

Sensitized photooxidation of *ortho*-prenyl phenol: Biomimetic dihydrobenzofuran synthesis and total $^1\text{O}_2$ quenching

Shakeela Jabeen,^{1,2} Goutam Ghosh,^{1,2} Lloyd Lapoot,^{1,3} Andrés M. Durantini,^{1,2,4} and Alexander Greer^{1-3*}

⁷ ¹ Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn,
⁸ New York 11210, United States

² Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States

11 ³ Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365
12 Fifth Avenue, New York, New York 10016, United States

13 ⁴ IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y
14 Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, X5804BYA Río Cuarto,
15 Córdoba, Argentina

16

17 *Corresponding author e-mail: agreeer@brooklyn.cuny.edu (Alexander Greer)

18

19 **ABSTRACT**

20 The sensitized photooxidation of *ortho*-prenyl phenol is described with evidence that solvent
21 aproticity favors the formation of a dihydrobenzofuran [2-(prop-1-en-2-yl)-2,3-
22 dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased
23 the total quenching rate constant (k_T) of singlet oxygen with prenyl phenol by ~10-fold
24 compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen
25 addition to prenyl site due to hydrogen bonding with phenol OH group, which causes a
26 divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the
27 major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I
28 sensitized photooxidation.

29

30 *Keywords:* *visible light, synthesis, photosensitization, regioselectivity, prenylated phenolics,*
31 *dihydrobenzofuran*

32

33 INTRODUCTION

34 Strategies to synthesize 2,3-dihydrobenzofuran natural products have attracted attention (1-8).
35 One strategy was the cyclization of a prenylated phenol, (*E*)-4-(2-hydroxyphenyl)-2-methyl-2-
36 butenyl methyl carbonate **1** to reach dihydrobenzofuran (*R*)-**2** (Figure 1) (9). Dihydrobenzofuran
37 (*R*)-**2** is related to important biologically active natural products, including tremetone (*R*)-**3** from
38 the herb white snakeroot (*Ageratina altissima*) (10-13), and new strategies to reach them are
39 needed.

40 [Figure 1 here]

41 Visible-light strategies to synthesize dihydrobenzofurans include successful photoredox
42 reactions of *ortho*-quinone methides (14) and [3 + 2] cycloadditions of phenols and styrenes
43 (15). Visible-light strategies also include sensitized photooxidation, that upon irradiation of a
44 sensitizer, singlet oxygen (${}^1\text{O}_2$) is efficiently produced (type II reaction), as well as amounts of
45 oxygen radicals (type I) (16-18). Reports described sensitized photooxidation which gave
46 dihydrobenzofurans, including literature examples of (-)-aduncitin E (19) and
47 dehydroisoeugenol (20). We hypothesized that the sensitized photooxidation of *ortho*-prenyl
48 phenol (**4**) will form a dihydrobenzofuran and that mechanistic insight will enable path
49 manipulation to it, which is the subject of this paper.

50 Our work sought to elucidate mechanistic details on three fronts: whether (1) sensitized-
51 photooxidation of prenyl phenol **4** leads to dihydrobenzofuran and allylic hydroperoxides, (2)
52 solvent effects and competition exists between type I (oxygen radicals and ions) and type II

53 ($^1\text{O}_2$) processes (16,17), and (3) total quenching rate constant (k_{T}) data of $^1\text{O}_2$ can yield new
54 insight. The results provide evidence for the mechanism shown in Figure 2, which reveals
55 solvent *aproticity* increasing the reactivity of $^1\text{O}_2$ with the prenyl group in **4** and thus formation
56 of dihydrobenzofuran.

57 [Figure 2 here]

58 METHODS AND MATERIALS

59 *General.* Benzaldehyde, DABCO, 3,3-dimethylallyl bromide, *meta*-chloroperoxybenzoic
60 acid (MCPBA, 77% purity with *m*-chlorobenzoic acid as the impurity), 2-methyl-2-pentene,
61 NaH, NaHCO₃, NaNO₂, Na₂SO₄, and phenol were purchased from Sigma-Aldrich and used as
62 received. Aluminum (III) phthalocyanine chloride tetrasulfonic acid (AlPcS₄) and
63 tetraphenylporphyrin (TPP) were purchased from Frontier Scientific and used as received.
64 Diethyl ether, ethyl acetate, hexanes, H₂O₂ (3 w/v%), pyridine, toluene (anhydrous), CHCl₃,
65 CDCl₃, CH₂Cl₂, CD₃CN, C₆H₆, and C₆D₆ were purchased from VWR and used as received.
66 Previously reported syntheses were used for prenyl phenol **4** (21) and 8-acetoxymethyl-2,6-
67 dibromo-1,3,5,7-tetramethyl pyrromethene fluoroborate (Br₂B-OAc) (22). Epoxide **8** was
68 synthesized in 24.0±2.2% yield by the reaction prenyl phenol **4** (1.54 mmol) with MCPBA (1.92
69 mmol) in 3.3 mL CHCl₃ at 0 °C, which was followed by washing with 10% NaHCO₃, drying
70 over Na₂SO₄, solvent removal, and silica gel column chromatography with hexanes/ethyl acetate
71 (8:2).

