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We derive the Eulerian formulation for a peridynamic (PD) model of Newtonian viscous 
flow starting from fundamental principles: conservation of mass and momentum. This 
formulation is nonlocal, different from viscous flow models that utilize numerical methods 
like, e.g., the so-called “peridynamic differential operator” to approximate solutions of 
the classical Navier-Stokes equations. We show that the classical continuity equation is 
a limiting case of the PD one, assuming certain smoothness conditions. The PD model 
for viscous flow is calibrated by enforcing linear consistency for the viscous stress term 
with the classical Navier-Stokes equations. Couette and Poiseuille flows, and incompressible 
fluid flow past a regular lattice of cylinders are used to verify the new formulation, 
at low Reynolds numbers. The constructive approach in deriving the model allows for 
a seamless coupling with peridynamic models for corrosion or fracture for simulating 
complex fluid-structure interaction problems in which solid degradation takes place, such 
as in erosion-corrosion, hydraulic fracture, etc. Moreover, the new formulation sheds light 
on the relationships between local and nonlocal models.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Nonlocality plays important roles in many phenomena, including anomalous diffusion [1,2] and turbulence in fluid mo-
tion [3–5], and effects of microstructure in the deformation and fracture of solid materials [6,7]. Classical models based on 
PDEs have difficulties dealing with problems involving nonlocal effects. Fractional calculus is a powerful mathematical tool 
that can describe nonlocal behavior. However, models based on fractional calculus are computationally costly because the 
integrals in fractional calculus are defined over the entire space [8]. The peridynamic (PD) theory, which was introduced 
as a nonlocal extension of the classical continuum mechanics [9], provides an alternative to fractional calculus. It has been 
shown that PD operators converge to corresponding classical and fractional operators as the nonlocal size δ approaches 
zero and infinity, respectively [8,10]. Therefore, both classical and fractional operators can be seen as limiting cases of PD 
operators.

In addition to describing anomalous phenomena, PD models can be advantageous in simulating regular/common but 
complex physical/chemical problems. For example, classical local models have difficulties dealing with problems involving 
discontinuities or moving boundaries, such as those occurring in fracture, corrosion, etc. PD models, however, do not have 
such issues because they employ integro-differential equations (IDEs) rather than partial differential equations (PDEs), and 
thus cracks and other forms of damage can initiate and propagate naturally and autonomously [9,11,12]. Classical formula-
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tions also encounter significant challenges for problems that involve complex interactions between fluids and solids, such 
as erosion corrosion and hydraulic fracture, while PD models, due to their generality/flexibility, have the potential to better 
deal with such problems [13,14].

While the PD method has been used extensively for mechanical and diffusion-type problems involving cracks and damage 
[15,16], there is very little existing literature on formulations or applications of the PD method to fluid mechanics. State-
based PD models for fluid flow in porous media are presented in [13,14,17] and are coupled with mechanical models to 
simulate the fluid-driven cracks [13,14]. These models are limited to porous flows in which the flow is driven by the pressure 
gradient. Later, more general models for fluid flow based on the Navier-Stokes equations (NSEs) have been developed in the 
PD framework to simulate laminar fluid flows at low Reynold numbers. Some of them make use of the PD correspondence 
model [18], such as the updated Lagrangian particle hydrodynamics (ULPH) [19–22] and the PD Moving Particle Semi-
implicit (MPS) model [23].

An important distinction needs to be drawn between ordinary PD state-based models, and correspondence models. The 
latter generally result in non-ordinary state-based PD models. They employ a “translation” between PD forces/displacements 
and the classical tensor-representation of stresses and strains, the main goal being to reuse existing classical constitutive 
models. Stresses and strains, being second-order tensors, are linear mappings (therefore continuous), in contrast with PD 
forces/displacement fields which are more general constructs, nonlinear mappings, allowing for representing very general 
material behavior, including discontinuities. According to [24,25], the discretized PD correspondence models are equivalent 
to SPH and RKPM under certain conditions, and thus share some common numerical issues such as zero-energy modes.

We also note the use of the “PD differential operators” [26,27] and the “peridynamic D operators” [28] to compute 
derivatives using integral operators. It is important to clarify that these are “nonlocal numerical methods” that are used 
to solve local models (based on PDEs), quite different from a nonlocal model (like PD, which does not employ spatial 
derivatives).

The goal of our manuscript is to formulate (from basic principles) a new nonlocal (or peridynamic) version of the local 
NSEs and introduce numerical algorithms to compute approximate solutions to these new equations. The nonlocal NSEs can 
be useful in a variety of important applications, including fluid-structure interactions which lead to damage in the structure 
(e.g., hydraulic fracture and erosion-corrosion), modeling of complex fluids flow [29], etc.

