to calculate the I2D/IG ratio regarding the 
number of graphene layers that were formed, that is, mon-
olayer, bilayer, or multilayer. The 1X-LIG exhibited I2D/IG 
≈ 0.25, and similarly, the 2X-LIG exhibited I2D/IG ≈ 0.44, 
which means both are based on multilayered graphene (with 

I2D/IG < 1) [88]. The higher this ratio, the better the qual-
ity of the graphene structure [89]. Previous works reported 
lower or similar I2D/IG ratios for LIG-materials, with values 
ranging from 0.30 to 0.44 [72, 90, 91]. The 2X-LIG dis-
played a higher D peak owing to additional bending in the 
carbon structures caused by the double lasing [53]. The ID/IG 
peaks for both LIG-materials were > 1, which is expected 
for LIG-materials and might also be attributed to the lasing 
process occurring in an uncontrolled atmosphere chamber 
[54]. These high D peaks might be related to the presence 

Fig. 2   a 1X-LIG and 2X-LIG before and after applying the ion-selec-
tive membrane. b Raman spectra comparing the three typical LIG 
peaks for both types of electrodes. c XPS survey exhibiting the clear 
decrease of oxygen content from 1X-LIG to 2X-LIG. SEM images of 
bare d 1X-LIG electrodes showing the difference in porosity com-

pared with f 2X-LIG. e XPS spectra of bare electrodes showing the 
decrease of carbonyl groups from 1X-LIG to g 2X-LIG, and respec-
tive increase of �–� bonds, with insets providing a zoom of the five 
peaks and the respective contact angle measurements
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of O2 in the air, which provides an oxidative environment, 
thus generating rough edges and large pores, as previously 
described [54]. In addition, the XPS spectra showed a slight 
increase of �–� interactions, which are responsible for the 
carbon lattice stacking, after the second lasing. This proves 
that the laser-induction converts the sp3 carbon structure 
mostly present in the PI into sp2 type.

The surface chemical composition obtained from XPS 
showed that LIG materials are formed by carbon (C) and 
oxygen (O). Electrodes fabricated with one lasing step 
exhibited 89.96% of C and 10.04% of O, while 96.11% of 
C and 3.89% of O were observed after the second lasing. A 
reduction of ~ 2.5 times on the oxygen content after the sec-
ond lasing (Fig. 2c) is directly related to the low wettability 
surface obtained, as the oxygen-containing functional groups 
exhibit high affinity with water. A similar work reported 
a reduction of ~ 3.9 times on the oxygen content after the 
second lasing, which was further related to the hydropho-
bic surface exhibiting a static water contact angle of ∼143° 
[53]. The clear reduction of carbonyl groups is notable in 
Fig. 2e–g, which hinders hydrophilic interaction due to a 
lower incidence of hydrogen bonds (see Table S1 in Sup-
plementary information). Additionally, the second lasing 
eliminates the vertically aligned structures (Fig. 2d–f) and 
creates a microporous surface that can be associated with a 
lower droplet adhesion force by increasing the fraction of 
liquid–air contact area on the surface (i.e., higher hydro-
phobicity) [53, 92].

Furthermore, the electrical conductivity was not signifi-
cantly different (p = 0.7720) when comparing electrodes fab-
ricated using both lasing methods, with a sheet resistance 
of 0.231 ± 0.033 kΩ sq−1 for 1X-LIG and 0.221 ± 0.046 kΩ 
sq−1 for 2X-LIG. These sheet resistance values are substan-
tially lower than other published graphene-based materials, 
for instance, 15–20 kΩ sq−1 for LIG-based sensors fabri-
cated with a low-cost UV-laser [72] and ~ 30 kΩ sq−1 for 
inkjet-printed graphene devices [93].

Electrochemical characterization

Cyclic voltammetric measurements of bare electrodes were 
performed to evaluate both LIG-electrodes and to estimate 
their electroactive surface area (ESA). Redox peaks were 
observed for both 1X- and 2X-LIG independent of the 
scan rate applied (Fig. 3a–b). The peak separation ranged 
from 264.82 to 896.18 mV for 1X-LIG and from 191.43 
to 526.38 mV for 2X-LIG. The increase in potential peak 
separation at faster scan rates indicates a system with limi-
tations in the electron transfer rate [94, 95]. Similarly, the 
Randles–Sevcik plots (Fig. S6b–c) demonstrate a linear 
increase in peak current with the square root of the scan rate 
for both LIG-electrodes, indicating a diffusion-controlled 
system [94, 96]. This behavior suggests a quasi-reversible 