72 *Photooxidation reactions.* Photooxidations of prenyl phenol **4** (0.10 M) were carried out
73 in O₂-saturated C₆D₆ with TPP (0.1 mM) and in some cases DABCO (2 or 10 mM) or CH₃OH

74 with AlPcS₄ (0.1 mM). Solutions were pre-saturated with O₂ and the TPP or AlPcS₄ sensitizers
75 irradiated with two 400-W metal halide lamps through a longpass \geq 400-nm filter solution (1-cm
76 75 w/v% NaNO₂) at 26 °C. Temperature increases were \leq 3 °C over the course of the photolysis.
77 Following photolyses carried out in CH₃OH, solvent was evaporated and replaced with CDCl₃
78 for NMR analysis. Benzaldehyde was unreactive under the reaction conditions and therefore
79 used as an NMR internal standard.

80 2-(3-Methyl-2-butenyl)phenol **4**. ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.11 (2H, m),
81 6.89 (1H, td, *J* = 7.4, 1.2 Hz), 6.83 (1H, dd, *J* = 8.5, 1.2 Hz), 5.37 – 5.33 (1H, m), 5.14 (1H, s),
82 3.39 (1H, d, *J* = 7.2 Hz), 1.81 (6H, s).

83 2-(Prop-1-en-2-yl)-2,3-dihydrobenzofuran **2** is a known compound (9). ¹H NMR (400
84 MHz, CDCl₃): δ 7.14 (2H, d, *J* = 8.0 Hz), 6.91-6.87 (1H, m), 6.84-6.81 (1H, m), 5.10 (1H, t, *J* =
85 1.2 Hz), 5.02 (1H, d, *J* = 4.0 Hz), 4.97 (1H, d, *J* = 4.0 Hz), 3.35 (1H, d, *J* = 8.0 Hz), 3.27 (1H, d,
86 *J* = 8.0 Hz), 1.80 (3H, s).

87 2-(2-Hydroperoxy-3-methylbut-3-en-1-yl)phenol **6**. ¹H NMR (400 MHz, C₆D₆): δ 11.43
88 (1H, s), 7.01-6.96 (1H, d, *J* = 8.0 Hz), 6.83-6.79 (1H, m), 6.81 (1H, m), 6.52 (1H, d, *J* = 8.0 Hz),
89 5.01 (1H, d, *J* = 1.6 Hz), 5.00 (1H, d, *J* = 1.6 Hz), 4.80 (1H, t, *J* = 1.6 Hz), 3.31 (1H, d, *J* = 12
90 Hz), 3.27 (1H, d, *J* = 8.0 Hz), 1.56 (3H, s).

91 (E)-2-(3-Hydroperoxy-3-methylbut-1-en-1-yl)phenol **7**. ¹H NMR (400 MHz, C₆D₆): δ
92 9.60 (1H, s), 7.01-6.96 (1H, d, *J* = 8.0 Hz), 6.83-6.79 (1H, m), 6.81 (1H, m), 6.52 (1H, d, *J* = 8.0
93 Hz), 6.33 (2H, d, *J* = 16.0 Hz), 1.56 (3H, s), 1.52 (3H, s).

94 2-((3,3-Dimethyloxiran-2-yl)methyl)phenol **8** is a known compound (23). ¹H NMR (400
95 MHz, C₆D₆): δ 7.08 – 7.06 (2H, m), 7.01 – 6.96 (2H, m), 2.87 (1H, d, *J* = 8 Hz), 2.84 (1H, d, *J* =
96 8.0 Hz), 2.74 (1H, t, *J* = 8.0 Hz), 1.55 (3H, s), 1.52 (3H, s).

97 H_2O_2 . ^1H NMR (400 MHz, C_6D_6) broad δ 9.16 ppm; ^1H NMR (400 MHz, CD_3CN) δ
98 9.77 ppm; ^1H NMR (400 MHz, CDCl_3) δ 9.57 ppm; values were consistent to those reported in
99 literature (24,25). In C_6D_6 , doping with commercial H_2O_2 and the addition of co-solvent CD_3CN
100 to solubilize was carried out to verify the NMR signal. In CH_3OH , H_2O_2 was detected after
101 solvent evaporation and replacement with CDCl_3 .

102 *Total quenching rate constant determinations.* The setup (26) used 532 nm light (10
103 mJ/pulse) from an Nd:YAG Q-switched laser operating at 5 Hz. $\text{Br}_2\text{B-OAc}$ (2.6 μM) was used
104 as the sensitizer in C_6H_6 or CH_3OH solutions of prenyl phenol **4** at 26 °C. A H10330A-45
105 (Hamamatsu Corp.) photomultiplier tube operating at -650 V was used to detect the $^1\text{O}_2$
106 phosphorescence. The phosphorescence was monitored through a band-pass filter centered at
107 1270 nm (OD4 blocking, FWHM = 15 nm) and signals collected on a 600 MHz oscilloscope.
108 Kinetic data were fitted with a monoexponential function shown in eq 1,

$$109 \quad I = I_0 + Ae^{-t/\tau_\Delta} \quad (1)$$

110 where I is the final intensity, I_0 is the initial intensity, t is the time, A is the amplitude, and τ_Δ is
111 the lifetime of $^1\text{O}_2$. The total quenching rate constants (k_T) were obtained by fitting the data
112 plotted of k_{obs} vs [prenyl phenol] with eq 2,

$$113 \quad k_{\text{obs}} = k_d + (k_T)[\text{prenyl phenol } \mathbf{4}] \quad (2)$$

114 where k_{obs} is the observed $^1\text{O}_2$ quenching rate constant, k_d is the rate constant of deactivation of
115 $^1\text{O}_2$ by the solvent.

