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ABSTRACT

The sensitized photooxidation of ortho-prenyl phenol is described with evidence that solvent
aproticity favors the formation of a dihydrobenzofuran [2-(prop-1-en-2-yl)-2,3-
dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased
the total quenching rate constant (kt) of singlet oxygen with prenyl phenol by ~10-fold
compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen
addition to prenyl site due to hydrogen bonding with phenol OH group, which causes a
divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the
major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I

sensitized photooxidation.

Keywords: visible light, synthesis, photosensitization, regioselectivity, prenylated phenolics,

dihydrobenzofuran
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INTRODUCTION

Strategies to synthesize 2,3-dihydrobenzofuran natural products have attracted attention (1-8).
One strategy was the cyclization of a prenylated phenol, (£)-4-(2-hydroxyphenyl)-2-methyl-2-
butenyl methyl carbonate 1 to reach dihydrobenzofuran (R)-2 (Figure 1) (9). Dihydrobenzofuran
(R)-2 is related to important biologically active natural products, including tremetone (R)-3 from
the herb white snakeroot (Ageratina altissima) (10-13), and new strategies to reach them are

needed.

[Figure 1 here]

Visible-light strategies to synthesize dihydrobenzofurans include successful photoredox
reactions of ortho-quinone methides (14) and [3 + 2] cycloadditions of phenols and styrenes
(15). Visible-light strategies also include sensitized photooxidation, that upon irradiation of a
sensitizer, singlet oxygen ('02) is efficiently produced (type II reaction), as well as amounts of
oxygen radicals (type I) (16-18). Reports described sensitized photooxidation which gave
dihydrobenzofurans, including literature examples of (—)-adunctin E (19) and
dehydroisoeugenol (20). We hypothesized that the sensitized photooxidation of ortho-prenyl
phenol (4) will form a dihydrobenzofuran and that mechanistic insight will enable path

manipulation to it, which is the subject of this paper.

Our work sought to elucidate mechanistic details on three fronts: whether (1) sensitized-
photooxidation of prenyl phenol 4 leads to dihydrobenzofuran and allylic hydroperoxides, (2)

solvent effects and competition exists between type I (oxygen radicals and ions) and type II
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('02) processes (16,17), and (3) total quenching rate constant (kt) data of 'Oz can yield new
insight. The results provide evidence for the mechanism shown in Figure 2, which reveals
solvent aproticity increasing the reactivity of 'O2 with the prenyl group in 4 and thus formation

of dihydrobenzofuran.

[Figure 2 here]

METHODS AND MATERIALS

General. Benzaldehyde, DABCO, 3,3-dimethylallyl bromide, meta-chloroperoxybenzoic
acid (MCPBA, 77% purity with m-chlorobenzoic acid as the impurity), 2-methyl-2-pentene,
NaH, NaHCO3, NaNO2, Na2SOs, and phenol were purchased from Sigma-Aldrich and used as
received. Aluminum (III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) and
tetraphenylporphyrin (TPP) were purchased from Frontier Scientific and used as received.
Diethyl ether, ethyl acetate, hexanes, H202 (3 w/v%), pyridine, toluene (anhydrous), CHCls,
CDCIl3, CH2Cl2, CD3CN, CsHe, and CsDs were purchased from VWR and used as received.
Previously reported syntheses were used for prenyl phenol 4 (21) and 8-acetoxymethyl-2,6-
dibromo-1,3,5,7-tetramethyl pyrromethene fluoroborate (Br2B-OAc) (22). Epoxide 8 was
synthesized in 24.0+2.2% yield by the reaction prenyl phenol 4 (1.54 mmol) with MCPBA (1.92
mmol) in 3.3 mL CHCIls at 0 °C, which was followed by washing with 10% NaHCOs, drying
over Na2SOs4, solvent removal, and silica gel column chromatography with hexanes/ethyl acetate

(8:2).

