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Matching is a popular design for inferring causal effect with observational data.
Unlike model-based approaches, it is a nonparametric method to group treated
and control subjects with similar characteristics together, hence to re-create a
randomization-like scenario. The application of matched design for real world
data may be limited by: (1) the causal estimand of interest; (2) the sample size
of different treatment arms. We propose a flexible design of matching, based on
the idea of template matching, to overcome these challenges. It first identifies
the template group which is representative of the target population, then match
subjects from the original data to this template group and make inference. We
provide theoretical justification onhow it unbiasedly estimates the average treat-
ment effect using matched pairs and the average treatment effect on the treated
when the treatment group has a bigger sample size. We also propose using the
triplet matching algorithm to improve matching quality and devise a practical
strategy to select the template size. One major advantage of matched design
is that it allows both randomization-based or model-based inference, with the
former being more robust. For the commonly used binary outcome in medical
research, we adopt a randomization inference framework of attributable effects
in matched data, which allows heterogeneous effects and can incorporate sensi-
tivity analysis for unmeasured confounding. We apply our design and analytical
strategy to a trauma care evaluation study.

KEYWORD S

attributable effect, average treatment effect, poly-matching, sensitivity analysis, template matching

1 INTRODUCTION

Observational studies provide important sources of information to infer about causal effects in clinical and health
research. Compared to randomized controlled trials, the lack of randomization presents challenges in removing bias in
causal effect estimation, due to observed and unobserved factors. But such design with less stringent requirement also
makes it possible to address many scientific questions when randomization is not feasible or ethical. Commonly used
strategies for handling measured confounding are through design adjustment, modeling, or a combination of both. The
design tools include matching, stratification and weighting. The goal is to re-create a randomization-like scenario by bal-
ancing observed covariate distributions. They are usually implemented with estimated propensity scores.1 Parametric or
semi-parametric models can be used to infer causal effects, with the caveat of correct model specification. To improve
Abbreviations: ATE, overall average treatment effect; ATT, average treatment effect on the treated.
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the robustness of the results, combining regression models with matching, stratification or weighting is recommended,
which may have the benefit of being doubly robust.2

Matching is a nonparametric way of grouping subjects with similar covariates from different treatment arms together,
hence to achieve balancewithinmatched sets.Withwell matched data, treatment assignmentmay be regarded as random
within each set, closely resembling a block randomization design. The advantages of matching designs are: (1) It is more
robust in the sense that it balances the covariate distributions between treated and untreated groups nonparametrically,
which does not rely on strong parametric assumptions for the outcome model. As an alternative to using a paramet-
ric propensity score model, researchers can consider nonparametric estimation of propensity scores, such as tree-based
methods,3 or using different distance metrics, for example, rank Mahalanobis distance, which requires little parametric
assumptions.4 (2) It resembles a randomization design, which is easily interpretable to general audience. (3) It is more
objective in the sense that the causal effect inference is conducted only after good matches are established and the out-
come variable never enters the matching process. (4) As a design tool, it leaves analytical options open for post-matching
inference, from randomization-based nonparametric tests (more robust) to various regression analyses (more efficient).
(5) Matching-based sensitivity analysis is well developed to assess the impact of hidden bias (unmeasured confounding)
on causal effects based on observed data. Depending on the data structure, various types of matching design may be
considered, such as pair matching, 1:k matching, variable matching, full matching or non-bipartite matching.5

Practically, the choice of matched design depends on the data structure. The sample size in each treatment arm and
the overlap of covariate distributionsmay limit the design options and the causal interpretation of thematching estimator.
Most matched designs lead to estimators of average treatment effect on the treated (ATT), with the exception of full
matching, which is essentially a very fine way of stratification.6 In many studies, the causal effect of interest is about the
overall average treatment effect (ATE). Then most conventional matched designs can not be used. For example, if we
apply a matched pairs design to a scenario with a small treated group and a large control group. Matched controls are
selected in a way to mimic the distribution of the subpopulation of those who actually received the treatment. Therefore,
the matched data do not provide a good answer to the causal effect of the entire population unless the treated group is a
simple random sample from the population.

Another related issue is that, even if we are interested in ATT, we may still encounter a dataset with a larger treated
group and a smaller untreated group. Then we cannot come up with an adequate matching estimator using the conven-
tional design. This is because that the conventional matched design always trims off from the larger group and matches
to the smaller group. A real example of such scenario was presented in Liu and her colleagues’ work, where they consid-
ered borrowing historical control patients to supplement a current clinical trial of a rare disease.7 To mimic the patient
characteristics in the current trial, they tried to select the historical control patients to match the trial population. But
the size of the historical control pool was smaller than that of the current trial, because these controls had to come from
similar trials conducted in recent years. The authors came up with an ad hoc strategy by selecting a small representative
sample from the current trial patients and matching the historical control group to the small selected sample. It seemed
to work well in their study, but a general purpose methodology was not discussed.

In this article, we propose a flexiblematched design to overcome the aforementioned challenges in practice with theo-
retical justification. It is based on the template matching strategy,8 which was initially proposed to match across multiple
groups. The basic idea is to first identify the template group with desired characteristics, then match subjects from dif-
ferent treatment arms of the original data set to this template group and make inference. For example, to use a matched
pairs design to learn about ATE, we will first take a small and representative sample of the entire population (like a sim-
ple random sample). Using this group as the template, we will match treated and untreated subjects in the original data
to form matched pairs. Because all subjects are matched to the template group, it will reflect the population described by
the template, hence yield an ATE interpretation. Another contribution wemake to the literature is to devise a strategy for
template size selection, which determines a reasonable template size based on the average increase in total distance per
unit. We also implement randomization-based inference and sensitivity analysis for template matching with binary out-
comes. Under the potential outcome framework, the conventional randomization inference for non-zero effect assumes a
constant additive effect for everyone. This is generally inadequate for binary data, where the outcome can only take either
0 or 1. As binary outcomes are very common in medical research, Rosenbaum proposed an attributable effect framework
for conducting randomization inference with binary data.9 It captures the effect attributable to the treatment in the sense
that it would not have been observed had the individual not been exposed to treatment. It allows for heterogeneous
effects in the target population, where part of the population may experience the effect and others do not. The sensitivity
analysis for unmeasured confounding can also be incorporated easily into the randomization inference procedures. We
implement this estimation strategy for our matched data, examining mortality outcomes in trauma care evaluation.
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For the rest of this article, we will illustrate how to use our flexible matched design: (1) to construct a pair design
to estimate ATE with improved matching quality via the triplet matching algorithm; (2) to form matched pairs to
estimate ATT when the treated group has a larger size. We will also discuss how to determine the sample size of
template group to best represent the target population. Specifically, in Section 2, we provide theoretical justification
on how the proposed template matching can unbiasedly estimate ATE and ATT. We also discuss strategies for tem-
plate size selection in practice. In Section 3, we conduct simulation studies to justify the empirical performance of our
proposed design. A real data example of trauma care evaluation is presented in Section 4, where we briefly review
and implement the attributable effect estimation strategy. We also conduct a sensitivity analysis to assess the impact
of hidden bias, and examine its robustness by varying the template size. We conclude with summary and discussion
in Section 5.