116

117

118

119 **RESULTS AND DISCUSSION**

120 *Product formation.* The sensitized photooxidation reaction of prenyl phenol **4** (taken to ≤
121 30% conversion) led to products **2**, and **6-8** according to NMR (Table 1). Attempts were not
122 made to isolate the 2° and 3° allylic hydroperoxides **6** and **7** due to the anticipated instability to
123 column chromatography; the proton NMR hydroperoxy and alkene signals are similar to those
124 reported in literature (27). The stabilities of hydroperoxides vary, on detection of **6** and **7** by
125 NMR their decomposition was not seen in the reaction mixture over several hours. The identity
126 of epoxide **8** was verified by its independent synthesis from **4** with MCPBA. There was evidence
127 for the formation of H₂O₂ in the reaction, but was not quantitated as we and others (24,25) have
128 noted a broad proton NMR signals from 9.16-9.77 ppm depending on solvent. The solvent was
129 also found to modify the product yields.

130 *Effect of solvent on product formation.* In C₆D₆, dihydrofuran **2** was the main product,
131 along with epoxide **8**, with only small amounts of allylic hydroperoxides **6** and **7**. In CH₃OH, the
132 amount of the dihydrofuran **2** decreased and amounts of allylic hydroperoxides **6** and **7**
133 increased, but the amount of epoxide **8** remained nearly constant. The ratio of dihydrofuran **2** to
134 hydroperoxides **6** and **7** is ~9:1 in C₆D₆, and ~2:3 in CH₃OH. Thus, there is a ~4-fold decrease in
135 dihydrofuran **2** in CH₃OH compared to C₆D₆. The ratio of hydroperoxides **6:7** is not found to
136 depend on C₆D₆ and CH₃OH solvent, wherein the ratio of **6:7** in either solvent is ~0.9:1. In C₆D₆
137 and CH₃OH, the yield of epoxide **8** remained nearly constant, which led us to study the addition
138 of the known ¹O₂ quencher DABCO (28). The addition of DABCO in the sensitized
139 photooxidation of prenyl phenol **4** led to an absence in the formation of **2**, **6**, and **7**, however the
140 amount of epoxide **8** formed was not affected pointing to its formation by a type I process. The

141 probable type I contribution led us to measure the quenching rate constants with ${}^1\text{O}_2$ to directly
142 assess the type II process.

143 [Table 1 here]

144 *Effect of solvent on the total ${}^1\text{O}_2$ quenching rate constant.* Time-resolved singlet oxygen
145 phosphorescence quenching studies provided insight to the solvent effects. The total quenching
146 rate constant (k_T) of ${}^1\text{O}_2$ by prenyl phenol **4** was measured in C_6H_6 and CH_3OH by monitoring its
147 phosphorescence quenching at 1270 nm (Table 2). Figure 3A and 3B show the decay curves are
148 first-order and the lifetime (τ_{obs}) diminishes with increasing concentration of prenyl phenol **4** in
149 C_6H_6 and CH_3OH . The k_T values were obtained from the linear fit of the k_{obs} ($1/\tau_{\text{obs}}$) vs [prenyl
150 phenol] showing a k_T value \sim 10-fold greater in C_6H_6 than CH_3OH (Figure 4A and 4B). This
151 enhancement contrasts to solvent effects in di- and trisubstituted alkenes in aprotic to protic
152 solvents that usually vary \leq 2-fold (29,30). This aprotic solvent enhancement provides us with
153 implications on the reaction mechanism, as we will discuss next.

154 [Figures 3 and 4 here]

155 [Table 2 here]

156

157 *Mechanism of photooxidation.* The above results are rationalized in the mechanism
158 shown in Figure 2, and as follows: An experimental result is that dihydrobenzofuran formation
159 depends on whether benzene or methanol solvent is used. The interaction of ${}^1\text{O}_2$ with the prenyl
160 phenol **4** in benzene (Figure 2, path A) and in methanol (Figure 2, path B) can account for the
161 \sim 10-fold greater total quenching k_T . Data over a wider solvent range to compare not only
162 hydrogen bonding ability, but also polarity E_T (30) scales are presently not available. With the

163 available data, dihydrobenzofuran formation is proposed to involve H-bond interaction of
164 phenolic hydrogen with $^1\text{O}_2$, directing it to the C^{10} site in **5**. The formation of a peroxy
165 intermediate seems plausible, but evidence has not been found with preliminary trapping
166 experiments using triaryl phosphites. The $^1\text{O}_2$ ‘ene’ regioselectivity in formation of the 2° and 3°
167 allylic hydroperoxides **6** and **7** (ratio of ~1:1) did not depend on whether benzene or methanol
168 was the solvent. This is consistent with the *cis-effect* rule of the reaction of $^1\text{O}_2$ with
169 trisubstituted alkenes, in which the more alkyl substituted side of the double bond is more
170 reactive (31). Previous reports have shown instances where H-abstraction from the *exo* methyl
171 group in trisubstituted alkenes contribute only a minor 5-10% in the formation of the 2° allylic
172 hydroperoxide. In the presence of DABCO, the reaction did not form **2**, **6**, and **7**, however the
173 epoxide **8** yield was unaffected pointing to a type I process in its formation (Figure 2, path C).
174 These studies were carried out with DABCO concentrations that were insufficient to quench the
175 sensitizer excited states, however the results do not rule out the epoxide’s formation via a peroxy
176 prenyl phenol intermediate in a self-epoxidation process.

