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Abstract

In their seminal paper first published 40 years ago, Rosenbaum and Rubin crafted the
concept of the propensity score to tackle the challenging problem of causal inference in
observational studies. The propensity score is set up mostly as a design tool to recreate a
randomization like scenario, through matching or subclassification. Bayesian development
over the past two decades has adopted a modeling framework to infer the causal effect.
In this commentary, we highlight the connection between the design- and model-based
perspectives to analysis. We briefly review a Bayesian nonparametric framework that
utilizes Gaussian Process models on propensity scores to mimic matched designs. We also
discuss the role of variation as well as bias in estimators arising from observational data.
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1. Introduction

Four decades ago, prevailing methods to address causality centered on designed experi-
ments and randomized trials. In both settings, inference about causality was driven by
the presence of randomization to control for the effect of confounders on treatment assign-
ment. Rosenbaum and Rubin elevated observational studies to the front stage by crafting
a simple but beautiful concept – the propensity score – and by laying out the assumptions
on treatment assignment ignorability needed to make causal inferences (Rosenbaum and
Rubin, 1983).

As Rubin (1974) and Holland (1986) pointed out, the fundamental problem in causal
inference is the missingness of potential outcomes. In the context of treatment and con-
trol groups, we observe only one of the two potential outcomes. Causal effect estimation
based on conventional regression models and observational data makes implicit, untestable
assumptions about the relationship between the treatment and the unobserved potential
outcomes. A particular point of concern is apparent bias introduced through the relation-
ship between the observed covariates and treatment assignment. If there is apparent bias
in the observed covariate-treatment relationship, it is natural to believe that there is bias
in the unobserved covariate-treatment relationship, that there are important unmeasured
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confounders, and that naive estimators of the causal effect of treatment will have substantial
bias.

The propensity score attempts to fix the broken link of biased treatment assignment,
which is due to the lack of randomization. With this focus, most conventional uses of the
propensity score focus on design-based inference, including matching, subclassification, and
weighting methods. Technically, the two key features of the propensity score are covariate
balancing and dimension reduction. As laid out in Rosenbaum and Rubin’s paper, the
propensity score is a balancing score, which makes the entire distribution of all measured
covariates comparable between treated and control groups, as would be achieved with ran-
domization. To move further and obtain a causal interpretation, Rosenbaum and Rubin
require the treatment assignment ignorability assumption. Loosely speaking, this follows
when the conditional distribution of unmeasured covariates given measured covariates is
the same in treatment and control populations. More importantly, the same ignorability
also holds if conditioning only on the propensity score (a balancing score), which turns
the high-dimensional adjustment problem into a scalar one, which opens the door for more
refined modelling options.

2. From Design to Modeling

When working with the propensity score (denoted as e(X) hereafter), one could consider
both design-based inference (e.g., matching methods) and model-based inference techniques.
At first glance, the two types of inference appear to be very different, but there is an inter-
esting relationship between them. Under appropriate conditions, matching-based inference
arises as a limiting case of model-based inference. Consideration of the conditions that lead
to this agreement suggests when design-based inference will suffice and when inference may
be improved by utilizing a model-based framework. Briefly, the model-based framework,
especially a Bayesian nonparametric framework, allows us to separate various parts of the
inference problem to obtain more accurate estimates.

When participants are naturally matched on the propensity score, a model may also
be constructed directly for the differences. The decision to model only the difference but
not the members of the pair yielding the difference has a long history in Bayesian statistics
where reducing the scope of modelling is tied to robustness of the model (e.g., Box and
Tiao (1962)). The possible nonlinearity of mean difference in e(X) motivates the use of a
flexible functional form for the regression on e(X). The propensity e(X) effectively plays
the role of a single index, resulting a single index regression.

Exact matches on the propensity score are rare, especially if the underlying covariates
are continuous. In this case, one cannot pass to the differences within pairs, and so there
is a need to model both treatment and control response surfaces. Details of these models
will vary. One natural strategy is to identify one group (typically control) for which it is
relatively easy to build a model, to model this response surface and to simultaneously model
the difference in response surfaces between two treatment groups. The dimension reduction
from X to e(X) greatly simplifies the effort. A second strategy may target the average of
the means for treatment and control and the difference between the means. A key part of
both strategies is the decision of how smooth the response surfaces should be.
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3. Propensity Score-based Gaussian Process Model

This section provides a brief overview of our propensity score-based Gaussian Process model,
which provides a flexible semiparametric model while allowing for heterogeneous treatment
effects. More details can be found in Xin et al. (2022).

Suppose an observational dataset contains (Yi, Xi, Ti), where Yi is a response variable,
Xi is a vector of observed covariates and Ti is a binary treatment indicator variable for
the ith individual, i = 1, · · · , n. Let Ti = 1 denote the treated group and Ti = 0 denote
the control group. Our development uses the following nonparametric conditional mean
regression to flexibly model the outcomes:

Yi = g(Xi, Ti) + εi,

where for ease of illustration, the random error εi is assumed to be normally distributed
with mean zero and unknown variance σ2. Under the ignorability assumption, the potential
outcomes depend on the covariates only through the propensity score through an argument
similar to that in Wu et al. (2021). Therefore, we study the simplied form of the regresion
based entirely on the propensity score

g(Xi, Ti) = f(e(Xi)) + ∆(e(Xi))× Ti, (1)

where the function f captures the response surface for the control group and the function
∆ captures the treatment effect, that is, the difference between the treatment and control
surfaces. Note that the treatment effect may be heterogeneous with respect to e(X).