system that is controlled by both mass and charge transfer 
[96, 97]. The calculated ESA for 1X-LIG was 49.84 ± 4.24 
mm2, representing 253.82% compared to the geometric area 
(19.63 mm2). Alternatively, the 2X-LIG presented an ESA 
of 37.41 ± 0.97 mm2, which is 190.52% higher than the geo-
metric area. Higher ESA compared to the geometric area is 
consistently observed in LIG-based electrodes [73, 91, 98, 
99]. The increase in ESA compared to the geometric area 
is attributed to the defect-rich highly porous 3D structure 
of the LIG, which increases the surface area and, conse-
quently, creates more available sites for electron transfer dur-
ing redox reactions [98, 99]. Despite the significantly higher 
ESA (p = 0.0080) presented by the 1X-LIG electrodes, the 
2X-LIG was used for further sensing application because 
it exhibits a hydrophobic surface, which helps improve the 
stability of the sensor, as discussed previously and will be 
further demonstrated next.

Potential drifts, standard potential (E0) reproducibility, 
and membrane delamination might be attributed to forming 
an aqueous film (water layer) between the selective mem-
brane and the solid-contact interface [100, 101]. For this 
reason, water layer tests have become an important method 
to select and validate SC-ISEs. When an aqueous layer is 
formed, a longer time is required for the SC-ISE to reach the 
equilibrium potential, and substantial potential drift causes 
the need for frequent recalibration. Herein, SC-ISEs made 
with both 1X-LIG and 2X-LIG were subjected to two dif-
ferent solutions for a few hours, as previously described, 
and the potential was measured (Fig. 3c). The ISE based 
on 2X-LIG clearly exhibited a significant (p = 0.0001) 
lower potential drift, 397.6 ± 29.4 µV h−1, compared to the 
1X-LIG, 1262.5 ± 36.2 µV h−1, after returning to the initial 
solution 1 mM NaNO2 (section c in the Fig. 3c). This differ-
ence suggests that the hydrophobicity observed for 2X-LIG 
hinders the formation of a water layer, as previously reported 
[52] and contributes to a more stable potential. Moreover, 
the membrane applied onto 2X-LIG electrodes was thicker 
than the one applied to 1X-LIG (Fig. S5e) due to the mem-
brane flowing over the 1X-LIG electrode stem, which pos-
sibly influenced the poor performance of the single-lasing 
electrodes as a recent study has reported that thin ion-selec-
tive membranes might exhibit anomalous potentiometric 
response because of changes in the water layer composition 
[102].

Another study to evaluate the potential stability was 
accomplished using constant current chronopotenti-
ometry by applying a current of ± 1 nA, which is suffi-
cient to polarize the surface of the electrode to calculate 
its capacitance [103] (Fig. 3d). The capacitances of both 
ISEs were calculated from Eq. S6. The potential drifts and 
capacitances were 11.7 ± 3.1 µV s−1 and 91.0 ± 23.7 µF for 
1X-LIG, respectively, and 12.4 ± 1.0 µV s−1 and 88.3 ± 8.2 
µF for 2X-LIG, which are very close to previous studies 
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with graphene-based ISEs, that obtained potential drifts 
in the range of 10 to 13 µV s−1, and capacitances varying 
from 75 to 95 µF [52, 104]. No significant difference was 
observed for potential drifts (p = 0.5808) and capacitances 
(p = 0.8425), calculated from chronopotentiometry, when 
comparing ISEs made on hydrophilic and hydrophobic sur-
faces. However, the potential drift was notably higher for 
the hydrophilic SC-ISE observed from the water layer test. 
According to Eq. S6, the calculated capacitance is inversely 
proportional to the potential drift, which means higher 
capacitances are associated with more stable potential. As 
previously stated, one of the conditions for providing a stable 
and reliable SC-ISE is ideally nonpolarizable interfaces with 
high exchange current densities [105], which implies higher 
capacitances. This statement is relevant when considering 

the design of SC-ISEs for continuous ion monitoring. In 
this study, the capacitance values for both SC-ISEs are not 
significantly different, and they are in the range of other 
published graphene-based ISEs, but the 1-day measurement 
of potential drift (water layer test) displayed a significant 
difference for both, which demonstrates the utility of the 
hydrophobic LIG for ion sensing and in our particular case 
for nitrite ion sensing. Furthermore, the SC-ISE made with 
1X-LIG exhibited a larger variability in potential when read-
ing known concentrations of NaNO2 compared to 2X-LIG 
(Fig. S3a–b and S4a–b). Thus, it implies less accuracy and 
consistency, displaying a higher standard deviation for the 
NaNO2 measurement, which was also considered when 
choosing the hydrophobic LIG as a high-quality, stable sen-
sor for potentiometric detection of nitrite.