Photooxidation reactions. Photooxidations of prenyl phenol 4 (0.10 M) were carried out

in Oz-saturated C¢Ds with TPP (0.1 mM) and in some cases DABCO (2 or 10 mM) or CH3OH
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with AIPcS4 (0.1 mM). Solutions were pre-saturated with Oz and the TPP or AlPcS4 sensitizers
irradiated with two 400-W metal halide lamps through a longpass > 400-nm filter solution (1-cm
75 w/v% NaNOz) at 26 °C. Temperature increases were < 3 °C over the course of the photolysis.
Following photolyses carried out in CH30OH, solvent was evaporated and replaced with CDCls
for NMR analysis. Benzaldehyde was unreactive under the reaction conditions and therefore

used as an NMR internal standard.

2-(3-Methyl-2-butenyl)phenol 4. 'H NMR (400 MHz, CDCl3) § 7.17 — 7.11 (2H, m),
6.89 (1H, td, /= 7.4, 1.2 Hz), 6.83 (1H, dd, J = 8.5, 1.2 Hz), 5.37 — 5.33 (1H, m), 5.14 (1H, s),
3.39 (1H, d, J= 7.2 Hz), 1.81 (6H, s).

2-(Prop-1-en-2-yl)-2,3-dihydrobenzofuran 2 is a known compound (9). 'H NMR (400
MHz, CDCl3): 8 7.14 (2H, d, J = 8.0 Hz), 6.91-6.87 (1H, m), 6.84-6.81 (1H, m), 5.10 (1H, t, J =
1.2 Hz), 5.02 (1H, d, J=4.0 Hz), 4.97 (1H, d, J=4.0 Hz), 3.35 (1H, d, J = 8.0 Hz), 3.27 (1H, d,
J=8.0 Hz), 1.80 (3H, s).

2-(2-Hydroperoxy-3-methylbut-3-en-1-yl)phenol 6. '"H NMR (400 MHz, CsD¢): & 11.43
(1H, s), 7.01-6.96 (1H, d, J = 8.0 Hz), 6.83-6.79 (1H, m), 6.81 (1H, m), 6.52 (1H, d, /= 8.0 Hz),
5.01 (1H,d, J=1.6 Hz,), 5.00 (1H, d, /= 1.6 Hz), 4.80 (1H, t, J= 1.6 Hz,), 3.31 (1H, d, J =12
Hz), 3.27 (1H, d, /= 8.0 Hz), 1.56 (3H, s).

(E)-2-(3-Hydroperoxy-3-methylbut-1-en-1-yl)phenol 7. '"H NMR (400 MHz, CsD¢): &
9.60 (1H, s), 7.01-6.96 (1H, d, J = 8.0 Hz), 6.83-6.79 (1H, m), 6.81 (1H, m), 6.52 (1H, d, J= 8.0
Hz), 6.33 (2H, d, J=16.0 Hz), 1.56 (3H, s), 1.52 (3H, s).

2-((3,3-Dimethyloxiran-2-yl)methyl)phenol 8 is a known compound (23). 'H NMR (400
MHz, Cs¢Ds): 6 7.08 — 7.06 (2H, m), 7.01 — 6.96 (2H, m), 2.87 (1H, d, /=8 Hz), 2.84 (1H, d, J =

8.0 Hz), 2.74 (1H, t, J = 8.0 Hz), 1.55 (3H, 5), 1.52 (3H, s).
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H202. '"H NMR (400 MHz, CsDs) broad § 9.16 ppm; 'H NMR (400 MHz, CD3CN) §
9.77 ppm; '"H NMR (400 MHz, CDCI3) & 9.57 ppm; values were consistent to those reported in
literature (24,25). In CeéDs, doping with commercial H202 and the addition of co-solvent CD3CN
to solubilize was carried out to verify the NMR signal. In CH30H, H202 was detected after
solvent evaporation and replacement with CDCls.

Total quenching rate constant determinations. The setup (26) used 532 nm light (10
mJ/pulse) from an Nd:YAG Q-switched laser operating at 5 Hz. Br2B-OAc (2.6 uM) was used
as the sensitizer in CéHe or CH30H solutions of prenyl phenol 4 at 26 °C. A H10330A-45
(Hamamatsu Corp.) photomultiplier tube operating at -650 V was used to detect the 'O:
phosphorescence. The phosphorescence was monitored through a band-pass filter centered at
1270 nm (OD4 blocking, FWHM = 15 nm) and signals collected on a 600 MHz oscilloscope.