177

178 CONCLUSION

179 An interesting result of this study is the increased dihydrobenzofuran formation, when the
180 photooxidation of **4** was carried out in aprotic solvent. This result points to adduct formation **5**,
181 which decomposes to more stable species, **2** and H_2O_2 . Decreasing the proticity of the solvent
182 increases the interaction of $^1\text{O}_2$ with the phenolic hydrogen increasing the yield of dihydrofuran
183 from 20.0% in benzene compared to 5.1% in methanol. The k_T value showed a ~10-fold

184 enhancement in benzene compared to methanol. Reported differences in product formation have
185 been seen in *t*-propenyl anisole with solvent aproticity showing increased [2 + 4] product
186 relative to the [2 + 2] product in protic solvent (32), although the present work shows no
187 evidence for [2 + 2] products. The present work does show evidence for a type I process to
188 account for the formation of epoxide **8** in both solvents. Solvent, structure, and interfacial effects
189 are subjects of continued interest in the areas of type I and type II sensitized photooxidation in
190 terms of synthesis and mechanistic studies (16-18,33-41).

191 We are currently exploring (i) heterogeneous systems aimed at amplifying the formation
192 of dihydrobenzofurans, (ii) whether a self-trapping reaction with **4** arises by a peroxy
193 intermediate in the **4**– $^1\text{O}_2$ reaction, and (iii) whether dihydrobenzofuran **2** reacts further by $^1\text{O}_2$
194 [2 + 4] cycloaddition to form endoperoxides by analogy to phenol and naphthalene-1,5-diol
195 (juglone)– $^1\text{O}_2$ reactions to reach an endoperoxide (42).

196

197 **ACKNOWLEDGMENTS:** Support from the National Science Foundation (CHE-1856765 and
198 CHE-2154133) is acknowledged. We thank Leda Lee for assistance with the graphic arts.

199

200 **ORCID**

201 Shakeela Jabeen: 0000-0002-7153-3379

202 Goutam Ghosh: 0000-0002-2021-4589

203 Lloyd Lapoot: 0000-0001-6888-2626

204 Andrés M. Durantini: 0000-0002-7898-4033

205 Alexander Greer: 0000-0003-4444-9099

206

207

208 **REFERENCES**

209 1. Dapkekar, A. B., C. Sreenivasulu, D. Ravi Kishore and G. Satyanarayana (2022)
210 Recent advances towards the synthesis of dihydrobenzofurans and
211 dihydroisobenzofurans. *Asian J. Org. Chem.* **11**, e202200012.

212 2. Yu, X., Q. Y. Meng, C. G. Daniliuc and A. Studer (2022) Aroyl fluorides as
213 bifunctional reagents for dearomatizing fluoroaroylation of benzofurans. *J. Am. Chem.
214 Soc.* **144**, 7072–7079.

215 3. Zhang, G., X. Pan, B. Yang, L. Li and Z. Liu (2022) The asymmetric total synthesis of
216 (–)-Eurothiocin A and its enantiomer. *J. Nat. Prod.* **85**, 997–1005.

217 4. Chen, Z., M. Pitchakuntla and Y. Jia (2019) Synthetic approaches to natural products
218 containing 2,3-dihydrobenzofuran skeleton. *Nat. Prod. Rep.* **36**, 666–690.

219 5. Saleeb, M., S. Mojica, A. U. Eriksson, C. D. Andersson, Å. Gylfe and M. Elofsson
220 (2018) Natural product inspired library synthesis: Identification of 2,3-
221 diarylbenzofuran and 2,3-dihydrobenzofuran based inhibitors of *Chlamydia
222 trachomatis*. *Eur. J. Med. Chem.* **143**, 1077–1089.

223 6. Natori, Y., H. Tsutsui, N. Sato, S. Nakamura, H. Nambu, M. Shiro and S. Hashimoto
224 (2009) Asymmetric synthesis of neolignans (–)-*epi*-conocarpan and (+)-conocarpan
225 via Rh(II)-catalyzed C–H insertion process and revision of the absolute configuration
226 of (–)-*epi*-conocarpan. *J. Org. Chem.* **74**, 4418–4421.

227 7. Wang, Y. and A. Zhang (2009) Expeditious synthesis of 2,3-dihydro-2-alkoxy-3-
228 methylenebenzofurans from *N*-benzofuran-3-ylmethyl *N,N,N*-trialkylammonium

229 bromides: A new approach to access the natural product, 2-hydroxy-3-methylene-6-
230 methyl-2, 3-dihydrobenzofuran. *Tetrahedron* **65**, 6986–6990.