2 TEMPLATE MATCHING DESIGN

2.1 Overview of template matching design

The idea of template matching was first proposed by Silber and his colleagues, where they tried to come up
with a fair audit of quality and cost for Medicare patients across 217 hospitals.10 The direct comparison of all
patients in these hospitals is problematic, as patient characteristics are very different in different hospitals. Silber
and colleagues, instead, chose a small template sample of 300 patients with characteristics representative to the
patient population of interest for the audit. Within each hospital, 300 patients were individually paired to the
300 patients in the template. With successful matches, all hospitals were evaluated fairly on patients with similar
backgrounds. Bennett et al extended this idea to representative matching with multi-valued treatments.8 Unlike
matching with two treatment arms, matching with three or more treatments is computationally intractable and
the optimal algorithm is not available. By choosing a common template and matching every treatment arm to this
template, Bennett and colleagues converted a multi-arm matching problem to a simpler repeated two-arm matching
problem.

Generally, template matching refers to a class of designs that uses a small but representative template as the bench-
mark and matches all other groups to this template. After matching, the inference and interpretation are based on the
population characteristics of such template sample. It adds a lot of flexibilities inmatching practice and avoids the restric-
tion in the conventional matching that all subjects in a particular group must be used. It is particularly useful when
matchingwith a large number of treatment groups or population characteristics are different among different groupswith
no single group representing the population of interest, as discussed above. In fact, many conventional matched designs
can be considered as special cases of template matching, for example, a design selecting control subjects to match to the
treated group is literally using thewhole treated group as a template. In this article, wewant to further extend the template
matching to address some commonly encountered issues in two-arm matching, such as estimating ATE or estimating
ATT when the treatment group has a bigger sample size than the control group. Typically, template matching includes
two steps:

Step 1: A template sample is selected depending on the goal ofmatching or the purpose of the study. The template sample
should be representative to the population of interest and have a smaller sample size than that of any original
treatment group to facilitate matching.

Step 2: Matchingwithout replacementwill be conducted between the template sample and the original treatment groups
to create a randomization-like scenario. Optimal bipartite matching algorithm may be used if the matching is
between two groups and some suboptimal matching algorithmmay be considered if the matching involves more
than two groups.

Technically, any distance metric can be used in template matching, such as propensity score distance, Mahalanobis
distance and so forth. Matching quality needs to be carefully examined before moving forward to inference. The next two
subsections provide more details about the template matching design for the two practical issues that we would like to
address in this article. To fix the terminology, we use treatment and control to denote the two possible treatment arms for
the rest of the article. They are used in the broad sense as treatment means an active/experimental treatment or exposure
to the causal agent, and control means no treatment, standard care or no exposure.
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ZHAO and LU 1763

2.2 Template matching for ATE estimation

For notation simplicity, we discuss template matching to estimate ATE in a binary treatment setting, but the idea of
template matching can be easily extended to multi-valued treatment settings. Suppose there are nT treated subjects,
 = {𝜏1, … , 𝜏nT} and nC controls  = {𝛾1, … , 𝛾nC}. The whole population P is the combination of treatment group 

and control group , P = { ∪ } = {𝜏1, … , 𝜏nT , 𝛾1, … , 𝛾nC} = {p1, … , pnT , … , pnT+nC}. Each subject has a vector of
observed covariates, denoted as , which is used in calculating the distance metric for matching. The population of inter-
est is the whole population P when the target estimand is ATE, so that a representative template sample should be first
selected from the whole population P. Suppose a template with sample sizem is drawn (m < min(nT ,nC)), and we denote
it as S = {pS1, … , pSm}. Then we can carry out the template matching as shown in Figure 1. Specifically, the template
group is first identified from the whole population, then treatment and control groups are matched tomimic the template
distribution via triplet matching. DenotingM = {(𝜏S1, 𝛾S1), … , (𝜏Sm, 𝛾Sm)} as the final matched set of treated and control
unit pairs, we can show that the template matching produces unbiased ATE estimation, which follows the similar idea
of Rosenbaum and Rubin’s seminal paper.1 We need two general assumptions for causal inference, namely, stable unit
treatment value assumption (SUTVA) and strongly ignorable treatment assignment assumption (SITAA).11 The SUTVA
assures no interference and the treatment value is consistent. The SITAA assures unconfoundedness given covariates 
and good overlap between treated and control groups.We also assume that the treated and control groups are independent
draws from their respective population distributions. Suppose each subject has two potential outcomes {Y 1

,Y 0}, which
are the responses under treatment (T = 1) or control (T = 0) respectively. With SITAA given covariates  , we also have
the strong ignorability given any balancing score b(), which is based on the study population of the original treated and
control groups. The following result establishes the unbiased ATE estimation with the exact template matching. Accord-
ing to Rosenbaum and Rubin’s framework, we match on true population balancing scores, or it is applicable to large
samples when the balancing scores can be consistently estimated. The exact template matching creates a matched triplet
with one unit from the template group, one from the treated group and one from the control group, and all of them have
the same value of the balancing score. “Exact”means that three units in each triplet share the same value of the balancing
score, and “template matching” means that, as a group, the matched treated units have the same balancing score distri-
bution as the template group, and so do matched control units. Then, we can ignore the template group and focus on the
matched pairs of treated and control units to obtain an unbiased estimate of ATE.

Result 1. AssumeSUTVA, SITAA, and the template group is representative of the entire population, then, follow-
ing the exact template matching, the mean difference between treated and control groups in the matched sample
is an unbiased estimator for the ATE, that is,

EP[Y 1 − Y 0] = EM[Y |T = 1] − EM[Y |T = 0]. (1)

Proof. Since the template sample, denoted by S, is representative of the entire population, denoted by P, it
implies:

EP[Y 1 − Y 0] = ES[Y 1 − Y 0].

F IGURE 1 Template matching for ATE estimation. The dashed lines indicate the draw of template group and the solid lines indicate
the triplet matching among three groups
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1764 ZHAO and LU

Matching on b() across all three groups ensures the template sample, the matched treated group and the
matched control group have the same distribution of b() as the target population. For anymatched pair with
a given value of the balancing score, under the strongly ignorable assumption, we have

E[Y 1 − Y 0|b()] = E[Y 1|b()) − E(Y 0|b()] = E[Y 1|T = 1, b()]
− E[Y 0|T = 0, b()] = E[Y |T = 1, b()] − E[Y |T = 0, b()].

It implies that the expected difference in response between the two units in the matched pair equals the ATE
at the particular balancing score value. Thenwhenwe take the expectation over the entire distribution of b()
in the matched sample, we have

EM[Y 1 − Y 0] = EM[E(Y 1 − Y 0|b())] = EM{E[Y |T = 1, b()] − E[Y |T = 0, b()]} = EM[Y |T = 1] − EM[Y |T = 0].

Since the template matching ensures that the template group (S) and the matched treated and control groups
(M) have the same balancing score distribution, we get

EP[Y 1 − Y 0] = ES[Y 1 − Y 0] = EM[Y 1 − Y 0] = EM[Y |T = 1] − EM[Y |T = 0].

There are twoways of implementing templatematchingwith three groups. The firstway followsBennett’s idea
by conducting bipartite matching twice, once between the original treatment group and the template sample,
and once between the original control group and the template sample.8 The treatment and control groups
are indirectly linked through the template group. The major advantage of this implementation is simplicity.
However, since it does not control the distance between treatment and control groups directly, it may produce
matched treated-control pairswith total distance larger than the optimal one. To improve upon this,wemodify
the matching algorithm by including the distance between treatment and control groups explicitly.