It is worth noting that a PD formulation of the Navier-Stokes equations is perhaps a more natural model for fluids. First, 
we note that it is more general (at least formally), in the sense that it contains the classical Navier-Stokes equations as a 
special case (again, at least formally) by making a special choice of the PD kernel. Second, while proving (or disproving) the 
existence and uniqueness of global strong solutions to the classical incompressible 3D Navier-Stokes equations remains a 
challenging open problem, there is at least some hope that for a nonlocal PD formulation, such as the one presented in the 
present work, will allow for a proof of existence and uniqueness, at least for certain kernels. For instance, by analogy, it has 
been proven in [30] that a certain non-local version of the inviscid Burgers equation is globally well-posed, even though the 
classical version develops a singularity in finite time (see also [31] and the references therein). Third, on a deeper level, it 
may be that certain fluid regimes are more accurately described by taking into account non-local interactions rather than 
insisting that a strict local balance be maintained at every point in space and time, which in turn necessitates that solutions 
have at least some degree of smoothness (possibly in a weak sense) in order to make sense of the equations. For instance, 
it was noted by Ciprian Foias [32] that since (i) one can prove global well-posedness for the (modified) Navier-Stokes 
equations with higher-order diffusion added, (ii) higher-order diffusion modifications have been used with some success in 
certain ocean models, and (iii) higher-order derivatives have larger stencils (one pictures larger horizon sizes), there is some 
indication that including non-local interactions (in addition to the nonlocal effects of the pressure) could perhaps provide a 
model that more realistically captures the true dynamics of the flow.

In this work, we construct, for the first time, a PD bond-based model using the Eulerian description for viscous flow, 
starting from fundamental conservation principles, in order to arrive at a PD counterpart of the classical Navier-Stokes 
equation. We investigate the convergence of the terms in the PD continuity equation to their classical counterparts as the 
nonlocal size in PD equations approaches zero. (In forthcoming works, e.g., [33], we will study the convergence of solutions 
of the PD equations to solutions of the classical equations.). We test the PD model numerically using examples for which 
(classical) analytical or numerical solutions are available in the literature.

This paper is organized as follows: in Section 2 we introduce the constructive approach to arrive at the PD formulation 
for viscous flow and show convergence to the classical Navier-Stokes equations in the limit of the horizon going to zero; in 
Section 3 we explain the numerical discretization used; in Section 4 we verify our model for several problems with classical 
analytical/SPH solutions; conclusions are given in Section 5.

2. Peridynamic constructive model for viscous flow

In the classical theory of fluid mechanics, the motion of Newtonian fluids, in its Eulerian form, is described by the 
following NSEs [46]:

∂ρ

∂t
= −∇ · (ρv) (1)

∂ (ρv) = −∇ · (ρv ⊗ v) − ∇p + μ∇2 v + ρb (2)

∂t

2
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Fig. 1. A peridynamic body with a generic point x and its horizon Hx . Nonlocal interactions exist through the bond between two points, e.g., point x and 
an arbitrary point x̂ located in its horizon Hx .

where ρ is the density, v is the velocity, p is the pressure, μ is the viscosity and b is a given body force density. These 
equations are derived from conservation principles of mass and momentum [46]. Note that an appropriate constitutive law 
is required to solve the above NSEs (e.g., constant ρ for incompressible fluids or equation of state for compressible fluids).

In this section, we derive an Eulerian PD model for viscous flow from a general PD continuity equation, following a 
procedure similar to that used in the derivation of the classical Eulerian Navier-Stokes equations.

Consider d= 2 or 3, and let � denote an open bounded subset of Rd. Points in Rd are denoted by the vectors x or 
x̂. Functions from �, or subsets of �, and time t ∈ [0, T ] into R or Rd are denoted by Roman or Greek letters, plain-face 
italic for scalars and lower-case bold italic for vectors, e.g., θ(x, t) and v(x, t). For notation simplicity, in much of the rest 
of the paper, we omit the spatial and temporal dependencies of these functions. For example, we denote θ and θ̂ for θ(x, t)
and θ(x̂, t), respectively.

In PD models, each material point x ∈ � interacts with other points within its neighborhood Hx , which is called the 
horizon region of x and is usually selected to be a disk when d= 2 (or sphere when d= 3) centered at x. For a modification 
of this formulation to allow use of non-spherical horizons, please see [45] The radius of Hx is called the horizon size (or 
simply “the horizon”) and denoted by δ. Objects that carry the pairwise nonlocal interactions between points are called PD 
bonds. Fig. 1 schematically shows a peridynamic body with a generic point x, its family and its horizon.

2.1. The peridynamic continuity equation

Bonds in PD models for solids are representations of force interactions between material points, in a sense similar to 
how atomic bonds act between atoms, molecular bonds between molecules, etc. PD models assume long-range interactions 
even at larger scales, and this is extremely useful when modeling damage initiation and its evolution using, for example, 
the meshfree discretization of the PD equations, because it removes geometrical constraints present in other numerical 
methods, like the Finite Element Method. For fluids, such long-range interactions can be useful when modeling, for example, 
fluid-structure interaction that leads to damage in the structure, corrosion/erosion under flow, complex fluids (fluids with 
particles), etc. For solids, nonlocality helps in homogenizing microstructures [6,34,35] and predict the complex evolution of 
damage and cracks in a variety of materials [7,36–38]. While a Lagrangian formulation for PD models of solids is natural, 
for fluids an Eulerian representation is more appropriate and will be used in this work. Eulerian-type PD models have been 
used before in heat and mass transfer as well as corrosion damage models, based on the concept of “diffusion PD bonds”, 
which can be thought of as “pipes” through which “fluxes” are flowing, allowing points in the domain to interact with 
one another [39–42]. When we derive the PD formulation of mass conservation in this work, we use a similar concept for 
mass transport. For corrosion problems, the mass transfer model was complemented by damage and phase-change models 
[43–45].