231 8. O’Malley, S. J., K. L. Tan, A. Watzke, R. G. Bergman and J. A. Ellman (2005) Total
232 synthesis of (+)-lithospermic acid by asymmetric intramolecular alkylation via
233 catalytic C–H bond activation. *J. Am. Chem. Soc.* **127**, 13496–13497.

234 9. Pelly, S. C., S. Govender, M. A. Fernandes, H. G. Schmalz and C. B. De Koning, C.
235 B. (2007) Stereoselective syntheses of the 2-isopropenyl-2,3-dihydrobenzofuran
236 nucleus: Potential chiral building blocks for the syntheses of tremetone,
237 hydroxytremetone, and rotenone. *J. Org. Chem.* **72**, 2857–2864.

238 10. Lee, S. T., T. Z. Davis, D. R. Gardner, S. M. Colegate, D. Cook, B. T. Green, K. A.
239 Meyerholtz, C. R. Wilson, B. L. Stegelmeier and T. J. Evans (2010) Tremetone and
240 structurally related compounds in white snakeroot (*Ageratina altissima*): A plant
241 associated with trembles and milk sickness. *J. Agric. Food Chem.* **58**, 8560–8565.

242 11. Davis, T. Z., S. T. Lee, M. G. Collett, B. L. Stegelmeier, B. T. Green, S. R. Buck and
243 J. A. Pfister (2015) Toxicity of white snakeroot (*Ageratina altissima*) and chemical
244 extracts of white snakeroot in goats. *J. Agric. Food Chem.* **63**, 2092–2097.

245 12. Panter, K. E. and L. F. James (1990) Natural plant toxicants in milk: A review. *J.*
246 *Anim. Sci.* **68**, 892–904.

247 13. Bonner, W. A., J. I. De Graw, D. M. Bowen and V. R. Shah (1961) Toxic constituents
248 of “white snakeroot”. *Tetrahedron Lett.* **2**, 417–420.

249 14. Zhou, F., Y. Cheng, X. P. Liu, J. R. Chen and W. J. Xiao (2019) A visible light
250 photoredox catalyzed carbon radical-mediated generation of *ortho*-quinone methides
251 for 2,3-dihydrobenzofuran synthesis. *Chem. Commun.* **55**, 3117–3120.

252 15. Blum, T. R., Y. Zhu, S. A. Nordeen and T. P. Yoon (2014) Photocatalytic synthesis of
253 dihydrobenzofurans by oxidative [3 + 2] cycloaddition of phenols. *Angew. Chem. Int.*
254 *Ed.* **53**, 11056–11059.

255 16. Baptista, M. S., J. Cadet, A. Greer and A. H. Thomas (2021) Photosensitization
256 reactions of biomolecules: definition, targets and mechanisms. *Photochem. Photobiol.*
257 **97**, 1456–1483.

258 17. Baptista, M. S., J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C.
259 Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura
260 (2017) Type I and type II photosensitized oxidation reactions: guidelines and
261 mechanistic pathways. *Photochem. Photobiol.* **93**, 912–919.

262 18. Ghogare, A. A. and A. Greer (2016) Using singlet oxygen to synthesize natural
263 products and drugs. *Chem. Rev.* **116**, 9994–10034.

264 19. Dethé, D. H. and B. D. Dherange (2015) Enantioselective total syntheses of (+)-
265 hostmanin A, (−)-linderol A, (+)-methyllinderatin and structural reassignment of
266 adunctin E. *J. Org. Chem.* **80**, 4526–4531.

267 20. DellaGreca, M., M. R. Iesce, L. Previtera, R. Purcaro, M. Rubino and A. Zarrelli
268 (2008) Lignans by photo-oxidation of propenyl phenols. *Photochem. Photobiol. Sci.* **7**,
269 28–32.

270 21. Wang, Y., J. Wu and P. Xia (2006) Synthesis of 1,1-dimethyl-4-indanol derivatives.
271 *Synth. Commun.* **36**, 2685–2698.

272 22. Durantini, A. M., L. E. Greene, R. Lincoln, S. R. Martínez and G. Cosa (2016)
273 Reactive oxygen species mediated activation of a dormant singlet oxygen

274 photosensitizer: From autocatalytic singlet oxygen amplification to chemically controlled
275 photodynamic therapy. *J. Am. Chem. Soc.* **138**, 1215–1225.

276 23. Lattanzi, A., A. Senatore, A. Massa and A. Scettri (2003) Novel highly regioselective
277 VO(acac)₂/TBHP mediated oxidation of *o*-alkenyl phenols to *o*-hydroxybenzyl
278 ketones. *J. Org. Chem.* **68**, 3691–3694.

279 24. Stephenson, N. A. and A. T. Bell (2005) Quantitative analysis of hydrogen peroxide
280 by ¹H NMR spectroscopy. *Anal. Bioanal. Chem.* **381**, 1289–1293.

281 25. Charisiadis, P., C. G. Tsiafoulis, V. Exarchou, A. G. Tzakos and I. P. Gerohanassis
282 (2012) Rapid and direct low micromolar NMR method for the simultaneous detection
283 of hydrogen peroxide and phenolics in plant extracts. *J. Agric. Food Chem.* **60**, 4508–
284 4513.