The improved way of implementation is via triplet matching. Triplet matching algorithm was proposed
by Nattino and colleagues to form better matched triplets among three groups by considering the three-way
distance.12 The three-way distance within a matched triplet is defined as d3(𝜏Tk , 𝛾Ck , pSk ) = d2(𝜏Tk , 𝛾Ck ) +
d2(𝜏Tk , pSk ) + d2(𝛾Ck , pSk ), where d

2(., .) can be any two-way distance and 𝜏Tk , 𝛾Ck , pSk are subjects from treat-
ment, control and template groups, respectively. In our study, we consider the Euclidean distance, so that the
three-way distance d3(𝜏Tk , 𝛾Ck , pSk ) represents the perimeter of the triangle defined by the three subjects from
amatched triplet, as illustrated in Figure 1. The key difference between our approach and Bennett’s approach
above is that the latter only considers two side lengths of the triangle, not all three. With the distance between
the treatment and control groups being included directly, we expect triplet matching to improve the simi-
larity between those two groups. The sum of the within-triplet distances is D(r) =

∑m
k=1d3(𝜏Tk , 𝛾Ck , pSk ). The

optimal triplet matching that minimizes D(r) is not available in polynomial time. Nattino and colleagues
showed that their polynomial-time algorithm is near-optimal in the sense that the final matched triplets have
a total distance no more than twice of the optimal result.12 To implement this algorithm, we use the matched
triplets from the first method discussed above as a starting point. Then we fix the selected template sample
S, and search in the original treatment group  and control group  to see if we can find a new matched
triplet  ′

r = {(𝜏′Tk , 𝛾
′
Ck
, p′Sk )} with a smaller total distance. A new set of matched triplets with a substantially

smaller distance may lead to improved balance between the treatment and control groups. When there are
more than two treatment groups, the general poly-matching algorithm can be used to create matched sets.
Poly-matching refers to the matching design that generates matched sets with at least one subject from each
treatment group.13 Triplet matching is a special case of poly-matching. If the matching process achieve desir-
able balance, both matched treated and control subjects mimic the distribution of the template group, hence
the distribution of the whole population P. Then we can safely ignore the template group and continue the
statistical analysis with the matched subjects from the treatment and control groups, which should reflect the
causal effect of ATE.

The first step of template matching is to select a representative template sample. Though a simple ran-
dom draw from the population P to select the template may work in theory, practically, it is desirable to
draw multiple samples and pick the most representative one to reduce the chance error that may distort the
distribution.8 Specifically, we draw n simple random samples of size m from the whole population
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ZHAO and LU 1765

P, denoted as  = {S1, S2, … , Sn}, Si = {pi1, pi2, … , pim}, i = 1, … ,n. For each random sample Si, we
calculate the rank Mahalanobis distance for each pair of data points between Si and the population P, result-
ing in a m × (nT + nC) distance matrix Wi. The sum of all elements in the matrix Wi is computed, denoted
as wi (a measure of total distance). The sample St with the smallest total distance is regarded as being
closest to the whole population. This sample will be used as the template to proceed with the matching
process. ▪

2.3 Template matching for ATT estimation with a larger treatment group

When the target causal estimand is ATT, the conventional bipartite matching design requires that the sample size in
the treatment group is less than that of the control group. This is because the matching algorithm always selects sub-
jects from the larger group to match to the smaller group. Practically, however, there is no guarantee that the treatment
group is always smaller. Therefore, the implementation of conventional matching design might be problematic. Liu and
colleagues presented a real-world example of matching with a larger treatment group in a clinical trial using historical
control borrowing to boost the sample size.7 The clinical trial was designed to evaluate the efficacy of a new treat-
ment for a very rare tumor. Given the rareness of the disease, it was very difficult to enroll a large number of patients.
Like many clinical studies for rare cancer, historical control patients from previous trials were borrowed to facilitate
the study. To ensure the comparability of historical subjects, a small pool of control patients were identified based on
similar inclusion and exclusion criteria, prior treatment, cancer types and endpoint availability. The historical controls
were further selected to match the distribution of current trial patient population, which created an issue of matching
a smaller group to a larger group. Liu and colleagues drew a smaller random sample from the current trial popula-
tion and matched the historical control group to it. We will formalize their idea in terms of template matching in this
subsection.

Suppose that the population of interest is treatment group  = {𝜏1, … , 𝜏nT} and the sample size of the control group
is small, that is, nC < nT , then a representative template sample should be first selected from  . Suppose a template
with sample sizem is drawn (m < nC), denoted as S = {pS1, … , pSm}. Since S has a smaller sample size than the control
group, conventional bipartite matching can be conducted from the control group to the template group, as shown in
Figure 2 (the dashed lines indicate the first-step selection of the template sample from the treatment group). The exact
template matching creates a matched pair with one unit from the template group and one unit from the control group,
and both have the same value of the balancing score. “Exact” means that two units in each pair share the same value of

F IGURE 2 Template matching for ATT estimation. The dashed lines indicate the draw of template group and the solid lines indicate
the two-group matching between template and control groups
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1766 ZHAO and LU

the balancing score, and “template matching” means that, as a group, the matched control units have the same balancing
score distribution as the template group.Matched pairs are denoted asM = {𝛾Ck , pSk}, 1 ≤ k ≤ m. We havem pairs in total
since all subjects in the template group are used. If the template group is representative of the original treatment group
andmatched pairs have desirable balance, both the template group and thematched control groupmimic the distribution
of treatment group  . Then inference based on the matched data will reflect the causal effect of ATT, as shown in the
following result.

Result 2. Assume SUTVA, SITAA, and template sample is representative of the treated population, then, follow-
ing the exact template matching, the mean difference between treated and control groups in the matched sample
is an unbiased estimator for the ATT, that is,

ET[Y 1 − Y 0] = EM[Y |T = 1] − EM[Y |T = 0]. (2)

Proof. Since the template sample, denoted by S, is representative of the treated population, denoted by T, it
implies:

ET[Y 1 − Y 0] = ES[Y 1 − Y 0].

Matching on b() ensures the template sample and the matched control group have the same distribution of
b(). For anymatched pairwith a given value of the balancing score, under the strongly ignorable assumption,
we have

E[Y 1 − Y 0|b()] = E[Y 1|b()] − E[Y 0|b()] = E[Y 1|T = 1, b()]
− E[Y 0|T = 0, b()] = E[Y |T = 1, b()] − E[Y |T = 0, b()].

It implies that the expected difference in response between the two units in the matched pair equals the ATE
at the particular balancing score value. Thenwhenwe take the expectation over the entire distribution of b()
in the matched sample, we have

EM[Y 1 − Y 0] = EM[E(Y 1 − Y 0|b())] = EM{E[Y |T = 1, b()] − E[Y |T = 0, b()]} = EM[Y |T = 1] − EM[Y |T = 0].

Since the template matching ensures that the template group (S) and the matched treated and control groups
(M) have the same balancing score distribution, we get

ET[Y 1 − Y 0] = ES[Y 1 − Y 0] = EM[Y 1 − Y 0] = EM[Y |T = 1] − EM[Y |T = 0].