Kinetic data were fitted with a monoexponential function shown in eq 1,

[ =1Iy+ Ae /™ (0
where / is the final intensity, /o is the initial intensity, t is the time, A is the amplitude, and ta is
the lifetime of !O2. The total quenching rate constants (kt) were obtained by fitting the data
plotted of kobs vs [prenyl phenol] with eq 2,

kons = kq + (kt)[prenyl phenol 4] @)
where kobs is the observed 'Oz quenching rate constant, kq is the rate constant of deactivation of

'02 by the solvent.
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RESULTS AND DISCUSSION

Product formation. The sensitized photooxidation reaction of prenyl phenol 4 (taken to <
30% conversion) led to products 2, and 6-8 according to NMR (Table 1). Attempts were not
made to isolate the 2° and 3° allylic hydroperoxides 6 and 7 due to the anticipated instability to
column chromatography; the proton NMR hydroperoxy and alkene signals are similar to those
reported in literature (27). The stabilities of hydroperoxides vary, on detection of 6 and 7 by
NMR their decomposition was not seen in the reaction mixture over several hours. The identity
of epoxide 8 was verified by its independent synthesis from 4 with MCPBA. There was evidence
for the formation of H20: in the reaction, but was not quantitated as we and others (24,25) have
noted a broad proton NMR signals from 9.16-9.77 ppm depending on solvent. The solvent was
also found to modify the product yields.

Effect of solvent on product formation. In C¢Ds, dihydrofuran 2 was the main product,
along with epoxide 8, with only small amounts of allylic hydroperoxides 6 and 7. In CH3OH, the
amount of the dihydrofuran 2 decreased and amounts of allylic hydroperoxides 6 and 7
increased, but the amount of epoxide 8 remained nearly constant. The ratio of dihydrofuran 2 to
hydroperoxides 6 and 7 is ~9:1 in C¢Ds, and ~2:3 in CH30H. Thus, there is a ~4-fold decrease in
dihydrofuran 2 in CH30H compared to CsDe. The ratio of hydroperoxides 6:7 is not found to
depend on CsDs and CH30H solvent, wherein the ratio of 6:7 in either solvent is ~0.9:1. In C¢Ds¢
and CH3OH, the yield of epoxide 8 remained nearly constant, which led us to study the addition
of the known 'O2 quencher DABCO (28). The addition of DABCO in the sensitized
photooxidation of prenyl phenol 4 led to an absence in the formation of 2, 6, and 7, however the

amount of epoxide 8 formed was not affected pointing to its formation by a type I process. The
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probable type I contribution led us to measure the quenching rate constants with 'Oz to directly

assess the type Il process.
[Table 1 here]

Effect of solvent on the total 'Oz quenching rate constant. Time-resolved singlet oxygen
phosphorescence quenching studies provided insight to the solvent effects. The total quenching
rate constant (k) of 'O2 by prenyl phenol 4 was measured in CsHs and CH3OH by monitoring its
phosphorescence quenching at 1270 nm (Table 2). Figure 3A and 3B show the decay curves are
first-order and the lifetime (tobs) diminishes with increasing concentration of prenyl phenol 4 in
CsHe and CH30OH. The kt values were obtained from the linear fit of the kobs (1/Tobs) vs [prenyl
phenol] showing a kr value ~10-fold greater in C¢He in than CH3OH (Figure 4A and 4B). This
enhancement contrasts to solvent effects in di- and trisubstituted alkenes in aprotic to protic
solvents that usually vary < 2-fold (29,30). This aprotic solvent enhancement provides us with

implications on the reaction mechanism, as we will discuss next.

[Figures 3 and 4 here]

[Table 2 here]

Mechanism of photooxidation. The above results are rationalized in the mechanism
shown in Figure 2, and as follows: An experimental result is that dihydrobenzofuran formation
depends on whether benzene or methanol solvent is used. The interaction of 'Oz with the prenyl
phenol 4 in benzene (Figure 2, path A) and in methanol (Figure 2, path B) can account for the
~10-fold greater total quenching kr. Data over a wider solvent range to compare not only

hydrogen bonding ability, but also polarity E£1(30) scales are presently not available. With the