Fig. 3   a, b CV measurements for both 1X-LIG and 2X-LIG bare 
electrodes, respectively, at scan rates from 10 to 150  mV  s−1. c 
Water layer test for ISEs based on 1X-LIG and 2X-LIG, immersed 
in 1 mM NaNO2 (1), 1 mM KCl (2), and back to 1 mM NaNO2 (3) 

with 2X-LIG displaying lower potential drift. d Chronopotentiometry 
responses for both SC-ISEs based on 1X-LIG and 2X-LIG, with no 
significant difference observed for potential drift and capacitance val-
ues
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Nitrite sensing

Open-circuit potentiometry was used to obtain calibration 
curves for nitrite SC-ISE fabricated from 1X- and 2X-LIG in 
DI water by incrementally increasing the nitrite levels in the 
electrochemical cell. The calibration curves demonstrated 
that both types of sensors performed following the Nernst 
equation (Eq. S7), which linearly relates the measured 
potential with the activity of a target ion, exhibiting sensi-
tivities of 58.2 ± 2.0 and 59.5 ± 0.8 mV dec−1, respectively 
(Fig. S3). The reproducibility of both sensors was evaluated 
considering the relative standard deviation values (RSD, Eq. 
S4) for the respective sensitivities, which are based on the 
slope of the linear calibration curve. The RSD values were 
3.4% (n = 4) and 1.3% (n = 4) for sensors based on hydro-
philic (1X-LIG) and hydrophobic (2X-LIG), respectively. 
These low values attest to the high reproducibility of the 
presented sensors. Additionally, once 2X-LIG was selected 
to perform the sensing analysis in real samples, 20 sensors 
were tested with sausage, ham, and bacon, and the RSD for 
their sensitivity was 5.51% (n = 20), indicating that even with 
an increase in the sample size, the RSD remains low.

Similar calibrations were performed in the presence of 
different salts (NaCl, NaH2PO4, and NaNO3) to evaluate 
the effect of interfering ions commonly present in cured 
food (Fig. S4d). These calibrations enable the calculation 
of the selectivity coefficients (Eq. S5) for each tested ion 
and are reported in the last column of Table 1. These 
coefficients were relatively similar to a previously 
published work that also tested nitrite-ISE [106], where the 
logK

pot

NO2,i
 for Cl−, NO3

−, and H2PO4
− ranged from − 2 to − 3, 

showing that these three ions are not strictly discriminated 
by the nitrite ionophore [80] with H2PO4

− showing the 
largest interference. Nonetheless, the results for nitrite 
determination showed that interfering ions did not 
negatively affect the sensor’s performance in food samples.

Previous studies have developed sensors that can detect 
nitrite at very low detection limits, often in the nanomolar 
range (Table 2); however, not only these sensors require 
noble metals and other expensive materials to fabricate, but 
also need extensive sample pre-treatments. Most of them 
show a limited detection range regarding the upper limit 

imposed by federal regulations in the USA [13] ( ≈ 4 × 10
−3 

M or 200 ppm of nitrite), which results in the need of sev-
eral dilutions and sample preparation. Furthermore, nitrite 
sensors based on potentiometric techniques are not very 
common (Table 2), showing an opportunity for implement-
ing this little-explored approach. As usual for potentio-
metric techniques, the sensor developed herein can detect 
nitrite in a wide range that spans four orders of magnitude 
(Fig. 4a), 0.33 to 4600 ppm, far exceeding the federally set 
limit for cured meats as well as for drinking water (1 ppm 
according to U.S. Environmental Protection Agency) [14]. 
Additionally, the developed sensing method does not require 
sample dilutions or pre-treatments, avoiding major intrinsic 
errors, and exhibits a relative low cost per sensor, approxi-
mately US$ 1.20, considering only material expenses.

A review paper published in 2019 compared more than 
a hundred graphene-based electrochemical sensors for 
nitrite detection, and all of them used either voltammetry 
or amperometry as the electrochemical technique [78]. In 
many of these works, in addition to the excessive and labo-
rious steps to obtain the modified electrodes, the detection 
ranges were not as wide as expected, except for a few cases 
where they were within the regulated levels for food but 
only tested in water sources. The ability to address all 
existing challenges regarding the stability and reliability 
of the measured potential, solid contact surface structure, 
and selectivity, the present nitrite sensor, based on a poten-
tiometric technique, offers an alternative method with an 
unusual approach and outstanding sensing performance.