To select a representative template sample, we use a similar approach as described in the previous subsection.
We draw n simple random samples of size m from the treatment group  , denoted as  = {S1, S2, … , Sn},
Si = {pi1, pi2, … , pim}, i = 1, … ,n. The rank Mahalanobis distance is calculated between each Si and the
treatment group  , resulting in am × nT distance matrixWi. The sum of all elements in the matrixWi is com-
puted, denoted as wi (a measure of total distance). The sample St with the smallest total distance is regarded
as being closest to the treatment group. ▪

2.4 Strategies for template size selection

In Sections 2.2 and 2.3, we describe the implementation of template matching with a fixed template sample size of m.
In practice, we may face the question on how to determine a reasonable template size. There are two ways to approach
it. The first approach is design-driven, where the m is selected as part of the design parameters. Liu and colleagues
pre-specifiedm = 30 for the historical control cohort given that their current randomized trial had 60 treated and 30 con-
trol patients.7 Therefore theywould have equal-sized treated and control groups for further analysis. The second approach
is data-driven, where ismore suitable for large observational studies. Similar to the issue ofmatchingwith a subset of sam-
ple discussed in Rosenbaum’s work,14 there are two competing goals in determining the adequate template sample sizem.
On one hand, we want to makem as large as possible to increase the efficiency of statistical inference. On the other hand,
we want closely matched treatment and control groups. A very large mmay lead to matched sample with poor balance,
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ZHAO and LU 1767

especially when covariate distribution of the two groups have moderate but not great overlap. Specifically, in estimating
ATE, the first goal demands a largerm. While the second goal is to keep the total distance,w(S) =

∑m
k=1𝛿(𝜏Tk , 𝛾Ck ), small to

ensurewell-balancedmatched pairs. Numerically, the two goalsmay pull in opposite directions, since increasing template
size also increases the total distance between matched pairs, which means when m′

> m, we have w(S′) > w(S). Thus
a reasonable template size selection strategy needs to achieve a balance between the two goals. Rosenbaum considered
a selection criterion on the average increase in total distance between two sample size scenarios m′ and m.14 Assuming
m′

> m, with a given threshold ̃
𝛿, we preferm tom′, if

w(S′) − w(S)
m′ −m

>
̃
𝛿. (3)

It implies, moving from m to m′, template group size increases by m′ −m and the total distance between matched
pairs increases by w(S′) − w(S), then we would prefer the smaller template size m provided that the average increase in
total distance per unit, w(S′)−w(S)

m′−m
, is larger than the ideal threshold. In other words, it is preferable not to sacrifice the

loss in similarity between the matched groups in exchange for a larger number of matched pairs. By adopting a sim-
ilar strategy, we first identify the lower bound, l, and the upper bound, h, for the possible template size, for example,
h ≤ min(T,C). Then, we select q potential options for template sample size {m1,m2, … ,mq} in the range of [l, h] in
ascending order, find the most representative template samples {S1, S2, … , Sq} and conduct template matching for each
sample size option. The optimal template size is chosen as m = max{mi ∶

w(Si)−w(Si−1)
mi−mi−1

≤ ̃
𝛿, 2 ≤ i ≤ q}. This is the biggest

size we can have without letting the average increase in total distance exceed a desired value. As Rosenbaum suggested,
̃
𝛿 may be chosen as a certain quantile of the pairwise distance distribution from the target population.14 As shown later
in the real data analysis, we use the 25th percentile as the threshold to select the template size for the trauma center
patients.

3 SIMULATION STUDIES

We conduct a series of simulation studies to examine the performance of template matching for estimating the causal
effect with both continuous and binary outcomes, with a primary focus on bias, as matching is designed to remove bias
due to observed confounding. Section 3.1 focuses on ATE and Section 3.2 focuses on ATT when the treated group has a
larger sample size.

3.1 ATE estimation

We consider the template matching strategy discussed in Section 2.2 to estimate the ATE. For comparison, we also run
full matching, which is known to provide ATE estimation. Full matching literally stratifies the data to the finest possible
groups, ensuring at least one treated and one control subject in each stratum.6 For all simulation scenarios, we generate
2000 datasets and the sample size for each dataset is 1000. The following two subsections cover continuous outcome and
binary outcome respectively.

3.1.1 Continuous outcome

Data-generating process
Three covariates are considered in the study. X1 and X3 are generated from the normal distribution and X2 is generated
from the Bernoulli distribution.

X1 ∼ N(10, 5),X2 ∼ Bern(0.4),X3 ∼ N(0, 1).

The treatment assignment is generated from a logistic regression model, and the treatment prevalence is 20%.

logit(P(T = 1)) = −0.7 + log(0.9)X1 + log(1.5)X2 + log(2)X3. (4)
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1768 ZHAO and LU

The outcome model is Y ∼ N(𝜇, 32), and we have three settings for the outcome model, where true ATE are 5.5, 1.7, and
0 respectively, for large, small, and no effect scenarios. The outcome model is designed to include heterogeneous effects
modified by covariates to make ATE and ATT different.

Large effect: 𝜇 = 2 + (3 + 3 ∗ I(X1 > 10) + 2.5 ∗ X2) ∗ T + log(1.2)X3,
Small effect: 𝜇 = 2 + (1 + 1 ∗ I(X1 > 10) + 0.5 ∗ X2) ∗ T + log(1.2)X3,
No effect: 𝜇 = 2 + (1 + 1 ∗ I(X1 > 10) + 0.5 ∗ X2) ∗ 1 + log(1.2)X3. (5)

Statistical analyses in simulated datasets
For ATE estimation, the target population includes everyone, both treated and control subjects, so the template is
chosen to mimic the entire study population. We first estimate the propensity score using all 1000 subjects, via
a logistic regression model to regress treatment assignment on the three covariates X1, X2, and X3. Optimal full
matching on the estimated propensity score is conducted in R using package “optmatch” and command “estimand
= ATE,” which includes all subjects in the matched sample by design. For template matching, template sizes are
chosen as 60 or 120 to explore the impact of small and large sizes. For a template sample of size n, 25 random
samples are drawn from each dataset. From these 25 random samples, we select the sample that is closest to the
corresponding dataset as the template group based on the rank Mahalanobis distance. Treatment and control groups
are then matched separately to the template sample, using the optimal bipartite matching algorithm based on the
estimated propensity scores. The last step is to further improve covariate balance among the three groups (tem-
plate, treated, and control) via triplet matching. This is important as the triplet matching controls directly for the
discrepancy between treatment and control groups, while the bipartite matching does not. Optimal bipartite match-
ing is implemented using “optmatch” package in R and triplet matching is implemented using “polymatching”
package in R.

Table 1 presents the results for continuous outcome analysis. We apply a simple linear regression model to estimate
treatment effect in matched data. Let 𝜃 denote the true treatment effect of ATE, and ̂

𝜃i denote the estimated ATE in each
dataset. The percentage of mean relative bias is estimated as

1
2000

∑2000
i=1 ( ̂𝜃i−𝜃)
𝜃

× 100 and reported in the column “%Bias,”
and for the null effect scenario, we calculate overall bias instead, which is 1

2000

∑2000
i=1 ( ̂𝜃i − 𝜃). “SD(ROB)” column shows

the robust SE estimated in the linear regression model by accounting for the potential correlation introduced by match-
ing. “%CI” column reports the empirical coverage of the nominal 95% confidence interval (CI) across 2000 datasets.
“SD(EMP)” column shows the empirical SE for comparison purpose. Overall, template matching and full matching have
similar performance in terms of bias and the empirical coverage of 95% confidence interval. Template matching with size
of 60 has smaller bias but larger SE than size of 120. This is likely due to the fact that it is easier to find good matches for a
smaller template sample, but the small sample size increases the variance. The variance estimates are valid as the model
based variance is very close to the empirical variance.