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

available data, dihydrobenzofuran formation is proposed to involve H-bond interaction of
phenolic hydrogen with 'O2, directing it to the C'* site in 5. The formation of a peroxy
intermediate seems plausible, but evidence has not been found with preliminary trapping
experiments using triaryl phosphites. The 'Oz ‘ene’ regioselectivity in formation of the 2° and 3°
allylic hydroperoxides 6 and 7 (ratio of ~1:1) did not depend on whether benzene or methanol
was the solvent. This is consistent with the cis-effect rule of the reaction of !O» with
trisubstituted alkenes, in which the more alkyl substituted side of the double bond is more
reactive (31). Previous reports have shown instances where H-abstraction from the exo methyl
group in trisubstituted alkenes contribute only a minor 5-10% in the formation of the 2° allylic
hydroperoxide. In the presence of DABCO, the reaction did not form 2, 6, and 7, however the
epoxide 8 yield was unaffected pointing to a type I process in its formation (Figure 2, path C).
These studies were carried out with DABCO concentrations that were insufficient to quench the
sensitizer excited states, however the results do not rule out the epoxide’s formation via a peroxy

prenyl phenol intermediate in a self-epoxidation process.

CONCLUSION

An interesting result of this study is the increased dihydrobenzofuran formation, when the
photooxidation of 4 was carried out in aprotic solvent. This result points to adduct formation §,
which decomposes to more stable species, 2 and H202. Decreasing the proticity of the solvent
increases the interaction of 'Oz with the phenolic hydrogen increasing the yield of dihydrofuran

from 20.0% in benzene compared to 5.1% in methanol. The kr value showed a ~10-fold
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enhancement in benzene compared to methanol. Reported differences in product formation have
been seen in t-propenyl anisole with solvent aproticity showing increased [2 + 4] product
relative to the [2 + 2] product in protic solvent (32), although the present work shows no
evidence for [2 + 2] products. The present work does show evidence for a type I process to
account for the formation of epoxide 8 in both solvents. Solvent, structure, and interfacial effects
are subjects of continued interest in the areas of type I and type II sensitized photooxidation in
terms of synthesis and mechanistic studies (16-18,33-41).

We are currently exploring (i) heterogeneous systems aimed at amplifying the formation
of dihydrobenzofurans, (ii) whether a self-trapping reaction with 4 arises by a peroxy
intermediate in the 4-'02 reaction, and (iii) whether dihydrobenzofuran 2 reacts further by 'O
[2 + 4] cycloaddition to form endoperoxides by analogy to phenol and naphthalene-1,5-diol

(juglone)—'02 reactions to reach an endoperoxide (42).
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FIGURE AND TABLE CAPTIONS

Figure 1. Synthesis of dihydrofuran (R)-2 with the structure of tremetone (R)-3 shown to the

right.

Figure 2. Proposed mechanism in the sensitized photooxidation of prenyl phenol 4, including

solvent and DABCO additive effects.

Figure 3. Normalized 'O2 luminescence decay curves monitored at 1270 nm with increasing

concentration of prenyl phenol 4 in (A) CsHes and (B) CH30H.

Figure 4. Plots of kobs (s™') values as a function of the concentration of prenyl phenol 4 in (A)

CsHe and (B) CH3OH.

Table 1. Effects of solvent and DABCO additive on the product ratios in the photooxidation of

prenyl phenol 4.

Table 2. Total quenching rate constant (kt) measurements of 'Oz with prenyl phenol 4.
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Table 1. Effects of solvent and DABCO additive on the product ratios in the photooxidation of

prenyl phenol 4.
protic
products aprotic (C¢Des)**
(CH30H)*“
2 20.0+4.0 51+0.7
6 0.95+0.07 3.0+0.7
7 1.0+0.03 35+04
8 7.5+£22 6.7+0.6

@ Sensitizer TPP. ? Addition of DABCO (2 or 10 mM) in the reactions led to an absence in the
formation of 2, 6, and 7, whereas 8 still formed and its yield unaffected. ¢ Each value represents

the mean of 4 separate experiments (mean + SD). ¢ Sensitizer AlPcSa.

Table 2. Total quenching rate constant (kt) measurements of 'O2 with prenyl phenol 4.4

solvent kr M™1s™) x 103
CeHs 1.29+0.6
CH30OH 0.12 £ 0.06

@ Data represent the mean + SD of 6 points at each concentration measured.
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