To construct a bond-based PD model for fluid motion, we first consider an imaginary cylinder in a fluid domain with 
two points x and x̂ located at the top and bottom of the cylinder, respectively, as shown in Fig. 2. It is assumed that no 
mass transfer takes place through the cylinder’s side surface. Even if the flow velocity has a component perpendicular to 
the axial direction of the cylinder, it does not participate in the transport of mass through the cylinder. Then, the continuity 
equation for some integrated property θ (mass, linear momentum, etc.) associated with the fluid, in the Eulerian form, can 
be expressed by:

hs
∂θa

∂t
+ s
(
θ̂ v̂ − θ v

)
· e = hsra (3)

where h and s are the height and cross-sectional area of the cylinder, respectively; θa and ra are the average θ and 
source/sink (taking the source as positive) in the cylinder, respectively; v is the flow velocity of the fluid; e is the unit 
vector x̂−x∥∥ˆ ∥∥ . Since h = ∥∥x̂ − x

∥∥, dividing Eq. (3) by both h and s gives us:

x−x

3
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Fig. 2. A cylinder in the fluid domain with two points x and x̂ located at the top and bottom. It is assumed that nothing can transfer through the cylinder’s 
side surface.

∂θa

∂t
+ θ̂ v̂ − θ v∥∥x̂ − x

∥∥ · e = ra. (4)

By taking x̂ to x, we would recover the classical derivation of the conservation equation. Instead, we assume the equation 
to hold for finite distances 

∥∥x̂ − x
∥∥.

In the peridynamic framework, each material point x ∈ � interacts with points located in Hx through PD bonds. For each 
of these PD bonds, we assume that there is only mass transfer between PD points, which allows us to use Eq. (4). For the 
bond connecting x̂ and x, we can then write:

∂θa

∂t
+ α

θ̂ v̂ − θ v∥∥x̂ − x
∥∥ · e = ra (5)

where α is a coefficient which connects the macroscale flow velocity to the bond-level flow velocity. It will be determined 
later by requiring that the PD equation/solution converges (see Section 2.2) to the classical one as δ goes to zero. Note that 
α can be selected as a function of 

∥∥x̂ − x
∥∥ as well [39], but this is not considered in this work for simplicity. Integrating 

Eq. (5) over the horizon of point x we get:

∫
Hx

∂θa

∂t
dx̂ + α

∫
Hx

θ̂ v̂ − θ v∥∥x̂ − x
∥∥ · edx̂ =

∫
Hx

radx̂ (6)

We assume the following relation between θ at point x and time t and the average θ in all the PD bonds connected at x:∫
Hx

θadx̂ = θ VH (7)

where VH is the volume (area in 2D and length in 1D) of the horizon region, a constant in this paper. Then we can write:∫
Hx

∂θa

∂t
dx̂ = ∂θ

∂t
VH (8)

Similarly, we have:∫
Hx

radx̂ = rVH (9)

Therefore, Eq. (6) becomes:

∂θ (x, t)

∂t
= − α

VH

∫
Hx

θ
(
x̂, t
)

v
(
x̂, t
)− θ (x, t) v (x, t)∥∥x̂ − x

∥∥ · e
(
x, x̂
)

dx̂ + r (x, t) (10)

which is the general PD continuity equation in Eulerian form.
In the next section, we first show that the classical continuity equation is a limiting case of the PD form in Eq. (6). This 

is achieved by showing that the PD continuity equation converges to that of the classical one as δ → 0.
4
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2.2. Convergence of the peridynamic continuity equation to the classical one

To simplify the writing, we use the following notation for the weight function:

ω = ω
(
x, x̂
)= α

VH
∥∥x̂ − x

∥∥ (11)

and for the nonlocal gradient and divergence operators:

Gω (φ) (x) =
∫
Hx

ω
(
φ
(
x̂, t
)− φ (x, t)

)
edx̂ (12)

Dω (ϕ) (x) =
∫
Hx

ω
(
ϕ
(
x̂, t
)− ϕ (x, t)

) · edx̂ (13)

where φ and ϕ are some arbitrary scalar and vector fields in L2, respectively. The weighted nonlocal operators Gω (φ) and 
Dω (ϕ) have been shown (see Section 5.2 in [47]) to converge (in the L2 norm) to their differential counterparts ∇φ and 
∇ · ϕ , respectively, as δ → 0 (δ-convergence), if the weight function satisfies the following condition:∫

Hx

ω
∥∥x̂ − x

∥∥dx̂ = d (14)

in which d is the dimension. Substitute Eq. (11) into Eq. (14) leads to α = d. In Appendix A, as an illustration, we use 
simple Taylor expansions to show that Gω (φ) converges to ∇φ when α = d. For more detailed proofs of convergence in 
the L2 norm for both nonlocal gradient and divergence, the reader is referred to [47].