Before measuring the potential of food extracts, the sen-
sors were calibrated by measuring the emf of six different 
nitrite solutions with known concentrations ranging from 
10 to 10,000 µM (Fig. S4e). Average measurement time 
was 5 min, and response time at 95% of the stead-state 
signal (t95) was 9 s. The emf obtained for each sensor 
corroborated with the known nitrite concentrations by 
applying it to the linear equations obtained from the cali-
brations. A correlation relating expected and experimen-
tal values are shown in Fig. 4c, where the experimental 
values are notably close to the expected ones, especially 
at higher concentrations, exhibiting a mean absolute per-
centage error (MAPE) of 6.7% (Eq. S8). These MAPE 

Table 1   Electrochemical performance of nitrite SC-ISE based on 2X-LIG and selectivity coefficients at 1  mM interfering-ion concentration 
(n = 4). Values given are mean ± standard deviations

Sensitivity (mV/dec) LOD (µM) Range of detection (M) Standard potential Eo (mV) Response time (s) Selectivity coefficient

 − 59.5 ± 0.8 7.2 ± 3.6 10−5 to 10−1  − 13.1 ± 4.0 9 ± 2 logK
pot

i,Cl−         −1.74 ± 0.05

logK
pot

i,(H2PO4)
− −3.17 ± 0.02

logK
pot

i,NO−
3

        −1.39 ± 0.05
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results are indicative of the high reliability of the devel-
oped method. The application of MAPE as a loss function 
for regression analysis is relevant both from practical and 
theoretical points of view because of the existence of an 
optimal (real) model that allows for verification of empiri-
cal values, where the consistency can be proved [120].

To validate the method, a standard spectrophotometric 
assay that uses Griess reagents for nitrite detection [83, 
121] was compared to the potentiometric response obtained 
with the developed nitrite sensor. There were no significant 
differences for samples analysis of sausage (p = 0.2369), 
ham (p = 0.3025), and bacon (p = 0.6141) when compar-
ing both potentiometric and spectrophotometric techniques 
(Fig. 4d). For the Griess method, a linear calibration curve 
was obtained by measuring the absorbance of solutions with 
different nitrite concentrations (Fig. 4b). In this work, all 
food samples tested complied with federal legislation, with 
nitrite levels below 200 ppm. Based on the present method 
and the Griess standard method, respectively, the sausage 
samples exhibited 3.8 ± 1.1 ppm and 4.7 ± 0.9 ppm, ham 

samples exhibited 23.5 ± 2.4 ppm and 21.5 ± 3.0 ppm, and 
bacon samples exhibited 31.2 ± 4.6 and 29.7 ± 2.7 ppm of 
nitrite. It is relevant to mention that these sensors can be 
used multiple times to test different samples in sequence. 
Additional studies should be performed in future works to 
precisely describe how many times these sensors can be used 
and their shelf-life under storage. Furthermore, there is a 
growing interest in using SC-ISE sensors for continuous 
measurements for in-field applications, and in this case, it 
would be desirable to add other conductive materials, such 
as metal nanoparticles or conductive polymers to the LIG 
surface to increase capacitance that could improve potential 
stability, and consequently reduce potential drift [122, 123].

Conclusions

This work reports the successful development of a solid-
contact-ion selective electrode (SC-ISE) by utilizing a laser-
induced graphene (LIG) platform capable of monitoring 

Table 2   Comparison of recently published reports on electrochemical nitrite sensors

ATP, aminothiophenol; PVA, polyvinyl alcohol; GA, glutaraldehyde; SPE, screen-printed electrode; HNTs, natural halloysite nanotubes; GO, 
graphene oxide; AuNPs, gold nanoparticles; CMK-8, mesoporous carbon composites; CP, chronopotentiometry; CS, chitosan; CTAB, hexadecyl 
trimethyl ammonium bromide; CuTSP, copper tetrasulfonated phthalocyanine; CV, cyclic voltammetry; DPV, differential pulse voltammetry; 
FeT4MPyP, iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin; GCE, glassy carbon electrode; LIG, laser-induced graphene; Mb, myoglobin; ION-
RGO, iron oxide nanoparticle with reduced graphene oxide; MWCNT, multiwall carbon nanotubes; OCP, open-circuit potentiometry; RGO, 
reduced graphene oxide; SWV, Square wave voltammetry.