285 26. Durantini, A. M. and A. Greer (2021) Interparticle delivery and detection of volatile
286 singlet oxygen at air/solid interfaces. *Environ. Sci. Technol.* **55**, 3559–3567.

287 27. Malek, B., W. Fang, I. Abramova, N. Walalawela, A. A. Ghogare and A. Greer (2016)
288 ‘ene’ reactions of singlet oxygen at the air-water interface. *J. Org. Chem.* **81**, 6395–
289 6401.

290 28. Li, J., L. Wang, J. Li, Y. Shao, Z. Liu, G. Li, and E. U. Akkaya (2022) Taming of
291 singlet oxygen: Towards artificial oxygen carriers based on 1,4-dialkynaphthalenes.
292 *Chem. Eur. J.* e202200506.

293 29. Wilkinson, F., W. P. Helman and A. B. Ross (1995) Rate constants for the decay and
294 reactions of the lowest electronically excited singlet state of molecular oxygen in
295 solution. An expanded and revised compilation. *J. Phys. Chem. Ref. Data* **24**, 663–
296 677.

297 30. Manring, L. E. and C. S. Foote (1983) Chemistry of singlet oxygen. 44. Mechanism of
298 photooxidation of 2,5-dimethylhexa-2,4-diene and 2-methyl-2-pentene. *J. Am. Chem.
299 Soc.* **105**, 4710–4717.

300 31. Orfanopoulos, M., S. M. B. Grdina and L. M. Stephenson (1979) Site specificity in
301 the singlet oxygen-trisubstituted olefin reaction. *J. Am. Chem. Soc.* **101**, 275–276.

302 32. Greer, A., G. Vassilikogiannakis, K. C. Lee, T. S. Koffas, K. Nahm and C. S. Foote
303 (2000) Reaction of singlet oxygen with *trans*-4-Propenylanisole. Formation of [2 + 2]
304 products with added acid. *J. Org. Chem.* **65**, 6876–6878.

305 33. Malek, B., W. Lu, P. P. Mohapatra, N. Walalawela, S. Jabeen, J. Liu and A. Greer
306 (2022) Probing the Transition State-to-Intermediate Continuum: Mechanistic
307 Distinction between a Dry versus Wet Peroxide in the Singlet Oxygen “Ene”
308 Reaction at the Air–Water Interface. *Langmuir* **38**, 6036–6048.

309 34. Brahmachari, G. and I. Karmakar (2020) Visible light-induced and singlet oxygen-
310 mediated photochemical conversion of 4-hydroxy- α -benzopyrones to 2-hydroxy-3-
311 oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates using Rose Bengal as a
312 photosensitizer. *J. Org. Chem.* **85**, 8851–8864.

313 35. Jabeen, S., M. Farag, B. Malek, R. Choudhury and A. Greer. (2020) A singlet oxygen
314 priming mechanism: Disentangling of photooxidative and downstream dark effects. *J.
315 Org. Chem.* **85**, 12505–12513.

316 36. Celaje, J. A., D. Zhang, A. M. Guerrero and M. Selke (2011) Chemistry of trans-
317 resveratrol with singlet oxygen: [2 + 2] addition, [4 + 2] addition, and formation of the
318 phytoalexin moracin M. *Org. Lett.* **13**, 4846–4849.

319 37. Carteau, D., P. Brunerie, B. Guillemat and D. M. Bassani (2007) Photochemistry in
320 everyday life: The effect of spontaneous emulsification on the photochemistry of
321 *trans*-anethole. *Photochem. Photobiol. Sci.* **6**, 423–430.

322 38. Helesbeux, J. J., O. Duval, C. Dartiguelongue, D. Séraphin, J. M. Oger and P.
323 Richomme (2004) Synthesis of 2-hydroxy-3-methylbut-3-enyl substituted coumarins
324 and xanthones as natural products. Application of the Schenck ene reaction of singlet
325 oxygen with *ortho*-prenylphenol precursors. *Tetrahedron* **60**, 2293–2300.

326 39. Helesbeux, J. J., O. Duval, D. Guilet, D. Séraphin, D. Rondeau and P. Richomme
327 (2003) Regioselectivity in the ene reaction of singlet oxygen with *ortho*-prenylphenol
328 derivatives. *Tetrahedron* **59**, 5091–5104.

329 40. Helesbeux, J. J., D. Guilet, D. Séraphin, O. Duval, P. Richomme and J. Bruneton
330 (2000) *Ortho*-prenylphenol photooxygenation as a straightforward access to *ortho*-(2-
331 hydroxy-3-methylbut-3-enyl)phenols. *Tetrahedron Lett.* **41**, 4559–4562.

332 41. Griesbeck, A. G., M. Fiege, M. S. Gudipati and R. Wagner (1998) Photooxygenation
333 of 2,4-dimethyl-1,3-pentadiene: Solvent dependence of the chemical (ene reaction and
334 [4 + 2] cycloaddition) and physical quenching of singlet oxygen. *Eur. J. Org. Chem.*
335 **1998**, 2833–2838.