Using the nonlocal operators defined in Eqs. (12) and (13), the integral in Eq. (10) can be written as:

Dω (θ v) =
∫
Hx

ω
(
θ̂ v̂ − θ v

)
· edx̂

=
∫
Hx

ω
(
θ̂
(

v̂ − v
)− θ

(
v̂ − v

)+ θ
(

v̂ − v
)+ v

(
θ̂ − θ

))
· edx̂

= v ·Gω (θ) + θDω (v) +Aω (θ, v) (15)

in which the last term is

Aω (θ, v) =
∫
Hx

ω
(
θ̂ − θ

)(
v̂ − v

) · edx̂ (16)

Therefore, Eq. (10) can be written as:

∂θ (x, t)

∂t
= −v ·Gω (θ) − θDω (v) +Aω (θ, v) + r (x, t) (17)

We show that Aω (θ, v) → 0 as δ → 0, as follows:

Aω (θ, v) =
∫
Hx

ω
(
θ̂ − θ

)(
v̂ − v

) · edx̂

≤
∫
Hx

∣∣∣ω(θ̂ − θ
)(

v̂ − v
) · e
∣∣∣dx̂

≤
∫
Hx

|ω|
∣∣∣(θ̂ − θ

)∣∣∣ ∥∥v̂ − v
∥∥dx̂

≤ d

VH

∫
Hx

1∥∥x̂ − x
∥∥
∣∣∣(θ̂ − θ

)∣∣∣ ∥∥v̂ − v
∥∥dx̂ (18)

According to Taylor’s theorem and the Cauchy-Schwarz inequality, we have on Hx:
5
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Fig. 3. Velocity decomposition at x and x̂ located at the top and bottom, respectively, for an imaginary cylinder in the fluid domain.∣∣∣θ̂ − θ

∣∣∣∥∥x̂ − x
∥∥ ≤ ‖∇θ‖ + 1

2

∥∥∥∇2θ

∥∥∥∥∥x̂ − x
∥∥+ O

(∥∥x̂ − x
∥∥)≤ ‖∇θ‖ + δ

2

∥∥∥∇2θ

∥∥∥+ O (δ) (19)

and ∥∥v̂ − v
∥∥≤ ‖D v‖∥∥x̂ − x

∥∥+ O
(∥∥x̂ − x

∥∥)≤ ‖D v‖ δ + O (δ) (20)

where

D v = ∂vi

∂x j
ei ⊗ e j (21)

If D v and ∇θ are bounded in �, we have:

Aω (θ, v) ≤ d

(
‖∇θ (x)‖ + δ

2

∥∥∥∇2θ (x)

∥∥∥+ O (δ)

)
(‖D v (x)‖ δ + O (δ)) → 0 as δ → 0 (22)

Comparing the PD form of continuity equation in Eq. (17) with its classical form:

∂θ

∂t
= −v ·∇θ − θ∇ · v + r, (23)

and considering that Gω (θ) → ∇θ and Dω (v) → ∇ · v in the sense of L2 asδ → 0, we conclude that the PD continuity 
equation converges to the classical version asδ → 0.

2.3. The peridynamic formulation for viscous flow

Starting from the general continuity equation given in Eq. (10), we now derive the PD governing equations for vis-
cous flow. When the property θ in Eq. (10) is mass, by taking r = 0, we obtain the PD mass continuity equation without 
sources/sinks:

∂ρ

∂t
= − d

VH

∫
Hx

ρ̂ v̂ − ρv∥∥x̂ − x
∥∥ · edx̂ (24)

where ρ is the mass density. When the property θ is the linear momentum, we have the following PD equation of motion:

∂ (ρv)

∂t
= − d

VH

∫
Hx

ρ̂ v̂ ⊗ v̂ − ρv ⊗ v∥∥x̂ − x
∥∥ · edx̂ + r (25)

in which the generic momentum source r consists of internal and external forces. The internal forces can be decomposed 
into pressure and viscous forces. To find the expression for these forces in the PD framework, we consider again the cylinder 
shown in Fig. 2. As shown in Fig. 3, in a viscous flow, the force exerted on the cylinder along its axial direction is:

s
(

p̂ − p
)

e (26)

The viscous force, inspired by the shear bond force introduced in PD bond-based mechanical models [48,49], can be formu-
lated as the shear force exerted on the cylinder due to the velocity difference between the two ends of the cylinder:
6
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μs
(I − e ⊗ e)

(
v̂ − v

)∥∥x̂ − x
∥∥ (27)

in which μ is the viscosity of the fluid, and (I − e ⊗ e)
(

v̂ − v
)

is the portion of velocity difference, between the two ends 
of the cylinder, that is perpendicular to the cylinder’s axial direction e.