TABLE 1 Continuous outcome with large, small, and null effect

True ATE %Bias SD(ROB) %CI SD(EMP)

Temp (60) 5.5 −0.052 1.670 95.7 1.639

Temp (120) 5.5 −0.658 1.178 95.0 1.177

Full 5.5 0.464 1.056 94.9 1.053

Temp (60) 1.7 0.904 1.651 94.8 1.612

Temp (120) 1.7 0.963 1.408 95.0 1.405

Full 1.7 0.417 1.039 94.1 1.054

Temp (60) 0 0.018a 1.652 94.6 1.639

Temp (120) 0 0.000a 1.166 94.6 1.181

Full 0 −0.009a 1.038 94.7 1.070

a%Bias for null effect scenario is the overall bias.
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ZHAO and LU 1769

3.1.2 Binary outcome

Data-generating process
For binary outcomes, we also consider three covariates, generated from either normal distribution or Bernoulli
distribution:

X1 ∼ N(2, 1),X2 ∼ Bern(0.4),X3 ∼ N(0, 1).

The treatment assignment model is shown below, and the treatment prevalence is set to 20%.

logit(P(T = 1)) = −1.4 + log(0.9)X1 + log(1.5)X2 + log(2)X3. (6)

We use risk difference (RD) as the outcome measure to avoid the noncollapsibility issue of odds ratio. We consider three
treatment effect scenarios for the outcome model, where true RD is large, small or zero. The outcome model with large
and small RD’s are set up as:

logit(P(Y = 1)) = −3.532 + 0.3 ∗ X1 + X2 + X3 + (𝜏0 + 0.3 ∗ I(X1 > 2) + 0.25 ∗ X2) ∗ T, (7)

where 𝜏0 is a parameter to determine the true treatment effect. 𝜏0 is set to 1.256 for large effect (RD = 0.2) and set to 0.594
for small effect (RD = 0.1) respectively, using the Monte Carlo integration approach by Austin.15

The outcome model for the null effect case is simple as below:

logit(P(Y = 1)) = −3.532 + 0.3 ∗ X1 + X2 + X3. (8)

Statistical analyses in simulated datasets
We implement the same template matching and full matching algorithm as described in continuous outcome subsection
since matching process does not involve outcome variables.

For the ith round of simulation, we fit a simple logistic regression model to the matched data to estimate treatment
effect. For example, with template size of 60, there are 120 matched subjects in total.

logit[P(Yij = 1)] = 𝛼i + 𝛽i ∗ Tij, i = 1, … , 2000, j = 1, … , 120. (9)

For each subject, we compute the predictive probabilities of the outcome under treatment and control
conditions, denoted as p̂ij,1 and p̂ij,0 respectively. Therefore, the estimated RD in the ith simulated dataset is
̂
𝜃i =

∑120
j=1(p̂ij,1 − p̂ij,0). “%Bias” is calculated using the same formula as the continuous outcome analysis. “SD(DEL)”

is the SE estimate using the delta method, which calculates the variance of ̂
𝜃 as a function of the estimated param-

eters 𝛼 and 𝛽. “%CI” is the empirical coverage of the 95% confidence interval (CI), based on SD(DEL), across 2000
datasets. “SD(EMP)” is the SE of the 2000 point estimates of ̂

𝜃i, which measures the empirical variability of the
estimator. Full matching results are analyzed using a similar approach, the only difference is we use a weighted
logistic regression model since each matched set may have different sizes. Table 2 shows that template matching
with template size 60 has better performance than template size 120 regarding relative bias and confidence interval
coverage. Template matching has similar relative bias as full matching when the template size is 60, but one disad-
vantage of full matching is that it tends to underestimate the SE of risk differences, which leads to under coverage of
the 95% CI.

3.2 ATT estimation with a larger treated group

We design a simulation analysis to evaluate the performance of template matching in estimating ATT with a larger treat-
ment group. We consider two sets of simulations: one for continuous outcome and the other for binary outcome. In each
of the considered scenarios, we generate 2000 datasets and the sample size for each dataset is 1000.
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1770 ZHAO and LU

TABLE 2 Binary outcome with large, small, and null effect

True RD %Bias SD(DEL) %CI SD(EMP)

Temp (60) 0.2 −0.691 0.071 96.7 0.066

Temp (120) 0.2 4.337 0.051 96.5 0.048

Full 0.2 0.891 0.034 90.8 0.039

Temp (60) 0.1 −2.308 0.064 95.7 0.060

Temp (120) 0.1 4.646 0.047 95.4 0.045

Full 0.1 −0.065 0.030 91.2 0.033

Temp (60) 0 0.000a 0.055 95.5 0.053

Temp (120) 0 0.003a 0.040 96.0 0.038

Full 0 0.001a 0.024 93.7 0.026

a%Bias for null effect scenario is the overall bias.

3.2.1 Continuous outcome

We consider three covariates X1, X2, and X3, which have the same distribution as the ATE simulation for the continuous
outcome case in Section 3.1.1. The treatment assignment model is shown below, and treatment prevalence is set to about
70% implying more treated subjects than controls.

logit(P(T = 1)) = 5.68 + log(0.65)X1 + log(1.5)X2 + log(3)X3. (10)

The outcome model is Y ∼ N(𝜇, 1.52), and the empirical ATT estimation in treated group is 3.035415.

𝜇 = 2 + (2 + 3 ∗ I(X1 > 10)) ∗ T + 2.5 ∗ X2 + log(1.2)X3. (11)

To determine the empirical truth of ATT, we first generate 5000 datasets with sample size 1000, and the jth subject in
the ith dataset has treatment status Tij and outcome Yij. Then, for each subject we generate T′

ij with a flipped treatment
status of Tij (ie, T′

ij = 1 if Tij = 0, and T′
ij = 0 if Tij = 1), and determine the outcome Y ′

ij by the samemodel except changing
Tij to T′

ij. The empirical true ATT is calculated as
1

5000

∑5000
i=1

1
1000

∑1000
j=1 1(Tij = 1)(Yij − Y ′

ij), where 1(Tij = 1) = 1 if Tij = 1,
otherwise 1(Tij = 1) = 0. The empirical truth of ATT is 3.035 in our simulation.

In this part of the simulation study, we examine the performance of template matching under a series of template size
scenarios {30, 40, 60, 80,100, 120}. This is to get more insights into the impact of template size on bias. Conceivably, the
template size cannot be too small or too big.When it is too small, the bias tends to be large as the template sample does not
capture the full characteristics of the treated population. When it is too big, the matching quality tends to be comprised,
in turn, it increases the bias. Matching quality is assessed based on the relative bias of estimating ATT and the empirical
95% confidence interval coverage.

Table 3 presents the results of ATT estimation for continuous outcome analysis. We implement a similar procedure to
estimate ATT and the robust SD, and calculate the relative bias as described in Section 3.1.1. The “Bias%” column shows
that the relative biases are different as the template size changes. It drops below 1% when the template size is 80 or more.
The empirical coverage of confidence intervals is close to 95%, but small template size scenarios tend to be a bit further
away from the nominal value. All these imply that a properly selected template size may improve the performance of
template matching.