We assume that these functions are continuous and quantify our uncertainty about them
with Gaussian process (GP) priors. That is, letting e = (e(X1), · · · , e(Xn)),

f(e) ∼ GP(µf (e),K(e, e′)) and ∆(e) ∼ GP(µ∆(e),K(e, e′)) (2)

where µf (·) are µ∆(·) are the mean functions and K(·, ·) is the covariance function. Let
the mean functions take a flexible polynomial form, namely, µf (e) = H(e)Tα and µ∆(e) =
H(e)Tβ, where H(e)T = (1, e, e2, e3)T . Also, let the covariance function K(e, e′) be of
squared-exponential form, namely,

K(e, e′) = γ2 exp(− 1

2l2
|e− e′|2),

where |e − e′|2 is the squared Euclidean distance between e and e′. The parameter γ deter-
mines the magnitude of the departure between the nonparametric functions and their mean 
functions, and the parameter l governs the local dependence, with smaller l corresponding to 
more wiggliness in f(e). Furthermore, we place weakly informative normal priors on the 
hyperparameters α and β, that is, α ∼ N(0, Bα) and β ∼ N(0, Bβ ). The parameters γ, l, σ2 

and the functions f and ∆ can be updated through an MCMC algorithm. Since the priors 
are conjugate, the computation can be done with a Gibbs sampler and is very efficient.

The Bayesian estimator of the average treatment effect under the average squared error 
loss is

∆̂GP =
1

n

n∑
i=1

µ̃∆(e(Xi)),
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where µ̃∆(e(Xi)) is the posterior mean of the treatment effect function ∆ at e(Xi). To
understand the performance of our semiparametric GP approach, we compared it with the
conventional propensity score matching method. When the treated and control subjects are
1:1 matched with respect to X (or e(X)), the exact matching estimator is:

∆̂m =
1

n

n∑
i=1

[Yi,t − Yi,c],

which is unbiased for the population average treatment effects provided the matched sample
is simple random sample from the desired population.

In Xin et al. (2022), we show that if the prior mean function for ∆ is a constant with a
diffuse normal prior, i.e.,

µ∆(e) ≡ β ∼ N(0, τ2),

then
∆̂GP → ∆̂m, as τ2 → ∞ and l → 0.

This result provides an important connection between the Bayesian modeling approach
and the propensity score matching approach. The limiting τ2 → ∞ corresponds to a “flat”
mean prior and l → 0 corresponds to “locally independence” of the treatment effect at
different propensity scores. Thus, the corresponding Bayesian estimator behaves as the
the matching estimator. However, in practice, there is little or no reason to believe that
this limiting prior is sensible. One implication of the prior is that the analyst has no
information about the magnitude of the treatment effect. A second implication is that the
treatment effect at a given propensity tells us nothing about the treatment effect at nearby
propensities. This latter implication destroys the motivation for the use of approximate
matches on the propensity score. Rather than working with a uniform prior exhibiting
local independence, we prefer to to incorporate prior knowledge for both mean function
and covariance function. When we do so, the Bayesian estimator differs from the matching
estimator, sometimes substantially.

4. Further Refinement with Prognostic Scores

Rosenbaum and Rubin focused on estimation of the population average treatment effect,
the difference in treatment and control units, averaged across a particular distribution of
the observed covariates. Exact matching on any balancing score yields unbiased estimates
for the average treatment effect. A more complete look at the estimator may also consider
its variance.

The most refined balancing score available is X itself, which is usually of high dimension
for real problems. Consider any low dimensional balancing score b(X). Following the usual
decomposition of the variance, we can represent the conditional variance of the treatment
effect ∆ by

V [∆|b(X)] = E[V (∆|b(X), X)|b(X)] + V [E(∆|b(X), X)|b(X)]

= E[V (∆|X)|b(X)] + V [E(∆|X)|b(X)]. (3)

The second line of (3) follows from X being a refinement of b(X). Maximal variance
reduction due to pairing occurs when E(∆|X) shows no variation, conditional on b(X).

122



Causal Inference with Bayesian Nonparametrics

The propensity score is the coarsest balancing score and is effective at removing bias from
the estimator. However, when the causal effect is heterogeneous, matching on a refinement
of the propensity score may reduce the variance of the estimator. A natural approach is
to add the prognostic score, which is a balancing score and contains outcome information
(Hansen, 2008). Leacy and Stuart (2014) incorporated a prognostic score into a matching
procedure in addition to propensity score, and showed that this would improve inference
over matching solely on the propensity score. Let the propensity score of the ith individual
be ei = e(Xi), the prognostic score ψi = ψ(Xi) and si = (ei, ψi). Adding the prognostic
score to the propensity score in our nonparametric regression model yields

Yi = f(si) + ∆(si)× Ti + ϵi, i = 1, . . . , n (4)

The prognostic score can be one-dimensional (e.g., just for subjects under control) or two-
dimensional (e.g., subjects under treatment and subjects under control). Even with two
prognostic scores, the balancing score is a set of three scores (including the propensity score),
which is still of low dimension compared to the (typically) high dimensional covariate space.
This would substantially simplify the nonparametric modeling. For real data analysis,
practitioners still need to make many important decisions regarding the modeling. For
example, how smooth the response surface of the difference in means is. Similarly, the
choice of whether to include strong prior information on the magnitude of the treatment
effect and the variation in treatment effect across covariate values is up to the analyst.
Finally, the propensity score and prognostic score may be highly correlated, in which case
some orthogonization may be desirable before including both scores in the model.
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