Following a similar procedure used to derive the general PD continuity equation as shown in Section 2.1, we have:

r = − αp

VH

∫
Hx

p̂ − p∥∥x̂ − x
∥∥ · edx̂ + μαμ

VH

∫
Hx

(
(I − e ⊗ e)

(
v̂ − v

))
∥∥x̂ − x

∥∥2
dx̂ + ρb (28)

Therefore, the PD governing equations for viscous flow are established as follows:

∂ρ (x, t)

∂t
= − d

VH

∫
Hx

ρ̂ v̂ − ρ (x, t) v (x, t)∥∥x̂ − x
∥∥ · e

(
x, x̂
)

dx̂ (29)

∂ (ρ (x, t) v (x, t))

∂t

= − d

VH

∫
Hx

ρ
(
x̂, t
)

v
(
x̂, t
)⊗ v

(
x̂, t
)− ρ (x, t) v (x, t) ⊗ v (x, t)∥∥x̂ − x

∥∥ · e
(
x, x̂
)

dx̂

− αp

VH

∫
Hx

p
(
x̂, t
)− p (x, t)∥∥x̂ − x

∥∥ · e
(
x, x̂
)

dx̂

+ μαμ

VH

∫
Hx

((
I − e

(
x, x̂
)⊗ e

(
x, x̂
)) (

v
(
x̂, t
)− v (x, t)

))
∥∥x̂ − x

∥∥2
dx̂

+ ρ (x, t) b (x, t) (30)

The PD model for viscous flow contains the pressure field which does not have an explicit equation yet. For incompressible 
Newtonian fluids, because directly solving the original incompressible equations creates numerical difficulties in terms of 
accuracy and efficiency, the artificial compressibility method is commonly used in the literature to handle the pressure term 
(see, e.g., [50–52]). This approach treats the incompressible fluid as a weakly compressible one and adopts an equation of 
state to explicitly determine the pressure field from the density field [51,53] as follows:

p = ρ0c2
0

γ

((
ρ∗

ρ0

)γ

− 1

)
(31)

where ρ0 is the initial density, ρ∗ is the predicted density at the current step, γ is the material constant which is 7 for 
water and c0 is the sound speed in the initial density. The real sound speed is usually not used as it would require a 
significantly small timestep for stability of the numerical model (see Section 3). Instead, an artificial, lower sound speed c, 
which ensures sufficiently accurate solution, is preferred. To keep the density variation of fluid to less than 1% of the initial 
density, the Mach number (M = v/c) must be smaller than 0.1 [51]. This requires the artificial sound speed to be higher 
than 10 times of the maximum fluid velocity.

The PD equations for viscous flow still require determination of the unknown parameters in the weight functions. We 
already know that α = d from Section 2.2. Since αp in Eq. (30) is also a constant coefficient in the PD gradient operator, we 
have αp = α = d. We find αμ by calibration for a simple flow problem, that ensures linear consistency of the formulation 
[40,41]. Consider a steady-state shear-driven fluid flow parallel to the x-axis and with a linear distribution of velocity 
magnitude, i.e., v = v0 y. According to Newton’s law of viscosity, we have τxx = μv0. The counterpart of τxx in PD can be 
formulated as τ PD

xx = αμμv0
10 for 3D and τ PD

xx = 3
16 αμμv0 for 2D. The detailed derivation of τ PD

xx is provided in Appendix A. 
By letting τ PD

xx = τxx , we find αμ = 10 for 3D and αμ = 16
3 for 2D.

2.4. Boundary conditions

Unlike classical local methods, “boundary conditions” in peridynamics are “volume constraints”, being applied through a 
finite layer under the surface of a body. However, in practice, measurements are normally achievable only at the surfaces 
of a body, thus the normal local representation of boundary conditions. For these reasons, imposing local-type boundary 
conditions in peridynamic models is usually desired/needed. Various methods to impose local boundary conditions in PD 
models have been investigated in [47,54,55]. One such method is the fictitious nodes method (FNM) [54–56]. In FNM 
for peridynamics, certain constraints are specified on the fictitious region �̃ = {x /∈ � | distance (x, ∂�) < δ} (the “collar” 
7
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Fig. 4. Schematic of a peridynamic domain (�), its boundary (∂�), and its fictitious region, �̃.

Fig. 5. Uniform discretization for the 2D PD model. The circular region is the horizon region of node xi .

outside of the solution domain � shown in Fig. 4), so that desired local boundary conditions imposed at ∂� are satisfied 
or approximately satisfied. Fig. 4 schematically shows the solution domain �, its boundary ∂�, and the fictitious region, �̃.

In fluid dynamics, there are a number of different boundaries conditions, such as inlet/outlet, free and solid wall bound-
aries [57]. Various treatments are required for each of these types. In this work, we only consider no-slip solid wall 
boundaries. The corresponding boundary conditions then are:

v · n = 0

v · t = 0 (32)

where n and t are vectors normal and tangential to the boundary, respectively. We use the naïve-type FNM (because of 
its ease of implementation, see [58]) to enforce the above boundary conditions, i.e., the velocity assigned to the fictitious 
points x ∈ �̃ are the same as that of the solid wall:

v (x) = vwall = 0 (33)

3. Numerical implementation

For the spatial discretization, we discretize the domain uniformly [59] into cells with nodes in the center of those cells. 
Fig. 5 shows a 2D uniform discretization with grid spacing �x around a node xi . Non-uniform grids are also possible 
[60–62], and very useful when having to conform to round boundaries [7,63], but this is not pursued in this work.