3.2.2 Binary outcome

We use the same three-covariate setup for binary outcomes as described in Section 3.1.2. The treatment assignmentmodel
is shown below, and treatment prevalence is about 70%.

logit(P(T = 1)) = 0.8 + log(0.9)X1 + log(2.5)X2 + log(2)X3. (12)
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ZHAO and LU 1771

TABLE 3 ATT estimation in continuous outcome

ATT = 3.035 Bias% SD (ROB) CI%

Temp (30) −5.095 0.722 93.9

Temp (40) −3.978 0.624 93.7

Temp (60) −2.039 0.508 95.9

Temp (80) −0.858 0.439 95.5

Temp (100) 0.147 0.393 96.0

Temp (120) 0.343 0.359 95.6

TABLE 4 Risk difference estimation in binary outcome

RD = 0.230 Bias% SD (DEL) CI%

Temp (30) −1.245 0.116 96.1

Temp (40) −0.774 0.101 95.7

Temp (60) −1.950 0.083 96.3

Temp (80) 2.054 0.072 96.3

Temp (100) 3.587 0.064 95.2

Temp (120) 6.086 0.058 94.8

The outcomemodel can be expresses as below, where the empirical truth of risk difference (RD) in treated group is 0.230.
The empirical RD is calculated in the same way as the continuous outcome scenario.

logit(P(Y = 1)) = −2.717 + 0.3 ∗ X1 + X2 + X3 + (−0.150 + 3 ∗ X2) ∗ T. (13)

We repeat the simulations for a series template size scenarios of {30, 40, 60, 80,100, 120}with 2000 datasets. Relative bias
of estimating true risk difference and empirical 95% confidence interval coverage are reported as below.

Table 4 provides the results of risk difference estimation in binary outcome scenario. A simple logistic model is used
to estimate the risk difference and the SE is estimated using the delta method as described in Section 3.1.2. Again, the
results suggest that the performance of template matching vary as the template size changes. The relative bias becomes
large for bigger template sizes. The size of 40 seems to offer a good balance between bias and variance.

4 REAL DATA EXAMPLE WITH TRAUMA CARE EVALUATION

4.1 Causal effect on trauma patient mortality

Traumatic injury is the leading cause of death for people under the age of 45 in the U.S. and worldwide. Approximately
5.8 million people die each year because of injuries.16 In U.S., Patients with traumatic injuries can be either admitted to
trauma centers (TC) or non-trauma centers (NTC) for care. Trauma centers are supposed to offer better care with a larger
patient volume and higher level of expertise, while non-trauma center have limited resources and often lack specialty
doctors. Thismakes themore severely injured patients aremore likely to be sent to trauma centers. But the actual decision
involves multiple practical factors, with the distance to the nearest TC or NTC being an important one. Therefore, it is
quite challenging to evaluate the performance of TC and NTC in the real world setup.17 The Nationwide Emergency
Department Sample (NEDS) is a nationally representative dataset designed by the Agency for Healthcare Research and
Quality to enable analyses of emergency department (ED) utilization patterns (this data set is available subject to third
party restriction). The National Trauma Data Standard Patient Inclusion Criteria is used to define trauma. Since children
and older adults may respond to the treatment differently, we limit our analysis to adults aged 18-64. In this analysis, we
use five years of data from the NEDS.

 10970258, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9698, W
iley O

nline Library on [29/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1772 ZHAO and LU

The primary outcome of interest is emergency department mortality. The injury severity score (ISS) is one of the most
important characteristics for trauma patients, as it correlates with mortality, morbidity, and other clinical outcomes. The
score ranges from 1 to 75, with 75 being the most severe. Because the majority of the emergency department deaths are
in the group of patients with higher scores (injury severity score >= 25), we focus our analyses on trauma patients in
this group. Other covariates include sex, age, comorbidity of chronic conditions, multiple injuries, median household
income by zip code, expected primary payer, and urban-rural designation for patient’s county of residence. More detailed
description of this dataset is provided in the work by Vickers et al,18 Shi et al,19 and Nattino et al.12 Out of the 21 855
patients included in the dataset, 16 541 (75.7%) patients were admitted to TC, and 5314 (24.3%) patients were admitted to
NTC.

Since TCs are much more resource-craving than NTCs, a natural policy relevant question is whether TC has the
advantage of saving patient lives to justify the high cost. So the causal question is what would have happened to those
patients treated at TC had they been treated at NTC. In other words, for TC patients, we would like to know their potential
outcomes had they been admitted to NTC. This calls for an ATT estimation as we are primarily interested in evaluation
of TC patient population. Because there are more TC patients than NTC patients, the conventional two group matching
cannot be applied and we implement the proposed template matching to select NTC patients to mimic a TC population.
To select the template size, we first identify a range of sample sizes from 1500 to 2600, which corresponds to 30% to 50% of
the NTC patient population to ensure that we have enough controls to choose from.With an increment of 100 patients, we
calculate the total rank Mahalanobis distance and the average distance increase (from the template with the next smaller
size) for each template size, as described in Section 2.4. The detailed information is summarized in Table 3 in the online
supplementary material. To pick the ideal template size, we try to balance between a bigger sample size (for efficiency)
and a smaller average distance increase (for representativeness). Following Rosenbaum’s guideline,14 we choose to use
25th percentile of the pairwise distances between TC and NTC patients, which leads to a template size of 2200. With
this fixed template size, we draw 250 random samples from TC patients, and select the one that is closest to the full TC
population in term of rank Mahalanobis distance as the final template sample. We utilize a logistic regression model to
estimate the propensity score, which includes the eight covariatesmentioned earlier, then conduct optimalmatchingwith
the estimated propensity score to pair the template sample with patients in NTC.

Figure 3 shows the balance of the eight covariates before and after matching in terms of the absolute standardized
difference (ASD) in means. The covariate is considered well-balanced if the ASD is less than 10%. As shown in the figure,
all ASD’s are below 10% with most of them below 5%. We also calculate the variance ratio (VR) before and after matching
for continuous covariates, age and ISS.11 Both VR’s are less than 1.5 after matching, indicating good balance. If we regard
this well-matched data as coming from a randomized study, we can run a logistic regression model to estimate the risk
difference.20 The mortality difference is estimated to be 6.0% with a 95% confidence interval of [4.5%, 7.5%]. Therefore,
barring unmeasured confounding, being admitted to TC causes the mortality rate to drop 6.0%, or equivalently a 6.0%
increase of the survival rate, in the population of trauma patients who actually got admitted into TC.

4.2 A further evaluation with assessment of hidden bias

The causal analysis in the previous subsection is based on the ignorable treatment assignment assumption. Assuming no
unmeasured confounding, we regard the matched data as coming from a completely randomized experiment. A major
limitation of such approach is the lack of assessment of unmeasured confounding, which is a big threat to the validity of
observational studies. Like observed confounding, unmeasured confounding, if not adjusted for, can cause bias in causal
effect estimation, which is often referred to as hidden bias.4 Rosenbaum’s sensitivity analysis assumes a hypothetical
unmeasured confounder that associates with the treatment assignment. With a pre-specified magnitude of the associa-
tion, bounds on the P-value can be identified for the causal effect hypothesis testing, which incorporates the maximal
impact of the unmeasured confounder. By varying the magnitudes of the association, we can examine how the signifi-
cance of the causal effect test changes. If the causal effect changes from statistically significant to insignificant just for
a very small hidden bias, such observational study is regarded as being sensitive to unmeasured confounding. Rosen-
baum’s sensitivity analysis utilizes randomization tests based on the matched design, which is robust in the sense that no
outcome modeling is involved.

Sensitivity analysis with continuous outcomes usually assumes a constant additive effect in testing.21 This is not quite
sensible for binary outcomes, as they can only take two distinct values. To conduct randomization test on binary outcomes
with non-zero effect, Rosenbaum proposed a framework of attributable effect.9 An effect is attributable to treatment if it
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ZHAO and LU 1773

F I GURE 3 Variables balance before and after matching

would not have been observed had the individual not been exposed to treatment. Attributable effect can be calculated by
inverting randomization test without distribution assumptions beyond the random assignment of treatments. Moreover,
it is easy to incorporate sensitivity analysis in attributable effect estimation. For the rest of this section, we provide a brief
review of the conceptual setup of attributable effect, followed by an application to our trauma care evaluation example.