336 42. Kitamura, N., K. Yamada, K. Ueno and S. Iwata (2006) Photodecomposition of
337 phenol by silica-supported porphyrin derivative in polymer microchannel chips. *J.*
338 *Photochem. Photobiol. A Chem.* **184**, 170–176.

339

340

341

342 **FIGURE AND TABLE CAPTIONS**

343

344 **Figure 1.** Synthesis of dihydrofuran (*R*)-**2** with the structure of tremetone (*R*)-**3** shown to the
345 right.

346

347 **Figure 2.** Proposed mechanism in the sensitized photooxidation of prenyl phenol **4**, including
348 solvent and DABCO additive effects.

349

350 **Figure 3.** Normalized ${}^1\text{O}_2$ luminescence decay curves monitored at 1270 nm with increasing
351 concentration of prenyl phenol **4** in (A) C_6H_6 and (B) CH_3OH .

352

353 **Figure 4.** Plots of k_{obs} (s^{-1}) values as a function of the concentration of prenyl phenol **4** in (A)
354 C_6H_6 and (B) CH_3OH .

355

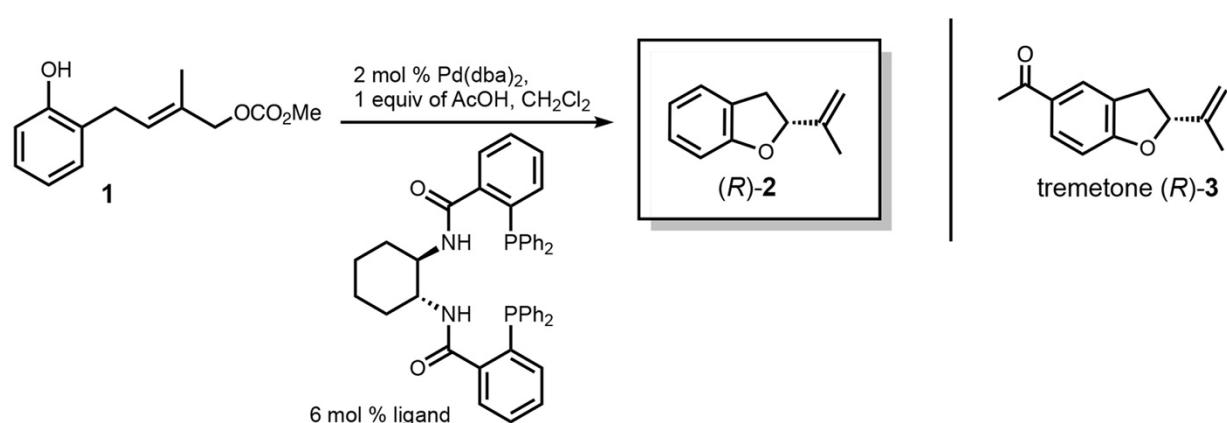
356 **Table 1.** Effects of solvent and DABCO additive on the product ratios in the photooxidation of
357 prenyl phenol **4**.

358

359 **Table 2.** Total quenching rate constant (k_{T}) measurements of ${}^1\text{O}_2$ with prenyl phenol **4**.