To discretize the peridynamic integro-differential equations, we use a meshfree method with one-point Gaussian quadra-
ture [59] for the approximation of the integral term. For the time integration we select the forward-Euler method for 
simplicity.

The discretized PD equations for viscous flow (Eqs. (29) and (30)) are as follows:

ρn+1
i =ρn

i − d�t

πδ2

∑
j∈Hi
j �=i

(
ρn

j vn
j − ρn

i vn
i

ξi j
· x j − xi

ξi j
V i j

)
(34)

vn+1
i =vn

i + �t

ρn
i

⎡
⎢⎢⎣− d

VH

⎛
⎜⎜⎝∑

j∈Hi

(
ρn

j vn
j ⊗ vn

j − ρn
i vn

i ⊗ vn
i

)
ξi j

· ξ i j V i j

⎞
⎟⎟⎠
j �=i

8
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− d

VH

∑
j∈Hi
j �=i

⎛
⎝
(

pn
j − pn

i

)
ξ i j

ξ2
i j

V i j

⎞
⎠

+μαμ

VH

∑
j∈Hi
j �=i

1

ξ2
i j

(
I − ξ i j ⊗ ξ i j

ξ2
i j

)
·
(

vn
j − vn

i

)
V ij + ρn

i bn
i

⎤
⎥⎥⎦ (35)

where ξ i j = x j − xi and ξi j =|| ξ i j ||. The superscript n means nth load step. The subscripts i and j denote the current node 
xi and its family node x j respectively, in the discretized domain. Hi is the horizon region of node xi , j ∈Hi includes all the 
nodes covered by Hi (fully or partially), V ij is the area of node x j covered by Hi . Note that the partial volume integration, 
which was first proposed in [64] and then further discussed in [65,66], is used to approximate V ij .

For stability of the time-integrator, the time step needs to satisfy several criteria. Here we use similar criteria as those 
in SPH models [52], including a CFL condition [67], the additional constraints due to the magnitude of nodal accelerations a
[68] and the viscous diffusion, as follows:

�t ≤ 0.25
�x

c
(36)

�t ≤ 0.25

(
�x

a

) 1
2

(37)

�t ≤ 0.125
ρ�x2

μ
(38)

where the value of each right-hand side is the minimum over all nodes.
A detailed study of the stability, consistency, and convergence of the numerical scheme, and higher-order schemes, as 

well as simulations in the higher Reynolds number case, will be the subject of forthcoming work. Our purpose here is just 
to demonstrate that a straight-forward implementation agrees with some standard benchmark cases to a reasonable level 
of accuracy—a first step toward validation of the model.

4. Computational validation

In this section, we first verify our PD model for viscous flow using the Couette and Poiseuille flow problems. We test 
whether the PD solution converges, in the limit of horizon going to zero, to the classical analytical solutions. We also study 
the flow through a periodic array of cylinders to test the wall boundary condition for curved geometries and compare with 
an SPH solution (of the corresponding classical model) from the literature.

4.1. Couette flow

Consider two infinite, parallel plates separated by a distance h. The top one, moves with a constant velocity v0 in its 
own plane. This generates a unidirectional fluid motion, called Couette flow. The series solution for the classical model of 
this problem, in terms of the velocity in the horizontal direction, is given by [52]:

vx (y, t) = v0

h
y +

∞∑
n=1

2v0

nπ
(−1)n sin

(nπ

h
y
)

exp

(
−μ

ρ

n2π2

h2
t

)
(39)

In our PD simulation of this Couette flow problem, we choose v0 = 10 μm/s, h = 1 mm, ρ = 103 kg/m3 and μ =
10−3 kg · m−1 · s−1. We make the domain periodic in the x direction to mimic the infinite domain (see Fig. 16 in [44]
for an illustration of how this can be achieved). Fig. 6 shows the comparison of the velocity profile along y-axis between 
the PD solution (for δ = 40 μm and m = 4) and the analytical series solution of the classical model at different times.
A δ-convergence study is then performed, and results are shown in Table 1. Note that the convergence rate of δ-convergence 
is linear because we use the naïve FNM to impose the local boundary condition [58]. Higher convergence rate should be 
possible with the mirror-based FNM, for example, but this is not pursued here.

4.2. Poiseuille flow

The second test case is Poiseuille flow between stationary infinite plates at y = 0 and y = h. The fluid is initially at rest 
and is driven by an applied body force bx parallel to the x-axis for t ≥ 0. The series solution of the classical model for this 
problem give the velocity in the horizontal direction as [52]:
9



J. Zhao, A. Larios and F. Bobaru Journal of Computational Physics 468 (2022) 111509
Fig. 6. Comparison of PD solutions (for δ = 40 μm and m = 4) and series solutions of the corresponding classical model (using the first 50 terms in the 
series) for Couette flow.