4.2.1 Attributable effect: A brief review

Under the potential outcome framework with binary data, the ith subject has two potential responses rTi and rCi, corre-
sponding to the treatment status being treated and control. Assuming non-negative effect, that is, rTi > rCi, the potential
response pair, (rTi, rCi), can take three possible values, (1, 1), (1, 0), or (0, 0). The treatment effect 𝛿i = rTi − rCimay be either
0 or 1, where 1 indicates the effect is attributable to receiving the treatment. The observed response is represented as
Ri = rTiZi + rCi(1 − Zi) = rCi + Zi𝛿i, where Zi is the treatment indicator. ThenA =

∑n
i=1Zi𝛿i is the number of events among

treated subjects that are caused by the treatment (the number of lives saved because the patients are treated at TC), given
a sample of size n. We cannot observe A since it involves potential outcomes, but we can observe T =

∑n
i=1ZiRi, which is

the number of events among treated subjects. To infer about the attributable effect, we consider a general null hypothesis
of each individual effect, H0 ∶ 𝜹 = 𝜹0, where 𝜹 = (𝛿1, … , 𝛿n)T and 𝜹0 is a vector of 0 and 1. Some of the null hypotheses
are not logically possible given our non-negative effect assumption. A logically impossible hypothesis, also referred to as
incompatible, can be rejected with type I error rate of zero. Among compatible hypotheses, we compute A0 =

∑n
i=1Zi𝛿0i,

which equals A if H0 is true. Then a randomization test can be carried out based on a hypergeometric distribution and a
confidence set can be identified via inverting the test.22 A caveat is that, since A is defined only for the treated subjects, it
carries a similar interpretation as the ATT effect.

Rosenbaum providedmore details about how to estimate the attributable effect inmatched design.9 Suppose there are
Imatched sets and eachmatched set contains ni subjects, indexed by i = 1 … I and j = 1 … ni. Using similar notations as
above, Zi+ =

∑ni
j=1Zij is number of treated subjects in set i. Rij = rTijZij + rCij(1 − Zij) is the observed response for a subject,

and Ri+ =
∑ni

j=1Rij is the number of subjects who have events in matched set i. T =
∑

i,j ZijRij denotes the total number of
treated individuals with events. 𝛿ij = rTij − rCij is the individual treatment effect, which is an unobserved variable. rCi+ =
∑ni

j=1rCij is the number of events if all subjects in a matched set were assigned to control. The attributable effect, A, and
the number of treated subjects who would have events even in control, T − A, can be defined as below:

A =
∑

i,j
Zij(rTij − rCij) =

∑

i,j
Zij𝛿ij, T − A =

∑

i,j
ZijrCij. (14)
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1774 ZHAO and LU

Consider testing the null hypothesis H0 ∶ 𝜹 = 𝜹0 against the alternative Ha ∶ 𝜹 ≥ 𝜹0, 𝜹0 ≠ 𝜹0. Note that 𝜹0 =
(𝛿01, … , 𝛿0n)T is a vector of pre-specified treatment effect for each individual. Therefore, it naturally allows for hetero-
geneous effects, as some of 𝛿’s are 1 and the others are 0.9 If the null hypothesis is true, then rCij could be obtained
for all subjects, because rCij = Rij − Zij𝛿ij. To be more specific, rCij = Rij for a control subject, and for a treated subject,
if the outcome is attributable to treatment then rCij = Rij − 1, otherwise rCij = Rij. Write A0 =

∑
i,j Zij𝛿0ij, so that under

null hypothesis T − A0 =
∑

i,j ZijrCij, which is the sum of I independent binary random variables Bi, i = 1, … , I, where
Bi =

∑
j ZijrCij. Write 𝜋i = Pr(Bi = 1), under a randomized experiment, we know 𝜋i =

Zi+rCi+
ni

. To test the null hypothe-
sis against alternative hypothesis is to find the probability Pr(

∑
i Bi ≥ T − A0), and as I → ∞, Pr(

∑
i Bi ≥ T − A0) can be

approximated by

Pr

(
∑

i
Bi ≥ T − A0

)

→ 1 − Φ

(
T − A0 −

∑
i 𝜋i

√∑
i 𝜋i(1 − 𝜋i)

)

, (15)

where Φ is the CDF of standard normal distribution. In practice, if Pr(
∑

i Bi ≥ T − A0) ≥ 0.05, we fail to reject the null
hypothesis under 0.05 significance level and therefore A0 =

∑
i,j Zij𝛿0ij is a plausible attributable effect. Since 𝜹0 is a high

dimensional vector of 1’s and 0’s, it is difficult to find the confidence interval for A0 by going over each possible 𝜹0. It is
more efficient to find one 𝜹0 with A0 =

∑
i,j Zij𝛿0ij that is hardest to reject. If this 𝜹0 is rejected, then we can conclude it is

not plausible that A0 or fewer events are attributed to treatment, otherwise A0 is a plausible attributable effect.

4.2.2 Attributable effect for trauma center patients

We apply the attributable effect analysis to our matched trauma care data (2200 pairs). For each patient, the response is
either alive (Rij = 1) or dead (Rij = 0). We intend to examine, among patients treated at TC, howmany of them were alive
because they received the care at TC. This analysis is under the assumption that no patient would die if treated at TC, but
would survive if treated at NTC. This is reasonable in the sense that TC has better resource and more clinical expertise
and this should not have a harmful effect on patients. Table 5 reports the aliveness and death of patients by matched
pairs. In most pairs, patients are both alive (1908) or both dead (17). In 204 discordant pairs, patients admitted to TC are
alive and their matched patient admitted to NTC are dead. In another 71 discordant pairs, patients admitted to TC are
dead and their matched patient admitted to NTC are alive. Among the 2200 pairs, Zi+ = 1 for every pair, Ri+ = 2 for 1908
pairs, Ri+ = 1 for 275 discordant pairs and Ri+ = 0 for 17 pairs. Rosenbaum showed that in a cohort study the hardest to
reject null hypothesis is assigning the attributable effect to concordant pairs (Ri+ = 2).9 Suppose we want to ask whether
A0 = 102 is a plausible attributable effect assuming no hidden bias.We assign all of them to concordant pairs and calculate
𝜋i for each of the 2200 pairs. As a result, the 17 pairs with Ri+ = 0 have 𝜋i = 0, and the 275 discordant pairs with Ri+ = 1
have 𝜋i = 1∕2. Among the 1908 concordant pairs, 1806 pairs have 𝜋i = 1 and the other 102 pairs whose treatment effects
are attributable have 𝜋i = 1∕2. Then the test statistic is

T − A0 −
∑

i 𝜋i
√∑

i 𝜋i(1 − 𝜋i)
= 1.60.

So the null hypothesis is plausible since 1.60 < 1.65 (critical value for one-sided z-test). In contrast, with A0 = 101,
T−A0−

∑
i 𝜋i√∑

i 𝜋i(1−𝜋i)
= 1.6502, the null hypothesis is barely rejected. Thus, we can conclude under the assumption of no hidden

biases, among the 2112 alive TC patients, at least 102 of them are attributable to being admitted to TC.