Transducer Functionalization Electrochemical tech-
nique

LOD (µM) Detection range (M) Sample Ref

GCE Hemoglobin/AuNPs-
CMK-8/GC

DPV 0.0021 5 × 10−9 to 10−3 Extract of meat [107]

GCE FeT4MPyP/CuTSP DPV 0.1 5 × 10−7 to 7.5 × 10−6 Extract of sausage and 
vegetables

[108]

GCE Cu/MWCNT/RGO SWV 0.03 10−7 to 7.5 × 10−5 Extract of sausage, 
salami, and cheese

[84]

GCE TiO2–Ti3C2TX nanohy-
brid/CTAB/CS

DPV 0.85 3 × 10−6 to 1.25 × 10−3 Water and milk [109]

Au-SPE 2-ATP/PVA/GA/AuNPs DPV 4  ~ 10−5 to 10−3 Exhaled breath conden-
sate

[110]

GCE Au–HNTs–GO Amperometry 0.03 10−7 to 6.2 × 10−2 Tap water [111]
GCE Fe-BZIM/Nafion CV and CP  < 1 10−6 to 10−4 - [112]
GCE GO-MWCNT-Pt/Mb Amperometry 0.93 10−6 to 1.2 × 10−2 Rain, river, and tap water [113]
GCE MWCNT/nitrite-selective 

membrane
Potentiometry 0.6 10−6 to 10−2 Seawater [114]

LIG Bare-LIG DPV 0.8 5 × 10−6 to 4.5 × 10−4 Tap water and pickle 
water

[115]

LIG CS DPV 0.9 2 × 10−6 to 10−3 Tap water and lake water [116]
LIG MWCNT-AuNPs SWV 0.9 10−5 to 1.4 × 10−4 Tap water and PBS [117]
LIG ION-RGO DPV 7.21 10−5 to 4 × 10−4 PBS buffer [118]
LIG Bare-LIG DPV 0.27 10−5 to 7 × 10−5 Buffered solution [119]
LIG Nitrite-selective mem-

brane
OCP 7.2 10−5 to 10−1 Extract of cured meat This work
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nitrite levels in cured food products over regulatory compli-
ance ranges. The hydrophobic LIG-electrodes proved more 
suitable as SC-ISE than the hydrophilic LIG because it hin-
dered the formation of a water layer with significantly lower 
potential drift, contributing to a more stable potential. These 
sensors exhibited a wide linear range spanning four orders 
of magnitude of nitrite concentration (10−5 to 10−1 M), near-
theoretical sensitivity of 59.5 mV/dec, and a considerably 
low detection limit when compared to the limits imposed by 
federal regulations. These analytical characteristics resem-
ble or exceed previous nitrite sensing studies [78] and far 
exceed the federal limit of ~ 200 ppm in cured meat [13]. 

Importantly, other ions commonly found in cured meats 
did not prevent the sensors from detecting the target ion. In 
just 5 min, the ISE-LIG sensor could quantitatively detect 
nitrite in extracts of cured meats with no significant differ-
ence from the standard method. In summary, the ISE-LIG 
sensor not only demonstrates a sensitive and rapid method 
for nitrite monitoring but also has the potential for wide-
spread adoption given its fabrication using inexpensive and 
high-throughput laser induction technique that eliminates 
multiple preparation steps and does not require modification 
of electrodes with nanomaterials as in previous reports [84, 
107, 110]. Furthermore, this sensing platform can be easily 

Fig. 4   a Calibration curve with half-log step additions ranging from 
10−7 to 10−1 M of NaNO2, showing a highlighted linear range, n = 4. 
b Calibration curve obtained by measuring the absorbance of differ-
ent nitrite concentrations using the Griess reagents kit, inlet: triplicate 
of NaNO2 (100, 50, 25, 12.5, 6.25, 3.125, 1.5625 µM) reacting with 
these reagents. c Comparison between expected and experimental 

potential readings at five different nitrite concentrations 50, 100, 500, 
103, and 10.4  µM, exhibiting a slight offset from the ideal correla-
tion. d Validation of the developed method compared to the stand-
ard method, with no significant differences for all three types of meat, 
units in µM (α < 0.05)
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modified for many ions relevant to human health, precision 
agriculture, surface and drinking water quality, and food 
contaminant monitoring, which suggests its widespread use 
in future potentiometric sensing applications.
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