Table 1
δ-convergence study for the PD solution of Couette flow.

t = 0.1 s δ = 80 μm δ = 40 μm δ = 20 μm

εr 0.0419 0.0184 0.0075

where εr =
√∑n

i=1(uclassical
i −uPD

i )2√∑n
i=1(uclassical

i )2
, and n is the total number of nodes used in the computation.

Fig. 7. Comparison of PD solutions (for δ = 40 μm and m = 4) and series solutions of the corresponding classical model (using the first 50 terms in the 
series) for Poiseuille flow. Note that v∞

x = vx

(
h
2 ,∞

)
= ρbxh2

8μ .

vx (y, t) = ρbx

2μ
y (h − y) +

∞∑
n=0

4ρbxh2

μπ3 (2n + 1)3
sin
(π y

h
(2n + 1)

)
exp

(
− (2n + 1)2 π2μ

ρh2
t

)
(40)

We choose h = 1 mm, ρ = 103 kg/m3, μ = 10−3 kg · m−1 · s−1 and bx = 1 × 10−4 m/s2. Again, the PD solution matches the 
series solution very well, as shown in Fig. 7.

4.3. Flow through a periodic lattice of cylinders

The previous examples have shown the performance of our method for fluid flow confined by straight channel walls. 
Now we verify the model for flow through a periodic array of disks/cylinders [52] (see Fig. 8), to test the wall boundary 
condition for curved geometries. For implementing periodic BCs in PD models, please see [44]. The parameters used in this 
example are given in Table 2. Fig. 9 shows the comparison for the velocity magnitude and velocity contour lines at steady 
state between PD results (100 × 100 discretization nodes) and SPH results (50 × 50 particles, plus extra particles placed 
on the circular disk to conform better to the actual geometry) from [69]. In spite of using a uniform discretization grid 
that does not conform with the circular disk geometry, the PD results track the SPH solution very well. As mentioned in 
10
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Fig. 8. Schematic of fluid flow driven by a body force around a disk. The cell is repeated by symmetry to represent flow around a periodic array of disks.

Table 2
Parameters for flow through periodic lattice of disks.

Parameters Value Parameters Value

L 0.1 m a 4 × 10−2 m
μ 10−3 kg · m−1 · s−1 f 1.5 × 10−7 m · s−2

ρ 1 kg · m−3 c 5.77 × 10−4 m · s−1

Fig. 9. Contour plots of velocity magnitude by (a) PD model (for δ = 40 μm and m = 4); (b) SPH model [69] (contour lines are labeled in units of 10−4 m/s). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Section 3, PD can also be implemented on non-uniform, conforming grids (see, e.g., [63]), but this is not pursued here for 
simplicity.

5. Conclusions

In this paper, we constructed a peridynamic (PD) alternative of the classical Navier-Stokes equations (in Eulerian formula-
tion) from fundamental conservation principles. The formulation is different from “re-casting” of the classical Navier-Stokes 
equations using the so-called “PD differential operator” found in the literature. The classical continuity equation is shown 
to be a limiting case of the PD one with selected weight functions. The viscous force was formulated based on the PD 
shear bond forces. The weight function present in the viscous force was determined by enforcing linear consistency of the 
viscous stress provided by a PD model with that from a corresponding classical model. The model was verified against 
analytical solutions of the classical model for Couette and Poiseuille flows, as well as against an SPH approximation of the 
classical model for incompressible flow past a regular lattice of cylinders at low Reynolds numbers. The new model can be 
used to solve fluid-structure interaction problems involving damage and degradation, such as erosion, erosion-corrosion and 
hydraulic fracture, by coupling with existing PD models for corrosion and fracture.
11
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Appendix A. Convergence of the PD gradient operator to its classical counterpart

To show the convergence of PD gradient operator Gω (u) to the classical one ∇u, we follow a procedure similar to the 
one used in [70]. Consider an incompressible Newtonian fluid motion in which θ is sufficiently smooth in �, one can write, 
for any x ∈ � and x̂ ∈ Hx that:

û − u = ξiu,i + 1

2
ξiξ ju,i j + 1

3!ξiξ jξku,i jk + . . . i, j,k ∈ [1,d] (41)

where ξ = (x̂ − x
)= ξe = ξiei and d is the space dimension. Substitute Eq. (41), without the remaining terms, into Gω (u)

and consider symmetry of Hx , we get:

Gω (u) =
∫
Hx

ω
(
û − u

)
edx̂ = α

VH

∫
Hx

1

ξ

{
ξiu,i + 1

3!ξiξ jξku,i jk

}
edx̂

= α

VH

∫
Hx

ξi

ξ
u,iedx̂ + α

6VH

∫
Hx

ξi

ξ

ξ j

ξ

ξk

ξ
u,i jkeξ2dx̂ (42)