360

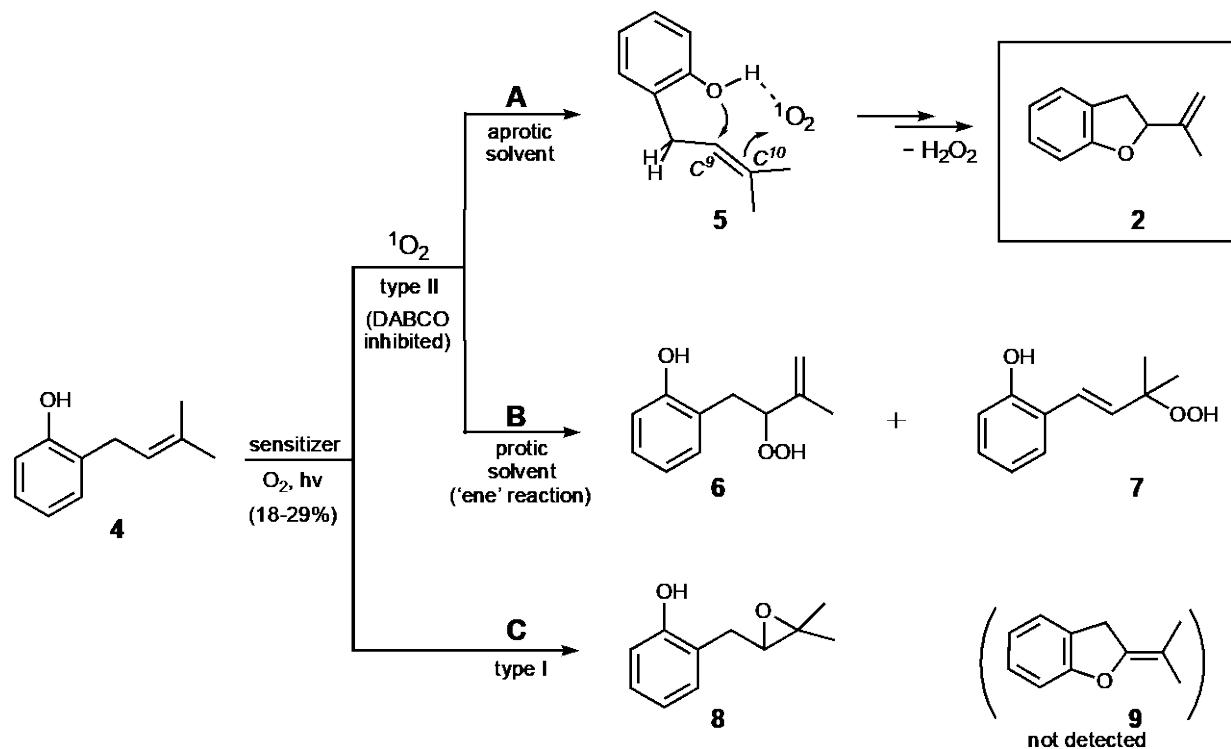
361


362

363

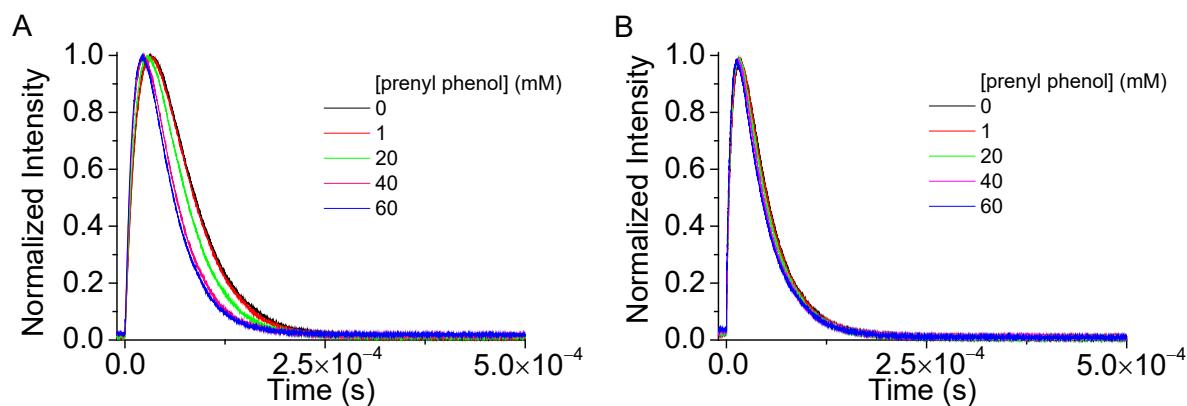
364

365


366

367 **Figure 1.** Synthesis of dihydrofuran *(R)*-2 with the structure of tremetone *(R)*-3 shown to the
368 right.

369


370

373 **Figure 2.** Proposed mechanism in the sensitized photooxidation of prenyl phenol **4**, including
 374 solvent and DABCO additive effects.

377

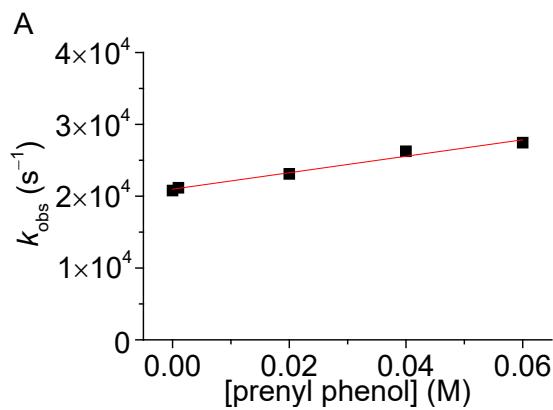
378

379

380

381

382 **Figure 3.** Normalized $^1\text{O}_2$ luminescence decay curves monitored at 1270 nm with increasing
383 concentration of prenyl phenol **4** in (A) C_6H_6 and (B) CH_3OH .


384

385

386

387

388

389

390

391

392 **Figure 4.** Plots of k_{obs} (s^{-1}) values as a function of the concentration of prenyl phenol **4** in (A)
393 C_6H_6 and (B) CH_3OH .

394

395

396 **Table 1.** Effects of solvent and DABCO additive on the product ratios in the photooxidation of
 397 prenyl phenol **4**.

products	aprotic (C_6D_6) ^{a-c}	protic (CH_3OH) ^{b-d}
2	20.0 ± 4.0	5.1 ± 0.7
6	0.95 ± 0.07	3.0 ± 0.7
7	1.0 ± 0.03	3.5 ± 0.4
8	7.5 ± 2.2	6.7 ± 0.6

398 ^a Sensitizer TPP. ^b Addition of DABCO (2 or 10 mM) in the reactions led to an absence in the
 399 formation of **2**, **6**, and **7**, whereas **8** still formed and its yield unaffected. ^c Each value represents
 400 the mean of 4 separate experiments (mean \pm SD). ^d Sensitizer AlPcS₄.

401

402

403

404 **Table 2.** Total quenching rate constant (k_T) measurements of 1O_2 with prenyl phenol **4**.^a

solvent	$k_T (M^{-1} s^{-1}) \times 10^5$
C_6H_6	1.29 ± 0.6
CH_3OH	0.12 ± 0.06

405 ^a Data represent the mean \pm SD of 6 points at each concentration measured.

406