TABLE 5 Aliveness and death status for matched pairs

NTC, dead NTC, alive NTC

TC, dead 17 71 88

TC, alive 204 1908 2112

TC 221 1979 2200
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4.2.3 Sensitivity analysis

The analysis in the previous subsection assumes no unmeasured confounding. Thematched data are created based on the
estimated propensity score from the eight observed covariates. Though they are all important covariates, it is likely that
other factors may contribute to the underlying differences in TC and NTC patients. We further consider the sensitivity
analysis to assess the robustness of the causal conclusion to departures from random assignment. Sensitivity analysis
starts with the assumption that treatment assignment in amatched pair is strongly ignorable given the observed variables
X and an additional unmeasured confounder U, which is for i = 1, … , 2200, j = 1, 2

(rTij, rCij) ⊥⊥ Zij|Xij,Uij, 0 < Pr(Zij|Xij,Uij) < 1. (16)

Denote pij = Pr(Zij = 1|Xij,Uij), which is the probability of being assigned to treated group for patient j inmatched pair
i. Based on Rosenbaum’s framework,23,24 a sensitivity parameter Γ is introduced to capture the impact due to unmeasured
confounding. Specifically, two subjects in a matched pair may differ in their odds of being exposed to treatment bounded
by a function of Γ,

1
Γ
≤
pi1∕(1 − pi1)
pi2∕(1 − pi2)

≤ Γ. (17)

The case of Γ = 1 yields random assignment of treatment which means pij = 1∕2 and the unmeasured confounder
does not exist. If Γ > 1, the randomization distribution of the statistic Bi is unknown since 𝜋i = Pr(Bi = 1) depends on
the distribution of Uij. In a cohort study, it is shown that 𝜋i is bounded above by a quantity 𝜋i, 𝜋i =

ΓZi+rCi+
(1−Γ)Zi+rCi++ni

. Thus,

as I → ∞, Pr(
∑

i Bi ≥ T − A0) can be approximated by 1 − Φ( T−A0−
∑

i 𝜋i√∑
i 𝜋i(1−𝜋i)

). Then the hypothesis test can be carried out by
replacing 𝜋i with 𝜋i to find the upper bound of the P-value. Technically, to conduct the sensitivity analysis, we first fix the
value of parameter Γ, then compute A0, which is the smallest value of A0 that makes the null hypothesis barely plausible
under the 𝛼 significance level.A0 is also the lower bound of the (1 − 𝛼) × 100% confidence set for all plausible attributable
effects. A small value of A0 implies a more negligible attributable effect. If a small Γ (meaning a slight departure from
random assignment) yields a small A0, the causal effect estimated with the observed data is considered sensitive to hid-
den bias. One may be interested in computing the smallest value of Γ that makes the attributable effect equal to a certain
threshold. If the threshold is set to zero, the corresponding Γ value indicate the smallest association between the unmea-
sured confounder and the treatment that leads to no attributable effect. If a 1% aliveness rate difference between the two
groups is considered meaningful, the threshold may be set to 1%.

Table 6 reports the estimates of the lower endpoint of 95% confidence set for the attributable effect (AE) and the
attributable risk (AR, in percentage) asΓ increases. The attributable risk is the proportion of alive cases amongTCpatients,
which can be attributed to being cared at TC. Without any hidden bias, at least 4.64% of alive cases are attributable to
being treated at TC. How sensitive is this result to potential hidden biases? As Γ increases, both attributable effect and
attributable risk decrease, which shows an increasing amount of the observed causal effect can be explained away by the
unmeasured confounding. When Γ = 1.5, or one patient in any pair is 1.5 times more likely (in odds) than the other to
be admitted to TC due to an unobserved factor, 42 or more alive patients in TC are caused by being treated at TC. This
can also be interpreted as that the lives of at least 1.91% of all TC patients are saved by treating them at TC. The drop
from 4.64% to 1.91% in the attributable risk is because we account for the unobserved factor with an impact of magnitude
Γ = 1.5 in the hypothesis testing. The last row of the table has the attributable effect drop to zero, which implies that an
unobserved factor with an impact of magnitude Γ = 2.4 could completely explain away any attributable effect in the data.
Hence it is plausible that TC offers no benefit over NTC for trauma patients, if an unobserved factor makes the patients
2.4 times more likely (in odds ratio) to be sent to TC than to NTC. From a trauma care system evaluation perspective, if
a 1% or more reduction in mortality is considered a worthwhile investment to keep TC, we may set the threshold for the
attributable risk at 1%. The table shows that Γ = 1.8 results in AR = 1%. As long as the unmeasured confounder does not
alter the odds ratio of being admitted to TC over NTC by more than 1.8, there is at least 1% of the TC patients whose lives
are saved by being treated at TC.

As shown in supplementary material Section 3, we also assess the robustness of our causal analyses by varying the
size of template sample. We consider twomore scenarios with template size 2100 or 2300, and we find the results are very
similar, which implies our findings are stable.
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TABLE 6 Lower bound for attributable effect when hidden biases exist

𝚪 AE AR%

1 102 4.64

1.2 71 3.23

1.4 50 2.27

1.5 42 1.91

1.7 28 1.27

1.8 22 1.00

2.0 12 0.55

2.2 4 0.18

2.4 0 0.00

5 DISCUSSION

We propose a flexible matched design to address challenges in the conventional matching framework for obser-
vational studies. These challenges include estimating ATT in a setting with a bigger treated group and a smaller
control group, or estimating ATE with pair matched data. Our template matching first identifies a representative
sample of the population of interest, then match subjects from the original dataset to this reference group. Theoret-
ical justification shows unbiased treatment effect estimation is expected under regular assumptions, and simulation
studies also demonstrate good empirical performance. With a real-world trauma care database, we use the matched
design to control observed confounding and implement a sensitivity analysis to assess the impact due to unmeasured
confounding.

Template matching may have a broader range of applications, since it only depends on identifying a representative
template sample of the target population. In observational studies, researchers often rely on existing data sources to extract
information about research questions of their interest, due to the lack of resource to design their own study and collect
data. In health research, national surveys, patient registries or hospital patient records are commonly used. Many times,
such existing databases may not align well with the ideal patient population that the researchers intend to study. Simply
subsetting the existing dataset may not work, since the distribution of important patient characteristics in the subset may
not match the target population. It would be desirable if a pseudo population can be created with pre-specified covariate
distributions, such as age group distribution, gender composition, race/ethnicity distribution and so forth thenmatched to
the original database to extract real patients from both exposed and unexposed groups to learn about causal effects in this
special population. For example, the NEDS database, illustrated in Section 4, does not disclose geographical information.
Researchers may get stuck if they want to learn about the impact of TC vs NTC in a particular state, say Ohio. The key
characteristics of trauma patient in Ohio are often reported in literature and health agency’s published documents. So
researchers may use the public available information to construct a pseudo population with key characteristics similar to
Ohio patients, then use it as a template to match to the NEDS database. This approach still requires more thoughts to be
methodological sounding, such as all relevant covariates should be specified in creating template group and assumptions
on joint distribution information. Butmore explorations are worthwhile as it opens the door tomake better use of existing
databases.

One potential limitation is the template sample selection. We suggest a numerical method that intends to minimize
a certain distance metric. In practice, Matching methods are generally study/data dependent since the matching qual-
ity relies on the overlap of the covariate distribution. If the data overlap very well, the researchers can pick a template
group easily by taking a random sample from the target population. But scenarios with moderate overlap, practitioners
may get stuck on how to pick a sensible template sample size. We suggest trying different sizes and using an aver-
age distance based method to determine the template size. It may add a bit computational burden, but we believe
this should help clinical researchers better implement template matching in practice. When the overlap between two
groups is bad, matching alone may not work well, since high quality matches are hard to find and it relies heavily
on extrapolation. Additional model based adjustment could be helpful if good knowledge about model specification
is available.
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