If d= 2, we have

Gω (u) = α

VH

∫
Hx

ξi

ξ
u,iedx̂ + α

6VH

∫
Hx

ξi

ξ

ξ j

ξ

ξk

ξ
u,i jkeξ2dx̂

= α

πδ2

2π∫
0

δ∫
0

(
cos θ

∂u

∂x
(x) + sin θ

∂u

∂ y
(x)

)[
cos θ

sin θ

]
rdrdθ

+ α

6πδ2

2π∫
0

δ∫
0

(
cos3 θ

∂3u

∂x3 (x) + 3 cos2 θ sin θ
∂3u

∂x2∂ y
(x)

+3 cos θ sin2 θ
∂3u

∂x∂ y2 (x) + sin3 θ
∂3u

∂ y3 (x)

)[
cos θ

sin θ

]
r3drdθ

= α

πδ2

πδ2

2
∇ρ (x) + O

(
δ2
)

= α

2
∇ρ (x) + O

(
δ2
)

(43)

Similarly, for d= 3, we can show that

Gω (u) = α

3
∇ρ (x) + O

(
δ2
)

(44)

Therefore, if we set α = d, the PD operator will converge to the classical one pointwise as δ → 0. For more details, and a 
proof of convergence in the L2 norm, the reader is referred to [47].

Note that boundary effects are not considered here. For those PD points near the boundary which do not have a complete 
horizon region, the above convergence does not stand unless special treatments are provided (e.g., fictitious nodes methods 
[56,58]).
12
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Fig. 10. Computation of force per unit area, at a generic point p, from bond force densities (redrawn from [12]).

Appendix B. Computing PD stress component from bond force densities

To compute the shear stress at an arbitrary point p in the PD model, we first consider a plane intersecting p and normal 
to the y-axis and a thin cylinder below p with cross-sectional area dA and length δ, where δ is the horizon of the PD 
model. Force through the plane on the cylinder is carried through the bonds that have one end in the cylinder and the 
other end on the other side of the plane. A typical point x in the cylinder is located a distance z to the bottom of the plane, 
with 0 < z ≤ δ (Fig. 10). The force density (per unit volume square) in a typical bond connecting this point to the other side 
of the plane is given by f (x, x̂). Using a spherical coordinate system in which φ is the angle from the y-axis, and ξ is the 
bond length, the total force on the cylinder is then (in 3D) [12] (Fig. 10):

dF = dA

2π∫
0

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

f (ξ,φ, θ)ξ2 sinφdφdzdξdθ (45)

The shear stress component at p is then given by:

τ P D
xx = dFx

dA
=

2π∫
0

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

fx(ξ,φ, θ)ξ2 sinφdφdzdξdθ (46)

From Section 2.3, we know that:

f = μαμ

VH

(
(I − e ⊗ e)

(
v̂ − v

))
∥∥x̂ − x

∥∥2
(47)

For the fluid flow parallel to the x-axis and with a magnitude of v0 y, we have

fx = μαμ

VH

(
1 − sin2 θ

)
∥∥x̂ − x

∥∥2
v0
(

ŷ − y
)

(48)

Therefore, we can compute the PD shear stress (flux) from the PD bond density of shear force as follows:

τ PD
xx = μαμ

VH

2π∫
0

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

1

ξ2

(
1 − sin2 θ

)
v0
(

ŷ − y
)
ξ2 sinφdφdzdξdθ =

= −3αμμv0

2δ3

δ∫ ξ∫ cos−1
(

z
ξ

)∫
ξ cos3 φd cosφdzdξ
0 0 0
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= −3αμμv0

8δ3

δ∫
0

ξ

ξ∫
0

(
z4

ξ4
− 1

)
dzdξ = 3αμμv0

10δ3

δ∫
0

ξ2dξ = αμμv0

10
(49)

Similarly, for 2D, we have:

τ PD
xx =

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

fxξdθdzdξ

= μαμ

VH

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

1

ξ2

(
1 − sin2 θ

)
v0
(

ŷ − y
)
ξdθdzdξ = αμμv0

πδ2

δ∫
0

ξ∫
0

cos−1
(

z
ξ

)∫
0

cos3 θdθdzdξ

= αμμv0

πδ2

δ∫
0

ξ∫
0

((
1

3
sin θ

(
2 + cos2 θ

))
| cos−1

(
z
ξ

)
0

)
dθdzdξ

= 2αμμv0

πδ2

δ∫
0

ξ∫
0

⎛
⎝1

3

√
1 −

(
z

ξ

)2
(

2 +
(

z

ξ

)2
)⎞
⎠dzdξ

= 2αμμv0

πδ2

δ∫
0

ξ

1∫
0

(
1

3

√
1 − x2

(
2 + x2

))
dxdξ

= 2αμμv0

πδ2

δ∫
0

ξ

π
2∫

0

(
cos2 α

3

(
2 + sin2 α

))
dαdξ

= 2αμμv0

3πδ2

δ∫
0

ξ

π
2∫

0

(
cos2 α

(
3 − cos2 α

))
dαdξ = αμμv0

3πδ2

9

16
π

δ∫
0

ξdξ

= 2αμμv0

3πδ2

9

16
π

1

2
δ2 = 3

16
αμμv0 (50)
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